Dependency Treebanks: Methods, Annotation Schemes and Tools Tuomo Kakkonen Department of Computer Science University of Joensuu P.O
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
How Do BERT Embeddings Organize Linguistic Knowledge?
How Do BERT Embeddings Organize Linguistic Knowledge? Giovanni Puccettiy , Alessio Miaschi? , Felice Dell’Orletta y Scuola Normale Superiore, Pisa ?Department of Computer Science, University of Pisa Istituto di Linguistica Computazionale “Antonio Zampolli”, Pisa ItaliaNLP Lab – www.italianlp.it [email protected], [email protected], [email protected] Abstract et al., 2019), we proposed an in-depth investigation Several studies investigated the linguistic in- aimed at understanding how the information en- formation implicitly encoded in Neural Lan- coded by BERT is arranged within its internal rep- guage Models. Most of these works focused resentation. In particular, we defined two research on quantifying the amount and type of in- questions, aimed at: (i) investigating the relation- formation available within their internal rep- ship between the sentence-level linguistic knowl- resentations and across their layers. In line edge encoded in a pre-trained version of BERT and with this scenario, we proposed a different the number of individual units involved in the en- study, based on Lasso regression, aimed at understanding how the information encoded coding of such knowledge; (ii) understanding how by BERT sentence-level representations is ar- these sentence-level properties are organized within ranged within its hidden units. Using a suite of the internal representations of BERT, identifying several probing tasks, we showed the existence groups of units more relevant for specific linguistic of a relationship between the implicit knowl- tasks. We defined a suite of probing tasks based on edge learned by the model and the number of a variable selection approach, in order to identify individual units involved in the encodings of which units in the internal representations of BERT this competence. -
Treebanks, Linguistic Theories and Applications Introduction to Treebanks
Treebanks, Linguistic Theories and Applications Introduction to Treebanks Lecture One Petya Osenova and Kiril Simov Sofia University “St. Kliment Ohridski”, Bulgaria Bulgarian Academy of Sciences, Bulgaria ESSLLI 2018 30th European Summer School in Logic, Language and Information (6 August – 17 August 2018) Plan of the Lecture • Definition of a treebank • The place of the treebank in the language modeling • Related terms: parsebank, dynamic treebank • Prerequisites for the creation of a treebank • Treebank lifecycle • Theory (in)dependency • Language (in)dependency • Tendences in the treebank development 30th European Summer School in Logic, Language and Information (6 August – 17 August 2018) Treebank Definition A corpus annotated with syntactic information • The information in the annotation is added/checked by a trained annotator - manual annotation • The annotation is complete - no unannotated fragments of the text • The annotation is consistent - similar fragments are analysed in the same way • The primary format of annotation - syntactic tree/graph 30th European Summer School in Logic, Language and Information (6 August – 17 August 2018) Example Syntactic Trees from Wikipedia The two main approaches to modeling the syntactic information 30th European Summer School in Logic, Language and Information (6 August – 17 August 2018) Pros vs. Cons (Handbook of NLP, p. 171) Constituency • Easy to read • Correspond to common grammatical knowledge (phrases) • Introduce arbitrary complexity Dependency • Flexible • Also correspond to common grammatical -
A Way with Words: Recent Advances in Lexical Theory and Analysis: a Festschrift for Patrick Hanks
A Way with Words: Recent Advances in Lexical Theory and Analysis: A Festschrift for Patrick Hanks Gilles-Maurice de Schryver (editor) (Ghent University and University of the Western Cape) Kampala: Menha Publishers, 2010, vii+375 pp; ISBN 978-9970-10-101-6, e59.95 Reviewed by Paul Cook University of Toronto In his introduction to this collection of articles dedicated to Patrick Hanks, de Schryver presents a quote from Atkins referring to Hanks as “the ideal lexicographer’s lexicogra- pher.” Indeed, Hanks has had a formidable career in lexicography, including playing an editorial role in the production of four major English dictionaries. But Hanks’s achievements reach far