Mirnas As Biomarkers for Prostate Cancer Progression

Total Page:16

File Type:pdf, Size:1020Kb

Mirnas As Biomarkers for Prostate Cancer Progression Virginia Commonwealth University VCU Scholars Compass Theses and Dissertations Graduate School 2015 MIRNAS AS BIOMARKERS FOR PROSTATE CANCER PROGRESSION Gene C. Clark Virginia Commonwealth University Follow this and additional works at: https://scholarscompass.vcu.edu/etd Part of the Diagnosis Commons © The Author Downloaded from https://scholarscompass.vcu.edu/etd/3954 This Thesis is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars Compass. For more information, please contact [email protected]. MIRNAS AS BIOMARKERS FOR PROSTATE CANCER PROGRESSION A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Biochemistry at Virginia Commonwealth University By Gene Chatman Clark B. S. 2012, Virginia Polytechnic Institute Director: Zendra E. Zehner Professor, Department of Biochemistry Virginia Commonwealth University Richmond, Virginia July 22, 2015 Acknowledgement Firstly, I would like to thank the many people here at VCU have inexplicably taken a chance on me. This includes, but could not possibly be limited to, Dr. Kimberly Jefferson who let me work in her lab when I was just a non-degree seeking student, Dr. Shirley Taylor who successfully encouraged me to pursue my love of research, and Dr. Louis DeFelice who suggested that I apply to the Pre-Medical Certificate Program here at VCU. I would also like to thank my amazing lab mates, Qianni Wu and Rhonda Daniel, whose insight and support were invaluable to this project. I have been lucky to have had them as partners and as friends. I would also like to thank Dr. Mike Holmes for his advice and for all of the time that he spent goofing off with me in the break room. Finally, I would like to thank Dr. Zendra Zehner for her much needed guidance. I could not have gotten anywhere without her. Because she is modest, she will tell you a different story. Do not believe her. ii Table of Contents List of Figures ……………………………………………………………………………………vi List of Tables ……………………………………………………………………………………vii Abbreviations and Symbols ……………………………………………………………………...ix Abstract …………………………………………………………………………………………...1 Introduction ……………………………………………………………………………………….3 The Prostate ………………………………………………………………………………3 Prostate Cancer …………………………………………………………………………...3 The Relevance of miRNAs ……………………………………………………………….4 Extracellular miRNAs and the Tumor Microenvironment ……………………………….4 Canonical and Non-Canonical Pathways …………………………………………………5 miRNA Action ……………………………………………………………………………7 miRNA Expression and Regulation ………………………………………………………8 3p vs 5p ………………………………………………………………………………….10 The General Silencing of miRNAs in Cancer …………………………………………...11 The Epithelial-Mesenchymal Transition ………………………………………………...13 Why Next Generation Sequencing (NGS) ………………………………………………13 Chapter 1: A Urinary Assay for the Detection of Prostate Cancer ……………………………...15 Specific Aims ……………………………………………………………………………16 Urine Over Blood and Semen …………………………………………………………...17 Materials and Methods ………………………………………………………………..…18 RNA Extraction from Urine ……………………………………………………..18 Illumina ……………………………………………………………………….…20 RT- PCR …………………………………………………………………….......21 Results …………………………………………………………………………………...22 NGS Normalization ……………………………………………………………..22 iii RNA-sequencing ………………………………………………………...………27 Possible prostate specific miRNAs: 126-3p …………………….………………30 Normalization of qRT PCR Analysis of Urine ………………….………………31 Why Normfinder ………………………………….……………………..………34 qPCR samples …………………………………………………..…….…………36 Accuracy vs Area Under the Curve ………………………..……………………38 qRT-PCR Results …………………………………………………..……………40 Discussion ……………………………………………………………….