Frazil Ice Growth and Production During Katabatic Wind Events in The
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
River Ice Management in North America
RIVER ICE MANAGEMENT IN NORTH AMERICA REPORT 2015:202 HYDRO POWER River ice management in North America MARCEL PAUL RAYMOND ENERGIE SYLVAIN ROBERT ISBN 978-91-7673-202-1 | © 2015 ENERGIFORSK Energiforsk AB | Phone: 08-677 25 30 | E-mail: [email protected] | www.energiforsk.se RIVER ICE MANAGEMENT IN NORTH AMERICA Foreword This report describes the most used ice control practices applied to hydroelectric generation in North America, with a special emphasis on practical considerations. The subjects covered include the control of ice cover formation and decay, ice jamming, frazil ice at the water intakes, and their impact on the optimization of power generation and on the riparians. This report was prepared by Marcel Paul Raymond Energie for the benefit of HUVA - Energiforsk’s working group for hydrological development. HUVA incorporates R&D- projects, surveys, education, seminars and standardization. The following are delegates in the HUVA-group: Peter Calla, Vattenregleringsföretagen (ordf.) Björn Norell, Vattenregleringsföretagen Stefan Busse, E.ON Vattenkraft Johan E. Andersson, Fortum Emma Wikner, Statkraft Knut Sand, Statkraft Susanne Nyström, Vattenfall Mikael Sundby, Vattenfall Lars Pettersson, Skellefteälvens vattenregleringsföretag Cristian Andersson, Energiforsk E.ON Vattenkraft Sverige AB, Fortum Generation AB, Holmen Energi AB, Jämtkraft AB, Karlstads Energi AB, Skellefteå Kraft AB, Sollefteåforsens AB, Statkraft Sverige AB, Umeå Energi AB and Vattenfall Vattenkraft AB partivipates in HUVA. Stockholm, November 2015 Cristian -
Turbulent Surface Exchange During the Arctic Ocean 2018 Expedition
Geophysical Research Abstracts Vol. 21, EGU2019-8362, 2019 EGU General Assembly 2019 © Author(s) 2019. CC Attribution 4.0 license. Turbulent surface exchange during the Arctic Ocean 2018 expedition John Prytherch (1), Michael Tjernström (1), Ian Brooks (2), Peggy Achtert (3), Ben Moat (4), and Margaret Yelland (4) (1) MISU, Stockholm University, Stockholm, Sweden ([email protected]), (2) Institute for Climate & Atmospheric Science, University of Leeds, Leeds, UK, (3) Meteorology, University of Reading, Reading, UK, (4) Marine Physics and Ocean Climate, National Oceanography Centre, Southampton, UK Turbulence-driven air-sea and air-ice exchanges of momentum, heat, moisture and trace gases in sea-ice regions are key boundary layer processes. Turbulent heat fluxes are important for the surface energy budget and determine the interactions between sea ice, the atmospheric boundary layer and clouds. Atmosphere-ice/ocean momentum exchange in the presence of sea ice is determined from surface drag, or roughness. Both drag and heat flux coefficients are prescribed in numerical weather prediction, climate and Earth system models as functions of stability. In addition, sea ice acts as a near-impermeable lid to air-sea gas exchange, but is also hypothesised to enhance gas transfer rates in open water areas (e.g. leads) through physical processes such as increased surface-ocean turbulence from ice-water shear and ice-edge form drag. There are few direct observations of turbulence-driven surface exchange from which to develop parameterisations, particularly in the High (> 85N) Arctic. Recent rapid changes to sea-ice conditions in the region also make older observations less applicable. -
Sea Ice Growth and Decay a Remote Sensing Perspective Sea Ice Growth & Decay
