Virtual Circuits, ATM, MPLS
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
X.25: ITU-T Protocol for WAN Communications
X.25: ITU-T Protocol for WAN Communications X.25, an ITU-T protocol for WAN communications, is a packet switched data network protocol which defines the exchange of data as well as control information between a user device, called Data Terminal Equipment (DTE) and a network node, called Data Circuit Terminating Equipment (DCE). X.25 is designed to operate effectively regardless of the type of systems connected to the network. X.25 is typically used in the packet-switched networks (PSNs) of common carriers, such as the telephone companies. Subscribers are charged based on their use of the network. X.25 utilizes a Connection-Oriented service which insures that packets are transmitted in order. X.25 sessions are established when one DTE device contacts another to request a communication session. The DTE device that receives the request can either accept or refuse the connection. If the request is accepted, the two systems begin full-duplex information transfer. Either DTE device can terminate the connection. After the session is terminated, any further communication requires the establishment of a new session. X.25 uses virtual circuits for packets communications. Both switched and permanent virtual circuits are used. X.75 is the signaling protocol for X.25, which defines the signaling system between two PDNs. X.75 is essentially an Network to Network Interface (NNI). X.25 protocol suite comes with three levels based on the first three layers of the OSI seven layers architecture. The Physical Level: describes the interface with the physical environment. There are three protocols in this group: 1) X.21 interface operates over eight interchange circuits; 2) X.21bis defines the analogue interface to allow access to the digital circuit switched network using an analogue circuit; 3) V.24 provides procedures which enable the DTE to operate over a leased analogue circuit connecting it to a packet switching node or concentrator. -
Virtual-Circuit Networks: Frame Relay Andatm
CHAPTER 18 Virtual-Circuit Networks: Frame Relay andATM In Chapter 8, we discussed switching techniques. We said that there are three types of switching: circuit switching, packet switching, and message switching. We also men tioned that packet switching can use two approaches: the virtual-circuit approach and the datagram approach. In this chapter, we show how the virtual-circuit approach can be used in wide-area networks. Two common WAN technologies use virtual-circuit switching. Frame Relay is a relatively high-speed protocol that can provide some services not available in other WAN technologies such as DSL, cable TV, and T lines. ATM, as a high-speed protocol, can be the superhighway of communication when it deploys physical layer carriers such as SONET. We first discuss Frame Relay. We then discuss ATM in greater detaiL Finally, we show how ATM technology, which was originally designed as a WAN technology, can also be used in LAN technology, ATM LANs. 18.1 FRAME RELAY Frame Relay is a virtual-circuit wide-area network that was designed in response to demands for a new type ofWAN in the late 1980s and early 1990s. 1. Prior to Frame Relay, some organizations were using a virtual-circuit switching network called X.25 that performed switching at the network layer. For example, the Internet, which needs wide-area networks to carry its packets from one place to another, used X.25. And X.25 is still being used by the Internet, but it is being replaced by other WANs. However, X.25 has several drawbacks: a. -
Rule-Based Forwarding (RBF): Improving the Internet's Flexibility
Rule-based Forwarding (RBF): improving the Internet’s flexibility and security Lucian Popa∗ Ion Stoica∗ Sylvia Ratnasamy† 1Introduction 4. rules allow flexible forwarding: rules can select ar- From active networks [33] to the more recent efforts on bitrary forwarding paths and/or invoke functionality GENI [5], a long-held goal of Internet research has been made available by on-path routers; both path and to arrive at a network architecture that is flexible.Theal- function selection can be conditioned on (dynamic) lure of greater flexibility is that it would allow us to more network and packet state. easily incorporate new ideas into the Internet’s infras- The first two properties enable security by ensuring tructure, whether these ideas aim to improve the existing the network will not forward a packet unless it has network (e.g., improving performance [36, 23, 30], relia- been explicitly cleared by its recipients while the third bility [12, 13], security [38, 14, 25], manageability [11], property ensures that rules cannot be (mis)used to attack etc.) or to extend it with altogether new services and the network itself. As we shall show, our final property business models (e.g., multicast, differentiated services, enables flexibility by allowing a user to give the network IPv6, virtualized networks). fine-grained instructions on how to forward his packets. An unfortunate stumbling block in these efforts has In the remainder of this paper, we present RBF, a been that flexibility is fundamentally at odds with forwarding architecture that meets the above properties. another long-held goal: that of devising a secure network architecture. -
