Drozd and Kirichenko's "Finite Dimensional Algebras"

Total Page:16

File Type:pdf, Size:1020Kb

Drozd and Kirichenko's Yurij A. Drozd Vladimir V. Kirichenko Finite Dimensional Algebras With an Appendix by Vlastimil Dlab Translated from the Russian by Vlastimil Dlab Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Hong Kong Barcelona Budapest Yurij A. Drozd Vladimir V. Kirichenko Faculty of Mechanics and Mathematics Kiev Taras Shevchenko University 252617 Kiev, Ukraina Translator: Vlastimil Dlab Department of Mathematics and Statistics Carleton University Ottawa K1S 5B6, Canada Title of the Russian edition: Konechnomemye algebry. Publisher of Kiev State University, Vishcha Shkola, Kiev 1980 Mathematics Subject Classification (1991): 16P10, 16GlO, 16K20 ISBN-13:978-3-642-76246-8 e-ISBN-13:978-3-642-76244-4 DOl: 10.1007/978-3-642-76244-4 Cataloging-in-Publication Data applied for This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9. 1965. in its current version. and permission for use must always be obtained from Springer-Verlag. Violations are liable for prosecution under the German Copyright Law. © Springer-Verlag Berlin Heidelberg 1994 Softcover reprint of the hardcover 1st edition 1994 Typesetting: Camera-ready copy from the translator SPIN 10028296 4113140 - 5 432 I 0 - Printed on acid-free paper Preface to the English Edition This English edition has an additional chapter "Elements of Homological Al­ gebra". Homological methods appear to be effective in many problems in the theory of algebras; we hope their inclusion makes this book more complete and self-contained as a textbook. We have also taken this occasion to correct several inaccuracies and errors in the original Russian edition. We should like to express our gratitude to V. Dlab who has not only metic­ ulously translated the text, but has also contributed by writing an Appendix devoted to a new important class of algebras, viz. quasi-hereditary algebras. Finally, we are indebted to the publishers, Springer-Verlag, for enabling this book to reach such a wide audience in the world of mathematical community. Kiev, February 1993 Yu.A. Drozd V.V. Kirichenko Preface The theory of finite dimensional algebras is one of the oldest branches of modern algebra. Its origin is linked to the work of Hamilton who discovered the famous algebra of quaternions, and Cayley who developed matrix theory. Later finite dimensional algebras were studied by a large number of mathematicians including B. Peirce, C.S. Peirce, Clifford, ·Weierstrass, Dedekind, Jordan and Frobenius. At the end of the last century T. Molien and E. Cartan described the semisimple algebras over the complex and real fields and paved the first steps towards the study of non-semi simple algebras. A new period in the development of the theory of finite dimensional al­ gebras opened with the work of Wedderburn; the fundamental results of this theory belong to him: a description of the structure of semis imp Ie algebras over an arbitrary field; the theorem on lifting the quotient algebra by its rad­ ical; the theorem on commutativity of finite division rings, etc. Most of his results were extended to rings with minimal condition (artinian rings) and the theory of semi simple algebras found its present form in the work of algebraists from the German school headed by E. Noether, E. Artin and R. Brauer. More­ over, their work exposed the fundamental role of the concept of a module (or representation) . Further development of the theory advanced basically in two directions. The first led to establishing the theory of infinite dimensional algebras (and rings without chain conditions); those results are reflected in the monograph "Structure of rings" by N. Jacobson. The second direction - the study of the structure of non-semisimple algebras - met considerable difficulties, most of which were not overcome till now. Therefore papers which single out and describe "natural" classes of algebras occupy here an important place. This direction originates in the investigations of Kothe, Asano and Nakayama of principal ideal algebras and their generalizations. Throughout its development, the theory of finite dimensional algebras was closely related to various branches of mathematics, acquiring from them new ideas and methods, and in turn exerting influence on their development. In the initial period, the most profound connections were to linear algebra, the theory of groups and their representations and Galois theory. Recently, in particular in connection with the study of non-semisimple algebras, an important role is being played by methods of homological algebra, category theory and algebraic geometry. viii Preface The present book is intended to be a modern textbook on the theory of finite dimensional algebras. The basic tools of investigation are methods of the theory of modules (representations), which, in our opinion, allow a very simple and clear approach