(12) Patent Application Publication (10) Pub. No.: US 2014/0290535 A1 Devaraj Et Al

Total Page:16

File Type:pdf, Size:1020Kb

(12) Patent Application Publication (10) Pub. No.: US 2014/0290535 A1 Devaraj Et Al US 20140290535A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2014/0290535 A1 Devaraj et al. (43) Pub. Date: Oct. 2, 2014 (54) BINDER COMPOSITION (52) U.S. Cl. (75) Inventors: Amutha Rani Devaraj, Barkingside CPC. C04B 9/00 (2013.01); C04B 9/12 (2013.01); (GB); Hai Xiang Lee, London (GB); C04B 28/105 (2013.01); C04B 21 1 1/00017 Diego Alfonso Martinez Velandia, (2013.01) London (GB); Nikolaos Vlasopoulos, USPC .......................................................... 106/801 London (GB) (73) Assignee: CALIX LIMITED, Pymble, NSW (AU) (57) ABSTRACT (21) Appl. No.: 13/820,222 New cement binders characterised by including: 30-80% by weight of a first component having MgO and at least one (22) PCT Filed: Aug. 8, 2011 magnesium carbonate having the general formula: W (86). PCT No.: PCT/EP2O11?063629 MgCOX MgOy Mg(OH).ZHO (A) in which w is a number S371 (c)(1), equal to or greater than 1; at least one of x, y or Z is a number (2), (4) Date: May 8, 2013 greater than 0 and W, X, y and Z may be (but need not be) integers and 20-70% by weight of a second component (30) Foreign Application Priority Data including a least one silicon and/or aluminium oxide contain Sep. 2, 2010 (GB) ................................... 101.4577.9 ing material are disclosed. They can be used to produce build ing materials (cements, mortars, grouts and the like) having Publication Classification improved structural properties relative to prior art materials. In particular, their manufacture is less energy intensive than (51) Int. Cl. C04B 9/00 (2006.01) e.g. Portland cement making them environmentally friendly C04B 28/10 (2006.01) in the sense that processes for their manufacture have a rela C04B 9/12 (2006.01) tively low carbon footprint. US 2014/0290535 A1 Oct. 2, 2014 BNDER COMPOSITION used as a “moderating Substance' to enable the salt and the 0001. This invention relates to a cement binder suitable for MgO to perform the chemical reactions necessary to set, use in construction products. which are similar to those of the other Sorel cements. These 0002 Emissions of greenhouse gases, and predomi cements require the use of hard-burnt MgO, which is gener nantly carbon dioxide (CO), are thought to contribute to an ally produced by high-temperature treatment (~1000°C.) of increase in the atmospheric and Surface temperatures of the magnesite (MgCO), which causes CO emissions not only Earth—a phenomenon commonly referred to as global from the calcining of magnesite but also from the burning of warming. Such temperature increases are predicted to have fossil fuel. serious environmental consequences. The main contributor to 0009 U.S. Pat. No. 5,897,703 discloses binder composi this increase in man-made CO is the burning of fossil fuels tions based on mixing MgO with a hardening agent, propy Such as coal and petroleum. lene carbonate. The magnesium oxide used can be any mix 0003 Portland cement is the most common type of cement ture of soft-burnt and hard-burnt MgO. It is known that in the in general use at this time. It is an essential element of con presence of water, propylene carbonate decomposes to car crete, mortar and non-speciality grouts. Portland cement con bon dioxide and propylene glycol and so the addition of the sists of over 90% Portland cement clinker, up to 5% gypsum propylene carbonate provides a source of CO to carbonate and up to 5% other minor constituents. Portland cement clin the magnesium oxide. ker is a hydraulic material consisting mainly of di-calcium (0010 U.S. Pat. No. 6,200,381 discloses a dry powdered silicate (2CaO.SiO), tri-calcium silicate (3CaO.SiO), tri cement composition derived from dolomite (a magnesium calcium aluminate (3CaO. Al2O) and calcium aluminoferrite and calcium carbonate mineral: MgCO.CaCO). The dolo (4CaO. Al-O FeO) phases. Magnesium oxide (MgO), can mite is heated to decarbonate the MgCO so that the compo also be present in Portland cement, although its amount must sition contains CaCO and a partially decarbonated MgCO, not exceed 5% by mass as its delayed hydration is believed to i.e. a mixture of MgCO and MgO. Certain additives may be give rise to unsoundness in concrete. Gypsum (CaSO4.2H2O) included in the composition (e.g. aluminium Sulphate (Al is added to Portland cement clinker to control its setting time, (SO4)), citric acid, Sulphuric acid (H2SO4), NaCl, etc.), and the mixture is ground to give a fine powder. On reaction which assist the composition to set on addition of water; the with water, the constituents of the cement hydrate forming a water may be contaminated water, e.g. sea water. The CaCO Solid complex calcium silicate hydrate gel and other phases. component of the cement composition reacts with several