Routing and Packet Forwarding
Routing and Packet Forwarding Tina Schmidt September 2008 Contents 1 Introduction 1 1.1 The Different Layers of the Internet . .2 2 IPv4 3 3 Routing and Packet Forwarding 5 3.1 The Shortest Path Problem . .6 3.2 Dijkstras Algorithm . .7 3.3 Practical Realizations of Routing Algorithms . .8 4 Autonomous Systems 10 4.1 Intra-AS-Routing . 10 4.2 Inter-AS-Routing . 11 5 Other Services of IP 11 A Dijkstra's Algorithm 13 1 Introduction The history of the internet and Peer-to-Peer networks starts in the 60s with the ARPANET (Advanced Research Project Agency Network). Back then, when computers were expen- sive and linked to several terminals, the aim of ARPANET was to establish a continuous network inbetween mainframe computers in the U.S. Starting with only three computers in 1969, mainly universities were involved in establishing the ARPANET. The ARPANET became a network inbetween networks of mainframe computes and therefore was called inter-net. Today it became the internet which links millions of computers. For a long time nobody knew what use such a Wide Area Netwok (WAN) could have for the pop- ulation. The internet was used for e-mails, newsgroups, exchange of scientific data and some special software, all in all services that were barely known in public. The spread of 1 Application Layer Peer-to-Peer-networks, e.g. Telnet = Telecommunication Network FTP = File Transfer Protocol HTTP = Hypertext Transfer Protocol SMTP = Simple Mail Transfer Protocol Transport Layer TCP = Transmission Control Protocol UDP = User Datagram Protocol Internet Layer IP = Internet Protocol ICMP = Internet Control Message Protocol IGMP = Internet Group Management Protocol Host-to-Network Layer device drivers or Link Layer (e.g. -
Introduction to IP Multicast Routing
Introduction to IP Multicast Routing by Chuck Semeria and Tom Maufer Abstract The first part of this paper describes the benefits of multicasting, the Multicast Backbone (MBONE), Class D addressing, and the operation of the Internet Group Management Protocol (IGMP). The second section explores a number of different algorithms that may potentially be employed by multicast routing protocols: - Flooding - Spanning Trees - Reverse Path Broadcasting (RPB) - Truncated Reverse Path Broadcasting (TRPB) - Reverse Path Multicasting (RPM) - Core-Based Trees The third part contains the main body of the paper. It describes how the previous algorithms are implemented in multicast routing protocols available today. - Distance Vector Multicast Routing Protocol (DVMRP) - Multicast OSPF (MOSPF) - Protocol-Independent Multicast (PIM) Introduction There are three fundamental types of IPv4 addresses: unicast, broadcast, and multicast. A unicast address is designed to transmit a packet to a single destination. A broadcast address is used to send a datagram to an entire subnetwork. A multicast address is designed to enable the delivery of datagrams to a set of hosts that have been configured as members of a multicast group in various scattered subnetworks. Multicasting is not connection oriented. A multicast datagram is delivered to destination group members with the same “best-effort” reliability as a standard unicast IP datagram. This means that a multicast datagram is not guaranteed to reach all members of the group, or arrive in the same order relative to the transmission of other packets. The only difference between a multicast IP packet and a unicast IP packet is the presence of a “group address” in the Destination Address field of the IP header. -
Analysis and Improvement of Name-Based Packet Forwarding
Analysis and Improvement of Name-based Packet Forwarding over Flat ID Network Architectures Antonio Rodrigues Peter Steenkiste Ana Aguiar [email protected] [email protected] [email protected] Carnegie Mellon University Carnegie Mellon University Faculty of Engineering, Univ. of Porto Pittsburgh, PA, USA Pittsburgh, PA, USA Instituto de Telecomunicações Faculty of Engineering, Univ. of Porto Porto, Portugal Instituto de Telecomunicações Porto, Portugal ABSTRACT URLs to identify web objects. Name-based Information Centric One of ICN’s main challenges is attaining forwarding table scala- Networks (ICNs) such as NDN [8] promise to be a good fit for such bility when confronted with a huge content space. This is specially applications, for two reasons: (1) no need for external name lookup true in flat ID architectures, which do not naturally support route (e.g., DNS or GNS [18]) by using name-based forwarding at the aggregation for hierarchical names. Previous work has proposed network layer; and (2) reduced forwarding table sizes as a result improving scalability by aggregating content names in a fixed-size of the aggregation enabled by the hierarchical structure of names. Bloom Filters (BF). However, the negative impact of false positive In contrast, ICNs based on flat IDs (defined as fixed-size bit strings (FPs) matches on forwarding correctness and performance has not in this paper), e.g., DONA [12], PURSUIT [6], do not natively have been studied thoroughly. In this paper, we study the end-to-end net- these benefits. work performance of BF-based forwarding. We devise an analytical Recently, a forwarding scheme based on Bloom Filters (BFs) [13, model that accurately models BF-based forwarding and the flow of 14] has been proposed to enable aggregation of content descriptors BF-based packets over inter-domain topologies. -
