What Is the Origin of Pancreatic Adenocarcinoma?

Total Page:16

File Type:pdf, Size:1020Kb

What Is the Origin of Pancreatic Adenocarcinoma? University of Nebraska Medical Center DigitalCommons@UNMC Journal Articles: Biochemistry & Molecular Biology Biochemistry & Molecular Biology Winter 1-22-2013 What is the origin of pancreatic adenocarcinoma? Parviz M. Pour University of Nebraska Medical Center, ppour@unmc.edu K. K. Panday University of Nebraska Medical Center Surinder K. Batra University of Nebraska Medical Center, sbatra@unmc.edu Follow this and additional works at: https://digitalcommons.unmc.edu/com_bio_articles Part of the Medical Biochemistry Commons, and the Medical Molecular Biology Commons Recommended Citation Pour, Parviz M.; Panday, K. K.; and Batra, Surinder K., "What is the origin of pancreatic adenocarcinoma?" (2013). Journal Articles: Biochemistry & Molecular Biology. 99. https://digitalcommons.unmc.edu/com_bio_articles/99 This Article is brought to you for free and open access by the Biochemistry & Molecular Biology at DigitalCommons@UNMC. It has been accepted for inclusion in Journal Articles: Biochemistry & Molecular Biology by an authorized administrator of DigitalCommons@UNMC. For more information, please contact digitalcommons@unmc.edu. Molecular Cancer Bio Med Central Review Open Access What is the origin of pancreatic adenocarcinoma? Parviz M Pour* 1,2, Krishan K Pandey 3 and Surinder K Batra 3 Address: 1The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE 68198 USA, 2Department of Pathology and Microbiology University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE 68198, USA and 3Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE 68198, USA Email: Parviz M Pour* - ppour@unmc.edu; Krishan K Pandey - kpandey@unmc.edu; Surinder K Batra - sbatra@unmc.edu * Corresponding author Published: 22 January 2003 Received: 21 December 2002 Accepted: 22 January 2003 Molecular Cancer 2003, 2:13 This article is available from: http://www.molecular-cancer.com/content/2/1/13 © 2003 Pour et al; licensee BioMed Central Ltd. This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose, provided this notice is preserved along with the article's original URL. Abstract The concept of pancreatic cancer origin is controversial. Acinar, ductal or islet cells have been hypothesized as the cell of origin. The pros and cons of each of these hypotheses are discussed. Based on the world literature and recent observations, pancreatic cells seem to have potential for phenotypical transdifferentiation, i.e ductal-islet, ductal-acinar, acinar-ductal, acinar-islet, islet- acinar and islet-ductal cells. Although the possibility is discussed that cancer may arise from either islet, ductal or acinar cells, the circumstances favoring the islet cells as the tumor cell origin include their greater transdifferentiation potency into both pancreatic and extrapancreatic cells, the presence of a variety of carcinogen-metabolizing enzymes, some of which are present exclusively in islet cells and the growth factor-rich environment of islets. Introduction There is accumulating evidence that most pancreatic tu- The complex cellular structure of the pancreas composed mors originate from within islets by islet cell transdiffer- of various exocrine and endocrine cells hampers a clear entiation and that pancreatic islet cells play a significant understanding of the origin of pancreatic ductal-type ade- role in the neoplastic process. There are also observations nocarcinoma. During the embryonic development of the that favor that the ductal cells are the source of cancer pancreas all exocrine and endocrine cells are derived from cells. To better understand the neoplastic process in the the common precursor cells, the stem cells. It is believed pancreas, some anatomic-physiological aspects of the tis- that these stem cells are retained in the adult pancreas and sue should be considered. are the foundation for cell renewal and tumors; however, this claim has remained illusive. Recent studies pointing Review to the enormous plasticity of each type of pancreatic cell Interaction between the exocrine and endocrine cells in changing their phenotype from one type to another It is estimated that the exocrine cells contribute to over (i.e., transdifferentiation) makes the identification of tu- 95% (acinar cells 85%, ductal cells 10%) of the volume of mor cell origin more