The Star Newsletter
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Pos(INTEGRAL 2010)091
A candidate former companion star to the Magnetar CXOU J164710.2-455216 in the massive Galactic cluster Westerlund 1 PoS(INTEGRAL 2010)091 P.J. Kavanagh 1 School of Physical Sciences and NCPST, Dublin City University Glasnevin, Dublin 9, Ireland E-mail: [email protected] E.J.A. Meurs School of Cosmic Physics, DIAS, and School of Physical Sciences, DCU Glasnevin, Dublin 9, Ireland E-mail: [email protected] L. Norci School of Physical Sciences and NCPST, Dublin City University Glasnevin, Dublin 9, Ireland E-mail: [email protected] Besides carrying the distinction of being the most massive young star cluster in our Galaxy, Westerlund 1 contains the notable Magnetar CXOU J164710.2-455216. While this is the only collapsed stellar remnant known for this cluster, a further ~10² Supernovae may have occurred on the basis of the cluster Initial Mass Function, possibly all leaving Black Holes. We identify a candidate former companion to the Magnetar in view of its high proper motion directed away from the Magnetar region, viz. the Luminous Blue Variable W243. We discuss the properties of W243 and how they pertain to the former Magnetar companion hypothesis. Binary evolution arguments are employed to derive a progenitor mass for the Magnetar of 24-25 M Sun , just within the progenitor mass range for Neutron Star birth. We also draw attention to another candidate to be member of a former massive binary. 8th INTEGRAL Workshop “The Restless Gamma-ray Universe” Dublin, Ireland September 27-30, 2010 1 Speaker Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. -
Chapter 3 – Astrospheres, Stellar Winds, and the Interstellar Medium
3 Astrospheres, stellar winds, and the interstellar medium BRIAN E. WOOD AND JEFFREY L. LINSKY 3.1 The spatial extent of the solar wind While orbiting the Sun, the Earth and the other planers in our solar system are ex posed to an outflow of plasma from the Sun. This is the solar wi nd, which largely determines the particle environment of the planets, as well as their magnetospheric properties. Long-tenn exposure Lo the solar wind may have had signjficant cffectc; on planetary atmospheres in some cases. Mars is a particularly interesting example, as the Martian atmosphere was once much thicker than it is today, and the erosive effects of solar wind exposure are commonly believed to be responsible for itc; depletion (see Ch. 8; also Jakosky et al.. 1994; Atreya et al., 2013). The solar wind does not expand indefinitely. Eventually it runs into the inter stellar medium (ISM), the ex tre mely low-particle-density e nvironment that exists in between the stars. Our Sun is moving relative to the ISM that surrounds the planetary system, so we see a fl ow of interstellar matter in the heliocentric rest frame, coming from the direction of the constellation Ophiuchus. The interaction between the solar wind and the ISM flow determines the large-scale structure of our he liosphere. which basically defines the extent of the solar wind's reach into our Galactic environment. Other stars are naturally surrounded by their own "astro spheres" (allernatively "asterospheres"') defined by the strength of their own stellar winds, the nature of the ISM in their Galactic neighborhoods, and their rnlative motion. -
Lecture 17: the Solar Wind O Topics to Be Covered
Lecture 17: The solar wind o Topics to be covered: o Solar wind o Inteplanetary magnetic field The solar wind o Biermann (1951) noticed that many comets showed excess ionization and abrupt changes in the outflow of material in their tails - is this due to a solar wind? o Assumed comet orbit perpendicular to line-of-sight (vperp) and tail at angle ! => tan! = vperp/vr o From observations, tan ! ~ 0.074 o But vperp is a projection of vorbit -1 => vperp = vorbit sin ! ~ 33 km s -1 o From 600 comets, vr ~ 450 km s . o See Uni. New Hampshire course (Physics 954) for further details: http://www-ssg.sr.unh.edu/Physics954/Syllabus.html