Relationships of Floras (& Faunas) Vicariance Vs. Dispersal How Do

Total Page:16

File Type:pdf, Size:1020Kb

Relationships of Floras (& Faunas) Vicariance Vs. Dispersal How Do 4/1/19 Relationships of Floras (& Faunas) Vicariance vs. Dispersal how do you decide? Knowledge of earth and organism histories now permit closer examination of relationships of disjunct floras and faunas Vicariance • Southern Hemisphere temperate Biogeography has relied on • Southern Hemisphere tropics two sources of information • the Wallace Line • Eastern Asian - Eastern North American temperate 1. Phylogenetic trees - clades Disjunct (vicariad) species Disjunct continental areas 2. Knowledge of splitting events of areas - continents, mountain erection, etc. Dispersal What is missing? 3. Times for branching events of clades relative to geological event – clocks! Disjunct species Disjunct continental areas Relationships of Floras & Faunas Continents, Clades, and Clocks Bromeliaceae Rapateaceae Knowledge of earth and organism histories now permit closer examination of a2 b2 Taxon A Taxon A relationships of disjunct floras and faunas a1 b1 a3 b Taxon B 3 Taxon B • Southern Hemisphere temperate • Southern Hemisphere tropics a4 b Taxon C 4 Taxon C • the Wallace Line • Eastern Asian - E N American temperate Maximum likelihood tree DNA “rate smoothed” with different DNA rates tree along each branch 15 mya Taxon A * Taxon B Taxon C 2 dispersals! Bromeliaceae 30 20 10 Million yrs ago Rapateaceae * Biogeographical interpretation Fossil calibrated tree 1 4/1/19 Southern Hemisphere Temperate Flora Southern Hemisphere Temperate Flora 35 species of trees and shrubs, evergreen and deciduous, restricted to South Interesting contrast between the floras of the southern hemisphere temperate America, New Zealand, Australia, Tasmania, New Caledonia, New Guinea, and tropical floras. and fossilized in Antarctica [The northern hemisphere continents are far more affected by recent glaciation events, so their distribution patterns are far more complex]. Absent from Africa! — “odd continent out” Nothofagaceae ✟✟✟✟ Southern Hemisphere Temperate Flora Southern Hemisphere Temperate Flora Connections between South America and Australasia pronounced: Proteaceae comprise 1700 species of woody plants placed in 79 genera predominantly of the southern hemisphere. The family, unlike Nothofagaceae, • Subg. Nothofagus — South America occurs in south Africa and Madagascar, and extends into southern China. • Subg. Fuscospora — S. Am., N. Zeal., Tasmania • Subg. Lophozonia — S. Am., N. Zeal., Tasmania, Austr. The 16 genera from Africa are endemic and comprise only 3 lineages. In • Subg. Brassospora — New Caledonia, New Guinea comparison, South America and Australasia share roughly half of the genera in common. All tribes within the latter two areas are shared. Africa — “odd continent out”! Nothofagaceae Protea Roupala Banksia ✟✟✟✟ Proteaceae 2 4/1/19 Southern Hemisphere Temperate Flora Southern Hemisphere Temperate Flora Restionaceae comprise 520 species of grass-like plants placed in 58 genera Restionaceae comprise 520 species of grass-like plants placed in 58 genera predominantly of the southern hemisphere. predominantly of the southern hemisphere. The 350 species from Africa are unique and belong only to 11 genera of the Restio group. In contrast, South America and Australasia share many genera including some species. Africa — “odd continent out”! Askidiosperma — Restionaceae Cape Region Fynbos, S. Africa — Restionaceae Southern Hemisphere Temperate Flora Southern Hemisphere Temperate Flora Why is Africa the “odd continent out” when it comes to the temperate southern 1. All three continents separated from Gondwana at about 100-110 mya in the hemisphere flora? early Cretaceous, but South America and Australia linked with temperate Antarctica until about 50 mya (and via small water passages until 27 mya) Three reasons: broken Restionaceae made Proteaceae ✟✟✟✟ Nothofagaceae Estimates in millions of years BP when migration routes between land masses were broken or made. 3 4/1/19 Southern Hemisphere Temperate Flora Southern Hemisphere Temperate Flora 2. Africa drifted further north and experienced greater climatic change through 3. Africa made secondary contact with temperate Eurasia