beyond lexicography; in particular, Hanks has made numerous contributions to computational linguistics. Hanks is co-author of the tremendously influential paper “Word association norms, mutual information, and lexicography” (Church and Hanks 1989) and maintains close ties to our field. Furthermore, Hanks has advanced the understanding of the relationship between words and their meanings in text through his theory of norms and exploitations (Hanks forthcoming). The range of Hanks’s interests is reflected in the authors and topics of the articles in this Festschrift; this review concentrates more on those articles that are likely to be of most interest to computational linguists, and does not discuss some articles that appeal primarily to a lexicographical audience. Following the introduction to Hanks and his career by de Schryver, the collection is split into three parts: Theoretical Aspects and Background, Computing Lexical Relations, and Lexical Analysis and Dictionary Writing. 1. Part I: Theoretical Aspects and Background Part I begins with an unfinished article by the late John Sinclair, in which he begins to put forward an argument that multi-word units of meaning should be given the same status in dictionaries as ordinary headwords. -
Finetuning Pre-Trained Language Models for Sentiment Classification of COVID19 Tweets
Technological University Dublin ARROW@TU Dublin Dissertations School of Computer Sciences 2020 Finetuning Pre-Trained Language Models for Sentiment Classification of COVID19 Tweets Arjun Dussa Technological University Dublin Follow this and additional works at: https://arrow.tudublin.ie/scschcomdis Part of the Computer Engineering Commons Recommended Citation Dussa, A. (2020) Finetuning Pre-trained language models for sentiment classification of COVID19 tweets,Dissertation, Technological University Dublin. doi:10.21427/fhx8-vk25 This Dissertation is brought to you for free and open access by the School of Computer Sciences at ARROW@TU Dublin. It has been accepted for inclusion in Dissertations by an authorized administrator of ARROW@TU Dublin. For more information, please contact [email protected], [email protected]. This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 License Finetuning Pre-trained language models for sentiment classification of COVID19 tweets Arjun Dussa A dissertation submitted in partial fulfilment of the requirements of Technological University Dublin for the degree of M.Sc. in Computer Science (Data Analytics) September 2020 Declaration I certify that this dissertation which I now submit for examination for the award of MSc in Computing (Data Analytics), is entirely my own work and has not been taken from the work of others save and to the extent that such work has been cited and acknowledged within the test of my work. This dissertation was prepared according to the regulations for postgraduate study of the Technological University Dublin and has not been submitted in whole or part for an award in any other Institute or University. -
Lexical Analysis
From words to numbers Parsing, tokenization, extract information Natural Language Processing Piotr Fulmański Lecture goals • Tokenizing your text into words and n-grams (tokens) • Compressing your token vocabulary with stemming and lemmatization • Building a vector representation of a statement Natural Language Processing in Action by Hobson Lane Cole Howard Hannes Max Hapke Manning Publications, 2019 Terminology Terminology • A phoneme is a unit of sound that distinguishes one word from another in a particular language. • In linguistics, a word of a spoken language can be defined as the smallest sequence of phonemes that can be uttered in isolation with objective or practical meaning. • The concept of "word" is usually distinguished from that of a morpheme. • Every word is composed of one or more morphemes. • A morphem is the smallest meaningful unit in a language even if it will not stand on its own. A morpheme is not necessarily the same as a word. The main difference between a morpheme and a word is that a morpheme sometimes does not stand alone, but a word, by definition, always stands alone. Terminology SEGMENTATION • Text segmentation is the process of dividing written text into meaningful units, such as words, sentences, or topics. • Word segmentation is the problem of dividing a string of written language into its component words. Text segmentation, retrieved 2020-10-20, https://en.wikipedia.org/wiki/Text_segmentation Terminology SEGMENTATION IS NOT SO EASY • Trying to resolve the question of what a word is and how to divide up text into words we can face many "exceptions": • Is “ice cream” one word or two to you? Don’t both words have entries in your mental dictionary that are separate from the compound word “ice cream”? • What about the contraction “don’t”? Should that string of characters be split into one or two “packets of meaning?” • The single statement “Don’t!” means “Don’t you do that!” or “You, do not do that!” That’s three hidden packets of meaning for a total of five tokens you’d like your machine to know about. -
