Heteronychus Arator) in Perennial Ryegrass (Lolium Perenne L.) Infected with AR1 Endophyte

Total Page:16

File Type:pdf, Size:1020Kb

Heteronychus Arator) in Perennial Ryegrass (Lolium Perenne L.) Infected with AR1 Endophyte http://researchcommons.waikato.ac.nz/ Research Commons at the University of Waikato Copyright Statement: The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). The thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use: Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person. Authors control the copyright of their thesis. You will recognise the author’s right to be identified as the author of the thesis, and due acknowledgement will be made to the author where appropriate. You will obtain the author’s permission before publishing any material from the thesis. Resistance to African black beetle (Heteronychus arator) in perennial ryegrass (Lolium perenne L.) infected with AR1 endophyte A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy in Biological Sciences at The University of Waikato by Kathryn Mary Ross _________ The University of Waikato 2016 Abstract The insect pest, African black beetle (Heteronychus arator (Fabricus, 1775)) is of considerable economic cost to the New Zealand agricultural industry, in regions where the insect is established and regular outbreaks are now occurring. Selection for Epichloë festucae var. lolii (Latch, M.J. Chr. & Samuels) C. W. Bacon & Schardl, stat. nov. et comb. nov. endophyte-perennial ryegrass (Lolium perenne L.) associations which do not cause toxicity to livestock and with strong resistance to African black beetle (H. arator), would be of significant value to farmers in regions where this pest is a problem. Epichloë festucae var. lolii strain AR1 endophyte does not produce ergovaline, the alkaloid known to deter African black beetle (H. arator), yet pastures infected with this endophyte have moderate resistance to adult African black beetle (H. arator). Research into AR1 is of importance, as to date there have been no reports of toxicity in livestock brought about by consumption of from AR1-infected pastures and in the absence of African black beetle (H. arator) this ‘novel’ endophyte can provide highly productive pastures. AR1 endophyte produces secondary metabolites that are simple indole diterpenes, including paxilline and paxilline-like compounds. The numerous paxilline-like compounds produced by AR1 are detected by a paxilline ELISA (enzyme linked immunosorbant assay) and quantified collectively as paxilline immunoreactive equivalents. Earlier work suggested that these paxilline-like compounds could be the bioactive, or linked-marker associated with the bioactive compound(s), that provide some resistance to adult African black beetle (H. arator) feeding. The overall aim of this research was to determine if increased concentration of paxilline immunoreactivity was associated with a reduction in feeding damage using a series of adult African black beetle (H. arator) feeding trials on closely related AR1-infected perennial ryegrasses (L. perenne). A negative relationship was established between feeding damage from adult African black beetle (H. arator) and plant pseudostem paxilline immunoreactivity in AR1-infected perennial ryegrass (L. perenne) post exposure to beetles. However, it was not a simple relationship being complicated by: i) paxilline immunoreactivity iii not reflecting endophyte concentrations; ii) the influence of cultivar on the expression levels of paxilline immunoreactivity; iii) the effect of African black beetle (H. arator) presence on expression levels of paxilline immunoreactivity; and iv) the paxilline ELISA quantifying the complete complex of paxilline-like compounds and not simply those that are bioactive. The highest concentrations of paxilline immunoreactivity were found in plant undamaged pseudostem and were not strongly correlated with the lower concentrations found in herbage. Therefore undamaged pseudostem is recommended as the section sampled if the entire plant pseudostem was not available. Low levels of feeding from adult African black beetle (H. arator) accentuated plant tiller production. However, the negative effects of high feeding pressure still affected plants four weeks post-exposure to beetles, with reduced paxilline immunoreactivity production and plant tiller numbers. Adult African black beetle (H. arator) were able to compensate the deterrent effects of AR1 once an endophyte-free food source was available. Results from this research contribute towards further understanding the bioactivity of AR1 endophyte against adult African black beetle (H. arator) and will underpin further research into the chemical basis for this resistance. The paxilline ELISA could potentially be used for screening E. festucae endophyte ryegrass associations that produce unknown compounds which deter African black beetle (H. arator) and which do not cause toxicity to livestock. iv Acknowledgements When researching living and seasonal organisms, a part-time PhD does have its benefits. However, with a partner working out of town and a young child at home, it is a test of stamina and I wouldn’t have made it without the support of family, friends and work colleagues – thank you all. I wish to thank my supervisors; Alison Popay, Lyn Briggs, Peter Molan and Ian Hogg. Their guidance, encouragement and support were invaluable and much appreciated. I have learned a lot from each supervisor and appreciate the immense time and effort afforded to myself during my PhD. The research in this thesis would not have been possible without funding from the TR Ellett Trust, for which I am most appreciative. Many thanks to Errol Thom for the part