around 17 mya; long this latitudinal journey. Greater extinction of temperate biota; which is now contact further differentiated the temperate flora of Africa relative to South restricted to small area of south Africa. America and Australia Temperate flora Triassic broken Temperate flora made Present Positions of Labrador, Africa, and Australia in the Triassic (200 mya) Estimates in millions of years BP when migration routes between land masses were broken or made. and at the present Vicariance vs. Dispersal? Vicariance vs. Dispersal? Temperate Gondwanan disjuncts – vicariance and/or dispersal ? Temperate Gondwanan disjuncts – vicariance and/or dispersal Timing of organism divergence vs. timing of geological divergence critical Timing of organism divergence vs. timing of geological divergence critical 120 mya 50 mya Nothofagus marsupials southern beeches ratite birds 90 mya 20 mya Gondwana Jurassic – Cretaceous border ~ 150 million years ago 4 4/1/19 Southern Hemisphere Temperate Flora Southern Hemisphere Temperate Fauna southern beeches? – ratites – flightless birds? vicariance and a lot of dispersals vicariance and a lot of dispersals A. Geological connections Australia <—> New Zealand dispersals B. Geological story C. Mitochondrial story (different story) Science 2014 Mitchell et al. Southern Hemisphere Temperate Fauna Southern Hemisphere Temperate Fauna ratites – flightless birds ratites – flightless birds Yonezawa et al. (2017) Phylogenomics and morphology of extinct paleognaths reveal the origin and evolution of the ratites. Current Biology intercontinental dispersals independent loss of flight 5 4/1/19 Southern Hemisphere Temperate Fauna Vicariance vs. Dispersal? Relationship of the Australian Marsupials GBE Tracking marsupial evolution using genomic data - Dromiciops Fossils of both marsupials and placental mammals found in marsupial and placental mammalsResolving diverged Marsupial Phylogeny Using Retroposonsin the Late Cretaceous Antarctica ~85 Ma Tasmanian devil Western quoll Gallus et al. 2015 Dasyuromorphia Fat-tailed dunnart Numbat Notoryctemorphia Southern marsupial little bush monkey mole Eastern barred Peramelidae bandicoot Peramelemorphia Southern brown bandicoot Fossil marsupial (Eocene 40 Ma) Greater bilby Australidelphia x13 Diprotodontia Tammar wallaby Microbiotheria Monito del monte Nilsson et al. 2010 Paucituberculata Marsupialia Silky shrew Why did marsupials but NOT placental opossum x10 Didelphimorphoa Grey short-tailed mammals migrate on to Australia? 8 0 7 0 6 0 5 0 4 0 3 0 2 0 1 0 opossum mya CRETACEOUS PALEOGENE NEOGENE Q* Figure 2. Phylogenetic tree of marsupials derived from retroposon data. The tree topology is based on aF presence/absenceIG.1.—Phylogenetic retroposon tree of the seven marsupial orders based on 16 of the 20 phylogenetically informative retrotransposon insertions and sequence matrix (Table 1) implemented in a heuristic parsimony analysis (Figure S3). The names of the seven marsupial ordersdata. are Markers shown infor red, different and the nodes icons in the marsupial tree are shown asorangecircles.BranchesshowingretrotransposonsupportbasedonNilsson et al. (2010) marsupialare representative disjunction of each of the orders: Didelphimorphia, between Virginia opossum; South Paucituberculata, America shrew opossum; Microbiotheria, monitomarsupial del monte; migration via Antarctica by KT event, Notoryctemorphia, marsupial mole; Dasyuromorphia, Tasmanian devil; Peramelemorphia, bilby; Diprotodontia,are indicated kangaroo. as gray Phylogenetically circles. The tree includes representatives of all seven living marsupial orders, and has been scaled to divergence time (Mitchell et al. informative retroposon insertions are shown as circles. Gray lines denote South American species distribution,2014). and The black phylogenetic lines Australasian tree is based on a Bayesian analysis of 32,253 nt from 28 nuclear gene fragments (supplementary fig. S1, Supplementary Material and Australiamarsupials. The cohort Australidelphiavicariance is indicated asor well asdispersal? the new name proposed for the four ‘‘true’’ Australasian orders (Euaustralidelphia)adaptive. radiation, and then later vicariance doi:10.1371/journal.pbio.1000436.g002 online). The branches leading to