An Abstract Model of a Cortical Hypercolumn

Total Page:16

File Type:pdf, Size:1020Kb

An Abstract Model of a Cortical Hypercolumn AN ABSTRACT MODEL OF A CORTICAL HYPERCOLUMN Baran Çürüklü1, Anders Lansner2 1Department of Computer Engineering, Mälardalen University, S-72123 Västerås, Sweden 2Department of Numerical Analysis and Computing Science, Royal Institute of Technology, S-100 44 Stockholm, Sweden ABSTRACT preferred stimulus was reported to be lower than to preferred stimulus. An abstract model of a cortical hypercolumn is presented. According to the findings by Hubel and Wiesel [16] This model could replicate experimental findings relating the primary visual cortex has a modular structure. It is to the orientation tuning mechanism in the primary visual composed of orientation minicolumns each one cortex. Properties of the orientation selective cells in the comprising some hundreds of pyramidal cells and a primary visual cortex like, contrast-invariance and smaller number of inhibitory interneurons of different response saturation were demonstrated in simulations. We kinds. Contrast edge orientation is coded such that the hypothesize that broadly tuned inhibition and local cells in each orientation minicolumn respond selectively excitatory connections are sufficient for achieving this to a quite broad interval of orientations. Further, the behavior. We have shown that the local intracortical orientation hypercolumn contains orientation minicolumns connectivity of the model is to some extent biologically with response properties distributed over all angles, and plausible. thus represents the local edge orientation pertinent to a given point in visual space. A similar modular arrangement is found in many other cortical areas, e.g. rodent whisker barrels [15]. 1. INTRODUCTION The Bayesian Confidence Propagation Neural Network model (BCPNN) has been developed in analogy Most neurons in the primary visual cortex (V1) with this possibly generic cortical structure [14]. This is respond to specific orientations even though relay cells in an abstract neural network model in which each unit the lateral geniculate nucleus (LGN), that carries the corresponds to a cortical minicolumn. The network is information from retina to V1, does not show evidence of partitioned into hypercolumn-like modules and the orientation selectivity. It is not known in detail how summed activity within each hypercolumn is normalized orientation selectivity of the cells in V1 emerges and the to one. issue is hotly debated (for a recent review see Ferster et The above network model relates to the so-called al., [9]). Hubel and Wiesel [10] proposed that orientation normalization models of V1 proposed by Albrecht et al. selectivity of simple cells in V1 was a consequence of [20] and Heeger [21] that address properties of simple synaptic input from LGN. Still today the Hubel and cells mentioned above. These assume that input from the Wiesel feedforward model serves as a model of thalamic LGN grows linearly with contrast stimulus. This input is input to cortex. However many of the properties of divided by a linearly growing inhibitory input. The effect orientation selective cells in V1 cannot be predicted by is division of the input from the LGN and that the such a feedforward model. Contrast-invariance of summed activity of the cells in a hypercolumn is orientation tuning seen by simple and complex cells is normalized. This would correspond to saturation of a cells perhaps the most striking example. As contrast increases activity. Later Carandini et al. [22,23] proposed that a the height of the response curve increases while the width pool of cells with different preferred orientations and remains almost constant [11,12,13]. spatial frequencies drives the shunting inhibition. It was also shown that response to contrast stimulus Cross-orientation inhibition is yet another feature of increases over approximately 50-60% of the response cortical simple and complex cells. Response to range and this behavior is followed by a rapid saturation superposition of two gratings is less than sum of each and normalization of the cells activity [13]. The saturation response alone [8,25]. Morrone et al. [8] suggested that level seems to be determined by stimulus property this inhibition arises from a pool of cells with different (orientation, spatial frequency) and not by electrical orientations. The cross-inhibition effect could be properties of the cells. Maximum response to non- A B 180° 90° 0° 900 µm C Output from the minicolumn D 2 chandelier 100 % Percent of cells maximum Output response layer Network of 12 excitatory cells One 600 µm basket Network cell of 11 excitatory Input cells layer 40 % 3 chandelier cells 56 µm Contrast 100 % Input from cortex and LGN Figure 1. A, The hypothesized repetitive layout of the cat V1 D, A scheme showing the activity of the excitatory cells demonstrated by 7 hypercolumns. B, The partial in two minicolumns with preferred orientation (bottom hypercolumn model used during the simulations consisted solid lines) and non-preferred orientation (bottom dashed of 17 minicolumns. C, A