Iop Newsletter 80

Total Page:16

File Type:pdf, Size:1020Kb

Iop Newsletter 80 IOP NEWSLETTER 80 July 2006 ____________________ CONTENTS ____________________ LETTER FROM THE PRESIDENT IOP IN THE 21ST CENTURY FORTHCOMING IOP ELECTIONS ESTABLISHMENT OF THE BOULTER STUDENT TRAVEL AWARD MEETING ANNOUNCEMENTS POSITION ANNOUNCEMENT CONGRATULATIONS PRESENTATION OF GIFT BOOK REVIEW FUNDING ENDOWED PALEOBOTANY CHAIR AT CLEVELAND MUSEUM ANNOUNCEMENT OF PASSING OBITUARY CHANGES OF ADDRESS _____________________________________ The views expressed in the newsletter are those of its correspondents, and do not necessarily reflect the policy of IOP. President: Margaret Collinson (UK) Vice Presidents: Mikhail Akhmetiev (Russia), Zlatko Kvaček (Czech Republic), Volker Mosbrugger (Germany) Secretary: Gar Rothwell (USA) Conference/Congress Member: Hans Kerp (Germany) __________________________________________________________________________________________ IOP 80 Page 1 July 2006 LETTER FROM THE PRESIDENT • To provide some interesting palaeobotanical (including announcement of a new IOP web site) content to help promote palaeobotany to a wider audience. Dear members, fellow palaeobotanists, colleagues and, • To provide links to other web sites, where most of all, friends around the world, appropriate. These may include: • Key links for palaebotanists. I apologise for my silence since I was elected your • The site of the plant-fossil database. President. It is a great honour to serve in this role and I • Sites of other organisations of sincerely thank everyone for considering me worthy of palaeobotanists e.g. country or regional this position. Behind the scenes I have been active, and groups. with the support of the Secretary and the executive • Links to key palaeobotanical committee, I have been promoting an attempt to provide publications. an up to date web site which will contain key information of relevance to all of us. I am, therefore, Intentions for IOP website management and delighted to bring you news of the new IOP website at: longevity: http://www.palaeobotany.org • To develop a website that is easy to manage and update. This has been enabled by the design of a At this time I would like to explain the rationale behind database driven website with simple to use web the changes, and, in doing so recognise the growing interface for remote access anywhere in the importance of the internet as the premier method of world. communication available to an organisation such as ours • To have a website that allows multiple at the present time. In the past the IOP has had its web- administrators to avoid it becoming the presence on the domains of host institutions, for which responsibility of a sole individual. This has been we are immensely grateful to both Mike Boulter and Gar achieved with Gar Rothwell (Secretary and for the efforts they have put into this. However, time has Treasurer), Jason Hilton and Mihai Popa having come to establish a domain name (palaeobotany.org) administrative control of the site, with all being which is unique to the organisation making us easier to able to update contents. It is possible to add find on the internet. The domain name belongs to the other administrators with suitable experience as IOP and over time it can be migrated onto different required by the IOP executive committee. servers as technology develops, or, can be administrated • To facilitate secure transactions to enable credit by other individuals in time without having to change the card payments of membership fees. The server url. will handle this. This part of the website has not been put live at the present time as it is The initial aims of the site are twofold, one for contents, undergoing testing and, the bank support for this and, the other for management and website longevity:- is currently being considered. Aims for website contents: The IOP Executive would like to thank Jason Hilton and • To provide a home for IOP organisational his former student Alan Spencer whose hard work has information including contact details for the brought the new site into being. We also thank Jason and organisation, details of how to join, listing of Mihai Popa for volunteering to act as web masters for executive committee members, and IOP. At the same time, we hope that other content and organisational statutes. ideas will readily be forthcoming from members of the • To make all back issues of the Newsletter IOP - this is your site and will only succeed with input available to everyone. from the membership. In particular we welcome details • To promote IOP and other palaeobotany of forthcoming meetings of interest to the IOP, and also meetings that are brought to our attention we would welcome information on job opportunities to through advertised contents and links to other advertise to the membership. Take a look at the site and websites. if you have something to add to the sections, please send it along. __________________________________________________________________________________________ IOP 80 Page 2 July 2006 At this early stage we are seeking specific contributions I look forward to seeing as many of you as possible in for the site in the following themes of palaeobotanical Prague at the EPPC this summer. interest: Living fossils Margaret Collinson, President Palaeobotanical pioneers (deceased) These themes have been suggested and agreed by IOP IN THE 21ST CENTURY myself, Jason and Gar, as topics of interest to a wider audience which will, hopefully, lead to broader At the General Council Meeting held during the 7th awareness of palaeobotany and its achievements as well International Organisation of Palaeobotany conference in as being of interest to our members. These are Bariloche, Argentina in March of 2005, the membership subsections of the