both to classical and new results. Naturally, we cannot pursue all directions equally. The principal goal of this book is structure theory, i. e. investigation of the structure of algebras. In particular, the general theory of representations of algebras, which is presently undergoing a remarkable resurgence, is almost not touched upon. Undoubtedly, specialists will notice the absence of some other areas recently developed. Nevertheless, we hope that the present book will enable the reader to learn the basic results of the classical theory of algebras and to acquire sufficient background to follow and be able to get familiar with contemporary inv~stigations. A large portion of the book is based on the standard university course in abstract and linear algebra and is fully accessible to students of the second and third year. In particular, we do not assume knowledge of any preliminary information on the theory of rings and modules (moreover, the word "ring" is almost absent in the book). The chapters devoted to group representations and Galois theory require, of course, familiarity with elements of group theory (for instance, to the extent of A.1. Kostrikin's textbook "An introduction to algebra"). At the end of each chapter, we provide exercises of varied complexity which contain examples instrumental for understanding the material as well as fragments of theories which are not reflected in the main text. We strongly recommend that readers (and in particular, beginners) work through most of the exercises on their first reading. The most difficult ones are accompanied by rather explicit hints. The content of the book is divided into three parts. The first part consists of Chapters 1-3; here the basic concepts of the theory of algebras are discussed, and the classical theory of semisimple algebras and radicals is explained. The second part, Chapters 4-6, can be called the "subtle theory of semisimple algebras". Here, using the technique of tensor products and bimodules, the theory of central simple algebras, elements of Galois field theory, the concept of the Brauer group and the theory of separable algebras are presented. Finally, the third part, Chapters 8-10, is devoted to more recent results: to the Morita theorem on equivalence of module categories, to the theory of quasi-Frobenius, uniserial, hereditary and serial algebras. Some of the results of these latter chapters until now have been available only in journal articles. A somewhat special place is occupied by Chapter 7; in it are developed, based on the results from semisimple algebras, the theory of group representations up to the integral theorems and the Burnside theorem on solvability of a group of order paqb. Naturally, we have not tried to formulate and prove theorems in their ut­ most generality. Besides, we have used the fact that we deal only with the finite dimensional case whenever, in our view, it simplified our presentation. An experienced reader will certainly note that many results hold, for example, for arbitrary artinian rings. Very often such generalizations follow almost au­ tomatically, and when this is not the case, it would be necessary to introduce Preface ix sufficiently complex new concepts, which, in our opinion, could make reading the book substantially more difficult. We are not presenting a complete list of references on finite dimensional algebras because, even when restricted to topics covered in the book, it would probably be comparable in length to the entire work. We point out only sev­ eral textbooks and monographs in which the reader can get acquainted with other aspects of the theory of rings and algebras [1,2,4-9]. The questions of arithmetic of semisimple algebras are dealt with in the book [10], or in the classical textbook of Deuring [3]. We follow generally used notation. In particular, the symbols <Q, JR, {: de­ note, respectively, the fields of rational, real and complex numbers. Numbering of statements is done in the book by sections. For instance, "Theorem 4.6.5" denotes the fifth theorem in Section 6 of Chapter 4. Contents 1. Introduction ........................................ 1 1.1 Basic Concepts. Examples . 1 1.2 Isomorphisms and Homomorphisms. Division Algebras .. 6 1.3 Representations and Modules. 9 1.4 Submodules and Factor Modules. Ideals and Quotient Algebras . 13 1.5 The Jordan-Holder Theorem .......................... 18 1.6 Direct Sums. 21 1.7 Endomorphisms. The Peirce Decomposition. .. 23 Exerises to Chapter 1 .. .. 29 2. Semisimple Algebras. 31 2.1 Schur's Lemma. 31 2.2 Semisimple Modules and Algebras ...................... 32 2.3 Vector Spaces and Matrices . .. 35 2.4 The Wedderburn-Artin Theorem ....................... 38 2.5 Uniqueness of the Decomposition . 39 2.6 Representations of Semisimple Algebras .................. 40 Exercises to Chapter 2 .............................. 43 3. The Radical. 44 3.1 The Radical of a Module and of an Algebra.