scheme showing one of the lines). Input layer excitatory cells (exponential curves) are subsampled orientation minicolumns and the basket cell driving the basket cell (thick top curve). The output layer representing the pool of inhibitory cells. Excitatory cells excitatory cells (sigmoidal curves) are normalized when in the input layer are connected to the basket cell, and the the basket cell’s activity increases linearly. basket cell inhibits the excitatory cells in the output layer. explained by a shunting inhibition proposed by the two excitatory neurons inside a minicolumn layer was a normalization models [22,23]. function of the distance between them [6]. Here we present an abstract model of a cortical The implication of this scheme for the output layer is hypercolumn derived from the above-mentioned BCPNN that, the distribution (in terms of orientation) of the architecture. Our main intention has been to address inhibitory input to an excitatory cell is broader than the response saturation and contrast-invariance of orientation excitatory input. This is because the basket cell represents tuning behaviors of cortical cells. Initial tests were a pool of orientation specific neurons inhibiting a pool of showing that cross-orientation inhibition was also excitatory neurons with all possible preferred orientation. prominent. All these behaviors could be achieved by a Even though the connectivity pattern seen in the output very simple network architecture (Fig. 1). layer is very simple, it is still biologically plausible. Kisvárday et al. [27] reported that, in an area of the size of 2. NETWORK MODEL cat V1 hypercolumn, 56 % of the excitatory and 47 % of the inhibitory connections were at iso-orientation, while The foundation of our network model is the columnar cross-inhibition was shown by 14 % of excitatory and 20 organization seen in V1 and elsewhere in the cortex [16]. % of inhibitory connections respectively. This indicates We assume that V1 is composed of repetitive structures, that, the inhibitory network is less orientation specific so-called minicolumns, and that these minicolumns rotate than the excitatory network. A study based on ferret around hypothetical centers [18], and form hypercolumns prefrontal microcircuits is also pointing in the direction of (Fig. 1a). In our model a hypercolumn is represented by a the basket cells as responsible for gain control of the local finite number of minicolumns, each representing a cortical network [26]. particular orientation (Fig. 1b). For sake of simplicity we Besides the basket cell, there were other inhibitory decided to use a partial hypercolumn model composed of cells in the model. These cells were the local inhibitory 17 subsampled orientation minicolumns, ranging from 0° chandelier cells [28] located inside the minicolumns, and to 180°, with the angular distance of 11.25° between two hence inhibiting excitatory cells with the same orientation successive ones (Fig. 1b). The diameter of the cylinder preference. In the input layer three chandelier cells shaped minicolumns was 56 µm, as a consequence of the inhibited an excitatory cell, while two chandelier cells study done by Peters et al. [17] on cat V1. In that study, it inhibited the excitatory cells in the output layer. was reported that apical dendrites of layer V pyramid cells Cortical neurons are known for their irregular spiking formed clusters with a center-to-center spacing of about activity [3,4], and were thus modeled as Poisson 56 µm, which provides an estimate of the mean distance processes. As the kernel of the Poisson process we used a between two successive minicolumns. The circular leaky integrate-and-fire model [1,2]. The role of the leaky arrangement of the minicolumns gives the biologically integrate-and-fire model was to sum the presynaptic plausible hypercolumn diameter of 900 µm for cat V1. inputs to generate the membrane potential of the cells. The minicolumns has a height of 600 µm, and are Maximum frequency of the excitatory and the inhibitory abstractions of the layer II-IV of cat V1 [17]. Each of the neurons were 100 Hz and 300 Hz respectively. Half- subsampled minicolumns is composed of 28 neurons (Fig. height of the IPSPs were 10 ms, and 15 ms for the EPSPs. 1c) and the neuron population is heterogeneous with all Mean amplitudes of the EPSPs inside the minicolumns values sampled from a uniform distribution with a were 0.94 mV for the input layer, and 9.4 mV for the standard deviation of 10%. output layer. The strength of the synaptic connection The hypercolumn model consists of two separate between the input layer excitatory cells and the basket cell layers with two different tasks in order to achieve was set to give an EPSP of 3.5 mV. IPSPs generated by normalization behavior proposed by the BCPNN model the chandelier cells had a mean of -3.2 mV, and that of the (Fig. 1c). It will be shown later that the excitatory neuron basket cell was -55.1 mV. Observe that the values are in the output layer replicates experimental findings exaggerated, specially the IPSP generated by the basket relating to the orientation tuning mechanism in V1.