website and will, we hope, grow over brought to a close a two-year process of renewing IOP time into a valuable resource. A number of contributions practices and procedures by ratifying revised Statutes have already been solicited and are currently being and By-Laws. This revision formalized evolving developed by individual authors, but in addition to this practices that reflect our changing world, and can be we welcome further contents. Individual articles should found at be fairly short (e.g. preferably less than 1 page of A4), <http://www.palaeobotany.org/modules.php?name=iop& should include a few relevant references and, preferably, sec=website&page=5>. Some of the changes are be accompanied by one or more relevant images. It is the explained by IOP President Margaret Collinson in the responsibility of the author to ensure that none of the article that appears directly above. Others are reviewed submitted material is subject to copyright and that it can below. be freely made available on the web for use by anyone. However, before spending time developing specific IOP has now fully embraced digital technology by contents, please discuss these with the relevant sectional developing a modern, interactive web site that is administrator (as shown on the homepage of each independent of other organizations, by publishing IOP section; Pioneering Palaeobotanists or Living Fossils) to Newsletters on the web and distributing them via the avoid duplication of efforts. internet, and by conducting virtually all business via e- mail. IOP also conducted our last elections It is important that everyone should appreciate that the electronically. Electronic IOP elections balloting is a IOP web site is not the place to promote individual pioneering change in practice, that was accomplished living palaeobotanists nor particular palaeobotanical without incident. It allows for smooth and secure laboratories. Contributions that appear to do this will be participation by a larger percentage of the membership returned to the author for re-consideration or than for past elections. It also continues the practice of modification. Everyone is welcome to send with their hard-copy ballot submission by those who wished to contribution links to their own websites (personal, vote in the traditional fashion. laboratory, institution), with a few words introducing the content, and we will add that link to the IOP pages. You will note from Margaret's letter, the new URL for the IOP website is <http://www.palaeobotany.org>. While the committee have decided that these two Our new webmasters, Jason Hilton and Miahi Popa, sections are the priority for the IOP website right now , have developed an outstanding, interactive website for we will very much welcome any ideas for developing IOP, and are including a great deal of information for us other areas of the website. Maybe a ‘Palaeobotany in the at the site. IOP now owns the web address news’ section? "palaeobotany.org". We will be following the practice of observing a one-issue moving firewall, wherein the I sincerely hope that you will all welcome the new paid membership will receive each new Newsletter as it website, that you will find it useful and that you will is published, and past issues will be posted on the web contribute to its success by sending in your links and site for public viewing. The old web sites at the short articles. Please direct any specific comments on University of London and at Ohio University are being the web pages to Jason Hilton or Mihai Popa using retired, but will remain active for a few more months. the contact details as shown on the web site or contact any member of the IOP Executive committee. Gar Rothwell, Secretary __________________________________________________________________________________________ IOP 80 Page 3 July 2006
Recommended publications
  • Chapter 2 Paleozoic Stratigraphy of the Grand Canyon
    CHAPTER 2 PALEOZOIC STRATIGRAPHY OF THE GRAND CANYON PAIGE KERCHER INTRODUCTION The Paleozoic Era of the Phanerozoic Eon is defined as the time between 542 and 251 million years before the present (ICS 2010). The Paleozoic Era began with the evolution of most major animal phyla present today, sparked by the novel adaptation of skeletal hard parts. Organisms continued to diversify throughout the Paleozoic into increasingly adaptive and complex life forms, including the first vertebrates, terrestrial plants and animals, forests and seed plants, reptiles, and flying insects. Vast coal swamps covered much of mid- to low-latitude continental environments in the late Paleozoic as the supercontinent Pangaea began to amalgamate. The hardiest taxa survived the multiple global glaciations and mass extinctions that have come to define major time boundaries of this era. Paleozoic North America existed primarily at mid to low latitudes and experienced multiple major orogenies and continental collisions. For much of the Paleozoic, North America’s southwestern margin ran through Nevada and Arizona – California did not yet exist (Appendix B). The flat-lying Paleozoic rocks of the Grand Canyon, though incomplete, form a record of a continental margin repeatedly inundated and vacated by shallow seas (Appendix A). IMPORTANT STRATIGRAPHIC PRINCIPLES AND CONCEPTS • Principle of Original Horizontality – In most cases, depositional processes produce flat-lying sedimentary layers. Notable exceptions include blanketing ash sheets, and cross-stratification developed on sloped surfaces. • Principle of Superposition – In an undisturbed sequence, older strata lie below younger strata; a package of sedimentary layers youngs upward. • Principle of Lateral Continuity – A layer of sediment extends laterally in all directions until it naturally pinches out or abuts the walls of its confining basin.