of 0004. The manufacture of Portland cement is a highly the specified additives that are used. For example, the addition energy intensive process that involves heating high volumes of HSO will react with CaCO, yielding hydrated CaSO of raw materials to around 1450° C. In addition to the CO (e.g. CaSO4.2H2O) and CO. The CO released assists the generated from burning fossil fuels to reach these tempera carbonation of MgO and Mg(OH). NaCl may be added tures, the basic raw material used in making Portland cement before the thermal treatment of dolomite to decrease the is calcium carbonate (limestone, CaCO), and this decom decarbonation temperature of MgCO, and in the bindercom poses during processing to calcium oxide, releasing addi position as an additive, where it appears to assist in achieving tional geologically sequestered CO. As a result, the manu an early strength to the composition, which is probably due to facture of Portland cement typically emits approximately 0.8 reactions with MgO (Sorel cement type reactions). CaCO tonnes of carbon dioxide for every tonne of cement produced acts as a “moderating substance' to enable NaCl and the MgO and is responsible for approximately 5% of all anthropogenic to perform the necessary chemical reactions (see GB CO2 emissions. 116.0029 above). 0005 Apart from the intrinsic benefit of reducing CO (0011 U.S. Pat. No. 1,867,180 describes a cement compo emissions, it is likely that CO emissions by the cement indus sition based on slaked lime (Ca(OH)) that contains less than try will be regulated in an attempt to reduce environmental 1% MgO and NaCl. damage. Therefore, there is a real need to develop a new range 0012 U.S. Pat. No. 1,561,473 discloses that, when a wet of cementitious binders that are associated with minimal or mixture of aggregates and magnesium oxide is treated with even negative CO2 emissions. gaseous or dissolved CO, its tensile strength is improved. 0006 Binders based on systems other than calcium oxide The composition must be exposed to CO when wet and the and silicates are known. For example, Sorel cement (magne patent discloses the exposure of the wet mixture to a special sium oxychloride cement or magnesia cement) is an example atmosphere of moist CO. of a cement binder that comprises a mixture of magnesium (0013 WO 01/55049 discloses a dry powdered cement oxide (burnt magnesia, MgO) and magnesium chloride composition containing MgO, a hydraulic cement compo together with filler materials like sand or crushed stone. It sets nent, such as Portland cement, Sorel cements or calcium to a very hard abrasive-resistant material and so is used for aluminate cements, and optionally various poZZolanic mate grindstones, tiles, artificial stone (cast Stone) and cast floors, rials. The cement composition taught can also contain various in which application it has a high wear resistance. Howeverits additives such as ferrous Sulphate (FeSO4), Sodium or potas chief drawback is its poor resistance to water, making it sium silicates or aluminates, phosphoric acid (HPO) or unsuitable for external construction applications. phosphoric acid salts, copper Sulphate (CuSO4), and various 0007. Other magnesium based cements include magne other organic polymers and resins, such as polyvinyl acetate sium oxysulfate cement and magnesium phosphate cements (PVA), vinyl acetate-ethylene, styrene-butyl acrylate, butyl but both these have drawbacks, the former having a poor acrylate-methylacrylate, and styrene-butadiene. The magne water resistance and the latter sets very fast so that it is sium oxide is obtained by low temperature calcining. difficult to work with. 0014 GB529128 discloses the use of magnesium carbon 0008 GB 116.0029 discloses cements based on mixing ate as an insulating material; it is made from concentrated sea magnesium oxide (MgO), sodium chloride (NaCl) or sodium water containing magnesium salts by precipitating the salts nitrate (NaNO) and calcium carbonate (CaCO). CaCO is with alkali metal carbonates, which forms needle-like crys US 2014/0290535 A1 Oct. 2, 2014 tals that can set. A slurry of Such crystals, when paced in a cement. However there is no explicit disclosure of the mould, will set to provide a slab or block that is useful as improved binder compositions claimed herein or the benefits insulation. If there are any bicarbonate ions in the alkali metal thereof. carbonate, magnesium bicarbonate will form in the above 0022 WO 2010/039903 and WO 2010/048457 disclose reaction, which slows down the setting reaction. In order to reduced carbon footprint concrete compositions for use in a counteract this, 1-5% magnesium oxide may be added, which variety of building materials and building applications. These will precipitate the bicarbonate as magnesium carbonate. compositions appear to be a blend of a carbon dioxide seques tering component comprising a carbonate, bicarbonate or 0.015 U.S. Pat.