Unicast Reverse Path Forwarding Configuration Guide, Cisco IOS XE 17 (Cisco ASR 900 Series)
Unicast Reverse Path Forwarding Configuration Guide, Cisco IOS XE 17 (Cisco ASR 900 Series) First Published: 2020-01-10 Americas Headquarters Cisco Systems, Inc. 170 West Tasman Drive San Jose, CA 95134-1706 USA http://www.cisco.com Tel: 408 526-4000 800 553-NETS (6387) Fax: 408 527-0883 THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS. THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY. The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB's public domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California. NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED “AS IS" WITH ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE. IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. -
Multiprotocol Label Switching
CHAPTER23 MULTIPROTOCOL LABEL SWITCHING 23.1 The Role of Mpls 23.2 Background Connection-Oriented QoS Support Traffic Engineering Virtual Private Network (VPN) Support Multiprotocol Support 23.3 MPLS Operation 23.4 Labels Label Stacking Label Format Label Placement 23.5 FECs, LSPs, and Labels Route Selection 23.6 Label Distribution Requirements for Label Distribution Label Distribution Protocol LDP Messages LDP Message Format 23.7 Traffic Engineering Elements of MPLS Traffic Engineering Constrained Shortest-Path First Algorithm RSVP-TE 23.8 Virtual Private Networks Layer 2 Virtual Private Network Layer 3 Virtual Private Network 23.9 Recommended Reading 23.10 Key Terms, Review Questions, and Problems 749 750 CHAPTER 23 / MULTIPROTOCOL LABEL SWITCHING LEARNING OBJECTIVES After studying this chapter, you should be able to: ◆ Discuss the role of MPLS in an Internet traffic management strategy. ◆ Explain at a top level how MPLS operates. ◆ Understand the use of labels in MPLS. ◆ Present an overview of how the function of label distribution works. ◆ Present an overview of MPLS traffic engineering. ◆ Understand the difference between layer 2 and layer 3 VPNs. In Chapter 19, we examined a number of IP-based mechanisms designed to improve the performance of IP-based networks and to provide different levels of quality of service (QoS) to different service users. Although the routing protocols discussed in Chapter 19 have as their fundamental purpose dynami- cally finding a route through an internet between any source and any destina- tion, they also provide support for performance goals in two ways: 1. Because these protocols are distributed and dynamic, they can react to congestion by altering routes to avoid pockets of heavy traffic. -
Networking CS 3470, Section 1 Forwarding
Chapter 3 Part 3 Switching and Bridging Networking CS 3470, Section 1 Forwarding A switching device’s primary job is to receive incoming packets on one of its links and to transmit them on some other link This function is referred as switching and forwarding According to OSI architecture this is the main function of the network layer Forwarding How does the switch decide which output port to place each packet on? It looks at the header of the packet for an identifier that it uses to make the decision Two common approaches Datagram or Connectionless approach Virtual circuit or Connection-oriented approach Forwarding Assumptions Each host has a globally unique address There is some way to identify the input and output ports of each switch We can use numbers We can use names Datagram / Connectionless Approach Key Idea Every packet contains enough information to enable any switch to decide how to get it to destination Every packet contains the complete destination address Datagram / Connectionless Approach An example network To decide how to forward a packet, a switch consults a forwarding table (sometimes called a routing table) Copyright © 2010, Elsevier Inc. All rights Reserved Datagram / Connectionless Approach Destination Port ----------------------------------- A 3 B 0 C 3 D 3 E 2 F 1 G 0 H 0 Forwarding Table for Switch 2 Copyright © 2010, Elsevier Inc. All rights Reserved Datagram Networks: The Internet Model No call setup at network layer Routers: no state about end-to-end connections no network-level concept of “connection” Packets forwarded using destination host address packets between same source-dest pair may take different paths session session transport transport network network 1. -
Future of Asynchronous Transfer Mode Networking