Peramelemorphia, Dasyuromorphia, and Notoryctemorphia have been collapsed. Additional markers supporting the relationship between Peramelemorphia (red shaded area), Dasyuromorphia (green shaded area), and Notoryctemorphia (brown shaded area) are shown separately in figure 2.AustralidelphiareferstothegroupingoftheSouthAmerican Microbiotheria and the four Australian orders (Szalay 1982). Q*, reach a topology consistent with the retroposon markers. among mammals [24], and canquaternary even mislead period. phylogenetic However, both studies gave low support for the position of reconstruction when mixed with nuclear data. Microbiotheria, illustrating the difficulties in resolving a short The position of Microbiotheria has been intensely debated since branch using sequence data under difficult conditions, such as the cohort Australidelphia was first suggested based on tarsal possible nucleotide composition bias problems and randomization evidence [1]. After decades of uncertaintyMiocene derived (23.5–11 from molecular Ma) represent mainland Australian fossil record from Dasyuromorphia, phylogenetic conclusions, of fast evolving sites. The support from two independent sources of and
Recommended publications
  • Classification of Mammals 61
    © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FORCHAPTER SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION Classification © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC 4 NOT FORof SALE MammalsOR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 2ND PAGES 9781284032093_CH04_0060.indd 60 8/28/13 12:08 PM CHAPTER 4: Classification of Mammals 61 © Jones Despite& Bartlett their Learning,remarkable success, LLC mammals are much less© Jones stress & onBartlett the taxonomic Learning, aspect LLCof mammalogy, but rather as diverse than are most invertebrate groups. This is probably an attempt to provide students with sufficient information NOT FOR SALE OR DISTRIBUTION NOT FORattributable SALE OR to theirDISTRIBUTION far greater individual size, to the high on the various kinds of mammals to make the subsequent energy requirements of endothermy, and thus to the inabil- discussions of mammalian biology meaningful.
    [Show full text]
  • A Dated Phylogeny of Marsupials Using a Molecular Supermatrix and Multiple Fossil Constraints
    Journal of Mammalogy, 89(1):175–189, 2008 A DATED PHYLOGENY OF MARSUPIALS USING A MOLECULAR SUPERMATRIX AND MULTIPLE FOSSIL CONSTRAINTS ROBIN M. D. BECK* School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia Downloaded from https://academic.oup.com/jmammal/article/89/1/175/1020874 by guest on 25 September 2021 Phylogenetic relationships within marsupials were investigated based on a 20.1-kilobase molecular supermatrix comprising 7 nuclear and 15 mitochondrial genes analyzed using both maximum likelihood and Bayesian approaches and 3 different partitioning strategies. The study revealed that base composition bias in the 3rd codon positions of mitochondrial genes misled even the partitioned maximum-likelihood analyses, whereas Bayesian analyses were less affected. After correcting for base composition bias, monophyly of the currently recognized marsupial orders, of Australidelphia, and of a clade comprising Dasyuromorphia, Notoryctes,and Peramelemorphia, were supported strongly by both Bayesian posterior probabilities and maximum-likelihood bootstrap values. Monophyly of the Australasian marsupials, of Notoryctes þ Dasyuromorphia, and of Caenolestes þ Australidelphia were less well supported. Within Diprotodontia, Burramyidae þ Phalangeridae received relatively strong support. Divergence dates calculated using a Bayesian relaxed molecular clock and multiple age constraints suggested at least 3 independent dispersals of marsupials from North to South America during the Late Cretaceous or early Paleocene. Within the Australasian clade, the macropodine radiation, the divergence of phascogaline and dasyurine dasyurids, and the divergence of perameline and peroryctine peramelemorphians all coincided with periods of significant environmental change during the Miocene. An analysis of ‘‘unrepresented basal branch lengths’’ suggests that the fossil record is particularly poor for didelphids and most groups within the Australasian radiation.