Recommended publications
  • Probabilistic Skeletons Endow Brain-Like Neural Networks with Innate Computing Capabilities
    bioRxiv preprint doi: https://doi.org/10.1101/2021.05.18.444689; this version posted July 1, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Probabilistic skeletons endow brain-like neural networks with innate computing capabilities Christoph St¨ockl ∗1, Dominik Lang ∗1, and Wolfgang Maass 1 1Institute of Theoretical Computer Science, Graz University of Technology, Austria July 1, 2021 The genetic code endows neural networks of the brain with innate comput- ing capabilities. But it has remained unknown how it achieves this. Exper- imental data show that the genome encodes the architecture of neocortical circuits through pairwise connection probabilities for a fairly large set of ge- netically different types of neurons. We build a mathematical model for this style of indirect encoding, a probabilistic skeleton, and show that it suffices for programming a repertoire of quite demanding computing capabilities into neural networks. These computing capabilities emerge without learning, but are likely to provide a powerful platform for subsequent rapid learning. They are engraved into neural networks through architectural features on the sta- tistical level, rather than through synaptic weights. Hence they are specified in a much lower dimensional parameter space, thereby providing enhanced robustness and generalization capabilities as predicted by preceding work. 1 Introduction Artificial neural networks typically receive their computational capabilities through adap- tation of a very large set of parameters: through training of their synaptic weights with a very large number of examples, starting from a tabula rasa initial state.
    [Show full text]
  • 2 the Cerebral Cortex of Mammals
    Abstract This thesis presents an abstract model of the mammalian neocortex. The model was constructed by taking a top-down view on the cortex, where it is assumed that cortex to a first approximation works as a system with attractor dynamics. The model deals with the processing of static inputs from the perspectives of biological mapping, algorithmic, and physical implementation, but it does not consider the temporal aspects of these inputs. The purpose of the model is twofold: Firstly, it is an abstract model of the cortex and as such it can be used to evaluate hypotheses about cortical function and structure. Secondly, it forms the basis of a general information processing system that may be implemented in computers. The characteristics of this model are studied both analytically and by simulation experiments, and we also discuss its parallel implementation on cluster computers as well as in digital hardware. The basic design of the model is based on a thorough literature study of the mammalian cortex’s anatomy and physiology. We review both the layered and columnar structure of cortex and also the long- and short-range connectivity between neurons. Characteristics of cortex that defines its computational complexity such as the time-scales of cellular processes that transport ions in and out of neurons and give rise to electric signals are also investigated. In particular we study the size of cortex in terms of neuron and synapse numbers in five mammals; mouse, rat, cat, macaque, and human. The cortical model is implemented with a connectionist type of network where the functional units correspond to cortical minicolumns and these are in turn grouped into hypercolumn modules.
