New Insights Into Circumstellar Disk Evolution in the Era of ALMA

Total Page:16

File Type:pdf, Size:1020Kb

New Insights Into Circumstellar Disk Evolution in the Era of ALMA New Insights into Circumstellar Disk Evolution in the Era of ALMA Thesis by Scott Alexander Barenfeld In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Astrophysics CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2019 Defended October 5, 2018 ii © 2019 Scott Alexander Barenfeld ORCID: 0000-0001-5222-6851 All rights reserved iii ACKNOWLEDGEMENTS The list of people who have helped guide me to where I am today is too long to fit into a single section of my thesis. While there are so many people I would like to thank, I must start with my two advisors, John Carpenter and Anneila Sargent. Working with each of them has been an absolute privilege. John’s high standards and attention to detail have constantly pushed me to be the best scientist that I can be. While his vision was instrumental in developing the project that would become my thesis, he always encouraged me to think independently about my research and find answers on my own. Though I did not begin working closely with Anneila until the second half of my time at Caltech, her influence has proven invaluable as well. Through the process of repeatedly returning paper drafts to me looking, as she put it, “like the Dead Sea Scrolls,” she has made me a far better writer. I am extremely thankful for the encouragement she has given me in recent months to push ahead and finish my thesis more quickly than I thought was possible. I am also grateful to my thesis committee members, Dimitri Mawet, Chuck Steidel, and Phil Hopkins, and in particular to my committee chair, Lynne Hillenbrand, who served as my research advisor during my first two years at Caltech. Of course, it takes more than just advisors to get someone through a Ph.D. I would therefore like to also thank Andrea Isella, Luca Ricci, and Tiffany Meshkat, all of whom I worked closely with during my time here, and of course, all of the administrators and staff in Cahill, who keep our department running smoothly. Looking beyond Caltech, I would not be where I am today if not for my undergraduate research advisors at the University of Rochester and Arecibo Observatory, Eric Mamajek, Eric Bubar, Chris Salter, and Tapasi Ghosh. And of course, Janet Fogg, who has been a parent-away-from-home to every student who has come through Rochester’s Physics and Astronomy department. My time at Rochester was hugely transformative, thanks in large part to the lifelong friends I made there, including Marc Nuzzo, Gabrielle Mariano, and Rachel Blomberg. In addition, I will never forget the time I spent screaming my lungs out as part of the “actually pretty decent” University of Rochester Pep Band. I want to thank all of my fellow graduate students with whom I have shared Cahill for making our department such an enjoyable place to be. In particular, I would like to thank Marin Anderson, who had the unfortunately luck of having a desk next to mine in our first year as I was learning how to juggle. It was fortunate for iv me, however, as in addition to evidently having very quick reflexes, she has been a great friend ever since. Also, thank you to Swarnima Manohar, the only person I’ve ever met who enjoys Marvel movies as much as I do, and to Lee Rosenthal, a close second. Thank you to Gina Duggan for working so hard to make the department, and Caltech as a whole, a better place, and to Mark Duggan for all of the awesome game nights. Thank you to Ryan Monroe for all the fun times in the department and on the slopes of Mammoth. Broken thumb or not, I still beat you down the hill! Thank you to Jake Jencson, who has more love for the state of Ohio than I’ve ever seen in another human being, to Denise Schmitz, for some amazing sessions of Dungeons and Dragons, and to Rachel Theios, for all the adorable pictures of Bailey and all the times spent chatting in each others’ offices when one of us needed a break. And last, but not least, thank you to Donal O’Sullivan, my officemate and best man, for giving a reason to look forward to coming into work every day. As every graduate student knows, working towards a Ph.D. has its ups and downs. As such, I would like to thank Lee Coleman and the rest of the Caltech Counseling Center for getting me and so many others through our toughest moments. At times like those, it was always so helpful to have things to focus on outside of Caltech, which is why I am so grateful to Seed Consulting Group for the opportunity to volunteer with them in my spare time. Working with Seed was the most rewarding thing I have done during my time as a graduate student, and I would like to thank all of the consultants I teamed