Sea Ice Growth And Decay A Remote Sensing Perspective Sea Ice Growth & Decay Add snow here Loss of Sea Ice in the Arctic Donald K. Perovich and Jacqueline A. Richter-Menge Annual Review of Marine Science 2009 1:1, 417-441 Sea Ice Remote Sensing Method Physical Property Sensor Type Geophysical Variable Passive Microwave Surface Emissivity Radiometer Sea Ice Concentration ~ 1 – 100 GHz Sea Ice Classification Sea Ice Motion Thin Sea Ice Thickness (Snow Depth) Active Microwave Backscatter SAR Sea Ice Classification Sea Ice Motion Very Thin Sea Ice Thickness Scatterometer Sea Ice Type Altimeter Sea Ice Thickness (Snow Depth) Optical Spectral Albedo Spectrometer Floe Sizes Distribution Melt Pond Coverage Melt Pond Depth Infrared Surface Emissivity Radiometer Sea Ice Surface Temperature Thin Sea Ice Thickness Laser Backscatter Altimeter Sea Ice Thickness What are the main processes of sea ice growth & decay? How do they affect sea ice remote sensing? How to observe these processes independently? Formation Redistribution Snow Surface Melt & Growth Processes Annual Cycle of Sea Ice Sea Ice Extent Area covered at least with 15% sea ice (according to passive microwave data) Long-Term Sea Ice Trends Sea Ice Extent Sea Ice Thickness Passive Microwave Time Series Submarines, Moorings, Airborne Surveys Arctic Antarctic No comparable sea ice thickness data record Sea Ice Age & Type Sea Ice Age Sea Ice Type Model with observed ice drift & concentration Passive & Active Microwave Formation Redistribution Snow Surface Melt & Growth Processes Early Sea Ice -
Open-Ocean Polynyas and Deep Convection in the Southern Ocean Woo Geun Cheon1 & Arnold L
www.nature.com/scientificreports OPEN Open-ocean polynyas and deep convection in the Southern Ocean Woo Geun Cheon1 & Arnold L. Gordon 2 An open-ocean polynya is a large ice-free area surrounded by sea ice. The Maud Rise Polynya in the Received: 27 December 2018 Southern Ocean occasionally occurs during the austral winter and spring seasons in the vicinity of Maud Accepted: 18 April 2019 Rise near the Greenwich Meridian. In the mid-1970s the Maud Rise Polynya served as a precursor to Published: xx xx xxxx the more persistent, larger Weddell Polynya associated with intensive open-ocean deep convection. However, the Maud Rise Polynya generally does not lead to a Weddell Polynya, as was the situation in the September to November of 2017 occurrence of a strong Maud Rise Polynya. Using diverse, long- term observation and reanalysis data, we found that a combination of weakly stratifed ocean near Maud Rise and a wind induced spin-up of the cyclonic Weddell Gyre played a crucial role in generating the 2017 Maud Rise Polynya. More specifcally, the enhanced fow over the southwestern fank of Maud Rise intensifed eddy activity, weakening and raising the pycnocline. However, in 2018 the formation of a Weddell Polynya was hindered by relatively low surface salinity associated with the positive Southern Annular Mode, in contrast to the 1970s’ condition of a prolonged, negative Southern Annular Mode that induced a saltier surface layer and weaker pycnocline. In the Southern Ocean there are two modes in which surface water can attain sufcient density to descend into the deep ocean1. -
Frazil-Ice Nucleation by Mass-Exchange Processes at the Air- Water Interface
J ournal oIG/acio logy, V o !. 19, No. 8 1, 197 7 FRAZIL-ICE NUCLEATION BY MASS-EXCHANGE PROCESSES AT THE AIR- WATER INTERFACE By T. E. O ST E RKAMP':' (Geophysical Institute, University of Alaska, Fairbanks, A laska 99701, U .S.A. ) AosTRACT. T he physical requirem ents for proposed frazil-ice nucleati on theori es are reviewed in the light of recent observations on frazil-ice forma tion. It is concluded that sponta neous heterogeneous nucleation in a thin supercooled surface la yer of wa ter is not a via ble mechanism for frazil-ice nucleation. E fforts to observe crys ta l multiplicati on b y b order ice have n o t been successful. The mass-excha nge m echanism proposed by O sterka mp and others ( 1974) has been gen era li zed to include splashing, wind spray, bubble bursting, evapo ra tion, a nd ma teria l tha t originates a t a dista nce from the strea m (e. g. snow, frost, ice pa rticles, cold orga nic m a teria l, a nd cold soil pa rticles). I t is shown that these mass-exchange processes ca n account for frazil-ice nucleation under a wide ra nge of phys ical a nd meteorological conditions. It is suggested that secondary nuclea tion may be responsible for large frazil-ice concentra tions in streams and rivers. R EsuME. JVllcieatioll de la glace dll ''.fra zil'' par des processus d'echallges de masses a I'illlerface air ell eall. O n a rev u les conditions physiques requises pa r les theories p our la nucleation d e la glace du " frazil " a la lumicre de recentes observations sur cette forma ti on. -