he played in providing funding and for the encouragement he gave. I gratefully acknowledge the support of AgResearch Ltd throughout this project. In particular, my special thanks are extended to Heather Armour and my colleagues in the Toxinology group; Sarah Finch, Allan Hawkes, John Kerby, Jan Sprosen and Sangata Kaufononga for their wisdom and encouragement, and for showing a keen interest in my research. I’m very grateful to Colleen Podmore, Joan Fitzgerald and Derrick Wilson for helping with the experimental work. Many thanks to Joanne Jensen, Louise Hennessy and the rest of the Plant Protection crew for their kindness and making me part of their team. I thank David Hume, Wade Mace, Doug Ryan and Tom Lyons, of the Endophyte team, for the assistance and expertise they gave me. To the statistics team down the corridor, in particular Vanessa Cave, Catherine Cameron, Pip Maternaghan and Harold Henderson, thanks for the encouraging chats, support, de-stressing ten-pin bowling sessions, and allowing me to be an honorary statistician to come and eat cake. Special thanks to Vanessa Cave for statistical advice and for keeping me sane. Special thanks are due to PGGW Seeds and Grasslandz Technology for allowing the use of their seed lines. I’m grateful to the University of Waikato for allowing me the opportunity to study for a doctorate. I thank Cheryl Ward for her expertise and help formatting my thesis. v I would like to express my gratitude and thanks to the examiners who took the time to read and critically evaluate my thesis. Your time and effort is appreciated and your comments, corrections and suggestions were valuable, insightful and have improved the final version of my thesis. Thanks to my wonderful friends for their kindness and encouragement. Many thanks to both Kirstin Wurms and Tracy Wilde, for taking care of my son when I was busy with experimental work or in the school holidays, when dad was out of town. A big thank you to Karen Drummond for her great company, support, and allowing me to test her culinary and cheese making skills on many occasions. A big thank you to Clare Browne for her support in the final stages of this journey. Finally, many thanks to my wonderful family for all their love, patience and support they have provided me through this journey. Thank you Reimana, Kahurangi, my mum Carole, and my fur-babies; Marama, Te Po and Fatboy. vi Dedication This thesis and PhD is dedicated to: my late father, Gavin John Ross, who always believed in me to my mother Carole Shirley Ross, who gave her all to support me in this journey to my partner Reimana, we have struggled and battled through these tough times together, it has only made us stronger and closer to my beautiful son, Kahurangi for being so wise beyond your years, and for being so helpful, caring, thoughtful and understanding vii Table of Contents Abstract .............................................................................................................. iii Acknowledgements ............................................................................................. v Dedication ......................................................................................................... vii Table of Contents ............................................................................................... ix List of Figures ................................................................................................. xvii List of Tables.................................................................................................... xxi Abbreviations .................................................................................................. xxv Taxonomy ...................................................................................................... xxix Chapter 1: Introduction ......................................................................................
Recommended publications
  • Squarrose Sedge Carex Squarrosa
    Natural Heritage Squarrose Sedge & Endangered Species Carex squarrosa L. Program www.mass.gov/nhesp State Status: Threatened Federal Status: None Massachusetts Division of Fisheries & Wildlife GENERAL DESCRIPTION: Squarrose Sedge is a perennial, herbaceous, grass-like plant that grows in loose clumps up to 3 feet (0.9 m) in height. This species was recently rediscovered in Massachusetts. Squarrose Sedge is typically found within riparian habitats that have alluvial soils. The uppermost spikes are pistillate (ovule-bearing) flowers borne above staminate (pollen- bearing) flowers. The large, dense, reproductive spikes of Squarrose Sedge make this species rather distinctive from other members of the genus Carex. AIDS TO IDENTIFICATION: To positively identify the Squarrose Sedge and other members of the genus Carex, a technical manual should be consulted. Species in this genus have small unisexual wind-pollinated flowers that are borne in clusters or spikes. Each flower Photo by Brett Trowbridge is unisexual, and is closely subtended by small, flat scales. The staminate flowers are subtended by a single perigynium. The morphological characteristics of these flat scale (the staminate scale); the pistillate flowers are reproductive structures are important in identifying subtended by one flat scale (the pistillate scale) and are plants of the genus Carex. enclosed by a second sac-like modified scale, the perigynium (plural: perigynia). After flowering, the Squarrose Sedge is a large sedge that grows in tufts from achene (a dry, one-seeded fruit) develops within the short rhizomes. Its stout, leafy stems range in height from 1 to 3 ft. (0.3 to 0.9 m). The elongate leaves are 3 to 6 mm (1/8 to ¼ in.) in width.