Recommended publications
  • WO 2012/028419 Al
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date 8 March 2012 (08.03.2012) WO 2012/028419 Al (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C04B 28/10 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, (21) International Application Number: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, PCT/EP201 1/063629 DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, 8 August 201 1 (08.08.201 1) KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, (25) Filing Language: English NO, NZ, OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, (26) Publication Langi English SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, (30) Priority Data: ZW. 1014577.9 2 September 2010 (02.09.2010) GB (84) Designated States (unless otherwise indicated, for every (71) Applicant (for all designated States except US): NO- kind of regional protection available): ARIPO (BW, GH, VACEM LIMITED [GB/GB]; The Incubator, Bessemer GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, Building, Imperial College, South Kensington London ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, SW7 2AZ (GB).
    [Show full text]
  • Effect of Admixing Fly Ash on Cementing Characteristics of Magnesium Oxychloride Cement
    International Journal of Recent Technology and Engineering (IJRTE) ISSN: 2277-3878, Volume-9 Issue-5, January 2021 Effect of Admixing Fly Ash on Cementing Characteristics of Magnesium Oxychloride Cement Rekha Sharma, R. N. Yadav Abstract: Investigations pertaining to the effect of admixing The manufacturing process of MOC binders is not only free different amounts of fly ash on setting characteristics and from any carbon dioxide gas emissions, but due to carbon compressive strength of magnesium oxychloride cement has been sequestration potential, these binders actually act as “sinks” carried out in this paper. For this purpose, two different dry mix for atmospheric carbon dioxide [13]. The important compositions (1:0 and 1:1) of magnesia and dolomite were commercial applications of MOC binders include floorings prepared and 5 %, 10 %, 15 % and 20 % fly ash were added in dry mixes. The dry mixes were then gauged with 24 °Be of industries and hospitals, grinding wheels and wall concentration of magnesium chloride gauging solution. It was insulation panels due to its marble like gloss. The industrial observed that initial and final setting times of cement blocks tend applications of MOC cement has been limited because of the to increase with increasing amount of fly ash in dry mix. MOC associated problems of poor water resistance, volume cement blocks of 1:1 composition admixed with fly ash displayed instability, cracking and sweating etc. The magnesium good cementing characteristics. oxychloride binder system exhibits excellent bonding Keywords: Compressive strength, fly ash, Gauging solution, capacity to a large variety of organic and inorganic Inert filler, MOC, Setting time.
