Story Test Driven Development
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Patterns Senior Member of Technical Staff and Pattern Languages Knowledge Systems Corp
Kyle Brown An Introduction to Patterns Senior Member of Technical Staff and Pattern Languages Knowledge Systems Corp. 4001 Weston Parkway CSC591O Cary, North Carolina 27513-2303 April 7-9, 1997 919-481-4000 Raleigh, NC [email protected] http://www.ksccary.com Copyright (C) 1996, Kyle Brown, Bobby Woolf, and 1 2 Knowledge Systems Corp. All rights reserved. Overview Bobby Woolf Senior Member of Technical Staff O Patterns Knowledge Systems Corp. O Software Patterns 4001 Weston Parkway O Design Patterns Cary, North Carolina 27513-2303 O Architectural Patterns 919-481-4000 O Pattern Catalogs [email protected] O Pattern Languages http://www.ksccary.com 3 4 Patterns -- Why? Patterns -- Why? !@#$ O Learning software development is hard » Lots of new concepts O Must be some way to » Hard to distinguish good communicate better ideas from bad ones » Allow us to concentrate O Languages and on the problem frameworks are very O Patterns can provide the complex answer » Too much to explain » Much of their structure is incidental to our problem 5 6 Patterns -- What? Patterns -- Parts O Patterns are made up of four main parts O What is a pattern? » Title -- the name of the pattern » A solution to a problem in a context » Problem -- a statement of what the pattern solves » A structured way of representing design » Context -- a discussion of the constraints and information in prose and diagrams forces on the problem »A way of communicating design information from an expert to a novice » Solution -- a description of how to solve the problem » Generative: -
Wiki As Pattern Language
Wiki as Pattern Language Ward Cunningham Cunningham and Cunningham, Inc.1 Sustasis Foundation Portland, Oregon Michael W. Mehaffy Faculty of Architecture Delft University of Technology2 Sustasis Foundation Portland, Oregon Abstract We describe the origin of wiki technology, which has become widely influential, and its relationship to the development of pattern languages in software. We show here how the relationship is deeper than previously understood, opening up the possibility of expanded capability for wikis, including a new generation of “federated” wiki. [NOTE TO REVIEWERS: This paper is part first-person history and part theory. The history is given by one of the participants, an original developer of wiki and co-developer of pattern language. The theory points toward future potential of pattern language within a federated, peer-to-peer framework.] 1. Introduction Wiki is today widely established as a kind of website that allows users to quickly and easily share, modify and improve information collaboratively (Leuf and Cunningham, 2001). It is described on Wikipedia – perhaps its best known example – as “a website which allows its users to add, modify, or delete its content via a web browser usually using a simplified markup language or a rich-text editor” (Wikipedia, 2013). Wiki is so well established, in fact, that a Google search engine result for the term displays approximately 1.25 billion page “hits”, or pages on the World Wide Web that include this term somewhere within their text (Google, 2013a). Along with this growth, the definition of what constitutes a “wiki” has broadened since its introduction in 1995. Consider the example of WikiLeaks, where editable content would defeat the purpose of the site. -
Project1: Build a Small Scanner/Parser
Project1: Build A Small Scanner/Parser Introducing Lex, Yacc, and POET cs5363 1 Project1: Building A Scanner/Parser Parse a subset of the C language Support two types of atomic values: int float Support one type of compound values: arrays Support a basic set of language concepts Variable declarations (int, float, and array variables) Expressions (arithmetic and boolean operations) Statements (assignments, conditionals, and loops) You can choose a different but equivalent language Need to make your own test cases Options of implementation (links available at class web site) Manual in C/C++/Java (or whatever other lang.) Lex and Yacc (together with C/C++) POET: a scripting compiler writing language Or any other approach you choose --- must document how to download/use any tools involved cs5363 2 This is just starting… There will be two other sub-projects Type checking Check the types of expressions in the input program Optimization/analysis/translation Do something with the input code, output the result The starting project is important because it determines which language you can use for the other projects Lex+Yacc ===> can work only with C/C++ POET ==> work with POET Manual ==> stick to whatever language you pick This class: introduce Lex/Yacc/POET to you cs5363 3 Using Lex to build scanners lex.yy.c MyLex.l lex/flex lex.yy.c a.out gcc/cc Input stream a.out tokens Write a lex specification Save it in a file (MyLex.l) Compile the lex specification file by invoking lex/flex lex MyLex.l A lex.yy.c file is generated -