Recommended publications
  • An Introduction to Operad Theory
    AN INTRODUCTION TO OPERAD THEORY SAIMA SAMCHUCK-SCHNARCH Abstract. We give an introduction to category theory and operad theory aimed at the undergraduate level. We first explore operads in the category of sets, and then generalize to other familiar categories. Finally, we develop tools to construct operads via generators and relations, and provide several examples of operads in various categories. Throughout, we highlight the ways in which operads can be seen to encode the properties of algebraic structures across different categories. Contents 1. Introduction1 2. Preliminary Definitions2 2.1. Algebraic Structures2 2.2. Category Theory4 3. Operads in the Category of Sets 12 3.1. Basic Definitions 13 3.2. Tree Diagram Visualizations 14 3.3. Morphisms and Algebras over Operads of Sets 17 4. General Operads 22 4.1. Basic Definitions 22 4.2. Morphisms and Algebras over General Operads 27 5. Operads via Generators and Relations 33 5.1. Quotient Operads and Free Operads 33 5.2. More Examples of Operads 38 5.3. Coloured Operads 43 References 44 1. Introduction Sets equipped with operations are ubiquitous in mathematics, and many familiar operati- ons share key properties. For instance, the addition of real numbers, composition of functions, and concatenation of strings are all associative operations with an identity element. In other words, all three are examples of monoids. Rather than working with particular examples of sets and operations directly, it is often more convenient to abstract out their common pro- perties and work with algebraic structures instead. For instance, one can prove that in any monoid, arbitrarily long products x1x2 ··· xn have an unambiguous value, and thus brackets 2010 Mathematics Subject Classification.
    [Show full text]
  • Math 210B. Finite-Dimensional Commutative Algebras Over a Field Let a Be a Nonzero finite-Dimensional Commutative Algebra Over a field K
    Math 210B. Finite-dimensional commutative algebras over a field Let A be a nonzero finite-dimensional commutative algebra over a field k. Here is a general structure theorem for such A: Theorem 0.1. The set Max(A) of maximal ideals of A is finite, all primes of A are maximal and minimal, and the natural map Y A ! Am m is an isomorphism, with each Am having nilpotent maximal ideal. Qn In particular, if A is reduced then A ' i=1 ki for fields ki, with the maximal ideals given by the kernels of the projections A ! ki. The assertion in the reduced case follows from the rest since if A is reduced then so is each Am (and hence its nilpotent unique maximal ideal vanishes, implying Am must be a field). Note also that the nilpotence of the maximal ideal mAm implies that for some large n we have n n n Am = Am=m Am = (A=m )m = A=m (final equality since m is maximal in A), so the isomorphism in the Theorem can also be expressed Q n as saying A ' m A=m for large n. Most of the proof of this result is worked out in HW1 Exercise 7, and here we just address one point: the nilpotence of the maximal ideal of the local ring Am at each maximal ideal m of A. That is, we claim that the maximal ideal M := mAm is nilpotent. To establish such nilpotence, note that M is finitely generated as an Am-module since Am is noetherian (as A is obviously noetherian!).
