06-K. Matsuura-301
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Marketed Marine Natural Products in the Pharmaceutical and Cosmeceutical Industries: Tips for Success
Mar. Drugs 2014, 12, 1066-1101; doi:10.3390/md12021066 OPEN ACCESS marine drugs ISSN 1660-3397 www.mdpi.com/journal/marinedrugs Review Marketed Marine Natural Products in the Pharmaceutical and Cosmeceutical Industries: Tips for Success Ana Martins 1, Helena Vieira 1,2, Helena Gaspar 3 and Susana Santos 3,* 1 BIOALVO, S.A., Tec Labs Centro de Inovação, Campus da FCUL, Campo Grande, Lisboa 1749-016, Portugal; E-Mails: [email protected] (A.M.); [email protected] (H.V.) 2 Center for Biodiversity, Functional & Integrative Genomics (BioFIG) and Departamento de Estatística e Investigação Operacional (DEIO), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa 1749-016, Portugal 3 Centro de Química e Bioquímica (CQB) and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa 1749-016, Portugal; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +351-217-500-948; Fax: +351-217-500-088. Received: 2 December 2013; in revised form: 14 January 2014 / Accepted: 27 January 2014 / Published: 17 February 2014 Abstract: The marine environment harbors a number of macro and micro organisms that have developed unique metabolic abilities to ensure their survival in diverse and hostile habitats, resulting in the biosynthesis of an array of secondary metabolites with specific activities. Several of these metabolites are high-value commercial products for the pharmaceutical and cosmeceutical industries. The aim of this review is to outline the paths of marine natural products discovery and development, with a special focus on the compounds that successfully reached the market and particularly looking at the approaches tackled by the pharmaceutical and cosmetic companies that succeeded in marketing those products. -
2. Puffer Fish
Puffer Fish and its Consumption: To Eat or Not to Eat? Inês Panão 1, Conrado Carrascosa 2, José Raduán Jaber 3, António Raposo* 1 1Centro de Investigação Interdisciplinar Egas Moniz, CiiEM, Instituto Superior de Ciências da Saúde Egas Moniz, ISCSEM, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal. 2Department of Animal Pathology and Production, Bromatology and Food Technology, Faculty of Veterinary, Universidad de Las Palmas de Gran Canaria, Trasmontaña s/n, 35413 Arucas, Spain. 3Department of Morphology, Faculty of Veterinary, Universidad de Las Palmas de Gran Canaria, Trasmontaña s/n, 35413 Arucas, Spain. Corresponding author: António Raposo, E-mail address: [email protected], Phone: (+351)918376093 Abstract This systematic review was done to examine the substantial increase in the number of intoxication cases in puffer fish associated with tetrodotoxin. In the past 5 years, 430 cases of intoxication and 52 deaths associated with puffer fish have been reported worldwide. It has also been verified that puffer fish have migrated to different regions, which has led to a negative Downloaded by [António Raposo] at 05:58 25 July 2015 environmental impact. Based on the information obtained herein, consumption of puffer fish should be legally limited, although it still remains very popular in several regions with negative social and economic impacts. Keywords:Accepted puffer fish; tetrodotoxin; food safety; food-borneManuscript diseases; toxicity. 1 1. Introduction Nowadays, the fish industry is an international business whose global production is estimated at US$ 232 billion in 2012 (1) . Fisheries provide economic and nutritional benefits to people worldwide and are a major source of dietary animal protein (2) . -
Biodiversity of Arctic Marine Fishes: Taxonomy and Zoogeography