    [Show full text]
  • A Phylogeny and Timescale for Marsupial Evolution Based on Sequences for Five Nuclear Genes
    J Mammal Evol DOI 10.1007/s10914-007-9062-6 ORIGINAL PAPER A Phylogeny and Timescale for Marsupial Evolution Based on Sequences for Five Nuclear Genes Robert W. Meredith & Michael Westerman & Judd A. Case & Mark S. Springer # Springer Science + Business Media, LLC 2007 Abstract Even though marsupials are taxonomically less diverse than placentals, they exhibit comparable morphological and ecological diversity. However, much of their fossil record is thought to be missing, particularly for the Australasian groups. The more than 330 living species of marsupials are grouped into three American (Didelphimorphia, Microbiotheria, and Paucituberculata) and four Australasian (Dasyuromorphia, Diprotodontia, Notoryctemorphia, and Peramelemorphia) orders. Interordinal relationships have been investigated using a wide range of methods that have often yielded contradictory results. Much of the controversy has focused on the placement of Dromiciops gliroides (Microbiotheria). Studies either support a sister-taxon relationship to a monophyletic Australasian clade or a nested position within the Australasian radiation. Familial relationships within the Diprotodontia have also proved difficult to resolve. Here, we examine higher-level marsupial relationships using a nuclear multigene molecular data set representing all living orders. Protein-coding portions of ApoB, BRCA1, IRBP, Rag1, and vWF were analyzed using maximum parsimony, maximum likelihood, and Bayesian methods. Two different Bayesian relaxed molecular clock methods were employed to construct a timescale for marsupial evolution and estimate the unrepresented basal branch length (UBBL). Maximum likelihood and Bayesian results suggest that the root of the marsupial tree is between Didelphimorphia and all other marsupials. All methods provide strong support for the monophyly of Australidelphia. Within Australidelphia, Dromiciops is the sister-taxon to a monophyletic Australasian clade.
    [Show full text]
  • Early Miocene Paleobiology in Patagonia. High-Latitude Paleocommunities of the Santa Cruz Formation Sergio F
    Early Miocene Paleobiology in Patagonia. High-Latitude Paleocommunities of the Santa Cruz Formation Sergio F. Vizcaino, Richard F. Kay, and M. Susana Bargo (eds.) Cambridge, UK: Cambridge University Press, 2012, 370 pp. (hardback), $155.00. ISBN-13: 9780521194617. Reviewed by SUSAN CACHEL Department of Anthropology, Rutgers University, New Brunswick, NJ 08901-1414, USA; [email protected] his edited volume deals with new fossil flora and fauna of these chapters. These appendices list museum catalog Tfrom the Atlantic Coast of Patagonia, South America, numbers, along with collection area and short descriptions. dating to 18–16 mya. Two of the editors are affiliated with This volume therefore is a crucial resource for researchers the Museo de la Plata, Argentina, and a plethora of Argen- studying mammal evolution, especially for those studying tine colleagues contribute chapters and reviewed prelimi- processes like convergent evolution. New black-and-white nary drafts. The volume thus has a spectacularly interna- illustrations reconstruct details of life on the ancient land- tional authorship. Abstracts of each chapter appear in both scapes. English and Spanish. The collection of the fossils is an epic in itself. Because In contrast to the cold and dismal climate of modern fossils were embedded in sandstone beach rock in the in- Patagonia, Patagonia 18–16 mya was much warmer and hu- tertidal zone, retrieval of these specimens often entailed mid, with mixed forests and grasslands. The Andes Moun- hastily using both geological hammers and jack hammers tains were much lower in elevation, which allowed an east- to remove blocks of sediment before the tide turned, and ward expansion of habitats now found today on the lower cold Atlantic seawater again swept over the collecting area.