………………60 The Assay ……………………………………………….……………….………60 Contemporary Attempts at a Urinary Test for pCa …………...…………………61 The Urinary Panel ………………………………………………….……………62 Hsa-miR-204-5p ………………………………...………………………62 Hsa-miR-205-5p …………………………………………...……………63 Hsa-miR-223-3p and hsa-miR-223-5p ……………….…………………64 Hsa-miR-199a-3p ………………………………………….….…………65 Hsa-miR-126-3p …………………………………………...……………66 Hsa-miR-143-3p ……………………………………………………...…66 Hsa-miR-184-5p …………………………………………………...……67 The Question of Normalization for a Clinical Assay ……………………………67 How miRNAs might get into the Urine and the Potential for Outliers …….……68 Thoughts for the Future …………………………………………………………70 Indolent vs. Aggressive forms of Disease ………….……………………70 Metastasis …………………………………………….………….………71 The Androgen receptor and CRPC ……………………...………………72 The Big Data Problem ……………………………………..……………73 Prostate Cancer Subgroups …………………………………….…..……74 Tissue Specific miRNA Modifications …………………………….……74 Detecting the expansion of specific miRNA profiles ……………...……………75 iv Delivery to the Vagina …………………………………………..………………76 Chapter 2: miRNA NGS of the Cancer Cell Line Progression Model …………………….……78 Specific Aims ……………………………………………………………………………79 History and Character of the Cell Lines …………………………………………...……79 Materials and Methods ………………………………………………………………..…82 Cell Line RNA Extraction and Sequencing …………………………………..…82 TCGA pCa tumor samples ………………………………………………………83 Results ………………………………………………...…………………………………84 SNP Analysis ……………………………………………………………………84 RNA Sequencing …………………………………………………………..……89 Discussion ……………………………………………………………………………...108 SNP Analysis …………………………………………………………..………108 The Early Downregulated miRs ……………………………………………..…109 The Chromosome 14 Cluster ………………………………………..…109 The miR-200 Family …………………………………………………...112 The Late Upregulated miRNAs ……………………………………………..…119 miR10a and miR-196a …………………………………………………119 miR-675 and lncRNA-H19 ……………………………………….……122 The 548 Family ………………………………………………………...124 miR-34a-5p ……………………………………………………….……125 The Rest ………………………………………………………..………………128 miR-9 ………………………………………………………………..…128 miR146a-5p …………………………………………….………………130 Literature Search- Tumor suppressors lost with chromosome 19p ……………131 Low vs. High copy numbers ………………………...…………………………135 Oncomirs and Tumor Suppressors miRs: The Reductionist’s Approach …...…136 Thoughts for the Future- Considering Proteomic Data ………………………...138 Bibliography …………………………………………………………………...………………141 Appendix …………………………………….…………………………………………………152 Vita ……………………………………………………………………………………………..175 v List of Figures Figure 1: A comparison between samples of RNA in small size range ………………………..25 Figure 2: RT-PCR Analysis for miR-204-5p ………………………………….………………..41 Figure 3: RT-PCR Analysis for miR-205-5p ………………………………………….………..43 Figure 4: RT-PCR Analysis for miR-223-3p …………………………………………………...45 Figure 5: RT-PCR Analysis for miR-199a-3p ………………………………………………….48 Figure 6: RT-PCR Analysis for miR-223-5p …………………………………………………...50 Figure 7: RT-PCR Analysis for miR-126-3p …………………………………………………...52 Figure 8: RT-PCR Analysis for miR-143-3p …………………………………………………...54 Figure 9: RT-PCR Analysis for miR-184-5p …………………………………………………...56 Figure 10: The combined assay ………………………………………………………………...59 Figure 11: The chromosomal representation of dysregulated miRNAs between the P69 and M2182 cell lines …………………………………………………………………………………94 Figure 12: The chromosomal representation of dysregulated miRNAs between the P69 and M12 cell lines ………………………………………………………………………………………..101 Figure 13: The chromosomal representation of dysregulated miRNAs between the P69 and F6 cell lines ………………………………………………………………………………………..106 Figure 14: Suppression of the Dlk-Dio3 megacluster in prostate cancer ………………….