    [Show full text]
  • Foam Glass Lightened Sorel's Cement Composites Doped with Coal Fly
    materials Article Foam Glass Lightened Sorel’s Cement Composites Doped with Coal Fly Ash Adam Pivák 1 , Milena Pavlíková 1 , Martina Záleská 1 , Michal Lojka 2, Anna-Marie Lauermannová 2 , Ivana Faltysová 2, OndˇrejJankovský 2 and Zbyšek Pavlík 1,* 1 Department of Materials Engineering and Chemistry, Faculty of Civil Engineering, Czech Technical University in Prague, Thákurova 7, 166 29 Prague 6, Czech Republic; [email protected] (A.P.); [email protected] (M.P.); [email protected] (M.Z.) 2 Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, Technická 5, 166 28 Prague 6, Czech Republic; [email protected] (M.L.); [email protected] (A.-M.L.); [email protected] (I.F.); [email protected] (O.J.) * Correspondence: [email protected]; Tel.: +420-224-354-371 Abstract: Lightweight Sorel’s cement composites doped with coal fly ash were produced and tested. Commercially available foam granulate was used as lightening aggregate. For comparison, reference composites made of magnesium oxychloride cement (MOC) and quartz sand were tested as well. The performed experiments included X-ray diffraction, X-ray fluorescence, scanning electron microscopy, light microscopy, and energy dispersive spectroscopy analyses. The macro- and microstructural parameters, mechanical resistance, stiffness, hygric, and thermal parameters of the 28-days matured composites were also researched. The combined use of foam glass and fly ash enabled to get a material of low weight, high porosity, sufficient strength and stiffness, low water imbibition, and Citation: Pivák, A.; Pavlíková, M.; greatly improved thermal insulation performance.
    [Show full text]
  • Carbon Dioxide Uptake by MOC-Based Materials
    applied sciences Article Carbon Dioxide Uptake by MOC-Based Materials OndˇrejJankovský 1, Michal Lojka 1, Anna-Marie Lauermannová 1, Filip Antonˇcík 1, Milena Pavlíková 2, Zbyšek Pavlík 2 and David Sedmidubský 1,* 1 Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, Technická 5, 166 28 Prague 6, Czech Republic; [email protected] (O.J.); [email protected] (M.L.); [email protected] (A.-M.L.); fi[email protected] (F.A.) 2 Department of Materials Engineering and Chemistry, Faculty of Civil Engineering, Czech Technical University in Prague, Thákurova 7, 166 29 Prague 6, Czech Republic; [email protected] (M.P.); [email protected] (Z.P.) * Correspondence: [email protected]; Tel.: +420-2-2044-4122 Received: 6 March 2020; Accepted: 24 March 2020; Published: 26 March 2020 Featured Application: The highest potential of magnesium oxychloride cement (MOC) is its capability to be used as a component of low-energy building composite materials while acting as a CO2 sink. The results of this contribution also show that MOC can be used as a binder in advanced building materials that have particular properties, and therefore specific application potentials. Formation and hardening of this material are rather fast, so the material can be used in quick repairs as well as a protection layer. This property is also beneficial for use in prefabrication, due to the possibility of unmolding after a shorter time compared to Portland cement (PC) materials, so the whole production process can be considered more effective. Somewhat significant importance should be given to its ability to capture CO2, which not only makes it more eco-friendly, but also improves its mechanical properties.
    [Show full text]
  • Performance of a Novel Sustainable Binder Under Extreme Dynamic Loading Conditions
    University of Rhode Island DigitalCommons@URI Open Access Master's Theses 2017 Performance of a Novel Sustainable Binder Under Extreme Dynamic Loading Conditions Paul David Schmidt University of Rhode Island, [email protected] Follow this and additional works at: https://digitalcommons.uri.edu/theses Recommended Citation Schmidt, Paul David, "Performance of a Novel Sustainable Binder Under Extreme Dynamic Loading Conditions" (2017). Open Access Master's Theses. Paper 1049. https://digitalcommons.uri.edu/theses/1049 This Thesis is brought to you for free and open access by DigitalCommons@URI. It has been accepted for inclusion in Open Access Master's Theses by an authorized administrator of DigitalCommons@URI. For more information, please contact [email protected]. PERFORMANCE OF A NOVEL SUSTAINABLE BINDER UNDER EXTREME DYNAMIC LOADING CONDITIONS BY PAUL DAVID SCHMIDT A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN CIVIL AND ENVIRONMENTAL ENGINEERING UNIVERSITY OF RHODE ISLAND 2017 MASTER OF SCIENCE OF PAUL DAVID SCHMIDT APPROVED: Thesis Committee: Major Professor Sumanta Das George Tsiatas Arun Shukla Nasser H. Zawia DEAN OF THE GRADUATE SCHOOL UNIVERSITY OF RHODE ISLAND 2017 ABSTRACT Iron Carbonate is a novel carbon-negative sustainable binder that is made from metallic iron powder waste and utilizes the chemistry of iron carbonation. To produce the binder, usually landfilled iron powder and other constituents (fly ash, limestone powder, metakaolin, sodium carbonate, sodium bicarbonate, powdered organic reducing agent, and water) are mixed together and exposed to a pressurized CO2 regime that leads to slow external diffusion. The carbonation of iron particles results in the formation of complex iron carbonates that have binding capabilities and mechanical properties similar or better compared to ordinary Portland cement (OPC)- based binders.