    [Show full text]
  • Departament De Biologia Funcional I Antropologia Física
    DEPARTAMENT DE BIOLOGIA FUNCIONAL I ANTROPOLOGIA FÍSICA EVALUACIÓN DE MECANISMOS DE RESISTENCIA A INSECTICIDAS EN FRANKLINIELLA OCCIDENTALIS (PERGANDE): IMPLICACIÓN DE CARBOXILESTERASAS Y ACETILCOLINESTERASAS NEUS LÓPEZ SOLER UNIVERSITAT DE VALÈNCIA Servei de Publicacions 2008 Aquesta Tesi Doctoral va ser presentada a València el dia 26 de juny de 2008 davant un tribunal format per: - D. Rafael Martínez Pardo - D. Félix Ortego Alonso - D. Juan Ferré Manzanero - D. Francisco José Beitia Crespo - D. Juan Javier Díaz Mayans Va ser dirigida per: Dª. Mª Dolores Garcerá Zamorano Dª. Amelia Cervera Olagüe ©Copyright: Servei de Publicacions Neus López Soler Depòsit legal: I.S.B.N.: 978-84-370-7227-2 Edita: Universitat de València Servei de Publicacions C/ Artes Gráficas, 13 bajo 46010 València Spain Telèfon: 963864115 Facultat de Ciències Biològiques Departament de Biologia Funcional i Antropologia Física Evaluación de mecanismos de resistencia a insecticidas en Frankliniella occidentalis (Pergande): implicación de carboxilesterasas y acetilcolinesterasas Neus López Soler Burjassot, València 2008 i Tesis presentada por Neus López Soler para optar al grado de Doctor en Ciencias Biológicas por la Universitat de València. Fdo. Neus López Soler Tesis dirigida por: Mª Dolores Garcerá Zamorano, Doctora en Ciencias Biológicas y Catedrática de Fisiología de la Universitat de València. Amelia Cervera Olagüe, Doctora en Ciencias Biológicas. Fdo. Mª Dolores Garcerá Zamorano Fdo. Amelia Cervera Olagüe La investigación presentada en esta Tesis se realizó en la Unidad de Fisiología Animal del Departament de Biologia Funcional i Antropologia Física de la Facultat de Ciències Biològiques de la Universitat de València, gracias al disfrute de una Beca del Programa Nacional de Formación de Profesorado Universitario (FPU) del Ministerio de Educación y Ciencia.
    [Show full text]
  • State of New York City's Plants 2018
    STATE OF NEW YORK CITY’S PLANTS 2018 Daniel Atha & Brian Boom © 2018 The New York Botanical Garden All rights reserved ISBN 978-0-89327-955-4 Center for Conservation Strategy The New York Botanical Garden 2900 Southern Boulevard Bronx, NY 10458 All photos NYBG staff Citation: Atha, D. and B. Boom. 2018. State of New York City’s Plants 2018. Center for Conservation Strategy. The New York Botanical Garden, Bronx, NY. 132 pp. STATE OF NEW YORK CITY’S PLANTS 2018 4 EXECUTIVE SUMMARY 6 INTRODUCTION 10 DOCUMENTING THE CITY’S PLANTS 10 The Flora of New York City 11 Rare Species 14 Focus on Specific Area 16 Botanical Spectacle: Summer Snow 18 CITIZEN SCIENCE 20 THREATS TO THE CITY’S PLANTS 24 NEW YORK STATE PROHIBITED AND REGULATED INVASIVE SPECIES FOUND IN NEW YORK CITY 26 LOOKING AHEAD 27 CONTRIBUTORS AND ACKNOWLEGMENTS 30 LITERATURE CITED 31 APPENDIX Checklist of the Spontaneous Vascular Plants of New York City 32 Ferns and Fern Allies 35 Gymnosperms 36 Nymphaeales and Magnoliids 37 Monocots 67 Dicots 3 EXECUTIVE SUMMARY This report, State of New York City’s Plants 2018, is the first rankings of rare, threatened, endangered, and extinct species of what is envisioned by the Center for Conservation Strategy known from New York City, and based on this compilation of The New York Botanical Garden as annual updates thirteen percent of the City’s flora is imperiled or extinct in New summarizing the status of the spontaneous plant species of the York City. five boroughs of New York City. This year’s report deals with the City’s vascular plants (ferns and fern allies, gymnosperms, We have begun the process of assessing conservation status and flowering plants), but in the future it is planned to phase in at the local level for all species.