….110 Figure 15: The Expression of the miR-200 Family and associated miRNAs over the Cancer Progression Model ……………………………………………………………………………..114 Figure 16: The Expression of miR-10a and miR196a (3p and 5p) in the Cancer Cell Line Progression Model ……………………………………………………………………………..119 Figure 17: The Expression of miR-675 in the Cancer Cell Line Progression Model ..………..122 Figure 18: The Expression of miR-34a in the Cancer Cell Line Progression Model ..………..125 Figure 19: The Expression of miR-9 in the Cancer Cell Line Progression Model ……………128 Figure 20: The Expression of miR-146a in the Cancer Cell Line Progression Model ………..130 vi List of Tables Table 1: Candidates for RNA Sequencing ………………………….………………………..27 Table 2: Sequencing Statistics ………………………………………………………………...28 Table 3: microRNA Sequencing Results of Urine Samples …………………………………29 Table 4: NGS Sequencing Results for Normalization Candidates ………………………….33 Table 5: Normfinder Stability Values ………………………………………………………...34 Table 6: Samples Used for the First Round of Validation …………………………………..37 Table 7: Additional Samples used for the Second Round of Validation …………………....38 Table 8: Summary of qRT-PCR Results ………………………….……………………….…40 Table 9: Final Assay Statistics ………………………………………………………………...59 Table 10: SNP NGS Summary ………………………….……………………………………..84 Table 11: SNP Summary ……………………………………………………………………....85 Table 12: SNP Allelic Frequencies in the P69 Cell Line ……………………………………..86 Table 13: SNP Allelic Frequencies in the M2182 Cell Line …………………………………87 Table 14: SNP Allelic Frequencies in the M12 Cell Line ……………………………………88 Table 15: SNP Allelic Frequencies in the F6 Cell Line ……………………………………....89 Table 16: miRNA NGS P69 vs M2182 ………………………………………………………..90 Table 17: Sequencing Results M12 ……………………………………………………………95 Table 18: P69 vs F6 …………………………………………………………………………...102 Table 19: Overall Sequencing Summary of miR expression in the parental p69 Cells compared to its subsequent variants ……………………………………………………..….107 Table 20: RPMA Analysis Shows Increased Protein Expression from the PI3K/RAS pathways in M12 versus p69 Cell Lines Table 21: Extended
Recommended publications
  • Sirna Interference Or Mirna Mimicry Peipei Wang1,2; Yue Zhou, Ph.D.1,2; Arthur M
    Theranostics 2021, Vol. 11, Issue 18 8771 Ivyspring International Publisher Theranostics 2021; 11(18): 8771-8796. doi: 10.7150/thno.62642 Review Effective tools for RNA-derived therapeutics: siRNA interference or miRNA mimicry Peipei Wang1,2; Yue Zhou, Ph.D.1,2; Arthur M. Richards, M.D., Ph.D.1,2,3 1. Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, 117599 Singapore. 2. Department of Medicine, National University Health System, 119228 Singapore. 3. Christchurch Heart Institute, Department of Medicine, University of Otago Christchurch, New Zealand. Corresponding author: Peipei Wang, MD, PhD, Cardiovascular Research Institute, Department of Medicine, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Centre for Translational Medicine, MD6, #08-01, 14 Medical Drive, Singapore 117599. Phone: (65) 81613586; Fax: (65) 6775-9715; E-mail: [email protected]. © The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions. Received: 2021.05.12; Accepted: 2021.07.30; Published: 2021.08.11 Abstract The approval of the first small interfering RNA (siRNA) drug Patisiran by FDA in 2018 marks a new era of RNA interference (RNAi) therapeutics. MicroRNAs (miRNA), an important post-transcriptional gene regulator, are also the subject of both basic research and clinical trials. Both siRNA and miRNA mimics are ~21 nucleotides RNA duplexes inducing mRNA silencing. Given the well performance of siRNA, researchers ask whether miRNA mimics are unnecessary or developed siRNA technology can pave the way for the emergence of miRNA mimic drugs.