The solar wind o STEREO satellite image sequences of comet tail buffeting and disconnection. Parker’s solar wind o Parker (1958) assumed that the outflow from the Sun is steady, spherically symmetric and isothermal. o As PSun>>PISM => must drive a flow. o Chapman (1957) considered corona to be in hydrostatic equibrium: dP = −ρg dr dP GMS ρ + 2 = 0 Eqn. 1 dr r o If first term >> than second €=> produces an outflow: € dP GM ρ dv + S + ρ = 0 Eqn. 2 dr r2 dt o This is the equation for a steadily expanding solar/stellar wind. € Parker’s solar wind (cont.) dv dv dr dv dP GM ρ dv o As, = = v => + S + ρv = 0 dt dr dt dr dr r2 dr dv 1 dP GM or v + + S = 0 Eqn. 3 dr ρ dr r2 € € o Called the momentum equation. € o Eqn. 3 describes acceleration (1st term) of the gas due to a pressure gradient (2nd term) and gravity (3rd term). -
1 Stellar Winds and Magnetic Fields
1 Stellar winds and magnetic fields by Viggo Hansteen The solar wind is responsible for maintaining the heliosphere, and for being the driving agent in the magnetospheres of the planets but also for being the agent by which the Sun has shed angular momentum during the eons since its formation. We can assume that other cool stars with active corona have similar winds that play the same roles for those stars (1). The decade since the launch of SOHO has seen a large change in our understanding of the themrally driven winds such as the solar wind, due to both theoretical, computational, and observational advances. Recent solar wind models are characterized by low coronal electron temperatures while proton, α-particle, and minor ion temperatures are expected to be quite high and perhaps anisotropic. This entails that the electric field is relatively unimportant and that one quite naturally is able to obtain solar wind outflow that has both a high asymptotic flow speed and maintaining a low mass flux. In this chapter we will explain why these changes have come about and outline the questions now facing thermal wind astrophysicists. The progress we have seen in the last decade is largely due observations made with instruments onboard Ulysses (2) and SOHO (3). These observations have spawned a new understanding of solar wind energetics, and the consideration of the chromosphere, corona, and solar wind as a unified system. We will begin by giving our own, highly biased, \pocket history" of solar wind theory highlighting the problems that had to be resolved in order to make the original Parker formulation of thermally driven winds conform with observational results. -
Super Stellar Clusters with a Bimodal Hydrodynamic Solution: an Approximate Analytic Approach
A&A 471, 579–583 (2007) Astronomy DOI: 10.1051/0004-6361:20077282 & c ESO 2007 Astrophysics Super stellar clusters with a bimodal hydrodynamic solution: an approximate analytic approach R. Wünsch1, S. Silich2, J. Palouš1, and G. Tenorio-Tagle2 1 Astronomical Institute, Academy of Sciences of the Czech Republic, v.v.i., Bocníˇ II 1401, 141 31 Prague, Czech Republic e-mail: [email protected] 2 Instituto Nacional de Astrofísica Optica y Electrónica, AP 51, 72000 Puebla, Mexico Received 12 February 2007 / Accepted 22 May 2007 ABSTRACT Aims. We look for a simple analytic model to distinguish between stellar clusters undergoing a bimodal hydrodynamic solution from those able to drive only a stationary wind. Clusters in the bimodal regime undergo strong radiative cooling within their densest inner regions, which results in the accumulation of the matter injected by supernovae and stellar winds and eventually in the formation of further stellar generations, while their outer regions sustain a stationary wind. Methods. The analytic formulae are derived from the basic hydrodynamic equations. Our main assumption, that the density at the star cluster surface scales almost linearly with that at the stagnation radius, is based on results from semi-analytic and full numerical calculations. Results. The analytic formulation allows for the determination of the threshold mechanical luminosity that separates clusters evolving in either of the two solutions. It is possible to fix the stagnation radius by simple analytic expressions and thus to determine the fractions of the deposited matter that clusters evolving in the bimodal regime blow out as a wind or recycle into further stellar generations. -