    [Show full text]
  • Biodiversity, Evolution and Ecological Specialization of Baculoviruses: A
    Biodiversity, Evolution and Ecological Specialization of Baculoviruses: A Treasure Trove for Future Applied Research Julien Thézé, Carlos Lopez-Vaamonde, Jenny Cory, Elisabeth Herniou To cite this version: Julien Thézé, Carlos Lopez-Vaamonde, Jenny Cory, Elisabeth Herniou. Biodiversity, Evolution and Ecological Specialization of Baculoviruses: A Treasure Trove for Future Applied Research. Viruses, MDPI, 2018, 10 (7), pp.366. 10.3390/v10070366. hal-02140538 HAL Id: hal-02140538 https://hal.archives-ouvertes.fr/hal-02140538 Submitted on 26 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License viruses Article Biodiversity, Evolution and Ecological Specialization of Baculoviruses: A Treasure Trove for Future Applied Research Julien Thézé 1,2, Carlos Lopez-Vaamonde 1,3 ID , Jenny S. Cory 4 and Elisabeth A. Herniou 1,* ID 1 Institut de Recherche sur la Biologie de l’Insecte, UMR 7261, CNRS—Université de Tours, 37200 Tours, France; [email protected] (J.T.); [email protected]
    [Show full text]
  • Environmental Niche Partitioning Among Riparian Sedges {Carex, Cyperaceae) in the St. Lawrence Valley, Quebec
    Environmental niche partitioning among riparian sedges {Carex, Cyperaceae) in the St. Lawrence Valley, Quebec Laura Plourde Master of Science Department of Biology McGill University Montreal, Quebec, Canada A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of requirements of the degree of Master of Science August 31st, 2007 ©Copyright Laura Plourde 2007. All rights reserved. Library and Bibliotheque et 1*1 Archives Canada Archives Canada Published Heritage Direction du Branch Patrimoine de I'edition 395 Wellington Street 395, rue Wellington Ottawa ON K1A0N4 Ottawa ON K1A0N4 Canada Canada Your file Votre reference ISBN: 978-0-494-51322-4 Our file Notre reference ISBN: 978-0-494-51322-4 NOTICE: AVIS: The author has granted a non­ L'auteur a accorde une licence non exclusive exclusive license allowing Library permettant a la Bibliotheque et Archives and Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par Plntemet, prefer, telecommunication or on the Internet, distribuer et vendre des theses partout dans loan, distribute and sell theses le monde, a des fins commerciales ou autres, worldwide, for commercial or non­ sur support microforme, papier, electronique commercial purposes, in microform, et/ou autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriete du droit d'auteur ownership and moral rights in et des droits moraux qui protege cette these. this thesis. Neither the thesis Ni la these ni des extraits substantiels de nor substantial extracts from it celle-ci ne doivent etre imprimes ou autrement may be printed or otherwise reproduits sans son autorisation.