    [Show full text]
  • And Long-Range Connections in the Visual Cortex
    The fractions of short- and long-range connections in the visual cortex Armen Stepanyantsa,1, Luis M. Martinezb, Alex S. Ferecsko´ c,d, and Zolta´ n F. Kisva´ rdaye aDepartment of Physics and Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, MA 02115; bInstituto de Neurociencias de Alicante, CSIC-UMH, 03550 Sant Joan d’Alacant, Spain; cCentre de Recherche Universite´Laval Robert-Giffard, Laval University, Quebec, Canada G1J 2G3; dDepartment of Neurophysiology, Division of Neuroscience, The Medical School, University of Birmingham, Birmingham B15 2TT, United Kingdom; and eDepartment of Anatomy, Histology, and Embryology, University of Debrecen, 4032 Debrecen, Hungary Edited by Charles F. Stevens, The Salk Institute for Biological Studies, La Jolla, CA, and approved December 24, 2008 (received for review October 21, 2008) When analyzing synaptic connectivity in a brain tissue slice, it is stellate) and 17 inhibitory basket cells (7, 8) labeled in vivo at difficult to discern between synapses made by local neurons and different depths spanning the entire thickness of the cat primary those arising from long-range axonal projections. We analyzed a visual cortex (area 17). We reconstructed neurons from multiple data set of excitatory neurons and inhibitory basket cells recon- tissue sections [supporting information (SI) Fig. S1], which structed from cat primary visual cortex in an attempt to provide a allowed us to recover all of the dendritic arbors and inhibitory quantitative answer to the question: What fraction of cortical basket cell axonal arbors in their entirety (2). But axonal synapses is local, and what fraction is mediated by long-range branches of excitatory neurons extending beyond 1 mm from the projections? We found an unexpectedly high proportion of non- neurons’ somata in the cortical plane were truncated; thus, we local synapses.
    [Show full text]
  • Keywords Introduction
    bioRxiv preprint doi: https://doi.org/10.1101/162941; this version posted July 13, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Manuscript Rod Rinkus, Neurithmic Systems & Brandeis University A Radically New Theory of how the Brain Represents and Computes with Probabilities Rod Rinkus, Neurithmic Systems & Volen Center for Complex Systems, Brandeis University Abstract The brain is believed to implement probabilistic reasoning and to represent information via population, or distributed, coding. Most previous population-based probabilistic (PPC) theories share several basic properties: 1) continuous-valued neurons (units); 2) fully/densely-distributed codes, i.e., all/most coding units participate in every code; 3) graded synapses; 4) rate coding; 5) units have innate unimodal, e.g., bell- shaped, tuning functions (TFs); 6) units are intrinsically noisy; and 7) noise/correlation is generally considered harmful. We present a radically different theory that assumes: 1) binary units; 2) only a small subset of units, i.e., a sparse distributed code (SDC) (a.k.a. cell assembly, ensemble), comprises any individual code; 3) binary synapses; 4) signaling formally requires only single, i.e., first, spikes; 5) units initially have completely flat TFs (all weights zero); 6) units are not inherently noisy; but rather 7) noise is a resource generated/used to cause similar inputs to map to similar codes, controlling a tradeoff between storage capacity and embedding the input space statistics in the pattern of intersections over stored codes, indirectly yielding correlation patterns.
    [Show full text]
  • Wider Minicolumns in Autism: a Neural Basis for Altered Processing?
    Brain Advance Access published May 1, 2015 doi:10.1093/brain/awv110 BRAIN 2015: Page 1 of 12 | 1 Wider minicolumns in autism: a neural basis for altered processing? Rebecca McKavanagh,1,2 Eleanor Buckley1 and Steven A. Chance1 Previous studies have found alterations in the columnar organization of the cortex in autism spectrum disorders. Such changes have been suggested to be limited to higher order association areas and to spare primary sensory areas. In addition, evidence from gene- expression studies have suggested that there may be an attenuation of cortical differentiation in autism spectrum disorders. The present study specifically assessed the minicolumns of cells that span the depth of the cortex in a larger sample of autism spectrum disorder cases than have been studied previously, and across a broad age range. The cortical regions to be investigated were carefully chosen to enable hypotheses about cortical differentiation and the vulnerability of association cortex to be tested. Measures of the minicolumnar arrangement of the cortex (minicolumn width, spacing and width of the associated axon bundles) were made in four regions of cortex (primary auditory cortex, auditory association cortex, orbital frontal cortex and inferior Downloaded from parietal lobe) for 28 subjects with autism spectrum disorder and 25 typically developing control subjects. The present study found wider minicolumns in autism spectrum disorder [F(1,28) = 8.098, P = 0.008], which was particularly pronounced at younger ages, providing evidence for an altered developmental trajectory at the microstructural level. In addition, altered minicolumn width was not restricted to higher order association areas, but was also seen in the primary sensory region investigated.