complex. The islet-ductal, acinar- the pancreas, whereas the endocrine cells are believed to ductal, ductal-islet cell transdifferentiation in purified cell occupy only 1–2% of the pancreatic volume in adults. populations [1–6] and in vivo [7–10] has been observed. Clearly, this estimation is misleading as it does not con- Consequently, all pancreatic cells could be considered as sider the number of individual cell types. When the size of a potential facultative stem cell. the cells is disregarded, the figures would be significantly different. The circular three-dimensional shape of the is- lets composed of relatively small, closely packed cells Page 1 of 10 (page number not for citation purposes) Molecular Cancer 2003, 2 http://www.molecular-cancer.com/content/2/1/13 causes underestimation of their numbers in histological ence of the xenobiotic enzymes in the islets is self sections. Considering the diffuse distribution of the islets, explanatory, as in humans and other mammalian species, accounting for about one islet per 1.1 mm 2 of the tissue part of the arterial blood passes through the islets before [11], and the presence of a large number of a single or nourishing the exocrine pancreas [23–27]. small group of islet cells scattered throughout the pancre- as and within the ductal epithelium it appears that there Evidence for the derivation of tumors from islet cells are as many islet cells as acinar cells. The same applies to Experimental data ductal cells, as the calculation does not consider the often- The following observations support the unequivocal role invisible centroacinar cells that are the components of of !-cells in transdifferentiation and, thus the carcinogen- ducts. According to our observation, within an acinus esis process: 1) Experimentally, the first histological alter- there are as many centroacinar cells as acinar cells. In our ations are the appearance of intrainsular ductular view, centroacinar cells are as multipotential as islet cells structures showing different stages of progression from and can give rise to islet cells, acinar cells and tumor cells normal to malignant pattern. These lesions are initially [12]. confined within the islet boundary and are sharply demar- cated from the surrounding tissue (Fig. 1a,1b,1c). 2) The The tight functional and physical interaction between the pretreatment of hamsters with streptozotocin, which se- endocrine and exocrine cells have been well established lectively destroys !-cells, inhibits the pancreatic tumori- but not sufficiently investigated. The necessary coopera- genesis [28]; 3) Genetically diabetic hamsters with tion between the endocrine and exocrine cells well ex- depleted !-cells are resistant to the pancreatic carcinogen- plains the plasticity of the pancreas to adjust to the ic effect of N-nitrosobis(2-oxopropyl)amine (BOP), internal demands and external stimuli. Hence, each type whereas the pancreas of a non-diabetic strain with intact of pancreatic cells has the ability to provide a function !-cells is not [29]; 4) Stimulation of !-cell neogenesis (ne- that is dictated by the physiological demand in an organ- sidioblastosis) enhances pancreatic carcinogenicity of ized fashion. Islet cells seem to be the frontrunner of the BOP [30]; 5) Transplantation of homologous islets into organization system. the submandibular gland (a non-target tissue of BOP) of hamsters and the subsequent BOP treatment of the recip- Islet cells, the gatekeeper of the pancreas ient hamsters results in the development of ductal-type The diffuse distribution of islet cells throughout the pan- adenocarcinomas in the areas of transplanted islets creas either in the form of aggregate (islet) and single or [31,32]. Histological findings point to the development of small group of islets indicate their important function. malignant glands in the center of islets, the exclusive po- They seem to control the flow of pancreatic exocrine and sition of !-cells in hamsters; 6) Malignant transformation exocrine function as reflected by their unique ability for of freshly isolated hamster pancreatic islets by BOP in vitro transformation to every pancreatic and some extrapancre- [33]. Although the treatment of cultured hamster pancre- atic cell type [1–8]. The controlling effect of islet cells on atic ductal cells also led to the formation of ductal adeno- the exocrine tissue is also highlighted by the presence of carcinomas [34] these tumors, contrary to those derived endocrine cells within the normal, hyperplastic and ma- from islet cells [33], did not show the mutation of the c- lignant ductal epithelium, in both humans and animals K- ras oncogene [35], the most common genetic abnor- [13–17]. Another extremely important function of the is- mality in human pancreatic adenocarcinomas [36,37]. let cells, not similarly shared by other pancreatic cells, is Additionally, only the cultured islets cells treated with the defensive strategy provided by drug-metabolizing en- BOP showed an inactivation of the p16 (INK4a) gene (ho- zymes. Among
