Epigenetics and Micrornas
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Interplay Between Epigenetics and Metabolism in Oncogenesis: Mechanisms and Therapeutic Approaches
OPEN Oncogene (2017) 36, 3359–3374 www.nature.com/onc REVIEW Interplay between epigenetics and metabolism in oncogenesis: mechanisms and therapeutic approaches CC Wong1, Y Qian2,3 and J Yu1 Epigenetic and metabolic alterations in cancer cells are highly intertwined. Oncogene-driven metabolic rewiring modifies the epigenetic landscape via modulating the activities of DNA and histone modification enzymes at the metabolite level. Conversely, epigenetic mechanisms regulate the expression of metabolic genes, thereby altering the metabolome. Epigenetic-metabolomic interplay has a critical role in tumourigenesis by coordinately sustaining cell proliferation, metastasis and pluripotency. Understanding the link between epigenetics and metabolism could unravel novel molecular targets, whose intervention may lead to improvements in cancer treatment. In this review, we summarized the recent discoveries linking epigenetics and metabolism and their underlying roles in tumorigenesis; and highlighted the promising molecular targets, with an update on the development of small molecule or biologic inhibitors against these abnormalities in cancer. Oncogene (2017) 36, 3359–3374; doi:10.1038/onc.2016.485; published online 16 January 2017 INTRODUCTION metabolic genes have also been identified as driver genes It has been appreciated since the early days of cancer research mutated in some cancers, such as isocitrate dehydrogenase 1 16 17 that the metabolic profiles of tumor cells differ significantly from and 2 (IDH1/2) in gliomas and acute myeloid leukemia (AML), 18 normal cells. Cancer cells have high metabolic demands and they succinate dehydrogenase (SDH) in paragangliomas and fuma- utilize nutrients with an altered metabolic program to support rate hydratase (FH) in hereditary leiomyomatosis and renal cell 19 their high proliferative rates and adapt to the hostile tumor cancer (HLRCC). -
RNA Epigenetics: Fine-Tuning Chromatin Plasticity and Transcriptional Regulation, and the Implications in Human Diseases
G C A T T A C G G C A T genes Review RNA Epigenetics: Fine-Tuning Chromatin Plasticity and Transcriptional Regulation, and the Implications in Human Diseases Amber Willbanks, Shaun Wood and Jason X. Cheng * Department of Pathology, Hematopathology Section, University of Chicago, Chicago, IL 60637, USA; [email protected] (A.W.); [email protected] (S.W.) * Correspondence: [email protected] Abstract: Chromatin structure plays an essential role in eukaryotic gene expression and cell identity. Traditionally, DNA and histone modifications have been the focus of chromatin regulation; however, recent molecular and imaging studies have revealed an intimate connection between RNA epigenetics and chromatin structure. Accumulating evidence suggests that RNA serves as the interplay between chromatin and the transcription and splicing machineries within the cell. Additionally, epigenetic modifications of nascent RNAs fine-tune these interactions to regulate gene expression at the co- and post-transcriptional levels in normal cell development and human diseases. This review will provide an overview of recent advances in the emerging field of RNA epigenetics, specifically the role of RNA modifications and RNA modifying proteins in chromatin remodeling, transcription activation and RNA processing, as well as translational implications in human diseases. Keywords: 5’ cap (5’ cap); 7-methylguanosine (m7G); R-loops; N6-methyladenosine (m6A); RNA editing; A-to-I; C-to-U; 2’-O-methylation (Nm); 5-methylcytosine (m5C); NOL1/NOP2/sun domain Citation: Willbanks, A.; Wood, S.; (NSUN); MYC Cheng, J.X. RNA Epigenetics: Fine-Tuning Chromatin Plasticity and Transcriptional Regulation, and the Implications in Human Diseases. Genes 2021, 12, 627. -
RNA Interference with Sirna