    [Show full text]
  • Irreducible Representations of Finite Monoids
    U.U.D.M. Project Report 2019:11 Irreducible representations of finite monoids Christoffer Hindlycke Examensarbete i matematik, 30 hp Handledare: Volodymyr Mazorchuk Examinator: Denis Gaidashev Mars 2019 Department of Mathematics Uppsala University Irreducible representations of finite monoids Christoffer Hindlycke Contents Introduction 2 Theory 3 Finite monoids and their structure . .3 Introductory notions . .3 Cyclic semigroups . .6 Green’s relations . .7 von Neumann regularity . 10 The theory of an idempotent . 11 The five functors Inde, Coinde, Rese,Te and Ne ..................... 11 Idempotents and simple modules . 14 Irreducible representations of a finite monoid . 17 Monoid algebras . 17 Clifford-Munn-Ponizovski˘ıtheory . 20 Application 24 The symmetric inverse monoid . 24 Calculating the irreducible representations of I3 ........................ 25 Appendix: Prerequisite theory 37 Basic definitions . 37 Finite dimensional algebras . 41 Semisimple modules and algebras . 41 Indecomposable modules . 42 An introduction to idempotents . 42 1 Irreducible representations of finite monoids Christoffer Hindlycke Introduction This paper is a literature study of the 2016 book Representation Theory of Finite Monoids by Benjamin Steinberg [3]. As this book contains too much interesting material for a simple master thesis, we have narrowed our attention to chapters 1, 4 and 5. This thesis is divided into three main parts: Theory, Application and Appendix. Within the Theory chapter, we (as the name might suggest) develop the necessary theory to assist with finding irreducible representations of finite monoids. Finite monoids and their structure gives elementary definitions as regards to finite monoids, and expands on the basic theory of their structure. This part corresponds to chapter 1 in [3]. The theory of an idempotent develops just enough theory regarding idempotents to enable us to state a key result, from which the principal result later follows almost immediately.
    [Show full text]
  • The Exchange Property and Direct Sums of Indecomposable Injective Modules
    Pacific Journal of Mathematics THE EXCHANGE PROPERTY AND DIRECT SUMS OF INDECOMPOSABLE INJECTIVE MODULES KUNIO YAMAGATA Vol. 55, No. 1 September 1974 PACIFIC JOURNAL OF MATHEMATICS Vol. 55, No. 1, 1974 THE EXCHANGE PROPERTY AND DIRECT SUMS OF INDECOMPOSABLE INJECTIVE MODULES KUNIO YAMAGATA This paper contains two main results. The first gives a necessary and sufficient condition for a direct sum of inde- composable injective modules to have the exchange property. It is seen that the class of these modules satisfying the con- dition is a new one of modules having the exchange property. The second gives a necessary and sufficient condition on a ring for all direct sums of indecomposable injective modules to have the exchange property. Throughout this paper R will be an associative ring with identity and all modules will be right i?-modules. A module M has the exchange property [5] if for any module A and any two direct sum decompositions iel f with M ~ M, there exist submodules A\ £ At such that The module M has the finite exchange property if this holds whenever the index set I is finite. As examples of modules which have the exchange property, we know quasi-injective modules and modules whose endomorphism rings are local (see [16], [7], [15] and for the other ones [5]). It is well known that a finite direct sum M = φj=1 Mt has the exchange property if and only if each of the modules Λft has the same property ([5, Lemma 3.10]). In general, however, an infinite direct sum M = ®i&IMi has not the exchange property even if each of Λf/s has the same property.
    [Show full text]
  • THE TESTIDEALS PACKAGE for MACAULAY2 1. Introduction This Paper Describes Methods for Computing Objects and Numerical Invariants
    THE TESTIDEALS PACKAGE FOR MACAULAY2 ALBERTO F. BOIX, DANIEL J. HERNANDEZ,´ ZHIBEK KADYRSIZOVA, MORDECHAI KATZMAN, SARA MALEC, MARCUS ROBINSON, KARL SCHWEDE, DANIEL SMOLKIN, PEDRO TEIXEIRA, AND EMILY E. WITT Abstract. This note describes a Macaulay2 package for computations in prime characteristic commutative algebra. This includes Frobenius powers and roots, p−e-linear and pe-linear maps, singularities defined in terms of these maps, different types of test ideals and modules, and ideals compatible with a given p−e-linear map. 1. Introduction This paper describes methods for computing objects and numerical invariants in prime characteristic commutative algebra, implemented in the package TestIdeals for the computer algebra system Macaulay2 [GS]. A ring R of prime characteristic p comes equipped with the Frobenius endomorphism F : R −! R given by F (x) = xp; which is the basis for many constructions and methods. Notably, the Frobenius endomorphism can be used to detect whether a ring is regular [Kun69], and fur- ther, to quantify how far a ring is from being regular, measuring the severity of a singularity. In this direction, two notable applications of the Frobenius endomorphism are the theory of tight closure (see [HH90, Hoc07] for an introduction) and the resulting theory of test ideals (see the survey [ST12]). These methods are used by a wide group of commutative algebraists and algebraic geometers. The TestIdeals package was started during a Macaulay2 development work- shop in 2012, hosted by Wake Forest University. The package, at that time called PosChar, aimed at providing a unified and efficient set of tools to study singulari- ties in characteristic p > 0, and in particular, collecting and implementing several algorithms that had been described in research papers.