Mar Biodiv DOI 10.1007/s12526-010-0070-z ARCTIC OCEAN DIVERSITY SYNTHESIS Biodiversity of arctic marine fishes: taxonomy and zoogeography Catherine W. Mecklenburg & Peter Rask Møller & Dirk Steinke Received: 3 June 2010 /Revised: 23 September 2010 /Accepted: 1 November 2010 # Senckenberg, Gesellschaft für Naturforschung and Springer 2010 Abstract Taxonomic and distributional information on each Six families in Cottoidei with 72 species and five in fish species found in arctic marine waters is reviewed, and a Zoarcoidei with 55 species account for more than half list of families and species with commentary on distributional (52.5%) the species. This study produced CO1 sequences for records is presented. The list incorporates results from 106 of the 242 species. Sequence variability in the barcode examination of museum collections of arctic marine fishes region permits discrimination of all species. The average dating back to the 1830s. It also incorporates results from sequence variation within species was 0.3% (range 0–3.5%), DNA barcoding, used to complement morphological charac- while the average genetic distance between congeners was ters in evaluating problematic taxa and to assist in identifica- 4.7% (range 3.7–13.3%). The CO1 sequences support tion of specimens collected in recent expeditions. Barcoding taxonomic separation of some species, such as Osmerus results are depicted in a neighbor-joining tree of 880 CO1 dentex and O. mordax and Liparis bathyarcticus and L. (cytochrome c oxidase 1 gene) sequences distributed among gibbus; and synonymy of others, like Myoxocephalus 165 species from the arctic region and adjacent waters, and verrucosus in M. scorpius and Gymnelus knipowitschi in discussed in the family reviews. -
OSTRACIIDAE Boxfishes by K
click for previous page 3948 Bony Fishes OSTRACIIDAE Boxfishes by K. Matsuura iagnostic characters: Small to medium-sized (to 40 cm) fishes; body almost completely encased Din a bony shell or carapace formed of enlarged, thickened scale plates, usually hexagonal in shape and firmly sutured to one another; no isolated bony plates on caudal peduncle. Carapace triangular, rectangular, or pentangular in cross-section, with openings for mouth, eyes, gill slits, pectoral, dorsal, and anal fins, and for the flexible caudal peduncle. Scale-plates often with surface granulations which are prolonged in some species into prominent carapace spines over eye or along ventrolateral or dorsal angles of body. Mouth small, terminal, with fleshy lips; teeth moderate, conical, usually less than 15 in each jaw. Gill opening a moderately short, vertical to oblique slit in front of pectoral-fin base. Spinous dorsal fin absent; most dorsal-, anal-, and pectoral-fin rays branched; caudal fin with 8 branched rays; pelvic fins absent. Lateral line inconspicuous. Colour: variable, with general ground colours of either brown, grey, or yellow, usually with darker or lighter spots, blotches, lines, and reticulations. carapace no bony plates on caudal peduncle 8 branched caudal-fin rays Habitat, biology, and fisheries: Slow-swimming, benthic-dwelling fishes occurring on rocky and coral reefs and over sand, weed, or sponge-covered bottoms to depths of 100 m. Feed on benthic invertebrates. Taken either by trawl, other types of nets, or traps. Several species considered excellent eating in southern Japan, although some species are reported to have toxic flesh and are also able to secrete a substance when distressed that is highly toxic, both to other fishes and themselves in enclosed areas such as holding tanks. -
Filling the Gap: a New Record of Diamondback Puffer (Lagocephalus Guentheri Miranda Riberio, 1915) from the West-Eastern Mediterranean Sea, Turkey