Senserelate::Allwords - a Broad Coverage Word Sense Tagger That Maximizes Semantic Relatedness
WordNet::SenseRelate::AllWords - A Broad Coverage Word Sense Tagger that Maximizes Semantic Relatedness Ted Pedersen and Varada Kolhatkar Department of Computer Science University of Minnesota Duluth, MN 55812 USA tpederse,kolha002 @d.umn.edu http://senserelate.sourceforge.net{ } Abstract Despite these difficulties, word sense disambigua- tion is often a necessary step in NLP and can’t sim- WordNet::SenseRelate::AllWords is a freely ply be ignored. The question arises as to how to de- available open source Perl package that as- velop broad coverage sense disambiguation modules signs a sense to every content word (known that can be deployed in a practical setting without in- to WordNet) in a text. It finds the sense of vesting huge sums in manual annotation efforts. Our each word that is most related to the senses answer is WordNet::SenseRelate::AllWords (SR- of surrounding words, based on measures found in WordNet::Similarity. This method is AW), a method that uses knowledge already avail- shown to be competitive with results from re- able in the lexical database WordNet to assign senses cent evaluations including SENSEVAL-2 and to every content word in text, and as such offers SENSEVAL-3. broad coverage and requires no manual annotation of training data. SR-AW finds the sense of each word that is most 1 Introduction related or most similar to those of its neighbors in the Word sense disambiguation is the task of assigning sentence, according to any of the ten measures avail- a sense to a word based on the context in which it able in WordNet::Similarity (Pedersen et al., 2004). -
Deep Linguistic Analysis for the Accurate Identification of Predicate
Deep Linguistic Analysis for the Accurate Identification of Predicate-Argument Relations Yusuke Miyao Jun'ichi Tsujii Department of Computer Science Department of Computer Science University of Tokyo University of Tokyo [email protected] CREST, JST [email protected] Abstract obtained by deep linguistic analysis (Gildea and This paper evaluates the accuracy of HPSG Hockenmaier, 2003; Chen and Rambow, 2003). parsing in terms of the identification of They employed a CCG (Steedman, 2000) or LTAG predicate-argument relations. We could directly (Schabes et al., 1988) parser to acquire syntac- compare the output of HPSG parsing with Prop- tic/semantic structures, which would be passed to Bank annotations, by assuming a unique map- statistical classifier as features. That is, they used ping from HPSG semantic representation into deep analysis as a preprocessor to obtain useful fea- PropBank annotation. Even though PropBank tures for training a probabilistic model or statistical was not used for the training of a disambigua- tion model, an HPSG parser achieved the ac- classifier of a semantic argument identifier. These curacy competitive with existing studies on the results imply the superiority of deep linguistic anal- task of identifying PropBank annotations. ysis for this task. Although the statistical approach seems a reason- 1 Introduction able way for developing an accurate identifier of Recently, deep linguistic analysis has successfully PropBank annotations, this study aims at establish- been applied to real-world texts. Several parsers ing a method of directly comparing the outputs of have been implemented in various grammar for- HPSG parsing with the PropBank annotation in or- malisms and empirical evaluation has been re- der to explicitly demonstrate the availability of deep ported: LFG (Riezler et al., 2002; Cahill et al., parsers. -
The Procedure of Lexico-Semantic Annotation of Składnica Treebank