CANCER GENOMICS & PROTEOMICS 3: 127-136 (2006) Review RNA Interference with siRNA HELENA JOYCE*, ISABELLA BRAY* and MARTIN CLYNES National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin, Ireland Abstract. Over the last decade, RNA interference has RNAs (13). Twenty-one different gene products with emerged as an effective mechanism for silencing gene different functions and subcellular localizations were expression. This ancient cellular antiviral response can be used studied. Knockdown experiments, monitored by to allow specific inhibition of the function of any chosen target immunofluorescence and immunoblotting, showed that even gene, including those involved in diseases such as cancer, major cellular proteins such as actin and vimentin could be AIDS and hepatitis. It has become an invaluable research tool silenced efficiently. Previous work had discovered that these to aid in the identification of novel genes involved in disease 22-nucleotide sequences served as guide sequences that processes. It has advanced from the use of synthetic RNA for instruct a multicomponent nuclease, RNA-induced silencing the endogenous production of small hairpin RNA by plasmid complex (RISC), to destroy specific messenger RNAs (7). and viral vectors, and from transient inhibition in vitro to It was then found that, in response to dsRNA, cells trigger longer-lasting effects in vivo. However, as with antisense and a two-step reaction. In the first step, long dsRNA is ribozymes, the efficient delivery of siRNA into cells is currently processed by a ribonuclease (RNase) III enzyme, called the limiting factor to successful gene expression inhibition in Dicer, into small interfering RNAs (siRNAs); these vivo. This review gives an overview of the mechanism of action subsequently serve as the sequence determinants of the of siRNA and its use in cancer research. -
RNA Interference in the Nucleus: Roles for Small Rnas in Transcription, Epigenetics and Beyond
REVIEWS NON-CODING RNA RNA interference in the nucleus: roles for small RNAs in transcription, epigenetics and beyond Stephane E. Castel1 and Robert A. Martienssen1,2 Abstract | A growing number of functions are emerging for RNA interference (RNAi) in the nucleus, in addition to well-characterized roles in post-transcriptional gene silencing in the cytoplasm. Epigenetic modifications directed by small RNAs have been shown to cause transcriptional repression in plants, fungi and animals. Additionally, increasing evidence indicates that RNAi regulates transcription through interaction with transcriptional machinery. Nuclear small RNAs include small interfering RNAs (siRNAs) and PIWI-interacting RNAs (piRNAs) and are implicated in nuclear processes such as transposon regulation, heterochromatin formation, developmental gene regulation and genome stability. RNA interference Since the discovery that double-stranded RNAs (dsRNAs) have revealed a conserved nuclear role for RNAi in (RNAi). Silencing at both the can robustly silence genes in Caenorhabditis elegans and transcriptional gene silencing (TGS). Because it occurs post-transcriptional and plants, RNA interference (RNAi) has become a new para- in the germ line, TGS can lead to transgenerational transcriptional levels that is digm for understanding gene regulation. The mecha- inheritance in the absence of the initiating RNA, but directed by small RNA molecules. nism is well-conserved across model organisms and it is dependent on endogenously produced small RNA. uses short antisense RNA to inhibit translation or to Such epigenetic inheritance is familiar in plants but has Post-transcriptional gene degrade cytoplasmic mRNA by post-transcriptional gene only recently been described in metazoans. silencing silencing (PTGS). PTGS protects against viral infection, In this Review, we cover the broad range of nuclear (PTGS). -
RNA Stem Structure Governs Coupling of Dicing and Gene Silencing in RNA
RNA stem structure governs coupling of dicing and PNAS PLUS gene silencing in RNA interference Hye Ran Koha,b,1, Amirhossein Ghanbariniakia,c,d, and Sua Myonga,c,d,1 aDepartment of Biophysics, Johns Hopkins University, Baltimore, MD 21218; bDepartment of Chemistry, Chung-Ang University, Seoul 06974, Korea; cInstitute for Genomic Biology, University of Illinois, Urbana, IL 61801; and dCenter for Physics of Living Cells, University of Illinois, Urbana, IL 61801 Edited by Brenda L. Bass, University of Utah School of Medicine, Salt Lake City, UT, and approved October 13, 2017 (received for review June 8, 2017) PremicroRNAs (premiRNAs) possess secondary structures consist- coworkers (20), but its relationship to the silencing efficiency has ing of a loop and a stem with multiple mismatches. Despite the not been tested. While the effect of mismatches between the well-characterized RNAi pathway, how the structural features of guide strand and target mRNA has been extensively studied (21– premiRNA contribute to dicing and subsequent gene-silencing 24), the effect of mismatch between guide and passenger strand efficiency remains unclear. Using single-molecule FISH, we dem- has not been systematically examined. onstrate that cytoplasmic mRNA, but not nuclear mRNA, is reduced We sought to study how different structural features found in during RNAi. The dicing rate and silencing efficiency both increase premiRNAs and presiRNAs modulate overall gene-silencing in a correlated manner as a function of the loop length. In contrast, efficiency by measuring two key steps in the RNAi pathway: (i) mismatches in the stem drastically diminish the silencing efficiency dicing kinetics to measure how quickly premiRNA or presiRNA without impacting the dicing rate. -