    [Show full text]
  • Heteronychus Arator
    Heteronychus arator Scientific Name Heteronychus arator (Fabricius) Synonyms: Heteronychus arator australis Endrödi, Heteronychus indenticulatus Endrodi, Heteronychus madagassus Endrodi, Heteronychus sanctaehelenae Blanchard, Heteronychus transvaalensis Peringuey, Scarabaeus arator Fabricius Common Name(s) Black maize beetle, African black beetle, black lawn beetle, black beetle Type of Pest Beetle Figure 1. Illustration of each stage of the life Taxonomic Position cycle of the black maize beetle, showing a close up view of each stage and a Insecta, Coleoptera, Class: Order: background view showing that the eggs, Family: Scarabaeidae larvae, and pupae are all underground stages with the adults being the only stage Reason for Inclusion appearing above ground. Illustration CAPS Target: AHP Prioritized Pest List- courtesy of NSW Agriculture. http://www.ricecrc.org/Hort/ascu/zecl/zeck11 2006 – 2009 3.htm Pest Description Life stages are shown in Figures 1 and 2. 1 Eggs: White, oval, and measuring approximately 1.8 mm (approx. /16 in) long at time of oviposition. Eggs grow larger through development and become more 3 round in shape. Eggs are laid singly at a soil depth of 1 to 5 cm (approx. /8 to 2 in). Females each lay between 12 to 20 eggs total. In the field, eggs hatch after approximately 20 days. Larvae can be seen clearly with the naked eye (CABI, 2007; Matthiessen and Learmoth, 2005). Larvae: There are three larval instars. Larvae are creamy-white except for the brown head capsule and hind segments, which appear dark where the contents of the gut show through the body wall. The head capsule is smooth textured, 1 1 measuring 1.5 mm (approx.
    [Show full text]
  • VINEYARD BIODIVERSITY and INSECT INTERACTIONS! ! - Establishing and Monitoring Insectariums! !
    ! VINEYARD BIODIVERSITY AND INSECT INTERACTIONS! ! - Establishing and monitoring insectariums! ! Prepared for : GWRDC Regional - SA Central (Adelaide Hills, Currency Creek, Kangaroo Island, Langhorne Creek, McLaren Vale and Southern Fleurieu Wine Regions) By : Mary Retallack Date : August 2011 ! ! ! !"#$%&'(&)'*!%*!+& ,- .*!/'01)!.'*&----------------------------------------------------------------------------------------------------------------&2 3-! "&(')1+&'*&4.*%5"/0&#.'0.4%/+.!5&-----------------------------------------------------------------------------&6! ! &ABA <%5%+3!C0-72D0E2!AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA!F! &A&A! ;D,!*2!G*0.*1%-2*3,!*HE0-3#+3I!AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA!J! &AKA! ;#,2!0L!%+D#+5*+$!G*0.*1%-2*3,!*+!3D%!1*+%,#-.!AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA!B&! 7- .*+%)!"/.18+&--------------------------------------------------------------------------------------------------------------&,2! ! ! KABA ;D#3!#-%!*+2%53#-*MH2I!AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA!BN! KA&A! O3D%-!C#,2!0L!L0-H*+$!#!2M*3#G8%!D#G*3#3!L0-!G%+%L*5*#82!AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA!&P! KAKA! ?%8%53*+$!3D%!-*$D3!2E%5*%2!30!E8#+3!AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA!&B! 9- :$"*!.*;&5'1/&.*+%)!"/.18&-------------------------------------------------------------------------------------&3<!
    [Show full text]
  • Swansonsteven1976.Pdf (7.604Mb)
    THE VASCULAR FLORA AND PHYTOSOCIOLOGY OF NAVIGATION POOL #8 THE UPPER MISSISSIPPI RIVER A Thesis Submitted to the Faculty of University of Wisconsin - La Crosse La Crosse, Wisconsin 54601 by Steven David Swanson In Partial Fulfillment of the Requirements for the Degree of Master of Science in Biology July 1976 (/1/J 7<.o ,5 ,<1 I c./., UNIVERSITY OF WISCONSIN - LA CROSSE La Crosse, Wisconsin 54601 COLLEGE OF ARTS, LETTERS, AND SCIENCES Candidate: Steven David Swanson --------------~~~~~~~-~~~~--------------- We recommend acceptance of this thesis to the College of Arts, Letters, and Sciences in partial fulfillment of this candidate's requirements for the d:egree Master of Science in Biology. The candidate has completed his oral defense of the thesis ..-=! .ll LJ") cQ 0 0 0 0 ::r ::r Thesis Committee Chairman Date rn ..-=! rn This thesis is approved for the College of Arts, Letter, and Sciences ' Date :;17 01844 ii ABSTRACT This thesis deals with the vascular flora and its phytosociology in Navigation Pool #8 of the Upper Mississippi River. The habitats of the area are, for the most part, influenced by permanent or temporal inundation by the river. The construction of levees and the deposition of dredge material have added large areas of man-made habitat to this area that now may not be inundated. During the summer of 1975 and spring of 1976. thorough and systematic collections of the plants in the area were made. This is not a mere compilation of literature. There were approximately 2200 collection numbers, with each number usually representing 4-5 duplicate specimens. Identification of those collections was aided by the use of annotated speci­ mens on deposit in the University of Wisconsin- La Crosse Herbarium.
