A Brief Journey to the Microbial World
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Life at Acidic Ph Imposes an Increased Energetic Cost for a Eukaryotic Acidophile Mark A
CORE Metadata, citation and similar papers at core.ac.uk Provided by e-Prints Soton The Journal of Experimental Biology 208, 2569-2579 2569 Published by The Company of Biologists 2005 doi:10.1242/jeb.01660 Life at acidic pH imposes an increased energetic cost for a eukaryotic acidophile Mark A. Messerli1,2,*, Linda A. Amaral-Zettler1, Erik Zettler3,4, Sung-Kwon Jung2, Peter J. S. Smith2 and Mitchell L. Sogin1 1The Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA 02543, USA, 2BioCurrents Research Center, Program in Molecular Physiology, Marine Biological Laboratory, Woods Hole, MA 02543, USA, 3Sea Education Association, PO Box 6, Woods Hole, MA 02543, USA and 4Centro de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049, Spain *Author for correspondence (e-mail: [email protected]) Accepted 25 April 2005 Summary Organisms growing in acidic environments, pH·<3, potential difference of Chlamydomonas sp., measured would be expected to possess fundamentally different using intracellular electrodes at both pH·2 and 7, is close molecular structures and physiological controls in to 0·mV, a rare value for plants, animals and protists. The comparison with similar species restricted to neutral pH. 40·000-fold difference in [H+] could be the result of either We begin to investigate this premise by determining the active or passive mechanisms. Evidence for active magnitude of the transmembrane electrochemical H+ maintenance was detected by monitoring the rate of ATP gradient in an acidophilic Chlamydomonas sp. (ATCC® consumption. At the peak, cells consume about 7% more PRA-125) isolated from the Rio Tinto, a heavy metal ATP per second in medium at pH·2 than at pH·7. -
Functionalized Membrane Domains: an Ancestral Feature of Archaea? Maxime Tourte, Philippe Schaeffer, Vincent Grossi, Phil Oger
Functionalized Membrane Domains: An Ancestral Feature of Archaea? Maxime Tourte, Philippe Schaeffer, Vincent Grossi, Phil Oger To cite this version: Maxime Tourte, Philippe Schaeffer, Vincent Grossi, Phil Oger. Functionalized Membrane Domains: An Ancestral Feature of Archaea?. Frontiers in Microbiology, Frontiers Media, 2020, 11, pp.526. 10.3389/fmicb.2020.00526. hal-02553764 HAL Id: hal-02553764 https://hal.archives-ouvertes.fr/hal-02553764 Submitted on 20 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. fmicb-11-00526 March 30, 2020 Time: 21:44 # 1 ORIGINAL RESEARCH published: 31 March 2020 doi: 10.3389/fmicb.2020.00526 Functionalized Membrane Domains: An Ancestral Feature of Archaea? Maxime Tourte1†, Philippe Schaeffer2†, Vincent Grossi3† and Phil M. Oger1*† 1 Université de Lyon, INSA Lyon, CNRS, MAP UMR 5240, Villeurbanne, France, 2 Université de Strasbourg-CNRS, UMR 7177, Laboratoire de Biogéochimie Moléculaire, Strasbourg, France, 3 Université de Lyon, ENS Lyon, CNRS, Laboratoire de Géologie de Lyon, UMR 5276, Villeurbanne, France Bacteria and Eukarya organize their plasma membrane spatially into domains of distinct functions. Due to the uniqueness of their lipids, membrane functionalization in Archaea remains a debated area. -
EXTREMOPHILES – Vol
EXTREMOPHILES – Vol. I - Extremophiles: Basic Concepts - Charles Gerday EXTREMOPHILES: BASIC CONCEPTS Charles Gerday Laboratory of Biochemistry, University of Liège, Belgium Keywords: extremophiles, thermophiles, halophiles, alkaliphiles, acidophiles, metallophiles, barophiles, psychrophiles, piezophiles, extreme conditions Contents 1. Introduction 2. Effects of Extreme Conditions on Cellular Components 2.1. Membrane Structure 2.2. Nucleic Acids 2.2.1. Introduction 2.2.2. Desoxyribonucleic Acids 2.2.3. Ribonucleic Acids 2.3. Proteins 2.3.1. Introduction 2.3.2. Thermophilic Proteins 2.3.3. Psychrophilic Proteins 2.3.4. Halophilic Proteins 2.3.5. Piezophilic Proteins 2.3.6. Alkaliphilic Proteins 2.3.7. Acidophilic Proteins 3. Conclusions Acknowledgments Glossary Bibliography Biographical Sketch Summary Extremophiles are organisms which permanently experience environmental conditions which mayUNESCO be considered as extreme –in comparisonEOLSS to the physico-chemical characteristics of the normal environment of human cells: the latter belonging to the mesophile