GNU M4, Version 1.4.7 a Powerful Macro Processor Edition 1.4.7, 23 September 2006
GNU M4, version 1.4.7 A powerful macro processor Edition 1.4.7, 23 September 2006 by Ren´eSeindal This manual is for GNU M4 (version 1.4.7, 23 September 2006), a package containing an implementation of the m4 macro language. Copyright c 1989, 1990, 1991, 1992, 1993, 1994, 2004, 2005, 2006 Free Software Foundation, Inc. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled “GNU Free Documentation License.” i Table of Contents 1 Introduction and preliminaries ................ 3 1.1 Introduction to m4 ............................................. 3 1.2 Historical references ............................................ 3 1.3 Invoking m4 .................................................... 4 1.4 Problems and bugs ............................................. 8 1.5 Using this manual .............................................. 8 2 Lexical and syntactic conventions ............ 11 2.1 Macro names ................................................. 11 2.2 Quoting input to m4........................................... 11 2.3 Comments in m4 input ........................................ 11 2.4 Other kinds of input tokens ................................... 12 2.5 How m4 copies input to output ................................ 12 3 How to invoke macros........................ -
GNU M4, Version 1.4.19 a Powerful Macro Processor Edition 1.4.19, 28 May 2021
GNU M4, version 1.4.19 A powerful macro processor Edition 1.4.19, 28 May 2021 by Ren´eSeindal, Fran¸coisPinard, Gary V. Vaughan, and Eric Blake ([email protected]) This manual (28 May 2021) is for GNU M4 (version 1.4.19), a package containing an implementation of the m4 macro language. Copyright c 1989{1994, 2004{2014, 2016{2017, 2020{2021 Free Software Foundation, Inc. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled \GNU Free Documentation License." i Table of Contents 1 Introduction and preliminaries ::::::::::::::::: 3 1.1 Introduction to m4 :::::::::::::::::::::::::::::::::::::::::::::: 3 1.2 Historical references :::::::::::::::::::::::::::::::::::::::::::: 3 1.3 Problems and bugs ::::::::::::::::::::::::::::::::::::::::::::: 4 1.4 Using this manual :::::::::::::::::::::::::::::::::::::::::::::: 5 2 Invoking m4::::::::::::::::::::::::::::::::::::::: 7 2.1 Command line options for operation modes ::::::::::::::::::::: 7 2.2 Command line options for preprocessor features ::::::::::::::::: 8 2.3 Command line options for limits control ::::::::::::::::::::::: 10 2.4 Command line options for frozen state ::::::::::::::::::::::::: 11 2.5 Command line options for debugging :::::::::::::::::::::::::: 11 2.6 Specifying input files on the command line ::::::::::::::::::::: -
Analysis Patterns.Pdf
Symbols for mappings DLKING , : www.dlking.com Generalization notation DLKING , : www.dlking.com Contents Foreword v Foreword vii Preface xv Chapter 1. Introduction 1 1.1 Conceptual Models 1 1.2 The World of Patterns 4 1.3 The Patterns in this Book 8 1.4 Conceptual Models and Business Process Reengineering 10 1.5 Patterns and Frameworks 11 1.6 Using the Patterns 11 References 14 Part 1. Analysis Patterns 15 Chapter 2. Accountability 17 2.1 Party 18 2.2 Organization Hierarchies 19 2.3 Organization Structure 21 2.4 Accountability 22 2.5 Accountability Knowledge Level 24 2.6 Party Type Generalizations 27 2.7 Hierarchic Accountability 28 2.8 Operating Scopes 30 2.9 Post 32 References 33 Chapter 3. Observations and Measurements 35 3.1 Quantity 36 3.2 Conversion Ratio 38 3.3 Compound Units 39 3.4 Measurement 41 3.5 Observation 42 3.6 Subtyping Observation Concepts 46 3.7 Protocol 46 3.8 Dual Time Record 47 IX DLKING , : www.dlking.com x Contents 3.9 Rejected Observation 48 3.10 Active Observation, Hypothesis, and Projection 49 3.11 Associated Observation 50 3.12 Process of Observation 51 References 55 Chapter 4. Observations for Corporate Finance 57 4.1 Enterprise Segment 59 4.2 Measurement Protocol 65 4.3 Range 76 4.4 Phenomenon with Range 77 4.5 Using the Resulting Framework 82 References 83 Chapter 5. Referring to Objects 85 5.1 Name 86 5.2 Identification Scheme 88 5.3 Object Merge 90 5.4 Object Equivalence 92 References 93 Chapter 6. -
Software Development Lifecycle (Sdlc) Models & Agile Methods