    [Show full text]
  • Discrete, Place-Defined Macrocolumns in Somatosensory
    Chapter 9 Discrete, Place-Defined Macrocolumns in Somatosensory Cortex: Lessons for Modular Organization of the Cerebral Cortex Oleg V. Favorov, Barry L. Whitsel, and Mark Tommerdahl Keywords Minicolumn • Macrocolumn • Receptive field • Segregate 9.1 Introduction In 1957 Mountcastle introduced the concept of the cortical column as the vertical processing unit of the cerebral cortex. This idea, the “columnar hypothesis,” was based on the then prevailing view that the cortex is most richly interconnected in its vertical dimension (Lorente de No 1949) and on Mountcastle’s demonstration in single-unit recording experiments in cat (and later monkey; Powell and Mountcastle 1959) primary somatosensory cortex (SI) that neurons in ~0.5 mm wide vertical columns are activated by peripheral stimuli of the same submodality and have similar receptive fields (RFs). Mountcastle (1957) and Powell and Mountcastle (1959) also showed that their cortical columns – later named “macrocolumns” to distinguish them from single-cell-wide “minicolumns” (Mountcastle 1978) – can be separated from each other by abrupt boundaries, on the opposite sides of which neurons respond to stimuli of different submodalities and/or have prominently different RFs. This paper reviews the evidence that SI cortex of cats and monkeys is partitioned into a honeycomb-like mosaic of discrete macrocolumns. The review then draws O.V. Favorov (*) Department of Biomedical Engineering, University of North Carolina, 070 MacNider Hall, Chapel Hill, NC 27599, USA e-mail: [email protected] B.L. Whitsel Department of Cell Biology & Physiology, University of North Carolina, Chapel Hill, NC, USA e-mail: [email protected] M. Tommerdahl Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, USA e-mail: [email protected] © Springer Science+Business Media Dordrecht 2015 143 M.F.
    [Show full text]
  • The Meaning of Things As a Concept in a Strong AI Architecture
    The meaning of things as a concept in a strong AI architecture Alexey Redozubov[0000-0002-6566-4102], Dmitry Klepikov[0000-0003-3311-0014] TrueBrainComputing, Moscow, Russia [email protected] Abstract. Artificial intelligence becomes an integral part of human life. At the same time, modern widely used approaches, which work successfully due to the availability of enormous computing power, based on ideas about the work of the brain, suggested more than half a century ago. The proposed model describes the general principles of information processing by the human brain, taking into ac- count the latest achievements. The neuroscientific grounding of this model and its applicability in the creation of AGI or Strong AI are discussed in the article. In this model, the cortical minicolumn is the primary computing processor that works with the semantic description of information. The minicolumn transforms incoming information into its interpretation to a specific context. In this way, a parallel verification of hypotheses of information interpretations is provided when comparing them with information in the memory of each minicolumn of the cortical zone, and, at the same time, determining a significant context is the information transformation rule. The meaning of information is defined as an in- terpretation that is close to the information available in the memory of a minicol- umn. The behavior is a result of modeling of possible situations. Using this ap- proach will allow creating a strong AI or AGI. Keywords: Meaning of information, Artificial general intelligence, Strong AI, Brain, Cerebral cortex, Semantic memory, Information waves, Contextual se- mantic, Cortical minicolumns, Context processor, Hippocampus, Membrane re- ceptors, Cluster of receptors, Dendrites.