or temperate world. Some eukaryotic organisms such as fishes, invertebrates, yeasts, fungi, and plants have partially colonized extreme habitats characterized by low temperature and/orSAMPLE of elevated hydrostatic pressure. CHAPTERS In general, however, the organisms capable of thriving at the limits of temperature, pH, salt concentration and hydrostatic pressure, are prokaryotic. In fact, some organisms depend on these extreme conditions for survival and have therefore developed unique adaptations, especially at the level of their membranes and macromolecules, and affecting proteins and nucleic acids in particular. The molecular bases of the various adaptations are beginning to be understood and are briefly described. The study of the extremophile world has contributed greatly to defining, in more precise terms, fundamental concepts such as macromolecule stability and protein folding. -
Protection of Chemolithoautotrophic Bacteria Exposed to Simulated
Protection Of Chemolithoautotrophic Bacteria Exposed To Simulated Mars Environmental Conditions Felipe Gómez, Eva Mateo-Martí, Olga Prieto-Ballesteros, Jose Martín-Gago, Ricardo Amils To cite this version: Felipe Gómez, Eva Mateo-Martí, Olga Prieto-Ballesteros, Jose Martín-Gago, Ricardo Amils. Pro- tection Of Chemolithoautotrophic Bacteria Exposed To Simulated Mars Environmental Conditions. Icarus, Elsevier, 2010, 209 (2), pp.482. 10.1016/j.icarus.2010.05.027. hal-00676214 HAL Id: hal-00676214 https://hal.archives-ouvertes.fr/hal-00676214 Submitted on 4 Mar 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Accepted Manuscript Protection Of Chemolithoautotrophic Bacteria Exposed To Simulated Mars En‐ vironmental Conditions Felipe Gómez, Eva Mateo-Martí, Olga Prieto-Ballesteros, Jose Martín-Gago, Ricardo Amils PII: S0019-1035(10)00220-4 DOI: 10.1016/j.icarus.2010.05.027 Reference: YICAR 9450 To appear in: Icarus Received Date: 11 August 2009 Revised Date: 14 May 2010 Accepted Date: 28 May 2010 Please cite this article as: Gómez, F., Mateo-Martí, E., Prieto-Ballesteros, O., Martín-Gago, J., Amils, R., Protection Of Chemolithoautotrophic Bacteria Exposed To Simulated Mars Environmental Conditions, Icarus (2010), doi: 10.1016/j.icarus.2010.05.027 This is a PDF file of an unedited manuscript that has been accepted for publication. -
Enigmatic, Ultrasmall, Uncultivated Archaea
Enigmatic, ultrasmall, uncultivated Archaea Brett J. Bakera, Luis R. Comollib, Gregory J. Dicka,1, Loren J. Hauserc, Doug Hyattc, Brian D. Dilld, Miriam L. Landc, Nathan C. VerBerkmoesd, Robert L. Hettichd, and Jillian F. Banfielda,e,2 aDepartment of Earth and Planetary Science and eEnvironmental Science, Policy, and Management, University of California, Berkeley, CA 94720; bLawrence Berkeley National Laboratories, Berkeley, CA 94720; and cBiosciences and dChemical Sciences Divisions, Oak Ridge National Laboratory, Oak Ridge, TN 37831 Edited by Norman R. Pace, University of Colorado, Boulder, CO, and approved March 30, 2010 (received for review December 16, 2009) Metagenomics has provided access to genomes of as yet unculti- diversity of microbial life (15), it is likely that other unusual rela- vated microorganisms in natural environments, yet there are gaps tionships critical to survival of organisms and communities remain in our knowledge—particularly for Archaea—that occur at rela- to be discovered. In the present study, we explored the biology of tively low abundance and in extreme environments. Ultrasmall cells three unique, uncultivated lineages of ultrasmall Archaea by com- (<500 nm in diameter) from lineages without cultivated represen- bining metagenomics, community proteomics, and 3D tomographic tatives that branch near the crenarchaeal/euryarchaeal divide have analysis of cells and cell-to-cell interactions in natural biofilms. been detected in a variety of acidic ecosystems. We reconstructed Using these complementary cultivation-independent methods, we composite, near-complete ∼1-Mb genomes for three lineages, re- report several unexpected metabolic features that illustrate unique ferred to as ARMAN (archaeal Richmond Mine acidophilic nanoor- facets of microbial biology and ecology. -
Pyrolobus Fumarii Type Strain (1A)