    [Show full text]
  • The Structure of the Group of Rational Points of an Abelian Variety Over a Finite Field
    THE STRUCTURE OF THE GROUP OF RATIONAL POINTS OF AN ABELIAN VARIETY OVER A FINITE FIELD CALEB SPRINGER Abstract. Let A be a simple abelian variety of dimension g defined over a finite field Fq with Frobenius endomorphism π. This paper describes the structure of the group of rational points A(Fqn ), for all n 1, as a module over the ring R of endomorphisms which are defined ≥ over Fq, under certain technical conditions. If [Q(π): Q]=2g and R is a Gorenstein ring, n F n then A( q ) ∼= R/R(π 1). This includes the case when A is ordinary and has maximal real multiplication. Otherwise,− if Z is the center of R and (πn 1)Z is the product of d n − invertible prime ideals in Z, then A(Fqn ) = R/R(π 1) where d =2g/[Q(π): Q]. Finally, ∼ − we deduce the structure of A(Fq) as a module over R under similar conditions. These results generalize results of Lenstra for elliptic curves. 1. Introduction Given an abelian variety A over a finite field Fq, one may view the group of rational points A(Fq) as a module over the ring EndFq (A) of endomorphisms defined over Fq. Lenstra completely described this module structure for elliptic curves over finite fields in the following theorem. In addition to being useful and interesting in its own right, this theorem also determines a fortiori the underlying abelian group structure of A(Fq) purely in terms of the endomorphism ring. The latter perspective has been leveraged for the sake of computational number theory and cryptography; see, for example, the work of Galbraith [6, Lemma 1], Ionica and Joux [8, §2.3], and Kohel [12, Chapter 4].
    [Show full text]
  • Frobenius Maps of Abelian Varieties and Finding Roots of Unity in Finite Fields J
    Frobenius Maps of Abelian Varieties and Finding Roots of Unity in Finite Fields J. Pila “If ’twere done when ’tis done, then ’twere well / It were done quickly.” –Macbeth. Abstract. We give a generalization to Abelian varieties over finite fields of the algorithm of Schoof for elliptic curves. Schoof showed that for an elliptic curve E over Fq given by a Weierstrass equation one can compute the number of Fq– rational points of E in time O((log q)9). Our result is the following. Let A be an Abelian variety over Fq. Then one can compute the characteristic polynomial of the Frobenius endomorphism of A in time O((log q)∆) where ∆ and the implied constant depend only on the dimension of the embedding space of A, the number of equations defining A and the addition law, and their degrees. The method, generalizing that of Schoof, is to use the machinery developed by Weil to prove the Riemann hypothesis for Abelian varieties. By means of this theory, the calculation is reduced to ideal theoretic computations in a ring of polynomials in several variables over Fq. As applications we show how to count the rational points on the reductions modulo primes p of a fixed curve over Q in time polynomial in log p; we show also that, for a fixed prime `, we can compute the `th roots of unity mod p, when they exist, in polynomial time in log p. This generalizes Schoof’s application of his algorithm to find square roots of a fixed integer x mod p. 1.
