Download the Stored IOP Data, Which Are Then Automatically Uploaded to a Physician-Accessible Cloud Database
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Non-Invasive Evaluation of Cerebrospinal Fluid Pressure in Ocular Hypertension
perim Ex en l & ta a l ic O p in l h t C h f Journal of Clinical & Experimental a o l m l a o n l r o Xie et al., J Clin Exp Ophthalmol 2017, 8:4 g u y o J Ophthalmology DOI: 10.4172/2155-9570.1000672 ISSN: 2155-9570 Research Article Open Access Non-invasive Evaluation of Cerebrospinal Fluid Pressure in Ocular Hypertension: The Beijing Intracranial and Intraocular Pressure Study Xiaobin Xie1,2, Weiwei Chen3,4, Zhen Li5, Ravi Thomas3,6,7, Yong Li8, Junfang Xian8, Diya Yang4, Huaizhou Wang4, Jun Feng1, Shoukang Zhang1, Lixia Zhang1, Ruojin Ren9 and Ningli Wang3,4* 1Eye Hospital of China Academy of Chinese Medical Sciences, Beijing, China 2Post-doctoral Research Station Affiliated to the Chinese Academy of Chinese Medical Sciences, Beijing, China 3Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, China 4Beijing Tongren Eye Center, Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing Tongren Hospital, Capital Medical University, Beijing, China 5Department of Ophthalmology, Xuanwu Hospital, Capital Medical University, Beijing, China 6Queensland Eye Institute, 140 Melbourne Street, South Brisbane 4101, Queensland, Australia 7University of Queensland, Brisbane, Australia 8Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China 9State University of New York College of Optometry, New York, United States *Corresponding author: Ningli Wang, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Sciences Key Laboratory, Dongjiaominxiang Street, Dongcheng District, Beijing 100730, China, Tel: +8610-5826-9968; Fax: +8610-5826-9920; E-mail: [email protected] Received date: July 19, 2017; Accepted date: August 10, 2017; Published date: June 30, 2017 Copyright: © 2017 Xie X, et al. -
Deep Learning Analysis of Eye Fundus Images to Support Medical Diagnosis
Deep learning analysis of eye fundus images to support medical diagnosis Oscar Juli´anPerdomo Charry Universidad Nacional de Colombia Departamento de Ingenier´ıade Sistemas e Industrial Bogot´a,Colombia 2020 Deep learning analysis of eye fundus images to support medical diagnosis Oscar Juli´anPerdomo Charry Thesis submitted as requirement to obtain the title of: PhD. in Systems and Computer Engineering Advisor: Fabio A. Gonz´alez,Ph.D. Universidad Nacional de Colombia Departamento de Ingenier´ıade Sistemas e Industrial Bogot´a,Colombia 2020 Deep learning analysis of eye fundus images to support medical diagnosis Oscar Perdomo Dedication To my muse and beautiful wife Ana To my parents Alvaro´ and Isabel To my brothers Kike and Cesar Abstract Machine learning techniques have been successfully applied to support medical decision making of cancer, heart diseases and degenerative diseases of the brain. In particular, deep learning methods have been used for early detection of abnormalities in the eye that could improve the diagnosis of different ocular diseases, especially in developing countries, where there are major limitations to access to specialized medical treatment. However, the early detection of clinical signs such as blood vessel, optic disc alterations, exudates, hemorrhages, drusen, and microaneurysms presents three main challenges: the ocular images can be affected by noise artifact, the features of the clinical signs depend specifically on the acquisition source, and the combination of local signs and grading disease label is not an easy task. This research approaches the problem of combining local signs and global labels of different acquisition sources of medical information as a valuable tool to support medical decision making in ocular diseases. -
Usage of Laser Induced Bubbles for Measuring Intraocular Eye Pressure