    [Show full text]
  • Early Warning System for the Black Maize Beetle (Heteronychus Arator Fabricius) in a Major Maize
    Early warning system for the black maize beetle (Heteronychus arator Fabricius) in a major maize producing region of South Africa by Nicolene de Klerk Submitted in fulfilment of the requirements for the degree of Magister Scientiae in Entomology Department of Zoology and Entomology Faculty of Natural and Agricultural Sciences University of the Free State Bloemfontein South Africa 2015 Supervisor: Prof. S.vd M. Louw Co-supervisor: Prof. J.B.J. van Rensburg Declaration I hereby declare that this dissertation submitted by me for the degree Magister Scientiae at the University of the Free State is my own independent work and that I have not previously submitted the same work at another University / Faculty. I furthermore concede copyright of the dissertation to the University of the Free State. ……………………………… Nicolene de Klerk 15 May 2015 i Acknowledgements During the course of this study people from various departments and institutions assisted which led to the completion of this study. Appreciation is expressed to all. Financial aid was provided by the ARC (Agricultural Research Council) and the Maize Trust. Assistance by ARC staff included Mabel du Toit and Mischack Moroladi. Special thanks to Dr. T.W. Drinkwater. Weather data were obtained from SA (South African) weather services as well as from ARC-ISCW (Agricultural Research Council – Institute for Soil, Climate and Water). Statistical support was provided by Nicolene Thiebaut, Frikkie Calitz and Wiltrud Durand. Thanks to all 99 maize producers that assisted with capturing the insect populations over the years. To my husband, Adriaan and my children, Angelene, Lee-Ann, Niané, Lichané and Adriaan thank you all for supporting me in the many struggles that faced us throughout the journey.
    [Show full text]
  • NJ Native Plants - USDA
    NJ Native Plants - USDA Scientific Name Common Name N/I Family Category National Wetland Indicator Status Thermopsis villosa Aaron's rod N Fabaceae Dicot Rubus depavitus Aberdeen dewberry N Rosaceae Dicot Artemisia absinthium absinthium I Asteraceae Dicot Aplectrum hyemale Adam and Eve N Orchidaceae Monocot FAC-, FACW Yucca filamentosa Adam's needle N Agavaceae Monocot Gentianella quinquefolia agueweed N Gentianaceae Dicot FAC, FACW- Rhamnus alnifolia alderleaf buckthorn N Rhamnaceae Dicot FACU, OBL Medicago sativa alfalfa I Fabaceae Dicot Ranunculus cymbalaria alkali buttercup N Ranunculaceae Dicot OBL Rubus allegheniensis Allegheny blackberry N Rosaceae Dicot UPL, FACW Hieracium paniculatum Allegheny hawkweed N Asteraceae Dicot Mimulus ringens Allegheny monkeyflower N Scrophulariaceae Dicot OBL Ranunculus allegheniensis Allegheny Mountain buttercup N Ranunculaceae Dicot FACU, FAC Prunus alleghaniensis Allegheny plum N Rosaceae Dicot UPL, NI Amelanchier laevis Allegheny serviceberry N Rosaceae Dicot Hylotelephium telephioides Allegheny stonecrop N Crassulaceae Dicot Adlumia fungosa allegheny vine N Fumariaceae Dicot Centaurea transalpina alpine knapweed N Asteraceae Dicot Potamogeton alpinus alpine pondweed N Potamogetonaceae Monocot OBL Viola labradorica alpine violet N Violaceae Dicot FAC Trifolium hybridum alsike clover I Fabaceae Dicot FACU-, FAC Cornus alternifolia alternateleaf dogwood N Cornaceae Dicot Strophostyles helvola amberique-bean N Fabaceae Dicot Puccinellia americana American alkaligrass N Poaceae Monocot Heuchera americana
    [Show full text]