    [Show full text]
  • South Africa's Coalfields — a 2014 Perspective
    International Journal of Coal Geology 132 (2014) 170–254 Contents lists available at ScienceDirect International Journal of Coal Geology journal homepage: www.elsevier.com/locate/ijcoalgeo South Africa's coalfields — A 2014 perspective P. John Hancox a,⁎,AnnetteE.Götzb,c a University of the Witwatersrand, School of Geosciences and Evolutionary Studies Institute, Private Bag 3, 2050 Wits, South Africa b University of Pretoria, Department of Geology, Private Bag X20, Hatfield, 0028 Pretoria, South Africa c Kazan Federal University, 18 Kremlyovskaya St., Kazan 420008, Republic of Tatarstan, Russian Federation article info abstract Article history: For well over a century and a half coal has played a vital role in South Africa's economy and currently bituminous Received 7 April 2014 coal is the primary energy source for domestic electricity generation, as well as being the feedstock for the Received in revised form 22 June 2014 production of a substantial percentage of the country's liquid fuels. It furthermore provides a considerable source Accepted 22 June 2014 of foreign revenue from exports. Available online 28 June 2014 Based on geographic considerations, and variations in the sedimentation, origin, formation, distribution and quality of the coals, 19 coalfields are generally recognised in South Africa. This paper provides an updated review Keywords: Gondwana coal of their exploration and exploitation histories, general geology, coal seam nomenclature and coal qualities. With- Permian in the various coalfields autocyclic variability is the norm rather than the exception, whereas allocyclic variability Triassic is much less so, and allows for the correlation of genetically related sequences. During the mid-Jurassic break up Coalfield of Gondwana most of the coal-bearing successions were intruded by dolerite.
    [Show full text]
  • Wec01's SSSS Fossils Test 2019
    wec01’s SSSS Fossils Test 2019 Team Name: _________________KEY________________ Team Number: ___KEY___ Team Members: ____________KEY____________, ____________KEY____________ This test consists of 18 stations with a total of 200 points. Each answer is worth one point except where specified otherwise. You are only given 2 ½ minutes with the specimens at each station, however you can work on any station’s questions at any time. Scoring Station 1: ___10___ / 10 Station 10: ___12___ / 12 Station 2: ___10___ / 10 Station 11: ____9___ / 9 Station 3: ___11___ / 11 Station 12: ___11___ / 11 Station 4: ___10___ / 10 Station 13: ___10___ / 10 Station 5: ___10___ / 10 Station 14: ___10___ / 10 Station 6: ____9___ / 9 Station 15: ___12___ / 12 Station 7: ____9___ / 9 Station 16: ____9___ / 9 Station 8: ___10___ / 10 Station 17: ___10___ / 10 Station 9: ____9___ / 9 Station 18: ___29___ / 29 Total: __200___ / 200 Team Number: _KEY_ Station 1: Dinosaurs (10 pt) 1. Identify the genus of specimen A Tyrannosaurus (1 pt) 2. Identify the genus of specimen B Stegosaurus (1 pt) 3. Identify the genus of specimen C Allosaurus (1 pt) 4. Which specimen(s) (A, B, or C) are A, C (1 pt) Saurischians? 5. Which two specimens (A, B, or C) lived at B, C (1 pt) the same time? 6. Identify the genus of specimen D Velociraptor (1 pt) 7. Identify the genus of specimen E Coelophysis (1 pt) 8. Which specimen (D or E) is commonly E (1 pt) found in Ghost Ranch, New Mexico? 9. Which specimen (A, B, C, D, or E) would D (1 pt) specimen F have been found on? 10.