ALTIND Fatih Fatih İŞ USAGE OF LASER INDUCED BUBBLES USAGE OF LASER INDUCED BUBBLES FOR MEASURING MEASURING FOR BUBBLES INDUCED LASER OF USAGE FOR MEASURING INTRAOCULAR EYE PRESSURE INTRAOCULAREYE A THESIS SUBMITTED TO THE DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING AND THE GRADUATE SCHOOL OF ENGINEERING AND SCIENCE OF PRESSURE ABDULLAH GUL UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER IN SCIENCE By Fatih ALTINDİŞ AGU 2017 December 2017 i USAGE OF LASER INDUCED BUBBLES FOR MEASURING INTRAOCULAR EYE PRESSURE A THESIS SUBMITTED TO THE DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING AND THE GRADUATE SCHOOL OF ENGINEERING AND SCIENCE OF ABDULLAH GUL UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER IN SCIENCE By Fatih ALTINDİŞ December 2017 ii SCIENTIFIC ETHICS COMPLIANCE I hereby declare that all information in this document has been obtained in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all materials and results that are not original to this work. Fatih ALTINDIŞ iii REGULATORY COMPLIANCE M.Sc. thesis titled USAGE OF LASER INDUCED BUBBLES FOR MEASURING INTRAOCULAR PRESSURE has been prepared in accordance with the Thesis Writing Guidelines of the Abdullah Gül University, Graduate School of Engineering & Science. Prepared By Advisor Fatih ALTINDIŞ Prof. Bülent YILMAZ Head of the Electrical and Computer Engineering Program Assoc. Prof. V. Çağrı GÜNGÖR iv ACCEPTANCE AND APPROVAL M.Sc. thesis titled USAGE OF LASER INDUCED BUBBLES FOR MEASURING INTRAOCULAR PRESSURE and prepared by Fatih Altındiş has been accepted by the jury in the Electrical and Computer Engineering Graduate Program at Abdullah Gül University, Graduate School of Engineering & Science. -
RETINAL DISORDERS Eye63 (1)
RETINAL DISORDERS Eye63 (1) Retinal Disorders Last updated: May 9, 2019 CENTRAL RETINAL ARTERY OCCLUSION (CRAO) ............................................................................... 1 Pathophysiology & Ophthalmoscopy ............................................................................................... 1 Etiology ............................................................................................................................................ 2 Clinical Features ............................................................................................................................... 2 Diagnosis .......................................................................................................................................... 2 Treatment ......................................................................................................................................... 2 BRANCH RETINAL ARTERY OCCLUSION ................................................................................................ 3 CENTRAL RETINAL VEIN OCCLUSION (CRVO) ..................................................................................... 3 Pathophysiology & Etiology ............................................................................................................ 3 Clinical Features ............................................................................................................................... 3 Diagnosis ......................................................................................................................................... -
Optical Coherence Tomography (OCT) Anterior Segment of the Eye
Corporate Medical Policy Optical Coherence Tomography (OCT) Anterior Segment of the Eye File Name: optical_coherence_tomography_(OCT)_anterior_segment_of_the_eye Origination: 2/2010 Last CAP Review: 6/2021 Next CAP Review: 6/2022 Last Review: 6/2021 Description of Procedure or Service Optical Coherence Tomography Optical coherence tomography (OCT) is a noninvasive, high-resolution imaging method that can be used to visualize ocular structures. OCT creates an image of light reflected from the ocular structures. In this technique, a reflected light beam interacts with a reference light beam. The coherent (positive) interference between the 2 beams (reflected and reference) is measured by an interferometer, allowing construction of an image of the ocular structures. This method allows cross-sectional imaging a t a resolution of 6 to 25 μm. The Stratus OCT, which uses a 0.8-μm wavelength light source, was designed to evaluate the optic nerve head, retinal nerve fiber layer, and retinal thickness in the posterior segment. The Zeiss Visante OCT and AC Cornea OCT use a 1.3-μm wavelength light source designed specifically for imaging the a nterior eye segment. Light of this wa velength penetrates the sclera, a llowing high-resolution cross- sectional imaging of the anterior chamber (AC) angle and ciliary body. The light is, however, typically blocked by pigment, preventing exploration behind the iris. Ultrahigh resolution OCT can achieve a spatial resolution of 1.3 μm, allowing imaging and measurement of corneal layers. Applications of OCT OCT of the anterior eye segment is being eva luated as a noninvasive dia gnostic and screening tool with a number of potential a pplications. -