sdlc% how did that happen? software development lifecycle (sdlc) models & agile methods • by analogy with civil engineering, where you design first, then do construction • in software, there is no “construction” it’s all design • used to be called coding sdlc%(2)% sdlc%(3)% • what is a software development process? • what is the lifecycle of a software project? • will talk about “agile” later. first, we’ll talk about “disciplined” or is it “traditional?” or is it “sturdy?” or is it “planned?” or is it… sdlc%(4)% example%feature%workflow% • tend to talk about sdlc in terms of a dichotomy – !“agile”!vs.!well…um…“not!agile”! – or,!“planned”!vs.!“con8nuous”! – others!tend!to!(incorrectly)!think!that!the! deployment!method!implies!the!process! • saas!==!agile! • installed!==!tradi8onal! • think more in terms applying the process on an individual feature, or an aggregate goal%of%sdlc% waterfall% Requirements! Design! Construc8on! • what’s the goal of a good sdlc? Integra8on! – passes!all!the!tests!(external!quality!aAriButes)! Debugging! – good!design/architecture!(internal)! Installa8on! Maintenance! – good!user!experience!(quality!in!use)! • move from one phase to the next only when its preceding phase is – process!quality!(can!process!help!ensure! completed and perfected. product!quality)! • first mentioned by Royce in 1970 as an example of a flawed, non- working model for software development. • US department of defence projects attempted to entrench this model by requiring their contractors to produce the waterfall deliverables and then to formally accept them to a certain schedule (US military standard DoD-2167) – there!was!a!unwieldy!process!for!going!Back!and!amending!previous! deliverables! waterfall%(2)% waterfall%(3)% more problems problems • static view of requirements – ignores volatility • lack of user involvement once specification is written • unrealistic separation of specification from design • often tracked with Gantt charts! • doesn’t easily accommodate prototyping, – printed!and!taped!up!on!the!wall! reuse, etc. -
An AWK to C++ Translator
An AWK to C++ Translator Brian W. Kernighan Bell Laboratories Murray Hill, NJ 07974 [email protected] ABSTRACT This paper describes an experiment to produce an AWK to C++ translator and an AWK class definition and supporting library. The intent is to generate efficient and read- able C++, so that the generated code will run faster than interpreted AWK and can also be modified and extended where an AWK program could not be. The AWK class and library can also be used independently of the translator to access AWK facilities from C++ pro- grams. 1. Introduction An AWK program [1] is a sequence of pattern-action statements: pattern { action } pattern { action } ... A pattern is a regular expression, numeric expression, string expression, or combination of these; an action is executable code similar to C. The operation of an AWK program is for each input line for each pattern if the pattern matches the input line do the action Variables in an AWK program contain string or numeric values or both according to context; there are built- in variables for useful values such as the input filename and record number. Operators work on strings or numbers, coercing the types of their operands as necessary. Arrays have arbitrary subscripts (‘‘associative arrays’’). Input is read and input lines are split into fields, called $1, $2, etc. Control flow statements are like those of C: if-else, while, for, do. There are user-defined and built-in functions for arithmetic, string, regular expression pattern-matching, and input and output to/from arbitrary files and processes. -
Pedagogical and Elementary Patterns Patterns Overview
Pedagogical and Elementary Patterns Overview Patterns Joe Bergin Pace University http://csis.pace.edu/~bergin Thanks to Eugene Wallingford for some material here. Jim (Cope) Coplien also gave advice in the design. 11/26/00 1 11/26/00 2 Patterns--What they DO Where Patterns Came From • Capture Expert Practice • Christopher Alexander --A Pattern Language • Communicate Expertise to Others – Architecture • Solve Common Recurring Problems • Structural Relationships that recur in good spaces • Ward Cunningham, Kent Beck (oopsla ‘87), • Vocabulary of Solutions. Dick Gabriel, Jim Coplien, and others • Bring a set of forces/constraints into • Johnson, Gamma, Helm, and Vlisides (GOF) equilibrium • Structural Relationships that recur in good programs • Work with other patterns 11/26/00 3 11/26/00 4 Patterns Branch Out Patterns--What they ARE • Software Design Patterns (GOF...) •A Thing • Organizational Patterns (XP, SCRUM...) • A Description of a Thing • Telecommunication Patterns (Hub…) • A Description of how to Create the Thing • Pedagogical Patterns •A Solution of a Recurring Problem in a • Elementary Patterns Context – Unfortunately this “definition” is only useful if you already know what patterns are 11/26/00 5 11/26/00 6 Patterns--What they ARE (2) Elements of a Pattern • Structural relationships between •Problem components of a system that brings into • Context equilibrium a set of demands on the system •Forces • A way to generate complex (emergent) •Solution behavior from simple rules • Examples of Use (several) • A way to make the world a better place for humans -- not just developers or teachers... • Consequences and Resulting Context 11/26/00 7 11/26/00 8 Exercise Exercise • Problem: Build a stairway up a castle tower • Problem: Design the intersection of two or • Context: 12th Century Denmark. -
Make a Jump Start Together with Software Ag