    [Show full text]
  • Paucituberculata: Caenolestes) from the Huancabamba Region of East Andean Peru
    Mammal Study 28: 145–148 (2003) © the Mammalogical Society of Japan Short communication Shrew opossums (Paucituberculata: Caenolestes) from the Huancabamba region of east Andean Peru Darrin P. Lunde1,* and Victor Pacheco2 1 Division of Vertebrate Zoology (Mammalogy), American Museum of Natural History, Central Park West @ 79th Street, New York, NY 10024, USA 2 Curador de Mamíferos, Museo de Historia Natural, Universidad Nacional Mayor de San Marcos, Apartado 14-0434, Lima, Peru Shrew opossums of the genus Caenolestes are restricted Peru north and south of the Huancabamba Depression. to the northern Andes and include four species: C. fuligi- nosus, C. convelatus, C. caniventer and C. condorensis Materials and methods (Albuja and Patterson 1996). Caenolestes fuliginosus is a highland species of the páramos of central Ecuador, Small mammal surveys were conducted in the Depar- Colombia and western Venezuela, but the remaining tamento de Cajamarca, Peru in June 1995 and June 1996. three species occur in sub-tropical montane forests at Victor and Museum Special snaptraps and Sherman live lower elevations (Albuja and Patterson 1996). Caeno- traps were baited with a 6 : 2 : 2 : 1 mixture of peanut lestes convelatus and C. caniventer are known from the butter, oatmeal, raisins and bacon. Specimens were western slopes of the Andes, the former from Colombia preserved as either dried study skins and skulls with and northern Ecuador and the latter from southern alcohol preserved carcasses, or as whole specimens that Ecuador and northern Peru (Bublitz 1987), while the were first fixed in formalin and subsequently transferred recently described Caenolestes condorensis is currently to 70% ethanol.
    [Show full text]
  • Heterothermy in Pouched Mammals a Review
    bs_bs_bannerJournal of Zoology Journal of Zoology. Print ISSN 0952-8369 MINI-SERIES Heterothermy in pouched mammals – a review A. Riek1,2 & F. Geiser2 1 Department of Animal Sciences, University of Göttingen, Göttingen, Germany 2 Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, NSW, Australia Keywords Abstract heterothermy; marsupials; phylogeny; torpor; hibernation. Hibernation and daily torpor (i.e. temporal heterothermy) have been reported in many marsupial species of diverse families and are known to occur in ∼15% of all Correspondence marsupials, which is a greater proportion than the percentage of heterothermic Alexander Riek, Department of Animal placentals. Therefore, we aimed to gather data on heterothermy, including Sciences, University of Göttingen, minimal body temperature, torpor metabolic rate and torpor bout duration for Albrecht-Thaer-Weg 3, 37075 Göttingen, marsupials, and relate these physiological variables to phylogeny and other Germany. Tel: +49 551 395610; Fax: +49 physiological traits. Data from published studies on 41 marsupial species were 551 39 available for the present analysis. Heterothermic marsupials ranged from small Email: [email protected] species such as planigales weighing 7 g to larger species such as quolls weighing up to 1000 g. We used the marsupial phylogeny to estimate various heterothermic Editor: Heike Lutermann traits where the current dataset was incomplete. The torpor metabolic rate in relation to basal metabolic rate (%) ranged from 5.2 to 62.8% in daily Received 13 May 2013; revised 31 July heterotherms and from 2.1 to 5.2% in marsupial hibernators, and was significantly 2013; accepted 8 August 2013 correlated with the minimum body temperature in daily heterotherms (R2 = 0.77, P < 0.001), but not in hibernators (R2 = 0.10, P > 0.05).