with for making Seed possible. Seed would not exist without the vision and passion of Ajay Bawa, so I am incredibly grateful to him for starting something that has been truly special to be a part of. Of course, none of this would have happened without my parents. Whether through watching documentaries on the Discovery Channel, visiting the Bronx Zoo, or going on incredible adventures to see nature in person, my parents instilled in me a fascination with the natural world from a young age. As I’ve grown, they have always been incredibly supportive of whatever I decided to pursue, and were always there for me to turn to whenever I struggled. I am so grateful for the close relationship we still share. Beyond my parents, my extended family has played a huge part in my life, especially my grandparents. I still remember, while visiting my Grandfather in Florida during high school, watching back-to-back documentaries on String Theory and Stephen Hawking’s latest ideas about black holes. I didn’t understand a single word in either one, but I knew right then that physics and astronomy were what I wanted to pursue. v Finally, I could not be more grateful to my incredible wife, Faye. You have been the most supportive person anyone has ever had in their lives during our nearly ten years together. I could go on and on about just the last few weeks, as you’ve single-handedly gotten us ready to move to New York so that I could concentrate on my thesis. I cannot thank you enough for always being there for me no matter how difficult things have gotten. I cannot believe that when I started at Caltech, we had only just finished our first year of living together in campus housing, and now we are married and getting ready to make our second move across the country together. And after all this time, there is still no one I would rather spend 5 straight days stuck in a car with! vi ABSTRACT In recent decades, it has become clear that solar systems such as our own form within the circumstellar disks of gas and dust that surround young stars. Thus, to understand how these solar systems come to be, it is necessary to study the conditions within these disks. Until recently, such studies have required a focus on intrinsically brighter and younger disks that are easier to observe. However, a full picture of planet formation requires the characterization of older disks to determine how these systems change over time. The unprecedented capabilities of the Atacama Large Millimeter/submillimeter Array (ALMA) now present the opportunity to study populations of these disks in detail for the first time. In this thesis, I present a study of over 100 such disks in the 5-11 Myr old Upper Scorpius OB Association (Upper Sco) using ALMA, as well as Keck Observatory, with the aim of comparing the properties of these systems to younger disks in order to shed new light on disk evolution. Following background discussion on disks and their evolution, ALMA measure- ments of the continuum and CO line fluxes of these disks at 0.88 mm are reported in Chapter 3. The continuum fluxes are used to show that the majority of these systems contain less than 1 M⊕ of dust. It is then shown that dust masses around these stars are on average a factor of ∼ 4:5 lower than their younger counterparts in the Taurus star-forming region, placing important constraints on the mass evolution of these systems. Finally, constraints on depletion of gas in these disks are discussed using the CO measurements. The spatial distributions of the gas and dust within these Upper Sco disks are modeled in Chapter 4. The radial extents of gas and dust are measured and compared, with several systems showing evidence of the gas being more extended. The sizes of the dust disks are compared to younger systems, showing that these disks shrink by a factor of approximately three as they age. These results suggest that dust evolves from the outside-in within disks, perhaps through radial drift. Despite this evolution, dust disks in Upper Sco fall on the same correlation between size and millimeter luminosity as their younger counterparts. This implies a link between the radial structures of disks of different ages, perhaps indicating that these systems are composed of optically-thick dust substructure. Of course, an understanding of planetary system formation would be incomplete vii without accounting for the presence of stellar companions, which are common around young stars and are expected to shorten disk lifetimes by truncating their sizes.
Recommended publications
  • Publication List – Beate Stelzer
    PUBLICATION LIST – BEATE STELZER Refereed publications 87. Pizzocaro D., Stelzer B., Paladini R., Tiengo A., Lisini G., Novara G., Vianello G., Belfiore A, Marelli M., Salvetti D., