5. Schemes to Define Schemes, Just As with Algebraic Varieties, the Idea Is to First Define What an Affine Scheme Is, and Then R
Total Page:16
File Type:pdf, Size:1020Kb
Load more
										Recommended publications
									
								- 
												  A Zariski Topology for ModulesA Zariski Topology for Modules∗ Jawad Abuhlail† Department of Mathematics and Statistics King Fahd University of Petroleum & Minerals [email protected] October 18, 2018 Abstract Given a duo module M over an associative (not necessarily commutative) ring R, a Zariski topology is defined on the spectrum Specfp(M) of fully prime R-submodules of M. We investigate, in particular, the interplay between the properties of this space and the algebraic properties of the module under consideration. 1 Introduction The interplay between the properties of a given ring and the topological properties of the Zariski topology defined on its prime spectrum has been studied intensively in the literature (e.g. [LY2006, ST2010, ZTW2006]). On the other hand, many papers considered the so called top modules, i.e. modules whose spectrum of prime submodules attains a Zariski topology (e.g. [Lu1984, Lu1999, MMS1997, MMS1998, Zah2006-a, Zha2006-b]). arXiv:1007.3149v1 [math.RA] 19 Jul 2010 On the other hand, different notions of primeness for modules were introduced and in- vestigated in the literature (e.g. [Dau1978, Wis1996, RRRF-AS2002, RRW2005, Wij2006, Abu2006, WW2009]). In this paper, we consider a notions that was not dealt with, from the topological point of view, so far. Given a duo module M over an associative ring R, we introduce and topologize the spectrum of fully prime R-submodules of M. Motivated by results on the Zariski topology on the spectrum of prime ideals of a commutative ring (e.g. [Bou1998, AM1969]), we investigate the interplay between the topological properties of the obtained space and the module under consideration.
- 
												  Lecture 1 Course Introduction, Zariski Topology18.725 Algebraic Geometry I Lecture 1 Lecture 1: Course Introduction, Zariski topology Some teasers So what is algebraic geometry? In short, geometry of sets given by algebraic equations. Some examples of questions along this line: 1. In 1874, H. Schubert in his book Calculus of enumerative geometry proposed the question that given 4 generic lines in the 3-space, how many lines can intersect all 4 of them. The answer is 2. The proof is as follows. Move the lines to a configuration of the form of two pairs, each consists of two intersecting lines. Then there are two lines, one of them passing the two intersection points, the other being the intersection of the two planes defined by each pair. Now we need to show somehow that the answer stays the same if we are truly in a generic position. This is answered by intersection theory, a big topic in AG. 2. We can generalize this statement. Consider 4 generic polynomials over C in 3 variables of degrees d1; d2; d3; d4, how many lines intersect the zero sets of each polynomial? The answer is 2d1d2d3d4. This is given in general by \Schubert calculus." 4 3. Take C , and 2 generic quadratic polynomials of degree two, how many lines are on the common zero set? The answer is 16. 4. For a generic cubic polynomial in 3 variables, how many lines are on the zero set? There are exactly 27 of them. (This is related to the exceptional Lie group E6.) Another major development of AG in the 20th century was on counting the numbers of solutions for n 2 3 polynomial equations over Fq where q = p .
- 
												![Arxiv:1509.06425V4 [Math.AG] 9 Dec 2017 Nipratrl Ntegoercraiaino Conformal of Gen Realization a Geometric the (And in Fact Role This Important Trivial](https://docslib.b-cdn.net/cover/9249/arxiv-1509-06425v4-math-ag-9-dec-2017-nipratrl-ntegoercraiaino-conformal-of-gen-realization-a-geometric-the-and-in-fact-role-this-important-trivial-1009249.webp)  Arxiv:1509.06425V4 [Math.AG] 9 Dec 2017 Nipratrl Ntegoercraiaino Conformal of Gen Realization a Geometric the (And in Fact Role This Important TrivialTRIVIALITY PROPERTIES OF PRINCIPAL BUNDLES ON SINGULAR CURVES PRAKASH BELKALE AND NAJMUDDIN FAKHRUDDIN Abstract. We show that principal bundles for a semisimple group on an arbitrary affine curve over an algebraically closed field are trivial, provided the order of π1 of the group is invertible in the ground field, or if the curve has semi-normal singularities. Several consequences and extensions of this result (and method) are given. As an application, we realize conformal blocks bundles on moduli stacks of stable curves as push forwards of line bundles on (relative) moduli stacks of principal bundles on the universal curve. 1. Introduction It is a consequence of a theorem of Harder [Har67, Satz 3.3] that generically trivial principal G-bundles on a smooth affine curve C over an arbitrary field k are trivial if G is a semisimple and simply connected algebraic group. When k is algebraically closed and G reductive, generic triviality, conjectured by Serre, was proved by Steinberg[Ste65] and Borel–Springer [BS68]. It follows that principal bundles for simply connected semisimple groups over smooth affine curves over algebraically closed fields are trivial. This fact (and a generalization to families of bundles [DS95]) plays an important role in the geometric realization of conformal blocks for smooth curves as global sections of line bundles on moduli-stacks of principal bundles on the curves (see the review [Sor96] and the references therein). An earlier result of Serre [Ser58, Th´eor`eme 1] (also see [Ati57, Theorem 2]) implies that this triviality property is true if G “ SLprq, and C is a possibly singular affine curve over an arbitrary field k.
- 
												  Positivity in Algebraic Geometry IErgebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics 48 Positivity in Algebraic Geometry I Classical Setting: Line Bundles and Linear Series Bearbeitet von R.K. Lazarsfeld 1. Auflage 2004. Buch. xviii, 387 S. Hardcover ISBN 978 3 540 22533 1 Format (B x L): 15,5 x 23,5 cm Gewicht: 1650 g Weitere Fachgebiete > Mathematik > Geometrie > Elementare Geometrie: Allgemeines Zu Inhaltsverzeichnis schnell und portofrei erhältlich bei Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft. Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr als 8 Millionen Produkte. Introduction to Part One Linear series have long stood at the center of algebraic geometry. Systems of divisors were employed classically to study and define invariants of pro- jective varieties, and it was recognized that varieties share many properties with their hyperplane sections. The classical picture was greatly clarified by the revolutionary new ideas that entered the field starting in the 1950s. To begin with, Serre’s great paper [530], along with the work of Kodaira (e.g. [353]), brought into focus the importance of amplitude for line bundles. By the mid 1960s a very beautiful theory was in place, showing that one could recognize positivity geometrically, cohomologically, or numerically. During the same years, Zariski and others began to investigate the more complicated be- havior of linear series defined by line bundles that may not be ample.
- 
												  MATH 763 Algebraic Geometry Homework 2MATH 763 Algebraic Geometry Homework 2 Instructor: Dima Arinkin Author: Yifan Wei September 26, 2019 Problem 1 Prove that a subspace of a noetherian topological space is noetherian in the induced topology. Proof Because in the subspace X the closed sets are exactly restrictions from the ambient space, a descending chain of closed sets in X takes the form · · · ⊃ Ci \ X ⊃ · · · , taking closure in the ambient space we get a descending chain which stablizes to, say Cn \ X, and we have for all i Ci \ X ⊂ Cn \ X. And the inequality can clearly be restricted to X, which means the chain in X stablizes. Problem 2 Show that a topological space is noetherian if and only if all of its open subsets are quasi-compact. Proof If the space X is noetherian, then any open subset is noetherian hence quasi-compact. Conversely, if we have a descending chain of closed subsets C1 ⊃ C2 ⊃ · · · , then we have an open covering (indexed by n): \ [ [ X − Ci = X − Ci; n i≤n S − \ − By quasi-compactness we have X Ci is equal to i≤n X Ci for some n, which means the descending chain stablizes to Cn. Problem 3 Let S ⊂ k be an infinite subset (for instance, S = Z ⊂ k = C.) Show that the Zariski closure of the set X = f(s; s2)js 2 Sg ⊂ A2 1 is the parabola Y = f(a; a2)ja 2 kg ⊂ A2: Proof Consider the morphism ϕ : k[x; y] ! k[t] sending x to t and y to t2, its kernel is precisely the vanishing ideal of the parabola Y .
- 
												  Commutative AlgebraCommutative Algebra Andrew Kobin Spring 2016 / 2019 Contents Contents Contents 1 Preliminaries 1 1.1 Radicals . .1 1.2 Nakayama's Lemma and Consequences . .4 1.3 Localization . .5 1.4 Transcendence Degree . 10 2 Integral Dependence 14 2.1 Integral Extensions of Rings . 14 2.2 Integrality and Field Extensions . 18 2.3 Integrality, Ideals and Localization . 21 2.4 Normalization . 28 2.5 Valuation Rings . 32 2.6 Dimension and Transcendence Degree . 33 3 Noetherian and Artinian Rings 37 3.1 Ascending and Descending Chains . 37 3.2 Composition Series . 40 3.3 Noetherian Rings . 42 3.4 Primary Decomposition . 46 3.5 Artinian Rings . 53 3.6 Associated Primes . 56 4 Discrete Valuations and Dedekind Domains 60 4.1 Discrete Valuation Rings . 60 4.2 Dedekind Domains . 64 4.3 Fractional and Invertible Ideals . 65 4.4 The Class Group . 70 4.5 Dedekind Domains in Extensions . 72 5 Completion and Filtration 76 5.1 Topological Abelian Groups and Completion . 76 5.2 Inverse Limits . 78 5.3 Topological Rings and Module Filtrations . 82 5.4 Graded Rings and Modules . 84 6 Dimension Theory 89 6.1 Hilbert Functions . 89 6.2 Local Noetherian Rings . 94 6.3 Complete Local Rings . 98 7 Singularities 106 7.1 Derived Functors . 106 7.2 Regular Sequences and the Koszul Complex . 109 7.3 Projective Dimension . 114 i Contents Contents 7.4 Depth and Cohen-Macauley Rings . 118 7.5 Gorenstein Rings . 127 8 Algebraic Geometry 133 8.1 Affine Algebraic Varieties . 133 8.2 Morphisms of Affine Varieties . 142 8.3 Sheaves of Functions .
- 
												  Choomee Kim's ThesisCALIFORNIA STATE UNIVERSITY, NORTHRIDGE The Zariski Topology on the Prime Spectrum of a Commutative Ring A thesis submitted in partial fulllment of the requirements for the degree of Master of Science in Mathematics by Choomee Kim December 2018 The thesis of Choomee Kim is approved: Jason Lo, Ph.D. Date Katherine Stevenson, Ph.D. Date Jerry Rosen, Ph.D., Chair Date California State University, Northridge ii Dedication I dedicate this to my beloved family. iii Acknowledgments With deep gratitude and appreciation, I would like to rst acknowledge and thank my thesis advisor, Professor Jerry Rosen, for all of the support and guidance he provided during the past two years of my graduate study. I would like to extend my sincere appreciation to Professor Jason Lo and Professor Katherine Stevenson for serving on my thesis committee and taking time to read and advise. I would also like to thank the CSUN faculty and cohort, especially Professor Mary Rosen, Yen Doung, and all of my oce colleagues, for their genuine friendship, encouragement, and emotional support throughout the course of my graduate study. All this has been truly enriching experience, and I would like to give back to our students and colleagues as to become a professor who cares for others around us. Last, but not least, I would like to thank my husband and my daughter, Darlene, for their emotional and moral support, love, and encouragement, and without which this would not have been possible. iv Table of Contents Signature Page.................................... ii Dedication...................................... iii Acknowledgements.................................. iv Table of Contents.................................. v Abstract........................................ vii 1 Preliminaries..................................
- 
												  Exercises for Helsinki Algebraic Geometry Mini-CourseExercises for Helsinki Algebraic Geometry Mini-Course Professor Karen E Smith 2010 Toukokuun 17. 18. ja 19. Reading: Most of the material of the lectures, can be found in the book Johdettelua Algebralliseen Geometriaan by Kahanp¨a¨aet al, or in An Invitation to algebraic geometry, by Smith et al, which is the same book in english. Two other good (much more comprehensive) books for beginners are Shafarevich's Basic Algebraic Geometry, I (original language: Russian) and Harris's Algebraic Geom- etry: An first course. Students who wish to get credit for the course can complete (or attempt) the following problems and send a pdf file (handwritten and scanned is fine) to [email protected]. If you are a student at any Finnish University, I will read these and assign a grade any time; for deadlines regarding whether or not credits can be assigned, please ask your professor(s) at your own university; of course, I am happy to contact them regarding the amount of work you completed for the course. Problem 1: The Zariski Toplogy. n n 1. Show that an arbitrary intersection of subvarieties of C is a subvariety of C . n n 2. Show that a finite union of subvarieties of C is a subvariety of C . n 3. Show that C can be given the structure of a topological space whose closed sets n n are the subvarieties of C . This is called the Zariski Topology on C . n 4. Show that the Zariski topology on C is strictly coarser than the standard Eu- n clidean topology on C .
- 
												  Lecture 7 - Zariski Topology and Regular Elements Prof18.745 Introduction to Lie Algebras September 30, 2010 Lecture 7 - Zariski Topology and Regular Elements Prof. Victor Kac Scribe: Daniel Ketover Definition 7.1. A topological space is a set X with a collection of subsets F (the closed sets) satisfying the following axioms: 1) X 2 F and ; 2 F 2) The union of a finite collection of closed sets is closed 3) The intersection of arbitrary collection of closed sets is closed 4) (weak separation axiom) For any two points x; y 2 X there exists an S 2 F such that x 2 S but y 62 S A subset O ⊂ X which is the complement in X of a set in F is called open. The axioms for a topological space can also be phrased in terms of open sets. Definition 7.2. Let X = Fn where F is a field. We define the Zariski topology on X as follows. A set in X is closed if and only if if is the set of common zeroes of a collection (possibly infinite) of n polynomials P훼(x) on F Exercise 7.1. Prove that the Zariski topology is indeed a topology. Proof. We check the axioms. For 1), let p(x) = 1, so that V(p) = ;, so ; 2 F . If p(x) = 0, then n n V(p) = F , so F 2 F . For 2), first take two closed sets V(p훼) with 훼 2 I and V(q훽) with 훽 2 J , and consider the family of polynomials f훼훽 = fp훼q훽 j 훼 2 I; 훽 2 Jg.
- 
												  Chapter 1: Lecture 11Chapter 1: Lecture 11 1. The Spectrum of a Ring & the Zariski Topology Definition 1.1. Let A be a ring. For I an ideal of A, define V (I)={P ∈ Spec(A) | I ⊆ P }. Proposition 1.2. Let A be a ring. Let Λ be a set of indices and let Il denote ideals of A. Then (1) V (0) = Spec(R),V(R)=∅; (2) ∩l∈ΛV (Il)=V (Pl∈Λ Il); k k (3) ∪l=1V (Il)=V (∩l=1Il); Then the family of all sets of the form V (I) with I ideal in A defines a topology on Spec(A) where, by definition, each V (I) is a closed set. We will call this topology the Zariski topology on Spec(A). Let Max(A) be the set of maximal ideals in A. Since Max(A) ⊆ Spec(A) we see that Max(A) inherits the Zariski topology. n Now, let k denote an algebraically closed fied. Let Y be an algebraic set in Ak .Ifwe n consider the Zariski topology on Y ⊆ Ak , then points of Y correspond to maximal ideals in A that contain I(Y ). That is, there is a natural homeomorphism between Y and Max(k[Y ]). Example 1.3. Let Y = {(x, y) | x2 = y3}⊂k2 with k algebraically closed. Then points in Y k[x, y] k[x, y] correspond to Max( ) ⊆ Spec( ). The latter set has a Zariski topology, and (x2 − y3) (x2 − y3) the restriction of the Zariski topology to the set of maximal ideals gives a topological space homeomorphic to Y (with the Zariski topology).