The Procedure of Lexico-Semantic Annotation of Składnica Treebank Elzbieta˙ Hajnicz Institute of Computer Science, Polish Academy of Sciences ul. Ordona 21, 01-237 Warsaw, Poland [email protected] Abstract In this paper, the procedure of lexico-semantic annotation of Składnica Treebank using Polish WordNet is presented. Other semantically annotated corpora, in particular treebanks, are outlined first. Resources involved in annotation as well as a tool called Semantikon used for it are described. The main part of the paper is the analysis of the applied procedure. It consists of the basic and correction phases. During basic phase all nouns, verbs and adjectives are annotated with wordnet senses. The annotation is performed independently by two linguists. Multi-word units obtain special tags, synonyms and hypernyms are used for senses absent in Polish WordNet. Additionally, each sentence receives its general assessment. During the correction phase, conflicts are resolved by the linguist supervising the process. Finally, some statistics of the results of annotation are given, including inter-annotator agreement. The final resource is represented in XML files preserving the structure of Składnica. Keywords: treebanks, wordnets, semantic annotation, Polish 1. Introduction 2. Semantically Annotated Corpora It is widely acknowledged that linguistically annotated cor- Semantic annotation of text corpora seems to be the last pora play a crucial role in NLP. There is even a tendency phase in the process of corpus annotation, less popular than towards their ever-deeper annotation. In particular, seman- morphosyntactic and (shallow or deep) syntactic annota- tically annotated corpora become more and more popular tion. However, there exist semantically annotated subcor- as they have a number of applications in word sense disam- pora for many languages. -
Unified Language Model Pre-Training for Natural
Unified Language Model Pre-training for Natural Language Understanding and Generation Li Dong∗ Nan Yang∗ Wenhui Wang∗ Furu Wei∗† Xiaodong Liu Yu Wang Jianfeng Gao Ming Zhou Hsiao-Wuen Hon Microsoft Research {lidong1,nanya,wenwan,fuwei}@microsoft.com {xiaodl,yuwan,jfgao,mingzhou,hon}@microsoft.com Abstract This paper presents a new UNIfied pre-trained Language Model (UNILM) that can be fine-tuned for both natural language understanding and generation tasks. The model is pre-trained using three types of language modeling tasks: unidirec- tional, bidirectional, and sequence-to-sequence prediction. The unified modeling is achieved by employing a shared Transformer network and utilizing specific self-attention masks to control what context the prediction conditions on. UNILM compares favorably with BERT on the GLUE benchmark, and the SQuAD 2.0 and CoQA question answering tasks. Moreover, UNILM achieves new state-of- the-art results on five natural language generation datasets, including improving the CNN/DailyMail abstractive summarization ROUGE-L to 40.51 (2.04 absolute improvement), the Gigaword abstractive summarization ROUGE-L to 35.75 (0.86 absolute improvement), the CoQA generative question answering F1 score to 82.5 (37.1 absolute improvement), the SQuAD question generation BLEU-4 to 22.12 (3.75 absolute improvement), and the DSTC7 document-grounded dialog response generation NIST-4 to 2.67 (human performance is 2.65). The code and pre-trained models are available at https://github.com/microsoft/unilm. 1 Introduction Language model (LM) pre-training has substantially advanced the state of the art across a variety of natural language processing tasks [8, 29, 19, 31, 9, 1]. -
Building a Treebank for French
Building a treebank for French £ £¥ Anne Abeillé£ , Lionel Clément , Alexandra Kinyon ¥ £ TALaNa, Université Paris 7 University of Pennsylvania 75251 Paris cedex 05 Philadelphia FRANCE USA abeille, clement, [email protected] Abstract Very few gold standard annotated corpora are currently available for French. We present an ongoing project to build a reference treebank for French starting with a tagged newspaper corpus of 1 Million words (Abeillé et al., 1998), (Abeillé and Clément, 1999). Similarly to the Penn TreeBank (Marcus et al., 1993), we distinguish an automatic parsing phase followed by a second phase of systematic manual validation and correction. Similarly to the Prague treebank (Hajicova et al., 1998), we rely on several types of morphosyntactic and syntactic annotations for which we define extensive guidelines. Our goal is to provide a theory neutral, surface oriented, error free treebank for French. Similarly to the Negra project (Brants et al., 1999), we annotate both constituents and functional relations. 