Lawrence Berkeley National Laboratory Recent Work Title Complete genome sequence of the hyperthermophilic chemolithoautotroph Pyrolobus fumarii type strain (1A). Permalink https://escholarship.org/uc/item/89r1s0xt Journal Standards in genomic sciences, 4(3) ISSN 1944-3277 Authors Anderson, Iain Göker, Markus Nolan, Matt et al. Publication Date 2011-07-01 DOI 10.4056/sigs.2014648 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Standards in Genomic Sciences (2011) 4:381-392 DOI:10.4056/sigs.2014648 Complete genome sequence of the hyperthermophilic chemolithoautotroph Pyrolobus fumarii type strain (1AT) Iain Anderson1, Markus Göker2, Matt Nolan1, Susan Lucas1, Nancy Hammon1, Shweta Deshpande1, Jan-Fang Cheng1, Roxanne Tapia1,3, Cliff Han1,3, Lynne Goodwin1,3, Sam Pitluck1, Marcel Huntemann1, Konstantinos Liolios1, Natalia Ivanova1, Ioanna Pagani1, Konstantinos Mavromatis1, Galina Ovchinikova1, Amrita Pati1, Amy Chen4, Krishna Pala- niappan4, Miriam Land1,5, Loren Hauser1,5, Evelyne-Marie Brambilla2, Harald Huber6, Montri Yasawong7, Manfred Rohde7, Stefan Spring2, Birte Abt2, Johannes Sikorski2, Reinhard Wirth6, John C. Detter1,3, Tanja Woyke1, James Bristow1, Jonathan A. Eisen1,8, Victor Markowitz4, Philip Hugenholtz1,9, Nikos C. Kyrpides1, Hans-Peter Klenk2, and Alla Lapidus1* 1 DOE Joint Genome Institute, Walnut Creek, California, USA 2 DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany 3 Los Alamos National Laboratory, Bioscience Division, Los Alamos, -
Life in Extreme Environments
insight review articles Life in extreme environments Lynn J. Rothschild & Rocco L. Mancinelli NASA Ames Research Center, Moffett Field, California 94035-1000, USA (e-mail: [email protected]; [email protected]) Each recent report of liquid water existing elsewhere in the Solar System has reverberated through the international press and excited the imagination of humankind. Why? Because in the past few decades we have come to realize that where there is liquid water on Earth, virtually no matter what the physical conditions, there is life. What we previously thought of as insurmountable physical and chemical barriers to life, we now see as yet another niche harbouring ‘extremophiles’. This realization, coupled with new data on the survival of microbes in the space environment and modelling of the potential for transfer of life between celestial bodies, suggests that life could be more common than previously thought. Here we examine critically what it means to be an extremophile, and the implications of this for evolution, biotechnology and especially the search for life in the Universe. ormal is passé; extreme is chic. While thriving in biological extremes (for example, nutritional Aristotle cautioned “everything in extremes, and extremes of population density, parasites, moderation”, the Romans, known for their prey, and so on). excesses, coined the word ‘extremus’, the ‘Extremophile’ conjures up images of prokaryotes, yet the superlative of exter (‘being on the outside’). taxonomic range spans all three domains. Although all NBy the fifteenth century ‘extreme’ had arrived, via Middle hyperthermophiles are members of the Archaea and French, to English. At the dawning of the twenty-first Bacteria, eukaryotes are common among the psychrophiles, century we know that the Solar System, and even Earth, acidophiles, alkaliphiles, piezophiles, xerophiles and contain environmental extremes unimaginable to the halophiles (which respectively thrive at low temperatures, low ‘ancients’ of the nineteenth century. -
4 Metabolic and Taxonomic Diversification in Continental Magmatic Hydrothermal Systems
Maximiliano J. Amenabar, Matthew R. Urschel, and Eric S. Boyd 4 Metabolic and taxonomic diversification in continental magmatic hydrothermal systems 4.1 Introduction Hydrothermal systems integrate geological processes from the deep crust to the Earth’s surface yielding an extensive array of spring types with an extraordinary diversity of geochemical compositions. Such geochemical diversity selects for unique metabolic properties expressed through novel enzymes and functional characteristics that are tailored to the specific conditions of their local environment. This dynamic interaction between geochemical variation and biology has played out over evolu- tionary time to engender tightly coupled and efficient biogeochemical cycles. The timescales by which these evolutionary events took place, however, are typically