Weddell Sea Phytoplankton Blooms Modulated by Sea Ice Variability and Polynya Formation
UC San Diego UC San Diego Previously Published Works Title Weddell Sea Phytoplankton Blooms Modulated by Sea Ice Variability and Polynya Formation Permalink https://escholarship.org/uc/item/7p92z0dm Journal GEOPHYSICAL RESEARCH LETTERS, 47(11) ISSN 0094-8276 Authors VonBerg, Lauren Prend, Channing J Campbell, Ethan C et al. Publication Date 2020-06-16 DOI 10.1029/2020GL087954 Peer reviewed eScholarship.org Powered by the California Digital Library University of California RESEARCH LETTER Weddell Sea Phytoplankton Blooms Modulated by Sea Ice 10.1029/2020GL087954 Variability and Polynya Formation Key Points: Lauren vonBerg1, Channing J. Prend2 , Ethan C. Campbell3 , Matthew R. Mazloff2 , • Autonomous float observations 2 2 are used to characterize the Lynne D. Talley , and Sarah T. Gille evolution and vertical structure of 1 2 phytoplankton blooms in the Department of Computer Science, Princeton University, Princeton, NJ, USA, Scripps Institution of Oceanography, Weddell Sea University of California, San Diego, La Jolla, CA, USA, 3School of Oceanography, University of Washington, Seattle, • Bloom duration and total carbon WA, USA export were enhanced by widespread early ice retreat and Maud Rise polynya formation in 2017 Abstract Seasonal sea ice retreat is known to stimulate Southern Ocean phytoplankton blooms, but • Early spring bloom initiation depth-resolved observations of their evolution are scarce. Autonomous float measurements collected from creates conditions for a 2015–2019 in the eastern Weddell Sea show that spring bloom initiation is closely linked to sea ice retreat distinguishable subsurface fall bloom associated with mixed-layer timing. The appearance and persistence of a rare open-ocean polynya over the Maud Rise seamount in deepening 2017 led to an early bloom and high annual net community production. -
Development of a Pan‐Arctic Monitoring Plan for Polar Bears Background Paper
CAFF Monitoring Series Report No. 1 January 2011 DEVELOPMENT OF A PAN‐ARCTIC MONITORING PLAN FOR POLAR BEARS BACKGROUND PAPER Dag Vongraven and Elizabeth Peacock ARCTIC COUNCIL DEVELOPMENT OF A PAN‐ARCTIC MONITORING PLAN FOR POLAR BEARS Acknowledgements BACKGROUND PAPER The Conservation of Arctic Flora and Fauna (CAFF) is a Working Group of the Arctic Council. Author Dag Vongraven Table of Contents CAFF Designated Agencies: Norwegian Polar Institute Foreword • Directorate for Nature Management, Trondheim, Norway Elizabeth Peacock • Environment Canada, Ottawa, Canada US Geological Survey, 1. Introduction Alaska Science Center • Faroese Museum of Natural History, Tórshavn, Faroe Islands (Kingdom of Denmark) 1 1.1 Project objectives 2 • Finnish Ministry of the Environment, Helsinki, Finland Editing and layout 1.2 Definition of monitoring 2 • Icelandic Institute of Natural History, Reykjavik, Iceland Tom Barry 1.3 Adaptive management/implementation 2 • The Ministry of Domestic Affairs, Nature and Environment, Greenland 2. Review of biology and natural history • Russian Federation Ministry of Natural Resources, Moscow, Russia 2.1 Reproductive and vital rates 3 2.2 Movement/migrations 4 • Swedish Environmental Protection Agency, Stockholm, Sweden 2.3 Diet 4 • United States Department of the Interior, Fish and Wildlife Service, Anchorage, Alaska 2.4 Diseases, parasites and pathogens 4 CAFF Permanent Participant Organizations: 3. Polar bear subpopulations • Aleut International Association (AIA) 3.1 Distribution 5 • Arctic Athabaskan Council (AAC) 3.2 Subpopulations/management units 5 • Gwich’in Council International (GCI) 3.3 Presently delineated populations 5 3.3.1 Arctic Basin (AB) 5 • Inuit Circumpolar Conference (ICC) – Greenland, Alaska and Canada 3.3.2 Baffin Bay (BB) 6 • Russian Indigenous Peoples of the North (RAIPON) 3.3.3 Barents Sea (BS) 7 3.3.4 Chukchi Sea (CS) 7 • Saami Council 3.3.5 Davis Strait (DS) 8 This publication should be cited as: 3.3.6 East Greenland (EG) 8 Vongraven, D and Peacock, E. -
Ice Production in Ross Ice Shelf Polynyas During 2017–2018 from Sentinel–1 SAR Images