    [Show full text]
  • Meandering in the Main Karoo Basin, Eastern Cape, South Africa FIELD TRIP LEADERS: Emese Bordy & Goonie Marsh
    POST 10 Meandering in the main Karoo Basin, Eastern Cape, South Africa FIELD TRIP LEADERS: Emese Bordy & Goonie Marsh This comprehensive five day trip will take us through, via an unique route in the shortest travel time and distance, a geo-traverse through over 400 million years of South African geological history. The main focus of the field trip is the sedimentary fill of the southern main Karoo Basin, including the nature of some of the major Karoo intrusive and volcanic complexes of the Eastern Cape. Field Trip Leaders: Emese Bordy and Goonie Marsh Start: Port Elizabeth End: Port Elizabeth Dates: 3-8 September 2016 ITINERARY SUGGESTION OF FLIGHT BOOKING FROM CAPE TOWN TO PORT ELIZABETH: SOUTH AFRICAN AIRWAYS FLIGHT 1803 DEPARTING CAPE TOWN AT 07h00, ARRIVING PORT ELIZABETH AT 08h15 Day 1 3 September 2016, Saturday Arrival at Port Elizabeth Airport and transfer to Grahamstown Overnight at the Graham Hotel in Grahamstown BB via Addo Elephant Park Day 2 4 September 2016, Sunday Stop 1 : Overview of 400 million years of South African geological history though the rocks and landscape of Grahamstown, Eastern Cape. Topics covered: Cape and Karoo systems, formation of the main Karoo Basin and Cape Fold Belt, Gondwana breakup, Cenozoic sea level changes. Location : 1820 Settlers' Monument Features to be seen : Relationship of the geology and geomorphology Cape Fold Belt - large-scale geological and geomorphological features: Witteberg quartzite ridges with some mudstone lenses to the south (cut by the N2 national road) & to the north (called Botha’s Ridge) running across the horizon. City bowl overlying the E-W running contact between soft Witteberg mudstones to the south and Dwyka tillites to the north Flat peneplain underlain by hard silcretes (with Joza/ King’s Flat township on it), visible along the northeastern horizon.
    [Show full text]
  • The Sauropodomorph Biostratigraphy of the Elliot Formation of Southern Africa: Tracking the Evolution of Sauropodomorpha Across the Triassic–Jurassic Boundary
    Editors' choice The sauropodomorph biostratigraphy of the Elliot Formation of southern Africa: Tracking the evolution of Sauropodomorpha across the Triassic–Jurassic boundary BLAIR W. MCPHEE, EMESE M. BORDY, LARA SCISCIO, and JONAH N. CHOINIERE McPhee, B.W., Bordy, E.M., Sciscio, L., and Choiniere, J.N. 2017. The sauropodomorph biostratigraphy of the Elliot Formation of southern Africa: Tracking the evolution of Sauropodomorpha across the Triassic–Jurassic boundary. Acta Palaeontologica Polonica 62 (3): 441–465. The latest Triassic is notable for coinciding with the dramatic decline of many previously dominant groups, followed by the rapid radiation of Dinosauria in the Early Jurassic. Among the most common terrestrial vertebrates from this time, sauropodomorph dinosaurs provide an important insight into the changing dynamics of the biota across the Triassic–Jurassic boundary. The Elliot Formation of South Africa and Lesotho preserves the richest assemblage of sauropodomorphs known from this age, and is a key index assemblage for biostratigraphic correlations with other simi- larly-aged global terrestrial deposits. Past assessments of Elliot Formation biostratigraphy were hampered by an overly simplistic biozonation scheme which divided it into a lower “Euskelosaurus” Range Zone and an upper Massospondylus Range Zone. Here we revise the zonation of the Elliot Formation by: (i) synthesizing the last three decades’ worth of fossil discoveries, taxonomic revision, and lithostratigraphic investigation; and (ii) systematically reappraising the strati- graphic provenance of important fossil locations. We then use our revised stratigraphic information in conjunction with phylogenetic character data to assess morphological disparity between Late Triassic and Early Jurassic sauropodomorph taxa. Our results demonstrate that the Early Jurassic upper Elliot Formation is considerably more taxonomically and morphologically diverse than previously thought.