J. Black Sea/Mediterranean Environment Vol. 24, No. 2: 180-185 (2018) SHORT COMMUNICATION Filling the gap: a new record of diamondback puffer (Lagocephalus guentheri Miranda Riberio, 1915) from the west-eastern Mediterranean Sea, Turkey Murat Çelik1*, Alan Deidun2, Umut Uyan3, Ioannis Giovos4 1 Faculty of Fisheries, Muğla Sıtkı Koçman University, 48000, Menteşe, Muğla, TURKEY 2Department of Geosciences, University of Malta, Msida MSD 2080 MALTA 3Department of Marine Biology, Pukyong National University, (48513) 45, Yongso-ro, Nam-Gu, Busan, KOREA 4iSea, Environmental Organization for the Preservation of the Aquatic Ecosystems, Ochi Av., 11, Thessaloniki, GREECE *Corresponding author: [email protected] Abstract One specimen of the diamondback puffer, Lagocephalus guentheri (Miranda Riberio, 1915), was recorded along the Turkish coast, off Gökova Bay, through the angling method on 12 June 2017. The morphological features of this species were examined indirectly by image analyses software. This finding also supports the documented occurrence of the diamondback puffer fish along Turkish coasts. Keywords: TTX, pufferfish, invasion, range expansion, Eastern Mediterranean Received: 03.05.2018, Accepted: 29.05.2018 To date, the family Tetraodontidae has contributed and established the highest number of alien fish species in the Mediterranean Sea, being represented by ten members out of a total of 165 confirmed non-indigenous fish species in the Mediterranean so far (Golani et al. 2017). Those are Lagocephalus guentheri (Miranda Riberio, 1915); Lagocephalus suezensis (Clark et Gohar, 1953); Lagocephalus sceleratus (Gmelin, 1789); Lagocephalus spadiceus (Richardson, 1845); Torquigener flavimaculosus (Hardy et Randall, 1983); Tylerius spinosissimus (Regan, 1908); Sphoeroides spengleri (Bloch, 1785); Sphoeroides pachygaster (Muller et Troschel, 1848); Sphoeroides marmoratus (Lowe, 1938); and Ephippion guttifer (Bennett, 1831) (Golani et al. -
Alien Species in the Mediterranean Sea by 2010
Mediterranean Marine Science Review Article Indexed in WoS (Web of Science, ISI Thomson) The journal is available on line at http://www.medit-mar-sc.net Alien species in the Mediterranean Sea by 2010. A contribution to the application of European Union’s Marine Strategy Framework Directive (MSFD). Part I. Spatial distribution A. ZENETOS 1, S. GOFAS 2, M. VERLAQUE 3, M.E. INAR 4, J.E. GARCI’A RASO 5, C.N. BIANCHI 6, C. MORRI 6, E. AZZURRO 7, M. BILECENOGLU 8, C. FROGLIA 9, I. SIOKOU 10 , D. VIOLANTI 11 , A. SFRISO 12 , G. SAN MART N 13 , A. GIANGRANDE 14 , T. KATA AN 4, E. BALLESTEROS 15 , A. RAMOS-ESPLA ’16 , F. MASTROTOTARO 17 , O. OCA A 18 , A. ZINGONE 19 , M.C. GAMBI 19 and N. STREFTARIS 10 1 Institute of Marine Biological Resources, Hellenic Centre for Marine Research, P.O. Box 712, 19013 Anavissos, Hellas 2 Departamento de Biologia Animal, Facultad de Ciencias, Universidad de Ma ’laga, E-29071 Ma ’laga, Spain 3 UMR 6540, DIMAR, COM, CNRS, Université de la Méditerranée, France 4 Ege University, Faculty of Fisheries, Department of Hydrobiology, 35100 Bornova, Izmir, Turkey 5 Departamento de Biologia Animal, Facultad de Ciencias, Universidad de Ma ’laga, E-29071 Ma ’laga, Spain 6 DipTeRis (Dipartimento per lo studio del Territorio e della sue Risorse), University of Genoa, Corso Europa 26, 16132 Genova, Italy 7 Institut de Ciències del Mar (CSIC) Passeig Mar tim de la Barceloneta, 37-49, E-08003 Barcelona, Spain 8 Adnan Menderes University, Faculty of Arts & Sciences, Department of Biology, 09010 Aydin, Turkey 9 c\o CNR-ISMAR, Sede Ancona, Largo Fiera della Pesca, 60125 Ancona, Italy 10 Institute of Oceanography, Hellenic Centre for Marine Research, P.O. -
Tetraodontidae