Refractive Surgery Faqs. Refractive Surgery the OD's Role in Refractive
9/18/2013 Refractive Surgery Refractive Surgery FAQs. Help your doctor with refractive surgery patient education Corneal Intraocular Bill Tullo, OD, FAAO, LASIK Phakic IOL Verisys Diplomate Surface Ablation Vice-President of Visian PRK Clinical Services LASEK CLE – Clear Lens Extraction TLC Laser Eye Centers Epi-LASIK Cataract Surgery AK - Femto Toric IOL Multifocal IOL ICRS - Intacs Accommodative IOL Femtosecond Assisted Inlays Kamra The OD’s role in Refractive Surgery Refractive Error Determine the patient’s interest Myopia Make the patient aware of your ability to co-manage surgery Astigmatism Discuss advancements in the field Hyperopia Outline expectations Presbyopia/monovision Presbyopia Enhancements Risks Make a recommendation Manage post-op care and expectations Myopia Myopic Astigmatism FDA Approval Common Use FDA Approval Common Use LASIK: 1D – 14D LASIK: 1D – 8D LASIK: -0.25D – -6D LASIK: -0.25D – -3.50D PRK: 1D – 13D PRK: 1D – 6D PRK: -0.25D – -6D PRK: -0.25D – -3.50D Intacs: 1D- 3D Intacs: 1D- 3D Intacs NONE Intacs: NONE P-IOL: 3D- 20D P-IOL: 8D- 20D P-IOL: NONE P-IOL: NONE CLE/CAT: any CLE/CAT: any CLE/CAT: -0.75D - -3D CLE/CAT: -0.75D - -3D 1 9/18/2013 Hyperopia Hyperopic Astigmatism FDA Approval Common Use FDA Approval Common Use LASIK: 0.25D – 6D LASIK: 0.25D – 4D LASIK: 0.25D – 6D LASIK: 0.25D – 4D PRK: 0.25D – 6D PRK: 0.25D – 4D PRK: 0.25D – 6D PRK: 0.25D – 4D Intacs: NONE Intacs: NONE Intacs: NONE Intacs: NONE P-IOL: NONE P-IOL: NONE P-IOL: NONE P-IOL: -
Factors Affecting Measurements of Iop Using Non-Contact Eye Tonometer
Strojnícky časopis – Journal of MECHANICAL ENGINEERING, VOL 70 (2020), NO 2, 133 - 140 FACTORS AFFECTING MEASUREMENTS OF IOP USING NON-CONTACT EYE TONOMETER RYBÁŘ Jan1, HUČKO Branislav2*, ĎURIŠ Stanislav1, PAVLÁSEK Peter3,1, CHYTIL Miroslav3, FURDOVÁ Alena4, VESELÝ Pavol4,5 1Slovak University of Technology in Bratislava, Faculty of Mechanical Engineering, Institute of Automation, Measurement and Applied Informatics, Mýtna 36, 811 07 Bratislava, Slovakia 2Slovak University of Technology in Bratislava, Faculty of Mechanical Engineering, Institute of Applied Mechanics and Mechatronics, Nám. slobody 17, 812 31 Bratislava, Slovakia, e – mail: [email protected] 3Slovak Metrology Institute, Karloveská 63, 842 55 Bratislava 4, Slovakia 4University Hospital Bratislava, Ophthalmology Clinic LFUK and UNB, Ružinovská 6, 826 06 Bratislava, Slovakia 5VESELY Očná klinika, s.r.o, Karadžičova 16, 821 08Bratislava, Slovakia Abstract: The objective measurement of intraocular pressure (IOP) represents the identification of the symptoms of some diseases, e.g. glaucoma. This objective measurement can only be achieved by correct calibration of tonometers. Today, there is no uniform methodology for this calibration. Therefore, we introduce potential sources of error and try to quantify their contributions in this paper. Subsequently, a calibration standard containing an artificial cornea with similar properties to the human one should be designed. KEYWORDS: measurement, intraocular pressure, non-contact eye tonometer, uncertainties and factors 1 Introduction Correct metrological assurance in ocular tonometry is very important in the prevention of such insidious diseases as glaucoma. Specifically, to ensure accurate measurement of intraocular pressure with eye tonometer is the goal of our efforts. The most commonly used type of ophthalmological tonometers in ophthalmic practice are those that measure eye pressure using contactless methods. -
Bilateral Acute Angle Closure Glaucoma After Hyperopic LASIK Correction