in- accessible for direct observation. This inaccessibility impedes experimentation aimed at understanding the causative principles of linked biological and geological change unless alternative approaches are used. A successful approach that is commonly used in geological studies involves comparative analysis of spatial variations to test ideas about temporal changes that occur over inaccessible (i.e. geological) timescales. The same approach can be used to examine the links between biology and environment with the aim of reconstructing the sequence of evolutionary events that resulted in the diversity of organisms that inhabit modern day hydrothermal environments and the mechanisms by which this sequence of events occurred. By combining molecu- lar biological and geochemical analyses with robust phylogenetic frameworks using approaches commonly referred to as phylogenetic ecology [1, 2], it is now possible to take advantage of variation within the present – the distribution of biodiversity and metabolic strategies across geochemical gradients – to recognize the extent of diversity and the reasons that it exists. -
Variations in the Two Last Steps of the Purine Biosynthetic Pathway in Prokaryotes
GBE Different Ways of Doing the Same: Variations in the Two Last Steps of the Purine Biosynthetic Pathway in Prokaryotes Dennifier Costa Brandao~ Cruz1, Lenon Lima Santana1, Alexandre Siqueira Guedes2, Jorge Teodoro de Souza3,*, and Phellippe Arthur Santos Marbach1,* 1CCAAB, Biological Sciences, Recoˆ ncavo da Bahia Federal University, Cruz das Almas, Bahia, Brazil 2Agronomy School, Federal University of Goias, Goiania,^ Goias, Brazil 3 Department of Phytopathology, Federal University of Lavras, Minas Gerais, Brazil Downloaded from https://academic.oup.com/gbe/article/11/4/1235/5345563 by guest on 27 September 2021 *Corresponding authors: E-mails: [email protected]fla.br; [email protected]. Accepted: February 16, 2019 Abstract The last two steps of the purine biosynthetic pathway may be catalyzed by different enzymes in prokaryotes. The genes that encode these enzymes include homologs of purH, purP, purO and those encoding the AICARFT and IMPCH domains of PurH, here named purV and purJ, respectively. In Bacteria, these reactions are mainly catalyzed by the domains AICARFT and IMPCH of PurH. In Archaea, these reactions may be carried out by PurH and also by PurP and PurO, both considered signatures of this domain and analogous to the AICARFT and IMPCH domains of PurH, respectively. These genes were searched for in 1,403 completely sequenced prokaryotic genomes publicly available. Our analyses revealed taxonomic patterns for the distribution of these genes and anticorrelations in their occurrence. The analyses of bacterial genomes revealed the existence of genes coding for PurV, PurJ, and PurO, which may no longer be considered signatures of the domain Archaea. Although highly divergent, the PurOs of Archaea and Bacteria show a high level of conservation in the amino acids of the active sites of the protein, allowing us to infer that these enzymes are analogs. -
Biotechnology of Archaea- Costanzo Bertoldo and Garabed Antranikian
BIOTECHNOLOGY– Vol. IX – Biotechnology Of Archaea- Costanzo Bertoldo and Garabed Antranikian BIOTECHNOLOGY OF ARCHAEA Costanzo Bertoldo and Garabed Antranikian Technical University Hamburg-Harburg, Germany Keywords: Archaea, extremophiles, enzymes Contents 1. Introduction 2. Cultivation of Extremophilic Archaea 3. Molecular Basis of Heat Resistance 4. Screening Strategies for the Detection of Novel Enzymes from Archaea 5. Starch Processing Enzymes 6. Cellulose and Hemicellulose Hydrolyzing Enzymes 7. Chitin Degradation 8. Proteolytic Enzymes 9. Alcohol Dehydrogenases and Esterases 10. DNA Processing Enzymes 11. Archaeal Inteins 12. Conclusions Glossary Bibliography Biographical Sketches Summary Archaea are unique microorganisms that are adapted to survive in ecological niches such as high temperatures, extremes of pH, high salt concentrations and high pressure. They produce novel organic compounds and stable biocatalysts that function under extreme conditions comparable to those prevailing in various industrial processes. Some of the enzymes from Archaea have already been purified and their genes successfully cloned in mesophilic hosts. Enzymes such as amylases, pullulanases, cyclodextrin glycosyltransferases, cellulases, xylanases, chitinases, proteases, alcohol dehydrogenase,UNESCO esterases, and DNA-modifying – enzymesEOLSS are of potential use in various biotechnological processes including in the food, chemical and pharmaceutical industries. 