Recommended publications
  • Tumour-Agnostic Therapy for Pancreatic Cancer and Biliary Tract Cancer
    diagnostics Review Tumour-Agnostic Therapy for Pancreatic Cancer and Biliary Tract Cancer Shunsuke Kato Department of Clinical Oncology, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; katoshun@juntendo.ac.jp; Tel.: +81-3-5802-1543 Abstract: The prognosis of patients with solid tumours has remarkably improved with the develop- ment of molecular-targeted drugs and immune checkpoint inhibitors. However, the improvements in the prognosis of pancreatic cancer and biliary tract cancer is delayed compared to other carcinomas, and the 5-year survival rates of distal-stage disease are approximately 10 and 20%, respectively. How- ever, a comprehensive analysis of tumour cells using The Cancer Genome Atlas (TCGA) project has led to the identification of various driver mutations. Evidently, few mutations exist across organs, and basket trials targeting driver mutations regardless of the primary organ are being actively conducted. Such basket trials not only focus on the gate keeper-type oncogene mutations, such as HER2 and BRAF, but also focus on the caretaker-type tumour suppressor genes, such as BRCA1/2, mismatch repair-related genes, which cause hereditary cancer syndrome. As oncogene panel testing is a vital approach in routine practice, clinicians should devise a strategy for improved understanding of the cancer genome. Here, the gene mutation profiles of pancreatic cancer and biliary tract cancer have been outlined and the current status of tumour-agnostic therapy in these cancers has been reported. Keywords: pancreatic cancer; biliary tract cancer; targeted therapy; solid tumours; driver mutations; agonist therapy Citation: Kato, S. Tumour-Agnostic Therapy for Pancreatic Cancer and 1.
    [Show full text]
  • Case Report Metastasis of Pancreatic Cancer Within Primary Colon Cancer by Overtaking the Stromal Microenvironment
    Int J Clin Exp Pathol 2018;11(6):3141-3146 www.ijcep.com /ISSN:1936-2625/IJCEP0075771 Case Report Metastasis of pancreatic cancer within primary colon cancer by overtaking the stromal microenvironment Takeo Nakaya1, Hisashi Oshiro1, Takumi Saito2, Yasunaru Sakuma2, Hisanaga Horie2, Naohiro Sata2, Akira Tanaka1 Departments of 1Pathology, 2Surgery, Jichi Medical University, Shimotsuke, Tochigi, Japan Received March 10, 2018; Accepted April 15, 2018; Epub June 1, 2018; Published June 15, 2018 Abstract: We report a unique case of a 74-old man, who presented with double cancers, showing metastasis of pancreatic cancer to colon cancer. Histopathological examination after surgery revealed that the patient had as- cending colon cancer, which metastasized to the liver (pT4N0M1), as well as pancreatic cancer (pT2N1M1) that metastasized to the most invasive portion of the colon cancer, namely the serosal to subserosal layers. Although the mechanisms for this scenario have yet to be elucidated, we speculate that the metastatic pancreatic carcinoma overtook the stromal microenvironment of the colon cancer. Namely, the cancer microenvironment enriched by can- cer-associated fibroblasts, which supported the colon cancer, might be suitable for the invasion and engraftment by pancreatic carcinoma. The similarity of histological appearance might make it difficult to distinguish metastatic pancreatic carcinoma within colon cancer. Furthermore, the metastasis of pancreatic carcinoma in colon carcinoma might be more common, despite it not having been previously reported. Keywords: Cancer metastasis, metastatic pancreatic cancer, colon cancer, double cancer, tumor microenviron- ment Introduction Case report Prevention and control of cancer metastasis is Clinical history one of the most important problems in cancer care [1-4].