Saudi Journal of Ophthalmology (2009) 23, 215– 217 King Saud University Saudi Journal of Ophthalmology www.ksu.edu.sa www.sciencedirect.com CASE REPORT Bilateral acute angle closure glaucoma after hyperopic LASIK correction Essam A. Osman, MD *, Ahmed A. Alsaleh, MD, Turki Al Turki, MD, Saleh A. AL Obeidan, MD Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia Received 25 May 2009; accepted 13 July 2009 Available online 24 October 2009 KEYWORDS Abstract Acute angle closure glaucoma is unexpected complication following laser in situ ker- Acute glaucoma; atomileusis (LASIK). We are reporting a 49-years-old lady that was presented to the emergency Hyperopia; department with acute glaucoma in both eyes soon after LASIK correction. Diagnosis was made LASIK on detailed clinical history and examination, slit lamp examination, intraocular pressure measure- ment and gonioscopy. Laser iridotomy in both eyes succeeded in controlling the attack and normal- izing the intraocular pressure (IOP) more than 6 months of follow-up. Prophylactic laser iridotomy is essential for narrow angle patients before LASIK surgery if refractive laser surgery is indicated. ª 2009 King Saud University. All rights reserved. 1. Introduction Paciuc et al. reported a case of unilateral acute angle clo- sure glaucoma 1 year after hyperopic LASIK correction (Paci- Primary angle closure glaucoma (PACG) is a vision-threaten- uc et al., 2000). However, we are reporting a case of bilateral ing type of glaucoma. A high prevalence of PACG has been re- acute glaucoma soon after LASIK correction. LASIK surgery ported in the Asian region (Kunimatsu, 2007). Angle closure is the most popular form of laser eye surgery, in which an oph- glaucoma soon after LASIK procedure is an unexpected thalmic surgeon reshapes the cornea using an excimer laser complication. -
Comparison of Retinal Vessel Diameter Between Open-Angle Glaucoma Patients with Initial Parafoveal Scotoma and Peripheral Nasal Step
Comparison of Retinal Vessel Diameter Between Open-Angle Glaucoma Patients With Initial Parafoveal Scotoma and Peripheral Nasal Step EUNJOO YOO, CHUNGKWON YOO, TAE-EUN LEE, AND YONG YEON KIM PURPOSE: To compare retinal vessel diameters (RVDs) LTHOUGH INTRAOCULAR PRESSURE (IOP) IS THE between open-angle glaucoma (OAG) patients with most important and only known modifiable risk initial parafoveal scotoma (PFS) and those with initial pe- A factor for glaucoma,1–4 not all patients with ripheral nasal step (PNS). glaucoma show elevated IOP. The Collaborative Normal- DESIGN: Retrospective, cross-sectional study. Tension Glaucoma study reported that 20% of the patients METHODS: We enrolled 151 eyes of 151 patients with with normal-tension glaucoma (NTG) show visual field OAG (83 with normal-tension glaucoma [NTG] and 68 (VF) deterioration, even after a 30% IOP reduction from with primary open-angle glaucoma [POAG]). The pa- baseline.2 Accumulating evidence indicates that, in addi- tients were categorized into the PFS and PNS groups ac- tion to mechanical factors, vascular pathology plays a role cording to the location of the initial visual field (VF) in open-angle glaucoma (OAG). The relationships between defect. Clinical characteristics and RVD indices—central glaucoma and vascular factors, such as migraine,5,6 optic retinal arteriolar equivalent (CRAE) and central retinal disc hemorrhage,7,8 and vasospasm,9 are well established. venular equivalent (CRVE)—were compared between Furthermore, many reports have suggested that glaucoma it- the groups. Subgroup analyses were conducted in the self is associated with the retinal vasculature. A previous NTG and POAG groups. study showed that retinal vessel diameter (RVD) decreases RESULTS: Forty-six patients had PFS and 105 had significantly with increasing glaucoma stage, independently PNS. -
Bioptics with LASIK Flap First for the Treatment of High Ametropia
Bioptics With LASIK Flap First for the Treatment of High Ametropia Merab L. Dvali, MD, PhD; Nana A. Tsinsadze, MD, PhD; Bella V. Sirbiladze, MD, PhD ioptics, fi rst described by Zaldivar et al,1 is the treat- ABSTRACT ment of refractive error using phakic intraocular PURPOSE: To report the safety and predictability of an B lens (IOL) implantation and excimer laser corneal alternate sequence of the bioptics procedure. ablation. Candidates for this procedure included patients with high refractive errors (with astigmatism) that surpass METHODS: In this prospective study of 50 eyes, pha- the treatment range for excimer laser refractive surgery and kic intraocular lenses (IOLs) and pseudophakic IOLs were patients whose corneal thickness will not allow full treat- implanted, followed by LASIK. The corneal fl ap was cre- ment of refractive error. ated, followed by lens implantation 3 days later. Laser ablation was performed to the stromal bed 3 months Over time, the defi nition of bioptics has expanded to in- later. Fifty eyes with varying degrees of refractive clude phakic, pseudophakic, and clear lens extraction cases error (range of manifest refraction spherical equivalent followed by surgery on the corneal plane. Phakic or pseudo- [MRSE], Ϫ19.50 to ϩ8.50 diopters [D]) were treated. phakic surgery followed by refractive surgery is the most com- Follow-up ranged from 3 months to 4 years postopera- mon form of bioptics.2 In this procedure, the lens is implanted tively. to correct the majority of refractive error followed by LASIK RESULTS: No intra- or postoperative complications performed at least 3 months postoperatively to correct the re- occurred. -