    [Show full text]
  • Doctorat De L'université De Toulouse
    En vue de l’obt ention du DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE Délivré par : Université Toulouse 3 Paul Sabatier (UT3 Paul Sabatier) Discipline ou spécialité : Ecologie, Biodiversité et Evolution Présentée et soutenue par : Joeri STRIJK le : 12 / 02 / 2010 Titre : Species diversification and differentiation in the Madagascar and Indian Ocean Islands Biodiversity Hotspot JURY Jérôme CHAVE, Directeur de Recherches CNRS Toulouse Emmanuel DOUZERY, Professeur à l'Université de Montpellier II Porter LOWRY II, Curator Missouri Botanical Garden Frédéric MEDAIL, Professeur à l'Université Paul Cezanne Aix-Marseille Christophe THEBAUD, Professeur à l'Université Paul Sabatier Ecole doctorale : Sciences Ecologiques, Vétérinaires, Agronomiques et Bioingénieries (SEVAB) Unité de recherche : UMR 5174 CNRS-UPS Evolution & Diversité Biologique Directeur(s) de Thèse : Christophe THEBAUD Rapporteurs : Emmanuel DOUZERY, Professeur à l'Université de Montpellier II Porter LOWRY II, Curator Missouri Botanical Garden Contents. CONTENTS CHAPTER 1. General Introduction 2 PART I: ASTERACEAE CHAPTER 2. Multiple evolutionary radiations and phenotypic convergence in polyphyletic Indian Ocean Daisy Trees (Psiadia, Asteraceae) (in preparation for BMC Evolutionary Biology) 14 CHAPTER 3. Taxonomic rearrangements within Indian Ocean Daisy Trees (Psiadia, Asteraceae) and the resurrection of Frappieria (in preparation for Taxon) 34 PART II: MYRSINACEAE CHAPTER 4. Phylogenetics of the Mascarene endemic genus Badula relative to its Madagascan ally Oncostemum (Myrsinaceae) (accepted in Botanical Journal of the Linnean Society) 43 CHAPTER 5. Timing and tempo of evolutionary diversification in Myrsinaceae: Badula and Oncostemum in the Indian Ocean Island Biodiversity Hotspot (in preparation for BMC Evolutionary Biology) 54 PART III: MONIMIACEAE CHAPTER 6. Biogeography of the Monimiaceae (Laurales): a role for East Gondwana and long distance dispersal, but not West Gondwana (accepted in Journal of Biogeography) 72 CHAPTER 7 General Discussion 86 REFERENCES 91 i Contents.
    [Show full text]
  • Dry Forest Trees of Madagascar
    The Red List of Dry Forest Trees of Madagascar Emily Beech, Malin Rivers, Sylvie Andriambololonera, Faranirina Lantoarisoa, Helene Ralimanana, Solofo Rakotoarisoa, Aro Vonjy Ramarosandratana, Megan Barstow, Katharine Davies, Ryan Hills, Kate Marfleet & Vololoniaina Jeannoda Published by Botanic Gardens Conservation International Descanso House, 199 Kew Road, Richmond, Surrey, TW9 3BW, UK. © 2020 Botanic Gardens Conservation International ISBN-10: 978-1-905164-75-2 ISBN-13: 978-1-905164-75-2 Reproduction of any part of the publication for educational, conservation and other non-profit purposes is authorized without prior permission from the copyright holder, provided that the source is fully acknowledged. Reproduction for resale or other commercial purposes is prohibited without prior written permission from the copyright holder. Recommended citation: Beech, E., Rivers, M., Andriambololonera, S., Lantoarisoa, F., Ralimanana, H., Rakotoarisoa, S., Ramarosandratana, A.V., Barstow, M., Davies, K., Hills, BOTANIC GARDENS CONSERVATION INTERNATIONAL (BGCI) R., Marfleet, K. and Jeannoda, V. (2020). Red List of is the world’s largest plant conservation network, comprising more than Dry Forest Trees of Madagascar. BGCI. Richmond, UK. 500 botanic gardens in over 100 countries, and provides the secretariat to AUTHORS the IUCN/SSC Global Tree Specialist Group. BGCI was established in 1987 Sylvie Andriambololonera and and is a registered charity with offices in the UK, US, China and Kenya. Faranirina Lantoarisoa: Missouri Botanical Garden Madagascar Program Helene Ralimanana and Solofo Rakotoarisoa: Kew Madagascar Conservation Centre Aro Vonjy Ramarosandratana: University of Antananarivo (Plant Biology and Ecology Department) THE IUCN/SSC GLOBAL TREE SPECIALIST GROUP (GTSG) forms part of the Species Survival Commission’s network of over 7,000 Emily Beech, Megan Barstow, Katharine Davies, Ryan Hills, Kate Marfleet and Malin Rivers: BGCI volunteers working to stop the loss of plants, animals and their habitats.