Software AG Fast Startup FAST STARTUP PROGRAM MAKE A JUMP START TOGETHER WITH SOFTWARE AG You have great ideas, a clear vision and the drive to build something really cool. You are smart, you are fast, you are innovative and you are determined to become a rock star of the startup community. Need some free software to build your solution on? Here’s the secret. When it comes to software partnership, the key differentiators are: technology leadership, ease of use, total cost of ownership and—most importantly—reliability. Why Software AG? Why not just freeware? The key to your success is a brilliant business idea, a sustainable For a homegrown, non-mission-critical application, there is business model, openhanded investors and finally paying nothing wrong with choosing freeware. But if you need best-in- customers. class functionality and reliability to build your business on, you It’s a strong partnership that can be the differentiator in the should think twice about the software you use. success of your business. What is your innovation? What do you require as the foundation That’s why you should partner with Software AG. for your intellectual property? Why should you spend time re- Building on 45 years of customer-centric innovation, we are inventing what professional developers invented and optimized ranked as a leader in key market categories, year after year. Our over many years for their paying customers? Do you want to grow solutions are faster to implement and easier to use than anything your business or just your development team? How reliable are else on the market. -
Frontiers of Pattern Language Technology
Frontiers of Pattern Language Technology Pattern Language, 1977 Network of Relationships “We need a web way of thinking.” - Jane Jacobs Herbert Simon, 1962 “The Architecture of Complexity” - nearly decomposable hierarchies (with “panarchic” connections - Holling) Christopher Alexander, 1964-5 “A city is not a tree” – its “overlaps” create clusters, or “patterns,” that can be manipulated more easily (related to Object-Oriented Programming) The surprising existing benefits of Pattern Language technology.... * “Design patterns” used as a widespread computer programming system (Mac OS, iPhone, most games, etc.) * Wiki invented by Ward Cunningham as a direct outgrowth * Direct lineage to Agile, Scrum, Extreme Programming * Pattern languages used in many other fields …. So why have they not been more infuential in the built environment??? Why have pattern languages not been more infuential in the built environment?.... * Theory 1: “Architects are just weird!” (Preference for “starchitecure,” extravagant objects, etc.) * Theory 2: The original book is too “proprietary,” not “open source” enough for extensive development and refinement * Theory 3: The software people, especially, used key strategies to make pattern languages far more useful, leading to an explosion of useful new tools and approaches …. So what can we learn from them??? * Portland, OR. Based NGO with international network of researchers * Executive director is Michael Mehaffy, student and long-time colleague of Christopher Alexander, inter-disciplinary collaborator in philosophy, sciences, public affairs, business and economics, architecture, planning * Board member is Ward Cunningham, one of the pioneers of pattern languages in software, Agile, Scrum etc., and inventor of wiki * Other board members are architects, financial experts, former students of Alexander Custom “Project Pattern Languages” (in conventional paper format) Custom “Project Pattern Languages” create the elements of a “generative code” (e.g. -
The Cool Reference Manual∗
The Cool Reference Manual∗ Contents 1 Introduction 3 2 Getting Started 3 3 Classes 4 3.1 Features . 4 3.2 Inheritance . 5 4 Types 6 4.1 SELF TYPE ........................................... 6 4.2 Type Checking . 7 5 Attributes 8 5.1 Void................................................ 8 6 Methods 8 7 Expressions 9 7.1 Constants . 9 7.2 Identifiers . 9 7.3 Assignment . 9 7.4 Dispatch . 10 7.5 Conditionals . 10 7.6 Loops . 11 7.7 Blocks . 11 7.8 Let . 11 7.9 Case . 12 7.10 New . 12 7.11 Isvoid . 12 7.12 Arithmetic and Comparison Operations . 13 ∗Copyright c 1995-2000 by Alex Aiken. All rights reserved. 1 8 Basic Classes 13 8.1 Object . 13 8.2 IO ................................................. 13 8.3 Int................................................. 14 8.4 String . 14 8.5 Bool . 14 9 Main Class 14 10 Lexical Structure 14 10.1 Integers, Identifiers, and Special Notation . 15 10.2 Strings . 15 10.3 Comments . 15 10.4 Keywords . 15 10.5 White Space . 15 11 Cool Syntax 17 11.1 Precedence . 17 12 Type Rules 17 12.1 Type Environments . 17 12.2 Type Checking Rules . 18 13 Operational Semantics 22 13.1 Environment and the Store . 22 13.2 Syntax for Cool Objects . 24 13.3 Class definitions . 24 13.4 Operational Rules . 25 14 Acknowledgements 30 2 1 Introduction This manual describes the programming language Cool: the Classroom Object-Oriented Language. Cool is a small language that can be implemented with reasonable effort in a one semester course. Still, Cool retains many of the features of modern programming languages including objects, static typing, and automatic memory management.