GEORGE HERBIG and Early Stellar Evolution
GEORGE HERBIG and Early Stellar Evolution Bo Reipurth Institute for Astronomy Special Publications No. 1 George Herbig in 1960 —————————————————————– GEORGE HERBIG and Early Stellar Evolution —————————————————————– Bo Reipurth Institute for Astronomy University of Hawaii at Manoa 640 North Aohoku Place Hilo, HI 96720 USA . Dedicated to Hannelore Herbig c 2016 by Bo Reipurth Version 1.0 – April 19, 2016 Cover Image: The HH 24 complex in the Lynds 1630 cloud in Orion was discov- ered by Herbig and Kuhi in 1963. This near-infrared HST image shows several collimated Herbig-Haro jets emanating from an embedded multiple system of T Tauri stars. Courtesy Space Telescope Science Institute. This book can be referenced as follows: Reipurth, B. 2016, http://ifa.hawaii.edu/SP1 i FOREWORD I first learned about George Herbig’s work when I was a teenager. I grew up in Denmark in the 1950s, a time when Europe was healing the wounds after the ravages of the Second World War. Already at the age of 7 I had fallen in love with astronomy, but information was very hard to come by in those days, so I scraped together what I could, mainly relying on the local library. At some point I was introduced to the magazine Sky and Telescope, and soon invested my pocket money in a subscription. Every month I would sit at our dining room table with a dictionary and work my way through the latest issue. In one issue I read about Herbig-Haro objects, and I was completely mesmerized that these objects could be signposts of the formation of stars, and I dreamt about some day being able to contribute to this field of study. -
Stellar Wind and Neutron Stars in Massive Binaries
FISICPAC 2018 IOP Publishing IOP Conf. Series: Journal of Physics: Conf. Series 1258 (2019) 012021 doi:10.1088/1742-6596/1258/1/012021 Accretion flows around compact objects: stellar wind and neutron stars in massive binaries Antonios Manousakis Department of Applied Physics & Astronomy, University of Sharjah, Sharjah, UAE Sharjah Academy of Astronomy, Space Sciences, and Technology (SAASST), Sharjah, UAE E-mail: [email protected] Abstract. Strong winds from massive stars are a topic of interest to a wide range of astrophysical fields, e.g., stellar evolution, X-ray binaries or the evolution of galaxies. Massive stars, as heavy as 10 to 20 solar masses, generate dense fast outflows that continuously supply their surroundings with metals, kinetic energy and ionizing radiation, triggering star formation and driving the chemical enrichment and evolution of Galaxies. The amount of mass lost through the emission of these winds dramatically affects the evolution of the star. Depending on the mass left at the end of its life, a massive star can explode as a supernova and/or produce a gamma-ray burst, which are among the most powerful probes of cosmic evolution. The study of massive star winds is thus a truly multidisciplinary field and has a wide impact on different areas of astronomy. In High-Mass X-ray Binaries the presence of an accreting compact object on the one side allows to infer wind parameters from studies of the varying properties of the emitted X-rays; but on the other side the accretors gravity and ionizing radiation can strongly influence the wind flow. As the compact objects, either a neutron star or a black hole, moves through the dense stellar wind, it accretes material from its donor star and therefore emit X-rays. -
Arxiv:2005.00801V2 [Astro-Ph.GA] 15 May 2020