    [Show full text]
  • Magnesium Oxychloride Cement with Partial Replacement of Fly Ash and Magnesium Sulphate
    International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 07 Issue: 02 | Feb 2020 www.irjet.net p-ISSN: 2395-0072 Magnesium Oxychloride Cement with partial replacement of fly ash and Magnesium Sulphate Vignesh R1, Suresh Babu KP2, Vengadesh P3, Sriram S4, Selvam B5 1234UG Student, 5Assistant Professor, Department of Civil Engineering, Sree Sakthi Engineering College, Coimbatore, India ---------------------------------------------------------------------***---------------------------------------------------------------------- Abstract – Magnesium Oxychloride Cement with addition of The well crystallized needle-like structure of phase 5 of fly ash has been evaluated. MOC Fly ash mix material with chemically bonded MOC has been described as scroll-tubular various composition of fly ash having good workability and whiskers. The mechanical interlocking and unique fibrous attains early strength. MOC Fly ash mix attains 20-68 MPa as microstructure resulting from the intergrowth of the crystals compressive strength after the air curing. Concrete sets within is a major source for the strength development of MOC 4hrs. Very good aggregate-cement bonding and excellent cement. Therefore, the physical properties of MOC cement failure patterns are observed. Fly ash as 20% addition with the depend largely on the phase’s formation and subsequently MgO gives high strength with comparing other combinations. on the appropriate proportions of the starting materials. (Karthikeyan N 2014) Key Words: MOC Fly ash mix, fly ash, Chemical reaction, Magnesium Sulphate, Compressive strength. 1.2 Scope of research 1.INTRODUCTION MOC cement draws much research interests recently due to the energy saving consideration as it can be used as Portland Magnesium Oxychloride Cement (MOC, Sorel’s cement/ cement replacement on many occasions.
    [Show full text]
  • Caustic Magnesia Cement
    AUG 8 1924 DEPARTMENT OF COMMERCE Circular OF THE Bureau of Standards S. W. STRATTON. Director No. 135 CAUSTIC MAGNESIA CEMENT PRICE, S CENTS Sold only by the Superintendent of Documents, Government Printing Office, Washington, D. C. WASHINGTON GOVERNMENT PRINTING OFFICE 1922 CAUSTIC MAGNESIA CEMENT. (Also called magnesite cement, magnesia cement, magnesium oxychloride cement, Sorel cement, plastic magnesia cement, and light calcined magnesia cement.) ABSTRACT. A brief summary of the discovery, early history, and later application of the reac¬ tion of caustic magnesia with solutions of magnesium chloride. The result of this reaction produces a quick-hardening cement used in the stucco, flooring, and ship decking trade. Short descriptions are given of the ore used, of methods of calcining the ore, also suggested formulas for several types of products, the general qualities of these, and the lines along which specifications for the cement are being developed. CONTENTS. Page. I. Introduction. i II. Early history and chemistry of caustic magnesia cement. 2 III. Magnesite. 5 1. Occurrence. 5 2. Nature. 5 3. Impurities. 6 IV. Caustic magnesia. 6 V. Uses of caustic magnesia cement. 8 1. Flooring. 8 2. Stucco. 9 3. Ship decking. 10 VI. Specifications..'. 11 1. INTRODUCTION. iVlthough the cementing material produced by the reaction of magnesite calcined at a low temperature with a solution of mag¬ nesium chloride has been known for somewhat more than half a century, its commercial utilization has been decidedly hampered by the secrecy maintained by those who have made a commercial success of its use. The products of caustic magnesia cement are before the public under numerous proprietary names, frequently with no indication as to the essential ingredients.
