X. Минералогия астроблем и метеоритов

использовалось оборудование ЦКП «Геонаука», 2. Shumilova T. G., Zubov A. A., Isaenko S. I., Karateev финансируемого из средств темы НИР # I. A. & Vasiliev A. L. Mysterious long­living ultrahigh­ AAAA-A17-117121270036-7. pressure or secondary impact crisis // Sci Rep 10. 2591 (2020). 3. Shumilova T. G., Lutoev V. P., Isaenko S. I., Литература Kovalchuk N. S., Makeev B. A., Lysiuk A. Yu., Zubov A. A., 1. Shumilova T. G., Isaenko S. I., Makeev B. A., Ernstson K. Spectroscopic features of ultrahigh­pres­ Zubov A. A., Shanina S. N., Tropnikov Ye. M., Askhabov sure impact glasses of the Kara astrobleme // Scientific A. M. Ultrahigh­pressure liquation of an impact melt // Reports. V. 8. № 6923 (2018). doi:10.1038/s41598­018­ Doklady Sciences. 2018. 480(1): 595—598. 25037­z.

An eight kilogram chunk and more: evidence for a new class of silicide from the Chiemgau impact (SE Germany) F. Bauer1, M. Hiltl2, M. A. Rappenglück3, K. Ernstson4 1 Oxford Instruments GmbH NanoScience, Wiesbaden, Germany; frank.bauer @oxinst.com 2 Carl Zeiss Microscopy GmbH, D­73447 Oberkochen, Germany; [email protected] 3 Institute for Interdisciplinary Studies, D­82205 Gilching, Germany; [email protected] 4 University of Würzburg, D­97074 Würzburg, Germany; [email protected]

Introduction (Fig. 2) in connection with the craters in the ellip­ The find of a big 8 kg weighting iron silicide tically formed strewn field sized about 60 × 30 km chunk (Fig. 1) found about 30 years ago in the [1]. Up to now some thousands of iron silicide parti­ Chiemgau impact strewn field (Fig. 1) cles have been sampled, mostly by metal detectors, [1—3 and references therein] has strongly sup­ roughly amounting to a mass of a few kilograms ported the earlier formulated hypothesis [1—3 (apart from the 8 kg chunk). Here we report on new and references therein] of an extraterrestrial or­ analyses, which establish an obviously common for­ igin for the abundant occurrences of iron silicides mation and origin.

Fig. 1. Location map for the Chiemgau impact crater strewn field. Middle, right: Iron silicide finds addressed analytically in this paper

Fig. 2. Various aspects (apart from Fig. 1) of the iron silicide finds from the Chiemgau impact strewn field

359 Юшкинские чтения — 2020

Fig. 3. Internal structure of iron silicides from the Chiemgau strewn field under the SEM

Fig. 4. SEM­EDS micrographs and analyses; samples from Fig. 1, right. Quite comparable analyses have been made in the 8 kg iron silicide chunk (Fig. 1) [3] and in earlier analyses of various finds

Methods and results the Chiemgau impact crater strewn field establish a Optical microscopy, SEM, TEM and EBSD analy­ common formation process and a common source. ses, Raman spectroscopy. Artificial production, geogenic formation (and Elements: Apart from the main constituents Fe, e.g. fulgurite formation) can be excluded, which is Si more than 30 other chemical elements have been basically also supported by the find situations in the evidenced so far like uranium, the REE cerium, yt­ field [1, 2]. The iron silicides are of extraterrestri­ trium und ytterbium, or gallium. No decay products al origin. of uranium like thorium or lead have been mea­ The iron silicides in their entity belong to the sured. Chiemgau meteorite impact strewn field. Iron silicide of the matrix: gupei­ They should constitute a new class of meteor­ ite, xifengite, hapkeite, naquite and linzhite; hap­ ites. For reasons of definiteness we suggest to name keite Fe2Si in its cubic polymorph and in its trigo­ the trigonal Fe2Si polymorph hapkeite — 2T possi­ nal polymorph (the most stable iron silicide up to bly rating a new name [2]. 255 GPa). Identified minerals: Carbides — silicon carbide moissanite SiC (cubic and hexagonal polymorphs), References titanium carbide TiC, khamrabaevite (Ti,V,Fe)C, 1. Rappenglück, M. A., Rappenglück, B. & Ernstson. probably zirconium carbide ZrC (Fig. 4) — Graphite K. Kosmische Kollision in der Frühgeschichte. Der C, zircon ZrSiO4; Carbon and TiC/(Ti,V,Fe)C in a ma­ Chiemgau­Impakt: Die Erforschung eines bayerischen trix of cubic hapkeite and cubic gupeiite; SiC and Meteoritenkrater­Streufelds // Zeitschrift für Anomalistik. TiC/(Ti,V,Fe)C as superpure crystals in the iron sili­ 2017. V. 17. P. 235—260 (English translation in [2]). cide matrix (Fig. 2). — Calcium­aluminum inclusion 2. Rappenglück, M. A., Rappenglück, B. & Ernstson. (CAI) minerals CaAl2O4, calcium monoaluminate, K. Cosmic collision in prehistory. — The Chiemgau krotite, and Ca2Al2O5, dicalcium dialuminate. Impact: research in a Bavarian meteorite crater strewn Shock metamorphism and micro-impacts: pla­ field // Zeitschrift für Anomalistik. 2017. V 17. P. 235— nar deformation features (PDF) in moissanite; open, 260. http://www.impaktstrukturen.de/wp­content/up­ tensile spallation fractures in titanium carbide crys­ loads/2018/11/Anomalisten­translation.pdf. tals; cosmic particle impacts (Fig. 3). 3. Bauer, F., Hiltl, M., Rappenglück, M. A., Ernstson, K. Trigonal and cubic Fe2Si polymorphs (hapkeite) in the eight kilograms find of natural iron silicide from Conclusion Grabenstätt (Chiemgau, Southeast Germany)// 50th Enigmatic internal structures and exotic com­ Lunar and Planetary Science Conference. The Woodlands, position for all sizes of iron silicide samples from LPI. 2019, abstract 1520.pdf.

360