  • Strategies for the Eradication Or Control of Gypsy Moth in New Zealand
    Strategies for the eradication or control of gypsy moth in New Zealand Travis R. Glare1, Patrick J. Walsh2*, Malcolm Kay3 and Nigel D. Barlow1 1 AgResearch, PO Box 60, Lincoln, New Zealand 2 Forest Research Associates, Rotorua (*current address Galway-Mayo Institute of Technology, Dublin Road, Galway, Republic of Ireland) 3Forest Research, Private Bag 3020, Rotorua Efforts to remove gypsy moth from an elm, Malden, MA, circa 1891 May 2003 STATEMENT OF PURPOSE The aim of the report is to provide background information that can contribute to developing strategies for control of gypsy moth. This is not a contingency plan, but a document summarising the data collected over a two year FRST-funded programme on biological control options for gypsy moth relevant to New Zealand, completed in 1998 and subsequent research on palatability of New Zealand flora to gypsy moth. It is mainly aimed at discussing control options. It should assist with rapidly developing a contingency plan for gypsy moth in the case of pest incursion. Abbreviations GM gypsy moth AGM Asian gypsy moth NAGM North America gypsy moth EGM European gypsy moth Bt Bacillus thuringiensis Btk Bacillus thuringiensis kurstaki MAF New Zealand Ministry of Agriculture and Forestry MOF New Zealand Ministry of Forestry (defunct, now part of MAF) NPV nucleopolyhedrovirus LdNPV Lymantria dispar nucleopolyhedrovirus NZ New Zealand PAM Painted apple moth, Teia anartoides FR Forest Research PIB Polyhedral inclusion bodies Strategies for Asian gypsy moth eradication or control in New Zealand page 2 SUMMARY Gypsy moth, Lymantria dispar (Lepidoptera: Lymantriidae), poses a major threat to New Zealand forests. It is known to attack over 500 plant species and has caused massive damage to forests in many countries in the northern hemisphere.
    [Show full text]
  • Complete Iowa Plant Species List
    !PLANTCO FLORISTIC QUALITY ASSESSMENT TECHNIQUE: IOWA DATABASE This list has been modified from it's origional version which can be found on the following website: http://www.public.iastate.edu/~herbarium/Cofcons.xls IA CofC SCIENTIFIC NAME COMMON NAME PHYSIOGNOMY W Wet 9 Abies balsamea Balsam fir TREE FACW * ABUTILON THEOPHRASTI Buttonweed A-FORB 4 FACU- 4 Acalypha gracilens Slender three-seeded mercury A-FORB 5 UPL 3 Acalypha ostryifolia Three-seeded mercury A-FORB 5 UPL 6 Acalypha rhomboidea Three-seeded mercury A-FORB 3 FACU 0 Acalypha virginica Three-seeded mercury A-FORB 3 FACU * ACER GINNALA Amur maple TREE 5 UPL 0 Acer negundo Box elder TREE -2 FACW- 5 Acer nigrum Black maple TREE 5 UPL * Acer rubrum Red maple TREE 0 FAC 1 Acer saccharinum Silver maple TREE -3 FACW 5 Acer saccharum Sugar maple TREE 3 FACU 10 Acer spicatum Mountain maple TREE FACU* 0 Achillea millefolium lanulosa Western yarrow P-FORB 3 FACU 10 Aconitum noveboracense Northern wild monkshood P-FORB 8 Acorus calamus Sweetflag P-FORB -5 OBL 7 Actaea pachypoda White baneberry P-FORB 5 UPL 7 Actaea rubra Red baneberry P-FORB 5 UPL 7 Adiantum pedatum Northern maidenhair fern FERN 1 FAC- * ADLUMIA FUNGOSA Allegheny vine B-FORB 5 UPL 10 Adoxa moschatellina Moschatel P-FORB 0 FAC * AEGILOPS CYLINDRICA Goat grass A-GRASS 5 UPL 4 Aesculus glabra Ohio buckeye TREE -1 FAC+ * AESCULUS HIPPOCASTANUM Horse chestnut TREE 5 UPL 10 Agalinis aspera Rough false foxglove A-FORB 5 UPL 10 Agalinis gattingeri Round-stemmed false foxglove A-FORB 5 UPL 8 Agalinis paupercula False foxglove
    [Show full text]