    [Show full text]
  • Pancreatic Cancer
    A Patient’s Guide to Pancreatic Cancer COMPREHENSIVE CANCER CENTER Staff of the Comprehensive Cancer Center’s Multidisciplinary Pancreatic Cancer Program provided information for this handbook GI Oncology Program, Patient Education Program, Gastrointestinal Surgery Department, Medical Oncology, Radiation Oncology and Surgical Oncology Digestive System Anatomy Esophagus Liver Stomach Gallbladder Duodenum Colon Pancreas (behind the stomach) Anatomy of the Pancreas Celiac Plexus Pancreatic Duct Common Bile Duct Sphincter of Oddi Head Body Tail Pancreas ii A Patient’s Guide to Pancreatic Cancer ©2012 University of Michigan Comprehensive Cancer Center Table of Contents I. Overview of pancreatic cancer A. Where is the pancreas located?. 1 B. What does the pancreas do? . 2 C. What is cancer and how does it affect the pancreas? .....................2 D. How common is pancreatic cancer and who is at risk?. .3 E. Is pancreatic cancer hereditary? .....................................3 F. What are the symptoms of pancreatic cancer? ..........................4 G. How is pancreatic cancer diagnosed?. 7 H. What are the types of cancer found in the pancreas? .....................9 II. Treatment A. Treatment of Pancreatic Cancer. 11 1. What are the treatment options?. 11 2. How does a patient decide on treatment? ..........................12 3. What factors affect prognosis and recovery?. .12 D. Surgery. 13 1. When is surgery a treatment?. 13 2. What other procedures are done?. .16 E. Radiation therapy . 19 1. What is radiation therapy? ......................................19 2. When is radiation therapy given?. 19 3. What happens at my first appointment? . 20 F. Chemotherapy ..................................................21 1. What is chemotherapy? ........................................21 2. How does chemotherapy work? ..................................21 3. When is chemotherapy given? ...................................21 G.
    [Show full text]
  • FDG PET/CT in Pancreatic and Hepatobiliary Carcinomas Value to Patient Management and Patient Outcomes
    FDG PET/CT in Pancreatic and Hepatobiliary Carcinomas Value to Patient Management and Patient Outcomes Ujas Parikh, MAa, Charles Marcus, MDa, Rutuparna Sarangi, MAa, Mehdi Taghipour, MDa, Rathan M. Subramaniam, MD, PhD, MPHa,b,c,* KEYWORDS 18F-FDG PET/CT Pancreatic cancer Hepatocellular carcinoma KEY POINTS Fludeoxyglucose F 18 (18F-FDG) PET/CT has not been shown to offer additional benefit in the initial diagnosis of pancreatic cancer, but studies show benefit of 18F-FDG PET/CT in staging, particularly in the detection of distant metastasis, and in patient prognosis. There is good evidence for 18F-FDG PET and 18F-FDG PET/CT in the staging and prognosis of both cholangiocarcinoma and gallbladder cancer. 18F-FDG PET/CT has shown promise in the staging of liver malignancies by detecting extrahepatic metastasis. There is good evidence supporting the ability of PET/CT in predicting prognosis in patients with hepatocellular carcinoma (HCC). Evidence is evolving for the role of 18F-FDG PET/CT in predicting prognosis and survival in patients with colorectal liver metastasis (CRLM). INTRODUCTION the time of diagnosis, only 20% of tumors are curative with resection.2 Invasive ductal adenocar- Pancreatic cancer is the tenth most common cinoma is the most common pancreatic malig- malignancy and fourth most common cause of nancy, accounting for more than 80% of cancer deaths in the United States, with a lifetime 1 pancreatic cancers. Other less common malig- risk of 1.5%. It was estimated that 46,420 people nancies include neuroendocrine tumors and were expected to be diagnosed with pancreatic exocrine acinar cell neoplasms.3,4 Although smok- cancer in the United States in 2014.
    [Show full text]
  • APC Haploinsufficiency Coupled with P53 Loss Sufficiently Induces
    Oncogene (2016) 35, 2223–2234 © 2016 Macmillan Publishers Limited All rights reserved 0950-9232/16 www.nature.com/onc ORIGINAL ARTICLE APC haploinsufficiency coupled with p53 loss sufficiently induces mucinous cystic neoplasms and invasive pancreatic carcinoma in mice T-L Kuo1, C-C Weng1, K-K Kuo2,3, C-Y Chen3,4, D-C Wu3,5,6, W-C Hung7 and K-H Cheng1,3,8 Adenomatous polyposis coli (APC), a tumor-suppressor gene critically involved in familial adenomatous polyposis, is integral in Wnt/β-catenin signaling and is implicated in the development of sporadic tumors of the distal gastrointestinal tract including pancreatic cancer (PC). Here we report for the first time that functional APC is required for the growth and maintenance of pancreatic islets and maturation. Subsequently, a non-Kras mutation-induced premalignancy mouse model was developed; in this model, APC haploinsufficiency coupled with p53 deletion resulted in the development of a distinct type of pancreatic premalignant precursors, mucinous cystic neoplasms (MCNs), exhibiting pathomechanisms identical to those observed in human MCNs, including accumulation of cystic fluid secreted by neoplastic and ovarian-like stromal cells, with 100% penetrance and the presence of hepatic and gastric metastases in 430% of the mice. The major clinical implications of this study suggest targeting the Wnt signaling pathway as a novel strategy for managing MCN. Oncogene (2016) 35, 2223–2234; doi:10.1038/onc.2015.284; published online 28 September 2015 INTRODUCTION polyposis who presented concurrent solid pseudopapillary tumor, Pancreatic cancer (PC) is the fourth most common cause of adult a large encapsulated pancreatic mass with cystic and solid 12 cancer mortality and among the most lethal human cancers.