    [Show full text]
  • Activation of Nuclear Factor-Kappa B Signalling Promotes Cellular Senescence
    Oncogene (2011) 30, 2356–2366 & 2011 Macmillan Publishers Limited All rights reserved 0950-9232/11 www.nature.com/onc ORIGINAL ARTICLE Activation of nuclear factor-kappa B signalling promotes cellular senescence E Rovillain1, L Mansfield1, C Caetano1, M Alvarez-Fernandez2, OL Caballero3, RH Medema2, H Hummerich4 and PS Jat1 1Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK; 2Department of Medical Oncology, University Medical Center, Utrecht, The Netherlands; 3Ludwig Institute for Cancer Research Ltd, New York, NY, USA and 4MRC Prion Unit, UCL Institute of Neurology, London, UK Cellular senescence is a programme of irreversible cell of intrinsic and extrinsic stimuli including progressive cycle arrest that normal cells undergo in response to shortening of telomeres or changes in telomeric struc- progressive shortening of telomeres, changes in telomeric ture or other forms of genotoxic stress such as oncogene structure, oncogene activation or oxidative stress. The activation, DNA damage or oxidative stress resulting in underlying signalling pathways, of major clinicopatholo- a DNA damage response and growth arrest via gical relevance, are unknown. We combined genome-wide activation of the p53 tumour suppressor (Ben-Porath expression profiling with genetic complementation to and Weinberg, 2005; Campisi and d’Adda di Fagagna, identify genes that are differentially expressed when 2007; Adams, 2009). Activation of p53 induces p21CIP1, conditionally immortalised human fibroblasts undergo which prevents cyclin/cdk complexes from phosphor- senescence upon activation of the p16-pRB and p53-p21 ylating the RB family of proteins, thereby activating the tumour suppressor pathways. This identified 816 up and pRB tumour suppressor pathway (Ben-Porath and 961 downregulated genes whose expression was reversed Weinberg, 2005; Campisi and d’Adda di Fagagna, when senescence was bypassed.
    [Show full text]
  • Open Full Page
    Published OnlineFirst July 22, 2014; DOI: 10.1158/1535-7163.MCT-14-0209 Molecular Cancer Large Molecule Therapeutics Therapeutics Systemic Delivery of a miR34a Mimic as a Potential Therapeutic for Liver Cancer Christopher L. Daige, Jason F. Wiggins, Leslie Priddy, Terri Nelligan-Davis, Jane Zhao, and David Brown Abstract miR34a is a tumor-suppressor miRNA that functions within the p53 pathway to regulate cell-cycle progression and apoptosis. With apparent roles in metastasis and cancer stem cell development, miR34a provides an interesting opportunity for therapeutic development. A mimic of miR34a was complexed with an amphoteric liposomal formulation and tested in two different orthotopic models of liver cancer. Systemic dosing of the formulated miR34a mimic increased the levels of miR34a in tumors by approximately 1,000-fold and caused statistically significant decreases in the mRNA levels of several miR34a targets. The administration of the formulated miR34a mimic caused significant tumor growth inhibition in both models of liver cancer, and tumor regression was observed in more than one third of the animals. The antitumor activity was observed in the absence of any immunostimulatory effects or dose-limiting toxicities. Accumulation of the formulated miR34a mimic was also noted in the spleen, lung, and kidney, suggesting the potential for therapeutic use in other cancers. Mol Cancer Ther; 13(10); 2352–60. Ó2014 AACR. Introduction with orthotopic Hep3B and HuH7 liver cancer xenografts. The development of lipid nanoparticle technologies Systemic delivery of the encapsulated miR34a mimic that provide efficient delivery of RNA oligonucleotides reduced the expression levels of several miR34a target to hepatocytes and liver tumors (1) has created an oppor- mRNAs and caused significant growth inhibition and tunity for RNAi-based therapies.