Noname manuscript No. (will be inserted by the editor) The Physics of Star Cluster Formation and Evolution Martin G. H. Krause · Stella S. R. Offner · Corinne Charbonnel · Mark Gieles · Ralf S. Klessen · Enrique V´azquez-Semadeni · Javier Ballesteros-Paredes Philipp Girichidis · J. M. Diederik Kruijssen · Jacob L. Ward · Hans Zinnecker Received: 31 Jan 2020 / Accepted: date Martin G. H. Krause Centre for Astrophysics Research, School of Physics, Astronomy and Mathematics, University of Hertfordshire, College Lane, Hatfield, Hertfordshire AL10 9AB, UK E-mail: [email protected] Stella S. R. Offner Department of Astronomy, The University of Texas, Austin TX, 78712, U.S.A. Corinne Charbonnel Department of Astronomy, University of Geneva, Chemin de Pegase 51, 1290 Versoix, Switzer- land; IRAP, CNRS & Univ. of Toulouse, 14, av.E.Belin, 31400 Toulouse, France Mark Gieles Institut de Ci`enciesdel Cosmos (ICCUB-IEEC), Universitat de Barcelona, Mart´ıi Franqu`es 1, 08028 Barcelona, Spain; ICREA, Pg. Lluis Companys 23, 08010 Barcelona, Spain Ralf S. Klessen Universit¨at Heidelberg, Zentrum f¨ur Astronomie, Institut f¨ur Theoretische Astrophysik, Albert-Ueberle-Str. 2, 69120 Heidelberg, Germany Enrique V´azquez-Semadeni Instituto de Radioastronom´ıay Astrof´ısica,Universidad Nacional Aut´onomade M´ex´ıco,Cam- pus Morelia, Apdo. Postal 3-72, Morelia 58089, M´exico Javier Ballesteros-Paredes Instituto de Radioastronom´ıay Astrof´ısica,Universidad Nacional Aut´onomade M´ex´ıco,Cam- pus Morelia, Apdo. Postal 3-72, Morelia 58089, M´exico Philipp Girichidis Leibniz-Institut f¨urAstrophysik (AIP), An der Sternwarte 16, 14482 Potsdam, Germany J. M. Diederik Kruijssen Astronomisches Rechen-Institut, Zentrum f¨ur Astronomie der Universit¨at Heidelberg, M¨onchhofstraße 12-14, 69120 Heidelberg, Germany Jacob L. -
Cycle 14 Approved Programs
Cycle 14 Approved Programs as of 04/05/05 Science First Name Last Name Type Phase II ID Institution Country Title Category Physical Processes in Orion's Veil: A High Resolution Nicholas Abel AR 10636 University of Kentucky USA Star Formation UV Absorption Study of the Line of Sight Towards the Trapezium University of Eric Agol GO 10486 USA Cosmology A Cosmic String Lens Candidate Washington University of Eric Agol AR 10637 USA Cool Stars Finding Terrestrial Planets with HST Washington Space Telescope NGC 4449: a Testbed for Starbursts in the Low- and Alessandra Aloisi GO 10585 Science Institute - USA Galaxies High-Redshift Universe ESA Space Telescope The Rosetta Stone without a Distance: Hunting for Alessandra Aloisi GO 10586 Science Institute - USA Galaxies Cepheids in the "Primordial" Galaxy I Zw 18 ESA University of Timing Studies of the X-ray Binary Populations in Scott Anderson GO 10615 USA Hot Stars Washington Globular Clusters The Johns Hopkins A Search for Debris Disks in the Coeval Beta Pictoris David Ardila GO 10487 USA Star Formation University Moving Group University of Colorado Thomas Ayres AR 10638 USA Cool Stars StarCAT at Boulder Studies of Europa's Plasma Interactions and Gilda Ballester AR 10639 University of Arizona USA Solar System Atmosphere with HST/STIS FUV Images Edward Baltz GO 10543 Stanford University USA Galaxies Microlensing in M87 and the Virgo Cluster University of HST Observations of MilliJansky Radio Sources from the Robert Becker AR 10640 USA Galaxies California - Davis VLA FIRST Survey European Southern -
A Super-Star Cluster in NGC 253: Mid-Infrared Properties
THE ASTROPHYSICAL JOURNAL, 518:183È189, 1999 June 10 ( 1999. The American Astronomical Society. All rights reserved. Printed in U.S.A. A SUPERÈSTAR CLUSTER IN NGC 253: MID-INFRARED PROPERTIES ERIC KETO,JOSEPH L. HORA, AND G. G. FAZIO Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 WILLIAM HOFFMANN Steward Observatory, University of Arizona, Tucson, AZ 85721 AND LYNNE DEUTSCH Astronomy Department, Boston University, 725 Commonwealth Avenue, Boston, MA 02215 Received 1998 February 26; accepted 1999 January 12 ABSTRACT We observed the nearby starburst galaxy NGC 253 in the mid-infrared to obtain a three-dimensional data set with arcsecond angular resolution and 0.2 km spectral resolution. The observations show the major spectral features in the upper half of