    [Show full text]
  • Fact Sheet - Symptoms of Pancreatic Cancer
    Fact Sheet - Symptoms of Pancreatic Cancer Diagnosis Pancreatic cancer is often difficult to diagnose, because the pancreas lies deep in the abdomen, behind the stomach, so tumors are not felt during a physical exam. Pancreatic cancer is often called the “silent” cancer because the tumor can grow for many years before it causes pressure, pain, or other signs of illness. When symptoms do appear, they can vary depending on the size of the tumor and where it is located on the pancreas. For these reasons, the symptoms of pancreatic cancer are seldom recognized until the cancer has progressed to an advanced stage and often spread to other areas of the body. General Symptoms Pain The first symptom of pancreatic cancer is often pain, because the tumors invade nerve clusters. Pain can be felt in the stomach area and/or in the back. The pain is generally worse after eating and when lying down, and is sometimes relieved by bending forward. Pain is more common in cancers of the body and tail of the pancreas. The abdomen may also be generally tender or painful if the liver, pancreas or gall bladder are inflamed or enlarged. It is important to keep in mind that there are many other causes of abdominal and back pain! Jaundice More than half of pancreatic cancer sufferers have jaundice, a yellowing of the skin and whites of the eyes. Jaundice is caused by a build-up bilirubin, a substance which is made in the liver and a component of bile. Bilirubin contains a lot of yellow pigment, and gives bile it’s color.
    [Show full text]
  • What Is a Gastrointestinal Carcinoid Tumor?
    cancer.org | 1.800.227.2345 About Gastrointestinal Carcinoid Tumors Overview and Types If you have been diagnosed with a gastrointestinal carcinoid tumor or are worried about it, you likely have a lot of questions. Learning some basics is a good place to start. ● What Is a Gastrointestinal Carcinoid Tumor? Research and Statistics See the latest estimates for new cases of gastrointestinal carcinoid tumor in the US and what research is currently being done. ● Key Statistics About Gastrointestinal Carcinoid Tumors ● What’s New in Gastrointestinal Carcinoid Tumor Research? What Is a Gastrointestinal Carcinoid Tumor? Gastrointestinal carcinoid tumors are a type of cancer that forms in the lining of the gastrointestinal (GI) tract. Cancer starts when cells begin to grow out of control. To learn more about what cancer is and how it can grow and spread, see What Is Cancer?1 1 ____________________________________________________________________________________American Cancer Society cancer.org | 1.800.227.2345 To understand gastrointestinal carcinoid tumors, it helps to know about the gastrointestinal system, as well as the neuroendocrine system. The gastrointestinal system The gastrointestinal (GI) system, also known as the digestive system, processes food for energy and rids the body of solid waste. After food is chewed and swallowed, it enters the esophagus. This tube carries food through the neck and chest to the stomach. The esophagus joins the stomachjust beneath the diaphragm (the breathing muscle under the lungs). The stomach is a sac that holds food and begins the digestive process by secreting gastric juice. The food and gastric juices are mixed into a thick fluid, which then empties into the small intestine.