    [Show full text]
  • Evaluation of Pre-Mir-34A Rs72631823 Single Nucleotide Polymorphism in Triple Negative Breast Cancer: a Case-Control Study
    www.oncotarget.com Oncotarget, 2018, Vol. 9, (No. 97), pp: 36906-36913 Research Paper Evaluation of pre-mir-34a rs72631823 single nucleotide polymorphism in triple negative breast cancer: A case-control study Despoina Kalapanida1, Flora Zagouri1, Maria Gazouli2,3, Eleni Zografos2,3, Constantine Dimitrakakis4, Spyridon Marinopoulos4, Aris Giannos4, Theodoros N. Sergentanis1, Efstathios Kastritis1, Evangelos Terpos1 and Meletios-Athanasios Dimopoulos1 1Department of Clinical Therapeutics, Alexandra Hospital, Medical School, University of Athens, Athens, Greece 2Department of Basic Medical Sciences, Laboratory of Biology, University of Athens School of Medicine, Athens, Greece 3Laboratory of Cell and Gene Therapy, Biomedical Research Foundation of the Academy of Athens, Athens, Greece 4Department of Obstetrics and Gynaecology, Alexandra Hospital, Medical school, University of Athens, Athens, Greece Correspondence to: Flora Zagouri, email: [email protected] Keywords: SNPs; pre-miR-34a; miRNA; triple negative breast cancer; biomarker Received: September 13, 2018 Accepted: November 03, 2018 Published: December 11, 2018 Copyright: Kalapanida et al. This is an open-access article distributed under the terms of the Creative Commons Attribution Li- cense 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT Aim: The purpose of this study is to evaluate the role of pre-miR34a rs72631823 as potential risk factor and/or prognostic marker in patients with triple negative breast cancer. Methods: 114 samples of DNA from paraffin embedded breast normal tissues of patients with triple negative breast cancer and 124 samples of healthy controls were collected and analyzed for pre-miR34a rs72631823 polymorphism. Results: Pre-miR34a rs72631823 A allele was associated with increased TNBC risk both in univariate and multivariate analysis.
    [Show full text]
  • In Silico Analysis of Polymorphisms in Micrornas That Target Genes Affecting Aerobic Glycolysis
    Original Article Page 1 of 8 In silico analysis of polymorphisms in microRNAs that target genes affecting aerobic glycolysis Padmanaban S. Suresh1, Thejaswini Venkatesh2, Rie Tsutsumi3 1Department of Biosciences, Mangalore University, Mangalagangotri, Mangalore 574 199, Karnataka, India; 2Nitte University Centre for Science Education and Research, Nitte University, Derlakatte, Mangalore, Karnataka, India; 3Department of Nutrition and Metabolism, Institute of Biomedical Science, Tokushima University, Tokushima, Japan Contributions: (I) Conception and design: PS Suresh, T Venkatesh; (II) Administrative support: None; (III) Provision of study materials or patients: None; (IV) Collection and assembly of data: PS Suresh; (V) Data analysis and interpretation: PS Suresh; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors. Correspondence to: Padmanaban S. Suresh. Department of Biosciences, Mangalore University, Mangalagangotri, Mangalore 574 199, Karnataka, India. Email: [email protected]. Background: Cancer cells preferentially metabolize glucose through aerobic glycolysis, an observation known as the Warburg effect. Recently, studies have deciphered the role of oncogenes and tumor suppressor genes in regulating the Warburg effect. Furthermore, mutations in glycolytic enzymes identified in various cancers highlight the importance of the Warburg effect at the molecular and cellular level. MicroRNAs (miRNAs) are non-coding RNAs that posttranscriptionally regulate gene expression and are dysregulated in the pathogenesis of various types of human cancers. Single nucleotide polymorphisms (SNPs) in miRNA genes may affect miRNA biogenesis, processing, function, and stability and provide additional complexity in the pathogenesis of cancer. Moreover, mutations in miRNA target sequences in target mRNAs can affect expression. Methods: In silico analysis and cataloguing polymorphisms in miRNA genes that target genes directly or indirectly controlling aerobic glycolysis was carried out using different publically available databases.
    [Show full text]
  • Exosomal Micrornas: Pleiotropic Impacts on Breast Cancer Metastasis and Their Clinical Perspectives
    biology Review Exosomal microRNAs: Pleiotropic Impacts on Breast Cancer Metastasis and Their Clinical Perspectives Li-Bo Tang 1,2,† , Shu-Xin Ma 3,†, Zhuo-Hui Chen 2, Qi-Yuan Huang 1,2 , Long-Yuan Wu 1,4, Yi Wang 1, Rui-Chen Zhao 1,3 and Li-Xia Xiong 1,5,* 1 Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China; [email protected] (L.-B.T.); [email protected] (Q.-Y.H.); [email protected] (L.-Y.W.); [email protected] (Y.W.); [email protected] (R.-C.Z.) 2 Second Clinical Medical College, Nanchang University, Nanchang 330006, China; [email protected] 3 Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; [email protected] 4 First Clinical Medical College, Nanchang University, Nanchang 330006, China 5 Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, Nanchang 330006, China * Correspondence: [email protected]; Tel.: +86-791-8636-0556 † These authors contributed equally to this work. Simple Summary: This review has comprehensively summarized the most recent studies in the last few years about exosomal microRNAs on metastasis of breast cancer (BC), systematically outlined and elucidated the pleiotropic roles that exosomal microRNAs take, and discussed the specific underlying mechanisms related. Besides, we also clearly demonstrate the clinical implications of exosomal microRNAs in various aspects, including early-stage discovery of BC, systematic and Citation: Tang, L.-B.; Ma, S.-X.; Chen, targeted therapy, and the selection of anti-cancer chemo-agents. This review clarifies the scope and Z.-H.; Huang, Q.-Y.; Wu, L.-Y.; Wang, extent of current studies about the relationship between exosomal microRNAs and metastasis of Y.; Zhao, R.-C.; Xiong, L.-X.