    [Show full text]
  • Conversion of Magnesium Bearing Radioactive Wastes Into Cementitious Binders
    Conversion of magnesium bearing radioactive wastes into cementitious binders Samuel Alexander Walling A thesis submitted in partial fulfilment of the requirement for the degree of Doctor of Philosophy Department of Materials Science and Engineering The University of Sheffield June 2016 i Abstract The UK radioactive waste inventory contains sizeable portions of magnesium hydroxide rich Magnox sludges due to corrosion of historic wastes. These require disposal in suitable wasteforms, with one potential being solidification in a composite Portland cement matrix. This thesis investigates magnesium hydroxide as a key component in the production of a cementitious binder, attempting to maximise waste loading and improve wasteform integrity through integral usage of these wastes. Hydrated magnesium silicate cements were produced through reaction with amorphous silica, creating stable products comprising a poorly crystalline M-S-H gel. The formulations for this product were optimised, water contents reduced through the use of a polyphosphate dispersant, and the nature of the M-S-H binder investigated further. This was determined to be a lizardite-like structure, which is a stable mineral. This system was modified through the addition of sodium aluminate, resulting in formulations with varying ratios of silicon to aluminium, each of which produced various zeolitic phases along with a magnesium aluminium hydrotalcite phase. This addition improved the setting characteristics of the binders, but did not produce any additional magnesium silicates binders. Additionally to this, sodium carbonate activated slag cement binders blended with magnesium hydroxide were assessed. These were slower setting, low heat cements which formed stable mineral phases, largely unaffected by the addition of magnesium hydroxide.
    [Show full text]
  • United States Patent (19) 11 4,209,339 Smith-Johannsen 45 Jun
    United States Patent (19) 11 4,209,339 Smith-Johannsen 45 Jun. 24, 1980 54 CEMENT COMPOSTIONS 3,667,978 6/1972 Vassilevsky et al. ................ 106/107 3,751,275 8/1973 Oken .................................... 106/104 75 Inventor: Robert Smith-Johannsen, Incline Village, Nev. Primary Examiner-James Poer 73 Assignee: Noreem A/S, Oslo, Norway Attorney, Agent, or Firm-Pennie & Edmonds 21 Appl. No.: 912,837 57 ABSTRACT 22 Filed: Jun, 5, 1978 Water resistant magnesium oxychloride hydrate (Sorel 51) int. Cl? ........................... C04B 9/02; C04B 9/14 cement) compositions and processes for producing the same. The processes comprise the addition of an ethyl 52 U.S. C. .................................................... 106/106 silicate and/or a premix of magnesium chloride and 58 Field of Search ........................ 106/105, 106, 107 magnesium oxide to the magnesium oxychloride hy (56) References Cited drate reaction mixture (MgCl2--MgO) followed by the U.S. PATENT DOCUMENTS subsequent reaction and curing thereof. 2,717,841 9/1955 Biefeld et al. ........................ 106/07 3,573,941 4/1971 Edwards et al. ..................... 106/107 22 Claims, No Drawings 4,209,339 1. 2 material to the standard Sorel cement formula or devel CEMENT COMPOSITIONS oping a formula and processes which will result in greater stability and strength. BACKGROUND OF THE INVENTION To this end, and as concerns the former case, appli Sorel cement is a term used to refer to various com 5 cant has discovered that when an ethyl silicate is added positions having as basic ingredients a combination of to a standard Sorel cement formula there results a mate magnesia (MgO) and magnesium chloride (MgCl2) in an rial whose water resistance and strength properties are aqueous solution.