    [Show full text]
  • Synchronous Pancreatic Ductal Adenocarcinoma and Hepatocellular Carcinoma: Report of a Case and Review of the Literature JENNY Z
    ANTICANCER RESEARCH 38 : 3009-3012 (2018) doi:10.21873/anticanres.12554 Synchronous Pancreatic Ductal Adenocarcinoma and Hepatocellular Carcinoma: Report of a Case and Review of the Literature JENNY Z. LAI 1,2 , YIHUA ZHOU 3 and DENGFENG CAO 2 1University College, Washington University in St. Louis, St. Louis, MO, U.S.A.; 2Department of Pathology and Immunology, Washington University in Saint Louis School of Medicine, St. Louis, MO, U.S.A.; 3Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S.A. Abstract. Two or more histologically distinct malignancies adenocarcinoma (PDAC) is one of the fatal cancers with diagnosed during the same hospital admission are short-term survival rates. The case fatality rate for the uncommon, but they do exist. Cases with synchronous disease is approximately 97% and has declined slightly (from primary pancreatic ductal adenocarcinoma and 99% to 97%) in the last 12 years (3). To date, the causes of hepatocellular carcinoma are rarely seen. This is a case pancreatic cancer are not thoroughly understood, though report of a 56 years old Caucasian female with the chief certain risk factors such as smoking, obesity, lifestyle, complaint of jaundice over a duration of 10 days. CT diabetes mellitus, alcohol, dietary factors and chronic imaging findings revealed a 3.5 cm ill-defined pancreatic pancreatitis have been proposed. Hepatocellular carcinoma head mass and a 1.5 cm liver mass in the segment 5. EUS- (HCC) is the second leading cause and the fastest rising FNA cytology showed pancreatic head ductal cause of cancer-related death worldwide (4). One of the most adenocarcinoma (PDAC).
    [Show full text]
  • What Is Pancreatic Cancer?
    cancer.org | 1.800.227.2345 About Pancreatic Cancer Overview and Types If you have been diagnosed with pancreatic cancer or worried about it, you likely have a lot of questions. Learning some basics is a good place to start. ● What Is Pancreatic Cancer? Research and Statistics See the latest estimates for new cases of pancreatic cancer and deaths in the US and what research is currently being done. ● Key Statistics for Pancreatic Cancer ● What’s New in Pancreatic Cancer Research? What Is Pancreatic Cancer? Pancreatic cancer is a type of cancer that starts in the pancreas. (Cancer starts when cells in the body begin to grow out of control. To learn more about how cancers start and spread, see What Is Cancer?1) Pancreatic adenocarcinoma is the most common type of pancreatic cancer. Pancreatic neuroendocrine tumors (NETs) are a less common type and are discussed in Pancreatic Neuroendocrine Tumors2. 1 ____________________________________________________________________________________American Cancer Society cancer.org | 1.800.227.2345 Where pancreatic cancer starts The pancreas The pancreas is an organ that sits behind the stomach. It's shaped a bit like a fish with a wide head, a tapering body, and a narrow, pointed tail. In adults it's about 6 inches (15 centimeters) long but less than 2 inches (5 centimeters) wide. ● The head of the pancreas is on the right side of the abdomen (belly), behind where the stomach meets the duodenum (the first part of the small intestine). ● The body of the pancreas is behind the stomach. ● The tail of the pancreas is on the left side of the abdomen next to the spleen.
    [Show full text]
  • Pancreatic Cancer Facts 2016
    PANCREATIC CANCER ACTION NETWORK PANCREATIC CANCER FACTS 2016 THE PANCREATIC CANCER ACTION NETWORK CALLS ON THE 114TH CONGRESS AND THE ADMINISTRATION TO WAGE HOPE BY: • Putting the National Institutes of Health (NIH) on a path of sustained growth by appropriating $34.5 billion for the NIH, including $5.9 billion for the National Cancer Institute (NCI). • Allocating a portion of any Cancer Moonshot funding to our nation’s deadliest cancers — the recalcitrant cancers that have a five-year survival rate below 50 percent. • Continuing to include pancreatic cancer in the Department of Defense Peer Reviewed Cancer Research Program and providing at least the FY2016 funding level of $50 million. • Including funding for the NIH in the Senate HELP Committee’s Innovation for Healthier Americans Initiative legislation. • Joining the bicameral Congressional Caucus on the Deadliest Cancers. PANCREATIC CANCER IS ONE OF THE DEADLIEST CANCERS • In 2016, pancreatic cancer moved from the fourth leading cause of cancer-related death in the U.S. to the third, surpassing breast cancer.* • Pancreatic cancer is the 11th most commonly diagnosed cancer in men and the ninth in women. • It is estimated that in 2016, 53,070 Americans will be diagnosed with pancreatic cancer, and 41,780 will die from the disease. Seventy-one percent of patients will die within the first year of diagnosis. • Pancreatic cancer is the only major cancer with a five-year relative survival rate in the single digits, at just 8 percent. • African-Americans have the highest incidence rate of pancreatic cancer, between 28 percent and 59 percent higher than the incidence rates for other racial/ethnic groups.