California State University, San Bernardino CSUSB ScholarWorks Theses Digitization Project John M. Pfau Library 2004 Future of asynchronous transfer mode networking Fakhreddine Mohamed Hachfi Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd-project Part of the Digital Communications and Networking Commons Recommended Citation Hachfi, akhrF eddine Mohamed, "Future of asynchronous transfer mode networking" (2004). Theses Digitization Project. 2639. https://scholarworks.lib.csusb.edu/etd-project/2639 This Thesis is brought to you for free and open access by the John M. Pfau Library at CSUSB ScholarWorks. It has been accepted for inclusion in Theses Digitization Project by an authorized administrator of CSUSB ScholarWorks. For more information, please contact [email protected]. FUTURE OF ASYNCHRONOUS TRANSFER MODE NETWORKING A Thesis Presented to the Faculty of California State University, San Bernardino In Partial Fulfillment of the Requirements for the Degree Master of Business Administration by ' Fakhreddine Mohamed Hachfi June 2004 FUTURE OF ASYNCHRONOUS TRANSFER MODE NETWORKING A Thesis Presented to the Faculty of California State University, San Bernardino by Fakhreddine Mohamed Hachfi June 2004 Approved by: Da^e Frank Lin, Ph.D., Inf ormatTdn—&^-DSsision Sciences „ / Walt Stewart, Jr., Ph.D., Department Chair Information & Decision Sciences © 2004 Fakhreddine Mohamed Hachfi ABSTRACT The growth of Asynchronous Transfer Mode ATM was considered to be the ideal carrier of the high bandwidth applications like video on demand and multimedia e-learning. ATM emerged commercially in the beginning of the 1990's. It was designed to provide a different quality of service at a speed up to 10 Gbps for both real time and non real time application. -
A Scalable and Flexible Packet Forwarding Method for Future Internet Networks
Globecom 2014 - Next Generation Networking Symposium A Scalable and Flexible Packet Forwarding Method for Future Internet Networks Andrzej Beben, Piotr Wiśniewski Jordi Mongay Batalla George Xilouris Warsaw University of Technology National Institute of Telecommunications NCSR Demokritos Warsaw, Poland Warsaw, Poland Athens, Greece {abeben, p.wisniewski}tele.pw.edu.pl [email protected] [email protected] Abstract—The paper proposes a novel flexible packet in the data plane while improving SDN scalability thanks to the forwarding (FPF) method designed for Future Internet networks. reduction of state information in SDN forwarders [4]. It follows the source routing principle at an inter-domain level and applies the list of domain customized identifiers to forward II. ANALYSIS OF RELATED WORKS packets on the end-to-end path. The main features are capability to introduce flexible routing path selection, native support for One of the main FI challenges is to design effective routing multipath and multicast packet transfer, ability for exploitation and forwarding methods that overcame limitations of the IP of advanced in-network packet processing as, e.g., content protocol. The key objectives are providing more flexible recoding and caching. The performance and scalability of FPF routing path selection and enabling innovative in-network approach were evaluated by experimentation on developed packet processing, while assuring scalability of the solution. prototype as well as by scalability studies assuming Internet-scale Many of recently proposed approaches are based on the source network scenario. routing principle, which is not really a new idea. The original studies on exploiting source routing in IP networks are Future Internet, source routing, packet forwarding, SDN presented in [5]. -
Chapter 10: Circuit Switching and Packet Switching Switching Networks
Chapter 10: Circuit Switching and Packet Switching CS420/520 Axel Krings Page 1 Sequence 10 Switching Networks • Long distance transmission is typically done over a network of switched nodes • Nodes not concerned with content of data • End devices are stations — Computer, terminal, phone, etc. • A collection of nodes and connections is a communications network • Data is routed by being switched from node to node CS420/520 Axel Krings Page 2 Sequence 10 1 Nodes • Nodes may connect to other nodes only, or to stations and other nodes • Node to node links usually multiplexed • Network is usually partially connected — Some redundant connections are desirable for reliability • Two different switching technologies — Circuit switching — Packet switching CS420/520 Axel Krings Page 3 Sequence 10 Simple Switched Network CS420/520 Axel Krings Page 4 Sequence 10 2 Circuit Switching • Dedicated communication path between two stations • Three phases — Establish — Transfer — Disconnect • Must have switching capacity and channel capacity to establish connection • Must have intelligence to work out routing CS420/520 Axel Krings Page 5 Sequence 10 Circuit Switching • Inefficient — Channel capacity dedicated for duration of connection — If no data, capacity wasted • Set up (connection) takes time • Once connected, transfer is transparent • Developed for voice traffic (phone) CS420/520 Axel Krings Page 6 Sequence 10 3 Public Circuit Switched Network CS420/520 Axel Krings Page 7 Sequence 10 Telecom Components • Subscriber — Devices attached to network • Subscriber