FAMILY Tetraodontidae Bonaparte, 1832 – pufferfishes GENUS Amblyrhynchotes Troschel, 1856 - puffers Species Amblyrhynchotes hypselogeneion (Bleeker, 1852) - Troschel's puffer [=rueppelii, rufopunctatus] GENUS Arothron Muller, 1841 - pufferfishes [=Boesemanichthys, Catophorhynchus, Crayracion K, Crayracion W, Crayracion B, Cyprichthys, Dilobomycterus, Kanduka] Species Arothron caeruleopunctatus Matsuura, 1994 - bluespotted puffer Species Arothron carduus (Cantor, 1849) - carduus puffer Species Arothron diadematus (Ruppell, 1829) - masked puffer Species Arothron firmamentum (Temminck & Schlegel, 1850) - starry puffer Species Arothron hispidus (Linnaeus, 1758) - whitespotted puffer [=bondarus, implutus, laterna, perspicillaris, punctulatus, pusillus, sazanami, semistriatus] Species Arothron immaculatus (Bloch & Schneider, 1801) - immaculate puffer [=aspilos, kunhardtii, parvus, scaber, sordidus] Species Arothron inconditus Smith, 1958 - bellystriped puffer Species Arothron meleagris (Anonymous, 1798) - guineafowl puffer [=erethizon, lacrymatus, latifrons, ophryas, setosus] Species Arothron manilensis (Marion de Proce, 1822) - narrowlined puffer [=pilosus, virgatus] Species Arothron mappa (Lesson, 1831) - map puffer Species Arothron multilineatus Matsuura, 2016 - manylined puffer Species Arothron nigropunctatus (Bloch & Schneider, 1801) - blackspotted puffer [=aurantius, citrinella, melanorhynchos, trichoderma, trichodermatoides] Species Arothron reticularis (Bloch & Schneider, 1801) - reticulated puffer [=testudinarius] Species Arothron stellatus -
First Record of the Silver-Cheeked Toad Fish Lagocephalus Scleratus (Gmelin, 1789) (Actinopterygii: Tetraodontidae) from Chennai Coastal Waters, Southeast India
Journal of Fisheries eISSN 2311-3111 Volume 5 Issue 1 Pages 465–468 April 2017 pISSN 2311-729X Peer Reviewed | Open Access | Online First Short Communication DOI: http://dx.doi.org/10.17017/jfish.v5i1.2017.200 First record of the silver-cheeked toad fish Lagocephalus scleratus (Gmelin, 1789) (Actinopterygii: Tetraodontidae) from Chennai coastal waters, Southeast India Krishnan Silambarasan 1 Krishnamurthy Sujatha 2 Arumugam Sundaramanickam 3 Elumalai Rajalakshmi 1 Arokia Doss Anitha Joice 1 1PG and Research Department of Zoology, Sir Theagaraya College, Chennai, India 2Dr MGR Educational Research Institute (University), Chennai, India 3CAS Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, India Correspondence Krishnan Silambarasan; P.G. and Research Department of Zoology, Sir Theagaraya College, Chennai, India Email: [email protected] Manuscript history Received: 05 Nov 2016; Received in revised form: 06 Jan 2017; Accepted: 26 Jan 2017; Published online: 31 Jan 2017 Citation Silambarasan K, Sujatha K, Sundaramanickam A, Rajalakshmi E and Anitha Joice A (2017) First record of the silver-cheeked toad fish Lagocephalus scleratus (Gmelin, 1789) (Actinopterygii: Tetraodontidae) from Chennai coastal waters, Southeast India. Journal of Fisheries 5(1): 465–468. DOI: http://dx.doi.org/10.17017/jfish.v5i1.2017.200 Abstract The silver-cheeked toad fish, Lagocephalus scleratus , was recorded for the first time on 25 September 2014. Two specimens of this fish species were collected from the by-catch landed by a commercial deep-sea trawler at Kasimedu Fishing Harbour, Chennai coast, Southeast India. The morphometric and meristic characters of the recorded specimens are described and discussed. The specimen was compared with earlier reports. -
Filling the Gap: a New Record of Diamondback Puffer (Lagocephalus Guentheri Miranda Riberio, 1915) from the West-Eastern Mediterranean Sea, Turkey