    [Show full text]
  • Linguistic Structure: a Plausible Theory
    http://www.ludjournal.org ISSN: 2329-583x Linguistic structure: A plausible theory Sydney Lamba a Department of Linguistics, Rice University, [email protected]. Paper received: 18 September 2015 Published online: 2 June 2016 Abstract. This paper is concerned with discovering the system that lies behind linguistic productions and is responsible for them. To be considered realistic, a theory of this system has to meet certain requirements of plausibility: (1) It must be able to be put into operation, for (i) speaking and otherwise producing linguistic texts and (ii) comprehending (to a greater or lesser extent) the linguistic productions of others; (2) it must be able to develop during childhood and to continue changing in later years; (3) it has to be compatible with what is known about brain structure, since that system resides in the brains of humans. Such a theory, while based on linguistic evidence, turns out to be not only compatible with what is known from neuroscience about the brain, it also contributes new understanding about how the brain operates in processing information. Keywords: meaning, semantics, cognitive neuroscience, relational network, conceptual categories, prototypes, learning, brain, cerebral cortex, cortical column 1. Aims Nowadays it is easier than ever to appreciate that there are many ways to study aspects of language, driven by different curiosities and having differing aims. The inquiry sketched here is just one of these pursuits, with its own aims and its own methods. It is concerned with linguistic structure considered as a real scientific object. It differs from most current enterprises in linguistic theory in that, although they often use the term ‘linguistic structure’, they are concerned mainly with the structures of sentences and/or other linguistic productions rather than with the structure of the system that lies behind these and is responsible for them.
    [Show full text]
  • A Comparative Perspective on Minicolumns and Inhibitory Gabaergic Interneurons in the Neocortex
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PubMed Central REVIEW ARTICLE published: 05 February 2010 NEUROANATOMY doi: 10.3389/neuro.05.003.2010 A comparative perspective on minicolumns and inhibitory GABAergic interneurons in the neocortex Mary Ann Raghanti1*, Muhammad A. Spocter 2, Camilla Butti 3, Patrick R. Hof 3,4 and Chet C. Sherwood 2 1 Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, OH, USA 2 Department of Anthropology, The George Washington University, Washington, DC, USA 3 Department of Neuroscience, Mount Sinai School of Medicine, New York, NY, USA 4 New York Consortium in Evolutionary Primatology, New York, NY, USA Edited by: Neocortical columns are functional and morphological units whose architecture may have Javier DeFelipe, Cajal Institute, Spain been under selective evolutionary pressure in different mammalian lineages in response Reviewed by: to encephalization and specializations of cognitive abilities. Inhibitory interneurons make a Manuel Casanova, University of Louisville, USA substantial contribution to the morphology and distribution of minicolumns within the cortex. Javier DeFelipe, Cajal Institute, Spain In this context, we review differences in minicolumns and GABAergic interneurons among *Correspondence: species and discuss possible implications for signaling among and within minicolumns. Mary Ann Raghanti, Department of Furthermore, we discuss how abnormalities of both minicolumn disposition and inhibitory Anthropology, 226 Lowry Hall, Kent interneurons might be associated with neuropathological processes, such as Alzheimer’s State University, Kent, OH 44242, USA. disease, autism, and schizophrenia. Specifi cally, we explore the possibility that phylogenetic e-mail: [email protected] variability in calcium-binding protein-expressing interneuron subtypes is directly related to differences in minicolumn morphology among species and might contribute to neuropathological susceptibility in humans.
    [Show full text]
  • The Anatomical Problem Posed by Brain Complexity and Size: a Potential Solution
    SPECIALTY GRAND CHALLENGE published: 20 August 2015 doi: 10.3389/fnana.2015.00104 The anatomical problem posed by brain complexity and size: a potential solution Javier DeFelipe* Laboratorio Cajal de Circuitos Corticales (Centro de Tecnología Biomédica: UPM), Instituto Cajal (CSIC) and CIBERNED, Madrid, Spain Over the years the field of neuroanatomy has evolved considerably but unraveling the extraordinary structural and functional complexity of the brain seems to be an unattainable goal, partly due to the fact that it is only possible to obtain an imprecise connection matrix of the brain. The reasons why reaching such a goal appears almost impossible to date is discussed here, together with suggestions of how we could overcome this anatomical problem by establishing new methodologies to study the brain and by promoting interdisciplinary collaboration. Generating a realistic computational model seems to be the solution rather than attempting to fully reconstruct the whole brain or a particular brain region. Keywords: neuron doctrine, electron microscopy, connectome, synaptome, choice of species for studying the brain, interdisciplinary approaches Edited by: The Magnitude of the Problem Kathleen S. Rockland, Boston University School of Medicine, USA ‘‘Gentlemen, instead of promising to satisfy your curiosity about the anatomy of the brain, I intend here to make the sincere, public confession that this is a subject on which I know Reviewed by: Robert P. Vertes, nothing at all.’’ Florida Atlantic University, USA —Opening words of the ‘‘Discours sur l’anatomie du cerveau’’ Julian Budd, delivered by Nicolaus Steno (1638–1686) in 1669 (Steno, 1669). University of Sussex, UK *Correspondence: The words used by Nicolaus Steno to make his point could be taken as an introductory sentence Javier DeFelipe, to describe the magnitude of the problem in dealing with the anatomy of the brain, not only due Laboratorio Cajal de Circuitos to the complexity of its organization, but also because our knowledge of the brain is far from Corticales (Centro de Tecnología complete.