remote sensing Article Ice Production in Ross Ice Shelf Polynyas during 2017–2018 from Sentinel–1 SAR Images Liyun Dai 1,2, Hongjie Xie 2,3,* , Stephen F. Ackley 2,3 and Alberto M. Mestas-Nuñez 2,3 1 Key Laboratory of Remote Sensing of Gansu Province, Heihe Remote Sensing Experimental Research Station, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China; [email protected] 2 Laboratory for Remote Sensing and Geoinformatics, Department of Geological Sciences, University of Texas at San Antonio, San Antonio, TX 78249, USA; [email protected] (S.F.A.); [email protected] (A.M.M.-N.) 3 Center for Advanced Measurements in Extreme Environments, University of Texas at San Antonio, San Antonio, TX 78249, USA * Correspondence: [email protected]; Tel.: +1-210-4585445 Received: 21 April 2020; Accepted: 5 May 2020; Published: 7 May 2020 Abstract: High sea ice production (SIP) generates high-salinity water, thus, influencing the global thermohaline circulation. Estimation from passive microwave data and heat flux models have indicated that the Ross Ice Shelf polynya (RISP) may be the highest SIP region in the Southern Oceans. However, the coarse spatial resolution of passive microwave data limited the accuracy of these estimates. The Sentinel-1 Synthetic Aperture Radar dataset with high spatial and temporal resolution provides an unprecedented opportunity to more accurately distinguish both polynya area/extent and occurrence. In this study, the SIPs of RISP and McMurdo Sound polynya (MSP) from 1 March–30 November 2017 and 2018 are calculated based on Sentinel-1 SAR data (for area/extent) and AMSR2 data (for ice thickness). -
Snow and Ice Control Around Structures - George D
COLD REGIONS SCIENCE AND MARINE TECHNOLOGY - Snow and Ice Control Around Structures - George D. Ashton SNOW AND ICE CONTROL AROUND STRUCTURES George D. Ashton Consultant, Lebanon, NH 03766 Keywords: ice jams, ice control, flooding, snow drifting, snow loads, river ice Contents 1. Introduction 2. Nature of ice jams 2.1. Frazil Ice 2.1.1. Hanging Dams 2.1.2. Blockage of Intakes 2.2. Breakup Ice Jams 3. Control of ice jams 3.1. Frazil Ice Jams 3.2. Breakup Ice Jams 3.2.1. Ice Suppression 3.2.2. Dikes 3.2.3. Ice Booms 3.2.4. Ice Control Structures 3.2.5. Ice Removal 3.2.6. Ice Breaking 3.2.7. Ice Weakening 3.2.8. Blasting 4. Other Ice Control Techniques 4.1. Air Bubbler Systems 4.1.1. Requirements 4.1.2. Limitations 4.1.3. Operation 4.2. Other Ice Control Techniques 5. Snow control around structures 5.1. Buildings 5.1.1. Snow UNESCOLoads on Roofs – EOLSS 5.1.2. Blowing Snow 5.2. Roads 5.2.1 Snow Fences 6. Conclusion SAMPLE CHAPTERS Glossary Bibliography Biographical Sketch Summary Two main topics are treated here: control of ice jams including mitigation measures, and control of snow accumulations around structures. The nature of ice jams is described and the difference between jams formed of frazil ice and jams formed of broken ice is ©Encyclopedia of Life Support Systems (EOLSS) COLD REGIONS SCIENCE AND MARINE TECHNOLOGY - Snow and Ice Control Around Structures - George D. Ashton discussed. Also discussed are various ice control techniques used for specific problems. -
The Effects of Rotation and Ice Shelf Topography on Frazil-Laden Ice Shelf Water Plumes
The effects of rotation and ice shelf topography on frazil-laden ice shelf water plumes Article Published Version Holland, P. R. and Feltham, D. L. (2006) The effects of rotation and ice shelf topography on frazil-laden ice shelf water plumes. Journal of Physical Oceanography, 36 (12). pp. 2312-2327. ISSN 0022-3670 doi: https://doi.org/10.1175/JPO2970.1 Available at http://centaur.reading.ac.uk/34907/ It is advisable to refer to the publisher’s version if you intend to cite from the work. See Guidance on citing . Published version at: http://dx.doi.org/10.1175/JPO2970.1 To link to this article DOI: http://dx.doi.org/10.1175/JPO2970.1 Publisher: American Meteorological Society All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the End User Agreement . www.reading.ac.uk/centaur CentAUR Central Archive at the University of Reading Reading’s research outputs online 2312 JOURNAL OF PHYSICAL OCEANOGRAPHY VOLUME 36 The