    [Show full text]
  • The Largest Tropical Peat Mires in Earth History
    Geological Society of America Special Paper 370 2003 Desmoinesian coal beds of the Eastern Interior and surrounding basins: The largest tropical peat mires in Earth history Stephen F. Greb William M. Andrews Cortland F. Eble Kentucky Geological Survey, University of Kentucky, Lexington, Kentucky 40506, USA William DiMichele Smithsonian Institution, National Museum of Natural History, Washington, D.C., USA C. Blaine Cecil U.S. Geological Survey, Reston, Virginia, USA James C. Hower Center for Applied Energy Research, University of Kentucky, Lexington, Kentucky, USA ABSTRACT The Colchester, Springfield, and Herrin Coals of the Eastern Interior Basin are some of the most extensive coal beds in North America, if not the world. The Colchester covers an area of more than 100,000 km^, the Springfield covers 73,500-81,000 km^, and the Herrin spans 73,900 km^. Each has correlatives in the Western Interior Basin, such that their entire regional extent varies from 116,000 km^to 200,000 km^. Correlatives in the Appalachian Basin may indicate an even more widespread area of Desmoinesian peatland development, although possibly sUghtly younger in age. The Colchester Coal is thin, but the Springfield and Herrin Coals reach thicknesses in excess of 3 m. High ash yields, dominance of vitrinite macerals, and abundant lycopsids suggest that these Desmoinesian coals were deposited in topogenous (groundwater fed) to solige- nous (mixed-water source) mires. The only modern mire complexes that are as wide- spread are northern-latitude raised-bog mires, but Desmoinesian
    [Show full text]
  • The Role of Fossils in Interpreting the Development of the Karoo Basin
    Palaeon!. afr., 33,41-54 (1997) THE ROLE OF FOSSILS IN INTERPRETING THE DEVELOPMENT OF THE KAROO BASIN by P. J. Hancox· & B. S. Rubidge2 IGeology Department, University of the Witwatersrand, Private Bag 3, Wits 2050, South Africa 2Bernard Price Institute for Palaeontological Research, University of the Witwatersrand, Private Bag 3, Wits 2050, South Africa ABSTRACT The Permo-Carboniferous to Jurassic aged rocks oft1:J.e main Karoo Basin ofSouth Africa are world renowned for the wealth of synapsid reptile and early dinosaur fossils, which have allowed a ten-fold biostratigraphic subdivision ofthe Karoo Supergroup to be erected. The role offossils in interpreting the development of the Karoo Basin is not, however, restricted to biostratigraphic studies. Recent integrated sedimentological and palaeontological studies have helped in more precisely defming a number of problematical formational contacts within the Karoo Supergroup, as well as enhancing palaeoenvironmental reconstructions, and basin development models. KEYWORDS: Karoo Basin, Biostratigraphy, Palaeoenvironment, Basin Development. INTRODUCTION Invertebrate remains are important as indicators of The main Karoo Basin of South Africa preserves a facies genesis, including water temperature and salinity, retro-arc foreland basin fill (Cole 1992) deposited in as age indicators, and for their biostratigraphic potential. front of the actively rising Cape Fold Belt (CFB) in Fossil fish are relatively rare in the Karoo Supergroup, southwestern Gondwana. It is the deepest and but where present are useful indicators of gross stratigraphically most complete of several depositories palaeoenvironments (e.g. Keyser 1966) and also have of Permo-Carboniferous to Jurassic age in southern biostratigraphic potential (Jubb 1973; Bender et al. Africa and reflects changing depositional environments 1991).
    [Show full text]
  • Archaeopteris Is the Earliest Known Modern Tree
    letters to nature seawater nitrate mapping systems for use in open ocean and coastal waters. Deep-Sea Res. I 43, 1763± zones as important sites for the subsequent development of lateral 1775 (1996). 26. Obata, H., Karatani, H., Matsui, M. & Nakayama, E. Fundamental studies for chemical speciation in organs; and wood anatomy strategies that minimize the mechani- seawater with an improved analytical method. Mar. Chem. 56, 97±106 (1997). cal stresses caused by perennial branch growth. Acknowledgements. We thank G. Elrod, E. Guenther, C. Hunter, J. Nowicki and S. Tanner for the iron Archaeopteris is thought to have been an excurrent tree, with a analyses and assistance with sampling, and the crews of the research vessels Western Flyer and New Horizon single trunk producing helically arranged deciduous branches for providing valuable assistance at sea. Funding was provided by the David and Lucile Packard 7 Foundation through MBARI and by the National Science Foundation. growing almost horizontally . All studies relating to the develop- ment of Archaeopteris support the view that these ephemeral Correspondence and requests for materials should be addressed to K.S.J. (e-mail: johnson@mlml. calstate.edu). branches arise from the pseudomonopodial division of the trunk apex8±11. Apical branching also characterizes all other contempora- neous non-seed-plant taxa including those that had also evolved an arborescent habit, such as lepidosigillarioid lycopsids and cladoxy- Archaeopteris is the earliest lalean ferns. This pattern, which can disadvantage the tree if the trunk apex is damaged, contrasts with the axillary branching knownmoderntree reported in early seed plants12. Analysis of a 4 m-long trunk from the Famennian of Oklahoma has shown that Archaeopteris may Brigitte Meyer-Berthaud*, Stephen E.