    [Show full text]
  • The Frobenius Endomorphism and Multiplicities
    The Frobenius Endomorphism and Multiplicities by Linquan Ma A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Mathematics) in The University of Michigan 2014 Doctoral Committee: Professor Melvin Hochster, Chair Professor Hyman Bass Professor Harm Derksen Professor Mircea Mustat¸˘a Professor Karen E. Smith To my parents ii ACKNOWLEDGEMENTS First and foremost, I would like to express my deep gratitude to my advisor, Mel Hochster, for his constant support and encouragement. His ingenious ideas and invaluable advice have helped me a lot in my research throughout the years. I would like to thank Hyman Bass, Harm Derksen, Mircea Mustat¸˘a,and Karen Smith for being my dissertation committee members. I am particularly thankful to Mircea Mustat¸˘aand Karen Smith for teaching me many algebraic geometry courses and answering my questions. I want to thank Karl Schwede and Wenliang Zhang, for answering numerous of my questions and for lots of inspirational discussions in mathematics. It is a pleasure to thank Zhixian Zhu, Xin Zhou, Felipe P´erez,Yefeng Shen and Sijun Liu for many helpful mathematical conversations throughout the years. I am also grateful to all my friends at Peking University and University of Michigan. Special thanks go to Jingchen Wu, for being a great friend and especially for organizing the Crosstalk shows that add color to my mathematical life. We are an excellent \couple" in Crosstalk! Last but definitely not least, I would like to thank my parents for their kind support and encouragement. iii TABLE OF CONTENTS DEDICATION :::::::::::::::::::::::::::::::::::::::::: ii ACKNOWLEDGEMENTS :::::::::::::::::::::::::::::::::: iii CHAPTER I.
    [Show full text]
  • Simpleness of Leavitt Path Algebras with Coefficients in a Commutative
    Simpleness of Leavitt Path Algebras with Coefficients in a Commutative Semiring Y. Katsov1, T.G. Nam2, J. Zumbr¨agel3 [email protected]; [email protected]; [email protected] 1 Department of Mathematics Hanover College, Hanover, IN 47243–0890, USA 2 Institute of Mathematics, VAST 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam 3 Institute of Algebra Dresden University of Technology, Germany Abstract In this paper, we study ideal- and congruence-simpleness for the Leavitt path algebras of directed graphs with coefficients in a commu- tative semiring S, as well as establish some fundamental properties of those algebras. We provide a complete characterization of ideal- simple Leavitt path algebras with coefficients in a semifield S that extends the well-known characterizations when the ground semir- ing S is a field. Also, extending the well-known characterizations when S is a field or commutative ring, we present a complete charac- terization of congruence-simple Leavitt path algebras over row-finite graphs with coefficients in a commutative semiring S. Mathematics Subject Classifications: 16Y60, 16D99, 16G99, 06A12; 16S10, 16S34. Key words: Congruence-simple and ideal-simple semirings, Leav- itt path algebra. arXiv:1507.02913v1 [math.RA] 10 Jul 2015 1 Introduction In some way, “prehistorical” beginning of Leavitt path algebras started with Leavitt algebras ([18] and [19]), Bergman algebras ([7]), and graph C∗- algebras ([9]), considering rings with the Invariant Basis Number property, The second author is supported by the Vietnam National Foundation for Science and Technology Development (NAFOSTED). The third author is supported by the Irish Research Council under Research Grant ELEVATEPD/2013/82.