REVIEW Chromatin Modifications and DNA Double-Strand Breaks
Leukemia (2007) 21, 195–200 & 2007 Nature Publishing Group All rights reserved 0887-6924/07 $30.00 www.nature.com/leu REVIEW Chromatin modifications and DNA double-strand breaks: the current state of play TC Karagiannis1,2 and A El-Osta3 1Molecular Radiation Biology, Trescowthick Research Laboratories, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia; 2Department of Pathology, The University of Melbourne, Parkville, Melbourne, Victoria, Australia and 3Epigenetics in Human Health and Disease, Baker Medical Research Institute, The Alfred Medical Research and Education Precinct, Prahran, Victoria, Australia The packaging and compaction of DNA into chromatin is mutated (ATM) and ataxia telangiectasia-related (also known as important for all DNA-metabolism processes such as transcrip- Rad3-related, ATR), which are members of the phosphoinositide tion, replication and repair. The involvement of chromatin 4,5 modifications in transcriptional regulation is relatively well 3-kinase (PI(3)K) superfamily. They catalyse the phosphoryla- characterized, and the distinct patterns of chromatin transitions tion of numerous downstream substrates that are involved in 4,5 that guide the process are thought to be the result of a code on cell-cycle regulation, DNA repair and apoptosis. the histone proteins (histone code). In contrast to transcription, In mammalian cells, DSBs are repaired by one of two distinct the intricate link between chromatin and responses to DNA and complementary pathways – homologous recombination damage has been given attention only recently. It is now (HR) and non-homologous end-joining (NHEJ).6,7 Briefly, NHEJ emerging that specific ATP-dependent chromatin remodeling involves processing of the broken DNA terminii to make them complexes (including the Ino80, Swi/Snf and RSC remodelers) 3 and certain constitutive (methylation of lysine 79 of histone H3) compatible, followed by a ligation step. -
Annotated Classic Histone Code and Transcription
Annotated Classic Histone Code and Transcription Jerry L. Workman1,* 1Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA *Correspondence: [email protected] We are pleased to present a series of Annotated Classics celebrating 40 years of exciting biology in the pages of Cell. This install- ment revisits “Tetrahymena Histone Acetyltransferase A: A Homolog to Yeast Gcn5p Linking Histone Acetylation to Gene Activa- tion” by C. David Allis and colleagues. Here, Jerry Workman comments on how the discovery of Tetrahymena histone acetyltrans- ferase A, a homolog to a yeast transcriptional adaptor Gcn5p, by Allis led to the establishment of links between histone acetylation and gene activation. Each Annotated Classic offers a personal perspective on a groundbreaking Cell paper from a leader in the field with notes on what stood out at the time of first reading and retrospective comments regarding the longer term influence of the work. To see Jerry L. Workman’s thoughts on different parts of the manuscript, just download the PDF and then hover over or double- click the highlighted text and comment boxes on the following pages. You can also view Workman’s annotation by opening the Comments navigation panel in Acrobat. Cell 158, August 14, 2014, 2014 ©2014 Elsevier Inc. Cell, Vol. 84, 843±851, March 22, 1996, Copyright 1996 by Cell Press Tetrahymena Histone Acetyltransferase A: A Homolog to Yeast Gcn5p Linking Histone Acetylation to Gene Activation James E. Brownell,* Jianxin Zhou,* Tamara Ranalli,* 1995; Edmondson et al., submitted). Thus, the regulation Ryuji Kobayashi,² Diane G. Edmondson,³ of histone acetylation is an attractive control point for Sharon Y. -
RNA-Based Technologies for Engineering Plant Virus Resistance