    [Show full text]
  • Unique Scales Preserve Self-Similar Integrate-And-Fire Functionality Of
    www.nature.com/scientificreports OPEN Unique scales preserve self‑similar integrate‑and‑fre functionality of neuronal clusters Anar Amgalan1,2,7, Patrick Taylor3,7, Lilianne R. Mujica‑Parodi1,2,4* & Hava T. Siegelmann3,5,6* Brains demonstrate varying spatial scales of nested hierarchical clustering. Identifying the brain’s neuronal cluster size to be presented as nodes in a network computation is critical to both neuroscience and artifcial intelligence, as these defne the cognitive blocks capable of building intelligent computation. Experiments support various forms and sizes of neural clustering, from handfuls of dendrites to thousands of neurons, and hint at their behavior. Here, we use computational simulations with a brain‑derived fMRI network to show that not only do brain networks remain structurally self‑similar across scales but also neuron‑like signal integration functionality (“integrate and fre”) is preserved at particular clustering scales. As such, we propose a coarse‑graining of neuronal networks to ensemble‑nodes, with multiple spikes making up its ensemble‑spike and time re‑scaling factor defning its ensemble‑time step. This fractal‑like spatiotemporal property, observed in both structure and function, permits strategic choice in bridging across experimental scales for computational modeling while also suggesting regulatory constraints on developmental and evolutionary “growth spurts” in brain size, as per punctuated equilibrium theories in evolutionary biology. Neuronal clustering is observed far more frequently than
    [Show full text]
  • TOWARDS the NEURAL CODE ENDOWED in CORTICAL MICROCOLUMNS Arturo Tozzi Center for Nonlinear Science, University of North Texas 11
    TOWARDS THE NEURAL CODE ENDOWED IN CORTICAL MICROCOLUMNS Arturo Tozzi Center for Nonlinear Science, University of North Texas 1155 Union Circle, #311427 Denton, TX 76203-5017, USA, and Computational Intelligence Laboratory, University of Manitoba, Winnipeg, Canada Winnipeg R3T 5V6 Manitoba ASL NA2 Nord [email protected] James F. Peters Department of Electrical and Computer Engineering, University of Manitoba 75A Chancellor’s Circle, Winnipeg, MB R3T 5V6, Canada and Department of Mathematics, Adıyaman University, 02040 Adıyaman, Turkey, Department of Mathematics, Faculty of Arts and Sciences, Adıyaman University 02040 Adıyaman, Turkey and Computational Intelligence Laboratory, University of Manitoba, WPG, MB, R3T 5V6, Canada [email protected] Ottorino Ori Actinium Chemical Research, Via Casilina 1626/A, 00133 Rome, Italy [email protected] ABSTRACT Artificial neural systems and nervous graph theoretical analysis rely upon the stance that the neural code is endowed in logic circuits, e.g., spatio-temporal sequences of ON/OFF spiking neurons. Nevertheless, this assumption does not fully explain complex brain functions. Here we show how nervous activity, other than logic circuits, could instead depend on topological transformations and symmetry constraints occurring at the micro-level of the cortical microcolumn, i.e., the embryological, anatomical and functional basic unit of the brain. Tubular microcolumns can be flattened in guise of a fullerene-like two-dimensional lattices, equipped with about 80 nodes, standing for pyramidal neurons, where neural computations take place. We show how the countless possible combinations of activated neurons embedded in the lattice resemble a barcode. Different assemblies of firing neurons might stand for diverse codes, each one responsible for a single mental activity.
    [Show full text]