    [Show full text]
  • Family History and the Risk of Liver, Gallbladder, and Pancreatic Cancer'1
    Vol. 3, 209-2 12, April/May 1994 Cancer Epidemiology, Biomarkers & Prevention 209 Family History and the Risk of Liver, Gallbladder, and Pancreatic Cancer’1 Esteve Fernandez, Carlo La Vecchia,2 Barbara D’Avanzo, Introduction Eva Negri, and Silvia Franceschi Although several case reports and some formal epidemio- Institut Municipal d’lnvestigacio M#{232}dica(IMIM), Universitat AutOnoma de logical studies have addressed the issue of familial aggre- Barcelona (UAB), Dr. Aiguader 80, 08003 Barcelona, Catalonia, Spain gation ofpancreas (1-6), liver(7-1 1), and gallbladder cancer IE. F.]; Istituto di Ricerche Farmacologiche “Mario Negri,” Via Eritrea 62, (1 2, 1 3), few of them have provided relative or population 20157 Milano, Italy ]E. F., C. L. V., B. D., E. N.]; Istituto di Biometria e attributable risk estimates according to selected indicators of Statistica Medica, Universit#{224} di Milano, Via Venezian 1, 20133 Milano, Italy IC. L. V.]; and Centro di Riferimento Oncologico, family history of cancer, after allowance for major recog- 33081 Aviano (Pordenone), Italy IS. F.l nized potential confounding factors. Further, since there is consistent evidence that a few digestive tract cancers share some common risk factors, ei- Abstract ther environmental (14) or potentially genetic (15), com- The relationship between family history of selected bined analyses ofthe pattern of risk for different cancers may provide useful information. neoplasms in first-degree relatives and the risk of We decided therefore to analyze family histories of se- pancreatic, liver, and gallbladder cancer was lected neoplasms in a case-control study of pancreatic, liver, investigated using data from a case-control study and gallbladder cancer conducted in northern Italy.
    [Show full text]
  • ACG Clinical Guideline: Genetic Testing and Management of Hereditary Gastrointestinal Cancer Syndromes
    ACG Clinical Guideline: Genetic Testing and Management of Hereditary Gastrointestinal Cancer Syndromes Sapna Syngal, MD, MPH, FACG,1,2,3 Randall E. Brand, MD, FACG,4 James M. Church, MD, FACG,5,6,7 Francis M. Giardiello, MD,8 Heather L. Hampel, MS, CGC9 and Randall W. Burt, MD, FACG10 1Brigham and Women’s Hospital, Boston, Massachusetts, USA; 2Dana Farber Cancer Institute, Boston, Massachusetts, USA; 3Harvard Medical School, Boston, Massachusetts, USA; 4Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA; 5Department of Colorectal Surgery, Cleveland Clinic, Cleveland, Ohio, USA; 6Sanford R Weiss, MD, Center for Hereditary Colorectal Neoplasia, Cleveland Clinic Foundation, Cleveland, Ohio, USA; 7Digestive Disease Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA; 8Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; 9Department of Internal Medicine, Ohio State University, Columbus, Ohio, USA; 10Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, USA. Am J Gastroenterol 2015; 110:223–262; doi: 10.1038/ajg.2014.435; published online 3 February 2015 Abstract This guideline presents recommendations for the management of patients with hereditary gastrointestinal cancer syndromes. The initial assessment is the collection of a family history of cancers and premalignant gastrointestinal conditions and should provide enough information to develop a preliminary determination of the risk of a familial predisposition to cancer. Age at diagnosis and lineage (maternal and/or paternal) should be documented for all diagnoses, especially in first- and second-degree relatives. When indicated, genetic testing for a germline mutation should be done on the most informative candidate(s) identified through the family history evaluation and/or tumor analysis to confirm a diagnosis and allow for predictive testing of at-risk relatives.
    [Show full text]