plants Review RNA-Based Technologies for Engineering Plant Virus Resistance Michael Taliansky 1,2,*, Viktoria Samarskaya 1, Sergey K. Zavriev 1 , Igor Fesenko 1 , Natalia O. Kalinina 1,3 and Andrew J. Love 2,* 1 Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; [email protected] (V.S.); [email protected] (S.K.Z.); [email protected] (I.F.); [email protected] (N.O.K.) 2 The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK 3 Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia * Correspondence: [email protected] (M.T.); [email protected] (A.J.L.) Abstract: In recent years, non-coding RNAs (ncRNAs) have gained unprecedented attention as new and crucial players in the regulation of numerous cellular processes and disease responses. In this review, we describe how diverse ncRNAs, including both small RNAs and long ncRNAs, may be used to engineer resistance against plant viruses. We discuss how double-stranded RNAs and small RNAs, such as artificial microRNAs and trans-acting small interfering RNAs, either produced in transgenic plants or delivered exogenously to non-transgenic plants, may constitute powerful RNA interference (RNAi)-based technology that can be exploited to control plant viruses. Additionally, we describe how RNA guided CRISPR-CAS gene-editing systems have been deployed to inhibit plant virus infections, and we provide a comparative analysis of RNAi approaches and CRISPR-Cas technology. The two main strategies for engineering virus resistance are also discussed, including direct targeting of viral DNA or RNA, or inactivation of plant host susceptibility genes. -
INTRODUCTION Sirna and Rnai
J Korean Med Sci 2003; 18: 309-18 Copyright The Korean Academy ISSN 1011-8934 of Medical Sciences RNA interference (RNAi) is the sequence-specific gene silencing induced by dou- ble-stranded RNA (dsRNA). Being a highly specific and efficient knockdown tech- nique, RNAi not only provides a powerful tool for functional genomics but also holds Institute of Molecular Biology and Genetics and School of Biological Science, Seoul National a promise for gene therapy. The key player in RNAi is small RNA (~22-nt) termed University, Seoul, Korea siRNA. Small RNAs are involved not only in RNAi but also in basic cellular pro- cesses, such as developmental control and heterochromatin formation. The inter- Received : 19 May 2003 esting biology as well as the remarkable technical value has been drawing wide- Accepted : 23 May 2003 spread attention to this exciting new field. V. Narry Kim, D.Phil. Institute of Molecular Biology and Genetics and School of Biological Science, Seoul National University, San 56-1, Shillim-dong, Gwanak-gu, Seoul 151-742, Korea Key Words : RNA Interference (RNAi); RNA, Small interfering (siRNA); MicroRNAs (miRNA); Small Tel : +82.2-887-8734, Fax : +82.2-875-0907 hairpin RNA (shRNA); mRNA degradation; Translation; Functional genomics; Gene therapy E-mail : [email protected] INTRODUCTION established yet, testing 3-4 candidates are usually sufficient to find effective molecules. Technical expertise accumulated The RNA interference (RNAi) pathway was originally re- in the field of antisense oligonucleotide and ribozyme is now cognized in Caenorhabditis elegans as a response to double- being quickly applied to RNAi, rapidly improving RNAi stranded RNA (dsRNA) leading to sequence-specific gene techniques. -
Histone Methylases As Novel Drug Targets. Focus on EZH2 Inhibition. Catherine BAUGE1,2,#, Céline BAZILLE 1,2,3, Nicolas GIRARD1
Histone methylases as novel drug targets. Focus on EZH2 inhibition. Catherine BAUGE1,2,#, Céline BAZILLE1,2,3, Nicolas GIRARD1,2, Eva LHUISSIER1,2, Karim BOUMEDIENE1,2 1 Normandie Univ, France 2 UNICAEN, EA4652 MILPAT, Caen, France 3 Service d’Anatomie Pathologique, CHU, Caen, France # Correspondence and copy request: Catherine Baugé, [email protected], EA4652 MILPAT, UFR de médecine, Université de Caen Basse-Normandie, CS14032 Caen cedex 5, France; tel: +33 231068218; fax: +33 231068224 1 ABSTRACT Posttranslational modifications of histones (so-called epigenetic modifications) play a major role in transcriptional control and normal development, and are tightly regulated. Disruption of their control is a frequent event in disease. Particularly, the methylation of lysine 27 on histone H3 (H3K27), induced by the methylase Enhancer of Zeste homolog 2 (EZH2), emerges as a key control of gene expression, and a major regulator of cell physiology. The identification of driver mutations in EZH2 has already led to new prognostic and therapeutic advances, and new classes of potent and specific inhibitors for EZH2 show promising results in preclinical trials. This review examines roles of histone lysine methylases and demetylases in cells, and focuses on the recent knowledge and developments about EZH2. Key-terms: epigenetic, histone methylation, EZH2, cancerology, tumors, apoptosis, cell death, inhibitor, stem cells, H3K27 2 Histone modifications and histone code Epigenetic has been defined as inheritable changes in gene expression that occur without a change in DNA sequence. Key components of epigenetic processes are DNA methylation, histone modifications and variants, non-histone chromatin proteins, small interfering RNA (siRNA) and micro RNA (miRNA). -