Effects of Rotation and Ice Shelf Topography on Frazil-Laden Ice Shelf Water Plumes ϩ PAUL R. HOLLAND* AND DANIEL L. FELTHAM Centre for Polar Observation and Modelling, University College London, London, United Kingdom (Manuscript received 24 June 2005, in final form 20 April 2006) ABSTRACT A model of the dynamics and thermodynamics of a plume of meltwater at the base of an ice shelf is presented. Such ice shelf water plumes may become supercooled and deposit marine ice if they rise (because of the pressure decrease in the in situ freezing temperature), so the model incorporates both melting and freezing at the ice shelf base and a multiple-size-class model of frazil ice dynamics and deposition. -
POLYNYAS in the CANADIAN ARCTIC Analysis of MODIS Sea Ice Temperature Data Between June 2002 and July 2013
Canatec Associates International Ltd. POLYNYAS IN THE CANADIAN ARCTIC Analysis of MODIS Sea Ice Temperature Data Between June 2002 and July 2013 David Currie 7/16/2014 Using daily sea ice temperature grids produced from MODIS optical satellite imagery, polynya occurrences in the Canadian Arctic and Northwest Greenland were mapped with a spatial resolution of one square kilometer and a temporal resolution of one week. The eleven year dataset was used to identify and measure locations with a high probability of open water occurrence. This approach appears to be most suitable for the spring months, when polynyas and shore leads represent the only open water in the region. An analysis of the results at several geographic scales reveals considerable yearly variation in polynya extents, although the relatively short period studied makes identifying trends rather difficult. Contents Introduction ................................................................................................................................................................ 3 Goals ............................................................................................................................................................................... 5 Source Data ................................................................................................................................................................. 6 MODIS Sea Ice Temperature Product MOD29/MYD29 ....................................................................... 6 Landsat Quicklook -
Laboratory Study of Frazil Ice Accumulation
Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | The Cryosphere Discuss., 5, 1835–1886, 2011 The Cryosphere www.the-cryosphere-discuss.net/5/1835/2011/ Discussions TCD doi:10.5194/tcd-5-1835-2011 5, 1835–1886, 2011 © Author(s) 2011. CC Attribution 3.0 License. Laboratory study of This discussion paper is/has been under review for the journal The Cryosphere (TC). frazil ice Please refer to the corresponding final paper in TC if available. accumulation S. De la Rosa and S. Maus Laboratory study of frazil ice Title Page accumulation under wave conditions Abstract Introduction S. De la Rosa1,2 and S. Maus1 Conclusions References 1Geophysical Institute, University of Bergen, Allegaten´ 70, 5007, Bergen, Norway Tables Figures 2Nansen Environmental and Remote Sensing Center/Mohn-Sverdrup Center, Thormøhlensgate 47, 5006, Bergen, Norway J I Received: 27 May 2011 – Accepted: 13 June 2011 – Published: 8 July 2011 J I Correspondence to: S. De la Rosa ([email protected]) Back Close Published by Copernicus Publications on behalf of the European Geosciences Union. Full Screen / Esc Printer-friendly Version Interactive Discussion 1835 Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Abstract TCD Ice growth in turbulent seawater is often accompanied by the accumulation of frazil ice crystals at its surface. The thickness and volume fraction of this ice layer play an 5, 1835–1886, 2011 important role in shaping the gradual transition from a loose to a solid ice cover, how- 5 ever, observations are very sparse. Here we analyse an extensive set of observations Laboratory study of of frazil ice, grown in two parallel tanks with controlled wave conditions and thermal frazil ice forcing, focusing on the first one to two days of grease ice accumulation.