1. The tagged corpus pronoun (= him ) or a weak clitic pronoun (= to him or to As reported in (Abeillé and Clément, 1999), we present her), plus can either be a negative adverb (= not any more) the general methodology, the automatic tagging phase, the or a simple adverb (= more). Inflectional morphology also human validation phase and the final state of the tagged has to be annotated since morphological endings are impor- corpus. tant for gathering constituants (based on agreement marks) and also because lots of forms in French are ambiguous 1.1. Methodology with respect to mode, person, number or gender. For exam- 1.1.1. -
Converting an HPSG-Based Treebank Into Its Parallel Dependency-Based Treebank
Converting an HPSG-based Treebank into its Parallel Dependency-based Treebank Masood Ghayoomiy z Jonas Kuhnz yDepartment of Mathematics and Computer Science, Freie Universität Berlin z Institute for Natural Language Processing, University of Stuttgart [email protected] [email protected] Abstract A treebank is an important language resource for supervised statistical parsers. The parser induces the grammatical properties of a language from this language resource and uses the model to parse unseen data automatically. Since developing such a resource is very time-consuming and tedious, one can take advantage of already extant resources by adapting them to a particular application. This reduces the amount of human effort required to develop a new language resource. In this paper, we introduce an algorithm to convert an HPSG-based treebank into its parallel dependency-based treebank. With this converter, we can automatically create a new language resource from an existing treebank developed based on a grammar formalism. Our proposed algorithm is able to create both projective and non-projective dependency trees. Keywords: Treebank Conversion, the Persian Language, HPSG-based Treebank, Dependency-based Treebank 1. Introduction treebank is introduced in Section 4. The properties Supervised statistical parsers require a set of annotated of the available dependency treebanks for Persian and data, called a treebank, to learn the grammar of the their pros and cons are explained in Section 5. The target language and create a wide coverage grammar tools and the experimental setup as well as the ob- model to parse unseen data. Developing such a data tained results are described and discussed in Section source is a tedious and time-consuming task. -
Lexical Sense Labeling and Sentiment Potential Analysis Using Corpus-Based Dependency Graph
mathematics Article Lexical Sense Labeling and Sentiment Potential Analysis Using Corpus-Based Dependency Graph Tajana Ban Kirigin 1,* , Sanda Bujaˇci´cBabi´c 1 and Benedikt Perak 2 1 Department of Mathematics, University of Rijeka, R. Matejˇci´c2, 51000 Rijeka, Croatia; [email protected] 2 Faculty of Humanities and Social Sciences, University of Rijeka, SveuˇcilišnaAvenija 4, 51000 Rijeka, Croatia; [email protected] * Correspondence: [email protected] Abstract: This paper describes a graph method for labeling word senses and identifying lexical sentiment potential by integrating the corpus-based syntactic-semantic dependency graph layer, lexical semantic and sentiment dictionaries. The method, implemented as ConGraCNet application on different languages and corpora, projects a semantic function onto a particular syntactical de- pendency layer and constructs a seed lexeme graph with collocates of high conceptual similarity. The seed lexeme graph is clustered into subgraphs that reveal the polysemous semantic nature of a lexeme in a corpus. The construction of the WordNet hypernym graph provides a set of synset labels that generalize the senses for each lexical cluster. By integrating sentiment dictionaries, we introduce graph propagation methods for sentiment analysis. Original dictionary sentiment values are integrated into ConGraCNet lexical graph to compute sentiment values of node lexemes and lexical clusters, and identify the sentiment potential of lexemes with respect to a corpus. The method can be used to resolve sparseness of sentiment dictionaries and enrich the sentiment evaluation of Citation: Ban Kirigin, T.; lexical structures in sentiment dictionaries by revealing the relative sentiment potential of polysemous Bujaˇci´cBabi´c,S.; Perak, B. Lexical Sense Labeling and Sentiment lexemes with respect to a specific corpus.