1. Introduction SAMPLE CHAPTERS The industrial application of biocatalysts began in 1915 with the introduction of the first detergent enzyme by Dr. Röhm. Since that time enzymes have found wider application in various industrial processes and production (see Enzyme Production). The most important fields of enzyme application are nutrition, pharmaceuticals, diagnostics, detergents, textile and leather industries. There are more than 3000 enzymes known to date that catalyze different biochemical reactions among the estimated total of 7000; only 100 enzymes are being used industrially. -
1 How Extremophiles Work What Is Your Ideal Environment to Live In
How Extremophiles Work Adapted from an article by Jacob Silverman Introduction to How Extremophiles Work What is your ideal environment to live in? Sunny, 72˚ Fahrenheit (22˚ Celsius)? How about living in nearly boiling water that’s so acidic it eats through metal? How about living in a muddy, aquatic environment without oxygen, that is far saltier than any ocean? If you’re an extremophile, that might sound perfect! Extremophiles are organisms that live in “extreme” environments. The name literally means extreme-loving. These hardy creatures are remarkable. The environments they live in are truly severe and are very different from our normal, moderate environments. Ironically, extremophiles couldn’t survive in our normal environments. For example, the microorganism Ferroplasma aci-diphilum, needs a large amount of iron to survive. These quantities of iron would kill most other life forms. The discovery of extremophiles, beginning in the 1960s, has caused scientists to rethink how life began on Earth. Many types of bacteria have been found deep underground, an area previously considered a dead zone (because of the lack of sunlight), but it is now seen as a clue to life’s origins. In fact, the majority of the Earth’s bacteria live underground. These specialized, rock-dwelling extremophiles are called endoliths. Scientists hypothesize that endoliths may absorb nutrients moving through rock veins or live on inorganic (nonliving) rock matter. Some endoliths may be genetically similar to the earliest forms of life that developed around 3.8 billion years ago. (OVER->) 1 Extreme Environments An environment is called extreme only in relation to what is normal for humans. -
A Deeper Look Into the Biodiversity of the Extremely Acidic Copahue Volcano-Río Agrio System in Neuquén, Argentina
microorganisms Article A Deeper Look into the Biodiversity of the Extremely Acidic Copahue volcano-Río Agrio System in Neuquén, Argentina Germán Lopez Bedogni 1, Francisco L. Massello 1 , Alejandra Giaveno 2, Edgardo Rubén Donati 1 and María Sofía Urbieta 1,* 1 CINDEFI (CONICET-CCT LA PLATA, UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 47 y 115, 1900 La Plata, Argentina; [email protected] (G.L.B.); [email protected] (F.L.M.); [email protected] (E.R.D.) 2 PROBIEN-CONICET-UNCo, Departamento de Química, Facultad de Ingeniería, Universidad Nacional del Comahue, Neuquén 8300, Argentina; [email protected] * Correspondence: [email protected] Received: 21 November 2019; Accepted: 26 December 2019; Published: 29 December 2019 Abstract: The Copahue volcano-Río Agrio system, on Patagonia Argentina, comprises the naturally acidic river Río Agrio, that runs from a few meters down the Copahue volcano crater to more than 40 km maintaining low pH waters, and the acidic lagoon that sporadically forms on the crater of the volcano, which is studied for the first time in this work. We used next-generation sequencing of the 16S rRNA gene of the entire prokaryotic community to study the biodiversity of this poorly explored extreme environment. The correlation of the operational taxonomic units (OTUs)s presence with physicochemical variables showed that the system contains three distinct environments: the crater lagoon, the Upper Río Agrio, and the Salto del Agrio waterfall, a point located approximately 12 km down the origin of the river, after it emerges from the Caviahue lake.