J. Black Sea/Mediterranean Environment Vol. 24, No. 2: 180-185 (2018) SHORT COMMUNICATION Filling the gap: a new record of diamondback puffer (Lagocephalus guentheri Miranda Riberio, 1915) from the west-eastern Mediterranean Sea, Turkey Murat Çelik1*, Alan Deidun2, Umut Uyan3, Ioannis Giovos4 1 Faculty of Fisheries, Muğla Sıtkı Koçman University, 48000, Menteşe, Muğla, TURKEY 2Department of Geosciences, University of Malta, Msida MSD 2080 MALTA 3Department of Marine Biology, Pukyong National University, (48513) 45, Yongso-ro, Nam-Gu, Busan, KOREA 4iSea, Environmental Organization for the Preservation of the Aquatic Ecosystems, Ochi Av., 11, Thessaloniki, GREECE *Corresponding author: [email protected] Abstract One specimen of the diamondback puffer, Lagocephalus guentheri (Miranda Riberio, 1915), was recorded along the Turkish coast, off Gökova Bay, through the angling method on 12 June 2017. The morphological features of this species were examined indirectly by image analyses software. This finding also supports the documented occurrence of the diamondback puffer fish along Turkish coasts. Keywords: TTX, pufferfish, invasion, range expansion, Eastern Mediterranean Received: 03.05.2018, Accepted: 29.05.2018 To date, the family Tetraodontidae has contributed and established the highest number of alien fish species in the Mediterranean Sea, being represented by ten members out of a total of 165 confirmed non-indigenous fish species in the Mediterranean so far (Golani et al. 2017). Those are Lagocephalus guentheri (Miranda Riberio, 1915); Lagocephalus suezensis (Clark et Gohar, 1953); Lagocephalus sceleratus (Gmelin, 1789); Lagocephalus spadiceus (Richardson, 1845); Torquigener flavimaculosus (Hardy et Randall, 1983); Tylerius spinosissimus (Regan, 1908); Sphoeroides spengleri (Bloch, 1785); Sphoeroides pachygaster (Muller et Troschel, 1848); Sphoeroides marmoratus (Lowe, 1938); and Ephippion guttifer (Bennett, 1831) (Golani et al. -
Kara M.H., Ben Lamine E., Francour P., 2015. Range Expansion of the Invasive Pufferfish Lagocephalus Sceleratus
ACTA ICHTHYOLOGICA ET PISCATORIA (2015) 45 (1): 103–108 DOI: 10.3750/AIP2015.45.1.13 RANGE EXPANSION OF AN INVASIVE PUFFERFISH, LAGOCEPHALUS SCELERATUS (ACTINOPTERYGII: TETRAODONTIFORMES: TETRAODONTIDAE), TO THE SOUTH-WESTERN MEDITERRANEAN M. Hichem KARA 1* , Emna BEN LAMINE 2, 3 , and Patrice FRANCOUR 3 1 Marine Bioresources Laboratory, Annaba University Badji Mokhtar, Annaba, Algeria 2 Institut National Agronomique de Tunisie, Unité de recherche Écosystèmes & Ressources Aquatiques, Tunis, Tunisia 3 University of Nice Sophia Antipolis, ECOMERS Laboratory, Faculty of Sciences, Nice Cedex, France Kara M.H., Ben Lamine E., Francour P. 2015. Range expansion of an invasive pufferfish, Lagocephalus sceleratus (Actinopterygii: Tetraodontiformes: Tetraodontidae), to the south-western Mediterranean. Acta Ichthyol. Piscat. 45 (1): 103–108 . Abstract. Three specimens of silver-cheeked toadfish, Lagocephalus sceleratus (Gmelin, 1789), were caught on eastern coasts of Algeria during the winter of 2013–2014. This is the first record of this invasive species from Algeria, providing further evidence of its occurrence along north-African coasts and confirming its entry into the Western basin of the Mediterranean. The human-health implications of this toxic fish in this region are discussed . Keywords: fish, Lessepsian migrant, silver-cheeked toadfish , giant toadfish, silverside blaasop, spotted rough- backed blowfish, alien, non-indigenous species, Algeria Representatives of the family Tetraodontidae are of small spinules on the belly and on the dorsal surface marine and estuarine fishes distributed in tropical and sub - extending to the origin of the dorsal fin. tropical areas of the Atlantic-, Indian-, and Pacific Oceans. The silver-cheeked toadfish, Lagocephalus sceleratus This family comprises 26 genera and 189 species (Froese (known also as giant toadfish, silverside blaasop, or spot - and Pauly 2014), among which nine can be found in the ted rough-backed blowfish), is a reef-associated species, Mediterranean (Akyol et al. -