    [Show full text]
  • A Course in Commutative Algebra
    Graduate Texts in Mathematics 256 A Course in Commutative Algebra Bearbeitet von Gregor Kemper 1. Auflage 2010. Buch. xii, 248 S. Hardcover ISBN 978 3 642 03544 9 Format (B x L): 0 x 0 cm Gewicht: 1200 g Weitere Fachgebiete > Mathematik > Algebra Zu Inhaltsverzeichnis schnell und portofrei erhältlich bei Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft. Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr als 8 Millionen Produkte. Chapter 1 Hilbert’s Nullstellensatz Hilbert’s Nullstellensatz may be seen as the starting point of algebraic geom- etry. It provides a bijective correspondence between affine varieties, which are geometric objects, and radical ideals in a polynomial ring, which are algebraic objects. In this chapter, we give proofs of two versions of the Nullstellensatz. We exhibit some further correspondences between geometric and algebraic objects. Most notably, the coordinate ring is an affine algebra assigned to an affine variety, and points of the variety correspond to maximal ideals in the coordinate ring. Before we get started, let us fix some conventions and notation that will be used throughout the book. By a ring we will always mean a commutative ring with an identity element 1. In particular, there is a ring R = {0},the zero ring,inwhich1=0.AringR is called an integral domain if R has no zero divisors (other than 0 itself) and R ={0}.Asubring of a ring R must contain the identity element of R, and a homomorphism R → S of rings must send the identity element of R to the identity element of S.
    [Show full text]
  • Motives Over Fp
    Motives over Fp J.S. Milne July 22, 2006 Abstract In April, 2006, Kontsevich asked me whether the category of motives over Fp (p prime), has a fibre functor over a number field of finite degree since he had a conjecture that more-or-less implied this. This article is my response. Unfortunately, since the results are generally negative or inconclusive, they are of little interest except perhaps for the question they raise on the existence of a cyclic extension of Q having certain properties (see Question 6.5). Let k be a finite field. Starting from any suitable class S of algebraic varieties over k including the abelian varieties and using the correspondences defined by algebraic cycles modulo numerical equivalence, we obtain a graded tannakian category Mot.k/ of motives. Let Mot0.k/ be the subcategory of motives of weight 0 and assume that the Tate conjecture holds for the varieties in S. For a simple motive X, D End.X/ is a division algebra with centre the subfield D F QŒX generated by the Frobenius endomorphism X of X and D 1 rank.X/ ŒD F 2 ŒF Q: D W W Therefore, D can act on a Q-vector space of dimension rank.X/ only if it is commutative. Since this is never the case for the motive of a supersingular elliptic curve or of the abelian variety obtained by restriction of scalars from such a curve, there cannot be a Q-valued fibre functor on the full category Mot.k/. Let k Fq. Then, for each prime v of F , D 8 1=2 if v is real and X has odd weight ˆ < ordv.X / invv.D/ ŒFv Qp if v p (1) D ˆ ordv.q/ W j :ˆ 0 otherwise (Tate’s formula; see Milne 1994, 2.16).
    [Show full text]
  • On Orders in Separable Algebras
    ON ORDERS IN SEPARABLE ALGEBRAS D. G. HIGMAN Introduction. The present note began from the observation that the arguments produced by J-M. Maranda in developing his very interesting theory of representations of groups by automorphisms of modules over Dedekind rings (4, 5) were applicable without essential change to arbitrary orders, instead of just group rings, provided that a suitable generalization of Theorem 1 of (4) could be supplied. We prove that when the ring of integers is a Dedekind ring a certain integral ideal /(©) vanishes if and only if © is an order in a separable algebra, thus extending Maranda's results to these orders and indicating that an essential change can be expected in going beyond this case. The author is indebted to Professor Maranda for the opportunity of studying (5) before its publication. Notations. The following notations will be fixed throughout. Q = Dedekind ring. K = quotient field of Q. A = (finite dimensional linear associative) algebra over K with identity element e. © = g-order in A. 1. The ideal /(©). By a two-sided G-module we shall understand a module T having © both as a ring of left and right operators such that (r«)i? = r(«^)i eu = ue = u (f, rj 6 G, u 6 T), which is finitely generated over g. For such a two-sided ©-module T we shall denote by Z(T) the g-module of all g-homomorphisms <j> of © into T such that (i) *(fr) = ww + *(r)* (r, ^®), and by B(T) the submodule of 0 € Z(T) for which there exist elements u Ç T such that (2) 0(co) = œu — uo) (w Ç ®).
    [Show full text]