Annale D890ahlfors.Pdf (5.211Mb)
TURUN YLIOPISTON JULKAISUJA ANNALES UNIVERSITATIS TURKUENSIS SARJA - SER. D OSA - TOM. 890 MEDICA - ODONTOLOGICA INTERLEUKIN-4 INDUCED LEUKOCYTE DIFFERENTIATION by Helena Ahlfors TURUN YLIOPISTO UNIVERSITY OF TURKU Turku 2009 From Turku Centre for Biotechnology, University of Turku and Åbo Akademi University; Department of Medical Biochemistry and Molecular Biology, University of Turku and National Graduate School of Informational and Structural Biology Supervised by Professor Riitta Lahesmaa, M.D., Ph.D. Turku Centre for Biotechnology University of Turku and Åbo Akademi University Turku, Finland Reviewed by Professor Risto Renkonen M.D., Ph.D. Transplantation laboratory Haartman Institute University of Helsinki Helsinki, Finland and Docent Panu Kovanen, M.D., Ph.D. Haartman Institute Department of Pathology University of Helsinki Helsinki, Finland Opponent Assistant Professor Mohamed Oukka, Ph.D. Seattle Children’s Research Institute Department of Immunology University of Washington Seattle, USA ISBN 978-951-29-4183-4 (PRINT) ISBN 978-951-29-4184-1 (PDF) ISSN 0355-9483 Painosalama Oy – Turku, Finland 2009 Think where mans glory most begins and ends, and say my glory was I had such friends. William Butler Yeats (1865 – 1939) ABSTRACT Helena Ahlfors Interleukin-4 induced leukocyte differentiation Turku Centre for Biotechnology, University of Turku and Åbo Akademi University Department of Medical Biochemistry and Genetics, University of Turku National Graduate School of Informational and Structural Biology, 2009 Monocytes, macrophages and dendritic cells (DCs) are important mediators of innate immune system, whereas T lymphocytes are the effector cells of adaptive immune responses. DCs play a crucial role in bridging innate and adaptive immunity. Naïve CD4+ Th progenitors (Thp) differentiate to functionally distinct effector T cell subsets including Th1, Th2 and Th17 cells, which while being responsible for specific immune functions have also been implicated in pathological responses, such as autoimmunity, asthma and allergy. -
Gene Silencing: Double-Stranded RNA Mediated Mrna Degradation and Gene Inactivation
Cell Research (2001); 11(3):181-186 http://www.cell-research.com REVIEW Gene silencing: Double-stranded RNA mediated mRNA degradation and gene inactivation 1, 2 1 TANG WEI *, XIAO YAN LUO , VANESSA SANMUELS 1 North Carolina State University, Forest Biotechnology Group, Raleigh, NC 27695, USA 2 University of North Carolina, Department of Cell and Developmental Biology, Chapel Hill, NC 27599, USA ABSTRACT The recent development of gene transfer approaches in plants and animals has revealed that transgene can undergo silencing after integration in the genome. Host genes can also be silenced as a consequence of the presence of a homologous transgene. More and more investigations have demonstrated that double- stranded RNA can silence genes by triggering degradation of homologous RNA in the cytoplasm and by directing methylation of homologous nuclear DNA sequences. Analyses of Arabidopsis mutants and plant viral suppressors of silencing are unraveling RNA-silencing mechanisms and are assessing the role of me- thylation in transcriptional and posttranscriptional gene silencing. This review will focus on double-stranded RNA mediated mRNA degradation and gene inactivation in plants. Key words: Gene silencing, double-stranded RNA, methylation, homologous RNA, transgene. INTRODUCTION portant in consideration of its practical application The genome structure of plants can be altered by over the the past ten years[1-5]. Transgenes can genetic transformation. During the process of gene become silent after a long phase of expression, and transfer, Agrobacterium tumefaciens integrate part can sometimes silence the expression of homologous of their genome into the genome of susceptible elements located at ectopic positions in the genome.