Report of the Technical Meeting on the Lessepsian Migration and Its Impact
EastMed TECHNICAL DOCUMENTS 04 REPORT OF THE TECHNICAL MEETING ON THE LESSEPSIAN MIGRATION AND ITS IMPACT ON EASTERN MEDITERRANEAN FISHERY NICOSIA, CYPRUS 7 - 9 DECEMBER 2010 FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS REPORT OF THE TECHNICAL MEETING ON THE LESSEPSIAN MIGRATION AND ITS IMPACT ON EASTERN MEDITERRANEAN FISHERY NICOSIA, CYPRUS 7 - 9 DECEMBER 2010 Hellenic Ministry of Foreign Affairs ITALIAN MINISTRY OF AGRICULTURE, FOOD AND FORESTRY POLICIES Hellenic Ministry of Rural Development and Food GCP/INT/041/EC – GRE – ITA Athens (Greece), 7-9 December 2010 i The conclusions and recommendations given in this and in other documents in the Scientific and Institutional Cooperation to Support Responsible Fisheries in the Eastern Mediterranean series are those considered appropriate at the time of preparation. They may be modified in the light of further knowledge gained in subsequent stages of the Project. The designations employed and the presentation of material in this publication do not imply the expression of any opinion on the part of FAO or donors concerning the legal status of any country, territory, city or area, or concerning the determination of its frontiers or boundaries. ii Preface The Project “Scientific and Institutional Cooperation to Support Responsible Fisheries in the Eastern Mediterranean- EastMed is executed by the Food and Agriculture Organization of the United Nations (FAO) and funded by Greece, Italy and EC. The Eastern Mediterranean countries have for long lacked a cooperation framework as created for other areas of the Mediterranean, namely the FAO sub-regional projects AdriaMed, MedSudMed, CopeMed II and ArtFiMed. This fact leaded for some countries to be sidelined, where international and regional cooperation for fishery research and management is concerned. -
07 02826 F1.Pdf
ACTA ICHTHYOLOGICA ET PISCATORIA (2020) 50 (3): 325–332 DOI: 10.3750/AIEP/02826 AGE AND GROWTH OF THE LESSEPSIAN MIGRANT LAGOCEPHALUS SPADICEUS (ACTINOPTERYGII: TETRAODONTIFORMES: TETRAODONTIDAE) FROM THE GULF OF ISKENDERUN, NORTH-EASTERN MEDITERRANEAN, TURKEY Asiye BAŞUSTA1, Nuri BAŞUSTA1, Ebru Ifakat OZCAN∗2, and Hülya GİRGİN3 1Firat University, Faculty of Fisheries, Elazığ, Turkey 2Munzur University, Faculty of Fisheries, Tunceli, Turkey 3Dokuz Eylül University, Faculty of Veterinary, Kiraz, Izmir, Turkey Başusta A., Başusta N., Ozcan E.I., Girgin H. 2020. Age and growth of the Lessepsian migrant Lagocephalus spadiceus (Actinopterygii: Tetraodontiformes: Tetraodontidae) from the Gulf of Iskenderun, north- eastern Mediterranean, Turkey. Acta Ichthyol. Piscat. 50 (3): 325–332. Background. The population of Lagocephalus spadiceus (Richardson, 1845), one of the Lessepsian species that migrated from the Red Sea to the Mediterranean Sea through the Suez Canal, has been growing rapidly in Turkey in recent years. This situation poses a serious danger to fisheries and human health. There is little information about the biology of this species. The presently reported study permits a greater understanding of the age and growth characteristics of the pufferfish L. spadiceus from the Gulf of Iskenderun, north-eastern Mediterranean. Materials and methods. Samples were captured by commercial bottom trawlers at depths of 24–50 m during 9 trawling operations conducted during the fishing seasons between 2012 and 2013 in the Gulf of Iskenderun, north- eastern Mediterranean. Age determinations were carried out using vertebrae. Images of vertebrae suitable for age determination were obtained with a dissecting microscope. The index of the mean percentage error (IMPE) was calculated to assess the precision of the age determinations between two independent readers.