    [Show full text]
  • Diffuse Large B-Cell Lymphoma with Combined TP53 Mutation and MIR34A Methylation: Another “Double Hit” Lymphoma with Very Poor Outcome?
    www.impactjournals.com/oncotarget/ Oncotarget, Vol. 5, No. 7 Diffuse large B-cell lymphoma with combined TP53 mutation and MIR34A methylation: Another “double hit” lymphoma with very poor outcome? Fazila Asmar1,*, Christoffer Hother1,*, Gorjan Kulosman1, Marianne Bach Treppendahl1, Helene Myrtue Nielsen1, Ulrik Ralfkiaer1,2, Anja Pedersen1, Michael Boe Møller3, Elisabeth Ralfkiaer2, Peter de Nully Brown1, and Kirsten Grønbæk1 1 Department of Hematology, Rigshospitalet, Copenhagen, Denmark, 2 Department of Pathology, Rigshospitalet, Copenhagen, Denmark, 3 Department of Pathology, Odense University Hospital, Odense, Denmark. * These authors contributed equally to the paper Correspondence to:Kirsten Grønbæk, email: [email protected] Keywords: Epigenetic changes, DNA methylation, microRNA, Tumor suppressors, non-Hodgkin lymphoma Received: February 9, 2014 Accepted: March 30, 2014 Published: March 31, 2014 This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT: MiR34A, B and C have been implicated in lymphomagenesis, but information on their role in normal CD19+ B-cells (PBL-B) and de novo diffuse large B-cell lymphoma (DLBCL) is limited. We show that in normal and activated B-cells miR34A-5p plays a dominant role compared to other miR34 family members. Only miR34A-5p is expressed in PBL-B, and significantly induced in activated B-cells and reactive lymph nodes. In PBL-B, the MIR34A and MIR34B/C promoters are unmethylated, but the latter shows enrichment for the H3K4me3/H3K27me3 silencing mark. Nine de novo DLBCL cases (n=150) carry both TP53 mutation and MIR34A methylation (“double hit”) and these patients have an exceedingly poor prognosis with a median survival of 9.4 months (P<0.0001), while neither TP53 mutation, MIR34A or MIR34B/C promoter methylation alone (“single hit”) influence on survival.
    [Show full text]
  • Micrornas Tune Cerebral Cortical Neurogenesis
    Cell Death and Differentiation (2012) 19, 1573–1581 & 2012 Macmillan Publishers Limited All rights reserved 1350-9047/12 www.nature.com/cdd Review MicroRNAs tune cerebral cortical neurogenesis M-L Volvert1,2, F Rogister1,2, G Moonen1,2, B Malgrange1,2 and L Nguyen*,1,2,3 MicroRNAs (miRNAs) are non-coding RNAs that promote post-transcriptional silencing of genes involved in a wide range of developmental and pathological processes. It is estimated that most protein-coding genes harbor miRNA recognition sequences in their 30 untranslated region and are thus putative targets. While functions of miRNAs have been extensively characterized in various tissues, their multiple contributions to cerebral cortical development are just beginning to be unveiled. This review aims to outline the evidence collected to date demonstrating a role for miRNAs in cerebral corticogenesis with a particular emphasis on pathways that control the birth and maturation of functional excitatory projection neurons. Cell Death and Differentiation (2012) 19, 1573–1581; doi:10.1038/cdd.2012.96; published online 3 August 2012 Facts underlie cognitive, motor and perceptual abilities.1 Most cortical neurons are glutamatergic projection neurons that MicroRNAs are enriched in the nervous system and are born in germinal compartment of dorsal telencephalon. some show a dynamic expression that correlates with They migrate a short distance along radial glia fibers to settle important milestones of cerebral cortex development. in dedicated cortical layers. They send axonal projections to Mouse embryos harbor cortical malformations upon Dicer distant cortical or subcortical targets. The second class of deletion. neurons includes GABAergic interneurons that arise from the MicroRNAs underlie cortical development by ventral telencephalon and travel along multiple tangential repressing multiple target genes, some being intricately paths to reach the cortical wall.