the mid-IR window: the 11.3 km polycyclic aromatic hydro- carbon (PAH) line and the 12.8 km [Ne II] line as well as the broad silicate absorption feature at 9.7 km. We use the [Ne II] line to determine the emission measure of the ionized gas, and in combination with radio observations to predict the thermal and nonthermal contributions to the radio continuum. The amount of ionized gas is related to the rate of star formation. Based on the mid-IR spectra, we identify three major components in the nucleus of NGC 243: an AGN in the center of the galaxy, a superÈstar cluster also seen in optical images, and a larger scale di†use envelope composed of an older population of supernova remnants and lower mass stars. Subject headings: galaxies: individual (NGC 253) È galaxies: starburst È galaxies: star clusters 1. -
Mass-Loss Predictions for O and B Stars As a Function of Metallicity
A&A 369, 574–588 (2001) Astronomy DOI: 10.1051/0004-6361:20010127 & c ESO 2001 Astrophysics Mass-loss predictions for O and B stars as a function of metallicity Jorick S. Vink1,A.deKoter2, and H. J. G. L. M. Lamers1,3 1 Astronomical Institute, Utrecht University, PO Box 80000, 3508 TA Utrecht, The Netherlands 2 Astronomical Institute “Anton Pannekoek”, University of Amsterdam, Kruislaan 403, 1098 SJ Amsterdam, The Netherlands 3 SRON Laboratory for Space Research, Sorbonnelaan 2, 3584 CA Utrecht, The Netherlands Received 24 July 2000 / Accepted 17 January 2001 Abstract. We have calculated a grid of massive star wind models and mass-loss rates for a wide range of metal abundances between 1/100 ≤ Z/Z ≤ 10. The calculation of this grid completes the Vink et al. (2000) mass-loss recipe with an additional parameter Z. We have found that the exponent of the power law dependence of mass loss 0.85 p vs. metallicity is constant in the range between 1/30 ≤ Z/Z ≤ 3. The mass-loss rate scales as M˙ ∝ Z v∞ with p = −1.23 for stars with Teff ∼> 25 000 K, and p = −1.60 for the B supergiants with Teff ∼< 25 000 K. 0.13 Taking also into account the metallicity dependence of v∞, using the power law dependence v∞ ∝ Z from Leitherer et al. (1992), the overall result of mass loss as a function of metallicity can be represented by M˙ ∝ Z0.69 0.64 for stars with Teff ∼> 25 000 K, and M˙ ∝ Z for B supergiants with Teff ∼< 25 000 K. -
Simulating Stellar Winds in AMUSE Edwin Van Der Helm1, Martha I
A&A 625, A85 (2019) Astronomy https://doi.org/10.1051/0004-6361/201732020 & c ESO 2019 Astrophysics Simulating stellar winds in AMUSE Edwin van der Helm1, Martha I. Saladino2,1, Simon Portegies Zwart1, and Onno Pols2 1 Leiden Observatory, Leiden University, PO Box 9513, 2300 RA Leiden, The Netherlands e-mail: [email protected] 2 Department of Astrophysics/IMAPP, Radboud University, PO Box 9010, 6500 GL Nijmegen, The Netherlands Received 30 September 2017 / Accepted 24 March 2019 ABSTRACT Aims. We present stellar_wind.py, a module that provides multiple methods of simulating stellar winds using smoothed particle hydrodynamics codes (SPH) within the astrophysical multipurpose software environment (amuse) framework. Methods. The module currently includes three ways of simulating stellar winds: With the simple wind mode, we create SPH wind particles in a spherically symmetric shell for which the inner boundary is located at the radius of the star. We inject the wind particles with a velocity equal to their terminal velocity. The accelerating wind mode is similar, but with this method particles can be injected with a lower initial velocity than the terminal velocity and they are accelerated away from the star according to an acceleration function. With the heating wind mode, SPH particles are created with zero initial velocity with respect to the star, but instead wind particles are given an internal energy based on the integrated mechanical luminosity of the star. This mode is designed to be used on longer timescales and larger spatial scales compared to the other two modes and assumes that the star is embedded in a gas cloud.