The Use of Anterior-Segment Optical-Coherence Tomography for the Assessment of the Iridocorneal Angle and Its Alterations: Update and Current Evidence
Journal of Clinical Medicine Review The Use of Anterior-Segment Optical-Coherence Tomography for the Assessment of the Iridocorneal Angle and Its Alterations: Update and Current Evidence Giacinto Triolo 1,* , Piero Barboni 2,3, Giacomo Savini 4, Francesco De Gaetano 1, Gaspare Monaco 1, Alessandro David 1 and Antonio Scialdone 1 1 Ophthalmic Institute, ASST Fatebenefratelli-Sacco, 20121 Milan, Italy; [email protected] (F.D.G.); [email protected] (G.M.); [email protected] (A.D.); [email protected] (A.S.) 2 San Raffaele Scientific Institute, University Vita-Salute, 20133 Milan, Italy; [email protected] 3 Studio Oculistico D’Azeglio, 40123 Bologna, Italy 4 G.B. Bietti Foundation I.R.C.C.S., 00198 Rome, Italy; [email protected] * Correspondence: [email protected] Abstract: The introduction of anterior-segment optical-coherence tomography (AS-OCT) has led to improved assessments of the anatomy of the iridocorneal-angle and diagnoses of several mechanisms of angle closure which often result in raised intraocular pressure (IOP). Continuous advancements in AS-OCT technology and software, along with an extensive research in the field, have resulted in a wide range of possible parameters that may be used to diagnose and follow up on patients with this spectrum of diseases. However, the clinical relevance of such variables needs to be explored thoroughly. The aim of the present review is to summarize the current evidence supporting the use of AS-OCT for the diagnosis and follow-up of several iridocorneal-angle and anterior-chamber Citation: Triolo, G.; Barboni, P.; alterations, focusing on the advantages and downsides of this technology. -
Acquired Colour Vision Defects in Glaucoma—Their Detection and Clinical Significance
1396 Br J Ophthalmol 1999;83:1396–1402 Br J Ophthalmol: first published as 10.1136/bjo.83.12.1396 on 1 December 1999. Downloaded from PERSPECTIVE Acquired colour vision defects in glaucoma—their detection and clinical significance Mireia Pacheco-Cutillas, Arash Sahraie, David F Edgar Colour vision defects associated with ocular disease have The aims of this paper are: been reported since the 17th century. Köllner1 in 1912 + to provide a review of the modern literature on acquired wrote an acute description of the progressive nature of col- colour vision in POAG our vision loss secondary to ocular disease, dividing defects + to diVerentiate the characteristics of congenital and into “blue-yellow” and “progressive red-green blindness”.2 acquired defects, in order to understand the type of This classification has become known as Köllner’s rule, colour vision defect associated with glaucomatous although it is often imprecisely stated as “patients with damage retinal disease develop blue-yellow discrimination loss, + to compare classic clinical and modern methodologies whereas optic nerve disease causes red-green discrimina- (including modern computerised techniques) for tion loss”. Exceptions to Köllner’s rule34 include some assessing visual function mediated through chromatic optic nerve diseases, notably glaucoma, which are prima- mechanisms rily associated with blue-yellow defects, and also some reti- + to assess the eVects of acquired colour vision defects on nal disorders such as central cone degeneration which may quality of life in patients with POAG. result in red-green defects. Indeed, in some cases, there might be a non-specific chromatic loss. Comparing congenital and acquired colour vision Colour vision defects in glaucoma have been described defects since 18835 and although many early investigations Congenital colour vision deficiencies result from inherited indicated that red-green defects accompanied glaucoma- cone photopigment abnormalities.