    [Show full text]
  • Mir-34A Regulates Expression of the Stathmin-1 Oncoprotein and Prostate Cancer Progression Balabhadrapatruni V.S.K
    Published OnlineFirst October 12, 2017; DOI: 10.1158/1541-7786.MCR-17-0230 Oncogenes and Tumor Suppressors Molecular Cancer Research miR-34a Regulates Expression of the Stathmin-1 Oncoprotein and Prostate Cancer Progression Balabhadrapatruni V.S.K. Chakravarthi1,2, Darshan S. Chandrashekar1, Sumit Agarwal1, Sai Akshaya Hodigere Balasubramanya1, Satya S. Pathi3, Moloy T. Goswami3, Xiaojun Jing3,4, Rui Wang3, Rohit Mehra3,4,5, Irfan A. Asangani3, Arul M. Chinnaiyan3,4,5,6,7, Upender Manne1,2, Guru Sonpavde8, George J. Netto1, Jennifer Gordetsky1, and Sooryanarayana Varambally1,2,3 Abstract In aggressive prostate cancers, the oncoprotein STMN1 (also regulated expression of miR-34a. Furthermore, gene expression known as stathmin 1 and oncoprotein 18) is often overexpressed. profiling of STMN1-modulated prostate cancer cells revealed STMN1 is involved in various cellular processes, including cell molecular alterations, including elevated expression of growth proliferation, motility, and tumor metastasis. Here, it was found differentiation factor 15 (GDF15), which is involved in cancer that the expression of STMN1 RNA and protein is elevated in progression and potentially in STMN1-mediated oncogenesis. metastatic prostate cancers. Knockdown of STMN1 resulted in Thus, in prostate cancer, CtBP1-regulated miR-34a modulates reduced proliferation and invasion of cells and tumor growth and STMN1 expression and is involved in cancer progression through metastasis in vivo. Furthermore, miR-34a downregulated STMN1 the CtBP1\miR-34a\STMN1\GDF15 axis. by directly binding to its 30-UTR. Overexpression of miR-34a in prostate cancer cells reduced proliferation and colony formation, Implications: The CtBP1\miR-34a\STMN1\GDF15 axis is a suggesting that it is a tumor suppressor.
    [Show full text]
  • Emerging Evidence for Micrornas As Regulators of Cancer Stem Cells
    Cancers 2011, 3, 3957-3971; doi:10.3390/cancers3043957 OPEN ACCESS cancers ISSN 2072-6694 www.mdpi.com/journal/cancers Review Emerging Evidence for MicroRNAs as Regulators of Cancer Stem Cells Aisha Sethi 1 and Lynette M. Sholl 2,* 1 Department of Pathology, Henry Ford Hospital, Detroit, MI 48202, USA; E-Mail: [email protected] 2 Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA * Author to whom correspondence should be addressed: E-Mail: [email protected]; Tel.: +1-617-732-7510; Fax: +1-617-277-9015. Received: 25 August 2011; in revised form: 1 October 2011 / Accepted: 13 October 2011 / Published: 24 October 2011 Abstract: Cancer stem cells are defined as a subpopulation of cells within a tumor that are capable of self-renewal and differentiation into the heterogeneous cell lineages that comprise the tumor. Many studies indicate that cancer stem cells may be responsible for treatment failure and relapse in cancer patients. The factors that regulate cancer stem cells are not well defined. MicroRNAs (miRNAs) are small non-coding RNAs that regulate translational repression and transcript degradation. miRNAs play a critical role in embryonic and inducible pluripotent stem cell regulation and emerging evidence supports their role in cancer stem cell evolution. To date, miRNAs have been shown to act either as tumor suppressor genes or oncogenes in driving critical gene expression pathways in cancer stem cells in a wide range of human malignancies, including hematopoietic and epithelial tumors and sarcomas. miRNAs involved in cancer stem cell regulation provide attractive, novel therapeutic targets for cancer treatment.