    [Show full text]
  • PRISCUM the Newsletter of the Paleontological Society Volume 13, Number 2, Fall 2004
    PRISCUM The Newsletter of the Paleontological Society Volume 13, Number 2, Fall 2004 Paleontological PRESIDENT’S Society Officers COLUMN: Inside... President Treasurer’s Report 2 William I. Ausich WE NEED YOU! GSA Information 2 President-Elect by William I. Ausich Reviews of PS- David Bottjer Sponsored Sessions 3 Past-President Why are you a member of The Paleontology Portal 5 Patricia H. Kelley The Paleontological Society? In PS Lecture Program 6 Secretary the not too distance past, the Books for Review 9 Roger D. K. Thomas only way to receive a copy of the Journal of Book Reviews 9 Treasurer Paleontology and Paleobiology was to pay your dues Conference Announce- and belong to the Society. I suppose one could Mark E. Patzkowsky have borrowed a copy from a friend or wander over ments 14 JP Managing Editors to the library. However, this was probably done Ann (Nancy) F. Budd with a heavy burden of guilt. Now, as we move Christopher A. Brochu into the digital age of scientific journal publishing, Jonathan Adrain one can have copies of the Journal of Paleontology and Paleobiology transmitted right to your Paleobiology Editors computer. It actually may arrive faster than the Tomasz Baumiller U.S. mail, you do not have to pay anything, and Robyn Burnham you do not even have to walk over to the library. Philip Gingerich No need for shelf space, no hassle, no dues, no Program Coordinator guilt – isn’t the Web great? The Web is great, but the Society needs dues-paying members in order Mark A. Wilson to continue to publish in paper, digitally, or both.
    [Show full text]
  • Div B Fossils Answer Key
    Div B Fossils Answer Key Name: . ​ ​ Date: . ​ ​ ​ This is a 50 minute test. Each station is 2 minutes and 30 seconds. Keep in mind that questions that require Multiple answers will only be marked correct if ALL of the answers ​ ​ chosen/written are correct. /120 ​ Station 1: 1) Brachiosaurus 2) Elmer S. Riggs 3) Diplodocus 4) Cañon City, Colorado 5) Patagotitan 6) Late Cretaceous Station 2: 7) Velociraptor ​ ​ 8) Spinosaurus ​ 9) Plateosaurus ​ 10) Ankylosaurus ​ 11) Parasaurolophus ​ 12) Dracorex ​ Station 3: 13) Platystrophia ​ ​ 14) A, C, D, E ​ 15) Composita ​ 16) Late Devonian-Late Permian ​ 17) Atrypa ​ 18) All around the world ​ Station 4: 19) .Calymene ​ ​ 20) Beautiful crescent, references the glabella ​ 21) Eldredgeops (formerly Phacops) ​ 22) 11 ​ 23) Elrathia ​ 24) Four axial rings ​ Station 5: 25) A - Thorax ​ ​ 26) B - Genal Angle ​ 27) C - Cephalon ​ 28) D - Eye ​ 29) E - Pleural furrow ​ 30) F - Librigena ​ 31) G - Fulcrum ​ Station 6: 32) Order Ammonoid ​ 33) Cretaceous–Paleogene extinction even 34) True 35) Planispirals, helically, heteromorphs ​ 36) F ​ Station 7: 37) Class Crinoidea ​ ​ 38) A ​ 39) A characteristic of a species, meaning that it has distinct male and female individual ​ organisms. 40) Yes ​ 41) 600 ​ 42) 40 m (130 ft) ​ Station 8: 43) Belemnitella ​ ​ 44) 84.9–66.043 Ma ​ 45) Europe and North America ​ 46) Internal ​ 47) North America ​ 48) True ​ Station 9: 49) Bothriolepis ​ 50) "pitted scale" or "trench scale", either or both accepted ​ 51) Bothriolepis, keyhole, mouth ​ 52) Three ​ 53) a superficial
    [Show full text]
  • Annual Meeting 2002