- 
												  (AS) 2 Lecture 2. Sheaves: a Potpourri of Algebra, Analysis and Topology (UW) 11 Lecture 3Contents Lecture 1. Basic notions (AS) 2 Lecture 2. Sheaves: a potpourri of algebra, analysis and topology (UW) 11 Lecture 3. Resolutions and derived functors (GL) 25 Lecture 4. Direct Limits (UW) 32 Lecture 5. Dimension theory, Gr¨obner bases (AL) 49 Lecture6. Complexesfromasequenceofringelements(GL) 57 Lecture7. Localcohomology-thebasics(SI) 63 Lecture 8. Hilbert Syzygy Theorem and Auslander-Buchsbaum Theorem (GL) 71 Lecture 9. Depth and cohomological dimension (SI) 77 Lecture 10. Cohen-Macaulay rings (AS) 84 Lecture 11. Gorenstein Rings (CM) 93 Lecture12. Connectionswithsheafcohomology(GL) 103 Lecture 13. Graded modules and sheaves on the projective space(AL) 114 Lecture 14. The Hartshorne-Lichtenbaum Vanishing Theorem (CM) 119 Lecture15. Connectednessofalgebraicvarieties(SI) 122 Lecture 16. Polyhedral applications (EM) 125 Lecture 17. Computational D-module theory (AL) 134 Lecture 18. Local duality revisited, and global duality (SI) 139 Lecture 19. De Rhamcohomologyand localcohomology(UW) 148 Lecture20. Localcohomologyoversemigrouprings(EM) 164 Lecture 21. The Frobenius endomorphism (CM) 175 Lecture 22. Some curious examples (AS) 183 Lecture 23. Computing localizations and local cohomology using D-modules (AL) 191 Lecture 24. Holonomic ranks in families of hypergeometric systems 197 Appendix A. Injective Modules and Matlis Duality 205 Index 215 References 221 1 2 Lecture 1. Basic notions (AS) Definition 1.1. Let R = K[x1,...,xn] be a polynomial ring in n variables over a field K, and consider polynomials f ,...,f R. Their zero set 1 m ∈ V = (α ,...,α ) Kn f (α ,...,α )=0,...,f (α ,...,α )=0 { 1 n ∈ | 1 1 n m 1 n } is an algebraic set in Kn. These are our basic objects of study, and include many familiar examples such as those listed below.
- 
												![Arxiv:1708.03199V5 [Math.AC] 28 Jan 2020 1] N a N Te Otiilcaatrztoso Noetherian of Characterizations Spectrum](https://docslib.b-cdn.net/cover/9342/arxiv-1708-03199v5-math-ac-28-jan-2020-1-n-a-n-te-otiilcaatrztoso-noetherian-of-characterizations-spectrum-2079342.webp)  Arxiv:1708.03199V5 [Math.AC] 28 Jan 2020 1] N a N Te Otiilcaatrztoso Noetherian of Characterizations SpectrumZARISKI COMPACTNESS OF MINIMAL SPECTRUM AND FLAT COMPACTNESS OF MAXIMAL SPECTRUM ABOLFAZL TARIZADEH Abstract. In this article, Zariski compactness of the minimal spectrum and flat compactness of the maximal spectrum are char- acterized. 1. Introduction The minimal spectrum of a commutative ring, specially its compact- ness, has been the main topic of many articles in the literature over the years and it is still of current interest, see e.g. [1], [2], [4], [5], [6], [7], [9], [10], [13], [15]. Amongst them, the well-known result of Quentel [13, Proposition 1] can be considered as one of the most important results in this context. But his proof, as presented there, is sketchy. In fact, it is merely a plan of the proof, not the proof itself. In the present article, i.e. Theorem 4.9 and Corollary 4.11, a new and purely algebraic proof is given for this non-trivial result. Dually, a new result is also given for the compactness of the maximal spectrum with respect to the flat topology, see Theorem 4.5. In Theorem 3.1, the patch closures are computed in a certain way. This result plays a major role in proving Theorem 4.9. The noetheri- aness of the prime spectrum with respect to the Zariski topology is also arXiv:1708.03199v5 [math.AC] 28 Jan 2020 characterized, see Theorem 5.1. It is worth mentioning that in [11] and [14], one can find other nontrivial characterizations of noetherianness of the prime spectrum. 2. Preliminaries Here, we briefly recall some material which is needed in the sequel.