    [Show full text]
  • An Exportin-1–Dependent Microrna Biogenesis Pathway During Human Cell Quiescence
    An Exportin-1–dependent microRNA biogenesis PNAS PLUS pathway during human cell quiescence Ivan Martineza,1,2, Karen E. Hayesa,1, Jamie A. Barra, Abby D. Harolda, Mingyi Xieb, Syed I. A. Bukharic, Shobha Vasudevanc, Joan A. Steitzd,e,f,2, and Daniel DiMaiod,f,g,h aDepartment of Microbiology, West Virginia University Cancer Institute, West Virginia University, Morgantown, WV 26506; bDepartment of Biochemistry and Molecular Biology, University of Florida Health Cancer Center, University of Florida, Gainesville, FL 32610; cCancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114; dDepartment of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06536; eHoward Hughes Medical Institute, Yale University, New Haven, CT 06536; fYale Cancer Center, New Haven, CT 06520; gDepartment of Genetics, Yale School of Medicine, New Haven, CT 06510; and hDepartment of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06510 Contributed by Joan A. Steitz, May 11, 2017 (sent for review November 14, 2016; reviewed by Judith Campisi, Richard I. Gregory, and Narry Kim) The reversible state of proliferative arrest known as “cellular qui- mature miRNA. Finally, the guide miRNA strand is loaded into escence” plays an important role in tissue homeostasis and stem the RNA-induced silencing complex (RISC) containing one of cell biology. By analyzing the expression of miRNAs and miRNA- four Argonaute proteins and GW182 protein at its core (18–20). processing factors during quiescence in primary human fibroblasts, Recent studies have identified alternative pathways of miRNA we identified a group of miRNAs that are induced during quies- biogenesis in different cell and animal models: pre-miRNA/intron cence despite markedly reduced expression of Exportin-5, a pro- miRNAs (miRtrons), which are Drosha and DGCR8 indepen- tein required for canonical miRNA biogenesis.
    [Show full text]
  • Microrna-34 Family and Treatment of Cancers with Mutant Or Wild-Type P53 (Review)
    INTERNATIONAL JOURNAL OF ONCOLOGY 38: 1189-1195, 2011 microRNA-34 family and treatment of cancers with mutant or wild-type p53 (Review) MAY Y.W. WONG1,2, YAN YU1, WILLIAM R. WALSH1 and JIA-LIN YANG2 1Surgical and Orthopaedics Research Laboratories and 2Surgical Oncology Research Group, Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia Received December 16, 2010; Accepted February 8, 2011 DOI: 10.3892/ijo.2011.970 Abstract. In the last decade, microRNAs (miRNAs; small 1. Introduction noncoding RNA molecules) as post-transcriptional regulators have been a hotspot in research for their involvement in microRNAs (miRNAs) are small regulatory noncoding biological processes and tumour development. However, there RNAs that repress gene expression at the post-transcriptional have been few reviews focusing on a single miRNA family. level in a sequence-specific manner. They play a crucial role The dysregulation of miRNAs appears to play a crucial in varying aspects of cell proliferation, differentiation and role in cancer pathogenesis where they exert their effect as apoptosis (1). However, the vast number of miRNA genes, their oncogenes or as tumour suppressors. This review summarises varied expression patterns and the wealth of potential miRNA current studies on the dysregulation of the microRNA-34 targets suggest that miRNAs are likely to be involved in an (miR-34) family in different types of cancers and its role in extended spectrum of human pathologies (2). Alterations in the p53 network. The structure of the miR-34 family members their expression have displayed correspondence with disease includes p53-binding sites reflecting their function as tumour states in pathologic conditions such as Alzheimer's disease.
    [Show full text]