    [Show full text]
  • New Insights Into the Anatomy of Extinct Paucituberculatan Marsupials
    Swiss J Palaeontol DOI 10.1007/s13358-014-0063-9 An exceptionally well-preserved skeleton of Palaeothentes from the Early Miocene of Patagonia, Argentina: new insights into the anatomy of extinct paucituberculatan marsupials Analia M. Forasiepi • Marcelo R. Sa´nchez-Villagra • Thomas Schmelzle • Sandrine Ladeve`ze • Richard F. Kay Received: 8 September 2013 / Accepted: 13 February 2014 Ó Akademie der Naturwissenschaften Schweiz (SCNAT) 2014 Abstract During the Cenozoic paucituberculatans were an anterior semicircular canal (SC) projecting slightly much more diverse taxonomically and ecomorphologically dorsally from the dorsal-most point of the posterior SC, and than the three extant genera of shrew-like marsupials. lateral and posterior SCs projecting laterally to the same Among paucituberculatans, palaeothentids were abundant level. On the basis of postcranial anatomy, previous studies during the Early Miocene, although most of the fossil have demonstrated that P. lemoinei was an agile cursorial remains consist of isolated teeth or fragmentary jaws. We form, an inference supported by study of the new post- describe a new and exceptional partial skeleton of Palaeo- cranial elements. thentes lemoinei (Palaeothentidae), collected from the Santa Cruz Formation (Santacrucian age, Early Miocene) Keywords Marsupialia Á Metatheria Á Cenozoic Á in Patagonia. Whereas the skull of P. lemoinei has more South America Á Skull Á Inner ear Á Postcranium plesiomorphic traits in the face, palate, and cranial vault than that of living paucituberculatans, the dental mor- Abbreviations phology is more derived. The osseous inner ear was examined using micro-CT scanning, revealing a cochlea Institutional abbreviations with 1.9 turns, the presence of a ‘‘second crus commune’’, FMNH Field Museum of Natural History, Chicago, USA IEEUACH Universidad Austral de Chile, A.
    [Show full text]
  • Integrating Palaeontological and Molecular Data Uncovers Multiple
    Integrating palaeontological and molecular data uncovers multiple ancient and recent dispersals in the pantropical Hamamelidaceae Xiaoguo Xiang, Kunli Xiang, Rosa del C. Ortiz, Florian Jabbour, Wei Wang To cite this version: Xiaoguo Xiang, Kunli Xiang, Rosa del C. Ortiz, Florian Jabbour, Wei Wang. Integrating palaeontolog- ical and molecular data uncovers multiple ancient and recent dispersals in the pantropical Hamamel- idaceae. Journal of Biogeography, Wiley, 2019, 46 (11), pp.2622-2631. 10.1111/jbi.13690. hal- 02612865 HAL Id: hal-02612865 https://hal.archives-ouvertes.fr/hal-02612865 Submitted on 19 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Integrating palaeontological and molecular data uncovers multiple ancient and recent dispersals in the pantropical Hamamelidaceae Xiaoguo Xiang1,2, Kunli Xiang1,3, Rosa Del C. Ortiz4, Florian Jabbour5, Wei Wang1,3 1State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China 2Jiangxi Province Key Laboratory of Watershed Ecosystem
    [Show full text]
  • An Exceptionally Well-Preserved Skeleton of Palaeothentes from the Early Miocene of Patagonia, Argentina