    Newsletter 51 74 Newsletter 51 75 The Palaeontological Association 46th Annual Meeting 15th–18th December 2002 University of Cambridge ABSTRACTS Newsletter 51 76 ANNUAL MEETING ANNUAL MEETING Newsletter 51 77 Holocene reef structure and growth at Mavra Litharia, southern coast of Gulf of Corinth, Oral presentations Greece: a simple reef with a complex message Steve Kershaw and Li Guo Oral presentations will take place in the Physiology Lecture Theatre and, for the parallel sessions at 11:00–1:00, in the Tilley Lecture Theatre. Each presentation will run for a New perspectives in palaeoscolecidans maximum of 15 minutes, including questions. Those presentations marked with an asterisk Oliver Lehnert and Petr Kraft (*) are being considered for the President’s Award (best oral presentation by a member of the MONDAY 11:00—Non-marine Palaeontology A (parallel) Palaeontological Association under the age of thirty). Guts and Gizzard Stones, Unusual Preservation in Scottish Middle Devonian Fishes Timetable for oral presentations R.G. Davidson and N.H. Trewin *The use of ichnofossils as a tool for high-resolution palaeoenvironmental analysis in a MONDAY 9:00 lower Old Red Sandstone sequence (late Silurian Ringerike Group, Oslo Region, Norway) Neil Davies Affinity of the earliest bilaterian embryos The harvestman fossil record Xiping Dong and Philip Donoghue Jason A. Dunlop Calamari catastrophe A New Trigonotarbid Arachnid from the Early Devonian Windyfield Chert, Rhynie, Philip Wilby, John Hudson, Roy Clements and Neville Hollingworth Aberdeenshire, Scotland Tantalizing fragments of the earliest land plants Steve R. Fayers and Nigel H. Trewin Charles H. Wellman *Molecular preservation of upper Miocene fossil leaves from the Ardeche, France: Use of Morphometrics to Identify Character States implications for kerogen formation Norman MacLeod S.
    [Show full text]
  • Early Ornithischian Dinosaurs: the Triassic Record
    Historical Biology An International Journal of Paleobiology ISSN: 0891-2963 (Print) 1029-2381 (Online) Journal homepage: https://www.tandfonline.com/loi/ghbi20 Early ornithischian dinosaurs: the Triassic record Randall B. Irmis , William G. Parker , Sterling J. Nesbitt & Jun Liu To cite this article: Randall B. Irmis , William G. Parker , Sterling J. Nesbitt & Jun Liu (2007) Early ornithischian dinosaurs: the Triassic record, Historical Biology, 19:1, 3-22, DOI: 10.1080/08912960600719988 To link to this article: https://doi.org/10.1080/08912960600719988 Published online: 10 Oct 2011. Submit your article to this journal Article views: 291 View related articles Citing articles: 70 View citing articles Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=ghbi20 Historical Biology, 2007; 19(1): 3–22 Early ornithischian dinosaurs: the Triassic record RANDALL B. IRMIS1, WILLIAM G. PARKER2, STERLING J. NESBITT3,4, & JUN LIU3,4 1Museum of Paleontology and Department of Integrative Biology, University of California, 1101 Valley Life Sciences Building, Berkeley, CA, 94720-4780, USA, 2Division of Resource Management, Petrified Forest National Park, P.O. Box 2217, Petrified Forest, AZ, 86028, USA, 3Lamont–Doherty Earth Observatory, Columbia University, 61 Route 9W, Palisades, NY, 10964, USA, and 4Division of Paleontology, American Museum of Natural History, Central Park West at 79th Street, New York, NY, 10024, USA Abstract Ornithischian dinosaurs are one of the most taxonomically diverse dinosaur clades during the Mesozoic, yet their origin and early diversification remain virtually unknown. In recent years, several new Triassic ornithischian taxa have been proposed, mostly based upon isolated teeth.
    [Show full text]