    [Show full text]
  • Additives in Sorel Cement Based Materials - Impact Study
    Proceedings of the International Conference on Civil, Structural and Transportation Engineering Ottawa, Ontario, Canada, May 4 – 5, 2015 Paper No. 318 Additives in Sorel Cement Based Materials - Impact Study Anna Tatarczak Faculty of Civil Engineering and Architecture, Lublin University of Technology, Nadbystrzycka 40, 20-618 Lublin, Poland [email protected] Stanislaw Fic Faculty of Civil Engineering and Architecture, Lublin University of Technology, Nadbystrzycka 40, 20-618 Lublin, Poland [email protected] Abstract: The subject of the research is the effect of micro-silica and polypropylene fibre additives on the physical and mechanical properties of composite materials (‘concrete’) made using oxychloride magnesium (Sorel) cement. The research aimed to improve the durability of the materials by incorporating these additives. The work shows the effects of these additives on compressive strength, corrosion and waterproofing properties. The addition of micro- silica was found to improve compressive strength by ~17.5% and to reduce water absorption. The addition of polypropylene appeared to increase compressive strength but only within the measurement uncertainties and also reduced water absorption. An additive concentration of x 10 the optimum polypropylene caused a ~x 4 reduction in compressive strength. Keywords: Sorel Cement, Materials properties, Micro silica, Polypropylene fibres 1. Introduction Significant industrial development has been achieved through the introduction of new solutions for the use of other materials added to concrete to improve its properties. Complying with the needs of modern Europe the use of industrial waste is increasing to reduce environmental pollution and in recent years this has been the subject of extensive research work. Additive materials from waste affect concrete’s mechanical properties and thus can contribute to useful waste disposal.
    [Show full text]
  • Basalt Fibre Reinforced Geopolymer Made from Lunar Regolith Simulant
    8TH EUROPEAN CONFERENCE FOR AERONAUTICS AND SPACE SCIENCES (EUCASS) Basalt fibre reinforced geopolymer made from lunar regolith simulant Marlies Arnhof*, Shima Pilehvar**, Anna-Lena Kjøniksen*** and Ina Cheibas**** *ESA ESTEC Keplerlaan 1, TEC-SF, 2201AZ Noordwijk, The Netherlands, [email protected] ** Østfold University College P.O. Box 700, 1757 Halden, Norway, [email protected] Østfold University College P.O. Box 700, 1757 Halden, Norway, [email protected] ESA ESTEC Keplerlaan 1, TEC-SF, 2201AZ Noordwijk, The Netherlands, [email protected] Abstract In-situ resource utilization (ISRU) is a key element for increasing sustainability of extended human exploration missions to the Moon. Such missions might require the capability to build structures like radiation shields, habitat walls or shells, and infrastructure like landing pads, surface paving and dust- shield walls on site using local resources as a potentially more economical alternative to bringing all materials needed for the construction from Earth to the lunar surface. Previous studies have shown that geopolymer might be a promising material for construction on the Moon, since lunar regolith can be used as the main part of the geopolymer matrix. All other necessary ingredients for the geopolymerisation of the regolith - water and alkaline activator - could potentially be sourced on the lunar surface as well. However, curing in vacuum seems to be detrimental to the strength of material formulations that have been explored so far. The objective of the current study is to investigate the structural properties, shielding abilities, construction process and economic efficiency of an optimized geopolymer recipe made from lunar regolith simulant, when cured under simulated environmental conditions (temperature and vacuum) of the lunar surface, evaluating the effects of adding locally sourced basalt reinforcement fibres and superplasticizers.
    [Show full text]
  • Proceedings of the Third International Workshop on Actinide and Brine Chemistry in a Salt-Based Repository (ABC-Salt III)
    LA-UR-15-21114 Approved for public release; distribution is unlimited. Proceedings of the Third International Workshop on Actinide and Brine Chemistry in a Salt-Based Repository (ABC-Salt III) WIPP Facility and Stratigraphic Sequence The funding for this document is provided by the U.S. Department of Energy, Carlsbad Field Office. Cover illustration: WIPP TRU Repository Los Alamos National Laboratory, an affirmative action/ equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. This report was prepared as an account of work sponsored by an agency of the U.S. Government. Neither Los Alamos National Security, LLC, the U.S. Government nor any agency thereof, nor any of their employees make any warranty, express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by Los Alamos National Security, LLC, the U.S. Government, or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of Los Alamos National Security, LLC, the U.S. Government, or any agency thereof. Los Alamos National Laboratory strongly supports academic freedom and a researcher’s right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.
    [Show full text]