    Swiss J Palaeontol (2014) 133:1–21 DOI 10.1007/s13358-014-0063-9 An exceptionally well-preserved skeleton of Palaeothentes from the Early Miocene of Patagonia, Argentina: new insights into the anatomy of extinct paucituberculatan marsupials Analia M. Forasiepi • Marcelo R. Sa´nchez-Villagra • Thomas Schmelzle • Sandrine Ladeve`ze • Richard F. Kay Received: 8 September 2013 / Accepted: 13 February 2014 / Published online: 27 May 2014 Ó Akademie der Naturwissenschaften Schweiz (SCNAT) 2014 Abstract During the Cenozoic paucituberculatans were an anterior semicircular canal (SC) projecting slightly much more diverse taxonomically and ecomorphologically dorsally from the dorsal-most point of the posterior SC, and than the three extant genera of shrew-like marsupials. lateral and posterior SCs projecting laterally to the same Among paucituberculatans, palaeothentids were abundant level. On the basis of postcranial anatomy, previous studies during the Early Miocene, although most of the fossil have demonstrated that P. lemoinei was an agile cursorial remains consist of isolated teeth or fragmentary jaws. We form, an inference supported by study of the new post- describe a new and exceptional partial skeleton of Palaeo- cranial elements. thentes lemoinei (Palaeothentidae), collected from the Santa Cruz Formation (Santacrucian age, Early Miocene) Keywords Marsupialia Á Metatheria Á Cenozoic Á in Patagonia. Whereas the skull of P. lemoinei has more South America Á Skull Á Inner ear Á Postcranium plesiomorphic traits in the face, palate, and cranial vault than that of living paucituberculatans, the dental mor- Abbreviations phology is more derived. The osseous inner ear was examined using micro-CT scanning, revealing a cochlea Institutional abbreviations with 1.9 turns, the presence of a ‘‘second crus commune’’, FMNH Field Museum of Natural History, Chicago, USA IEEUACH Universidad Austral de Chile, A.
    [Show full text]
  • Bioenergetics and Inter-Individual Variation in Physiological Capacities in a Relict Mammal – the Monito Del Monte (Dromiciops Gliroides)
    297 The Journal of Experimental Biology 212, 297-304 Published by The Company of Biologists 2009 doi:10.1242/jeb.021212 Bioenergetics and inter-individual variation in physiological capacities in a relict mammal – the Monito del Monte (Dromiciops gliroides) Pablo Cortés, Silvia A. Quijano and Roberto F. Nespolo* Instituto de Ecología y Evolución, Universidad Austral de Chile, Casilla 567, Valdivia, Chile *Author for correspondence (e-mail: [email protected]) Accepted 10 November 2008 SUMMARY In evolutionary physiology, studies of inter-individual variation (i.e. repeatability) in functional capacities are valuable as they indicate – within populations – what attributes could respond to natural selection. Although repeatability and quantitative genetics of physiological traits in energy metabolism of eutherian mammals have been well characterized, few or no studies have been performed on marsupials. We studied the repeatability (i.e. intraclass correlation coefficient, τ) of bioenergetics for Monito del Monte (Dromiciops gliroides), the sole living representative of an otherwise extinct marsupial order (Microbiotheria). We measured resting metabolic rate as CO2 production (VCO2) and O2 consumption (VO2) simultaneously, together with minimum thermal conductance (C), evaporative water loss (EWL) and respiratory quotient (RQ), in a sample of ca. 20 individuals. Our results suggest that D. gliroides exhibits poor control of body temperature (Tb), with a thermal amplitude of ca. 10°C in normothermia. As τ = τ = a consequence, repeatability of Tb and metabolic rate (either as VCO2 or VO2) were relatively low ( Tb 0.25±0.04, VCO2 0.14±0.03, τ = VO2 0.24±0.02, jackknife estimations of standard errors). Thermal conductance exhibited near-zero or negative repeatability and was lower than expected for marsupials.
    [Show full text]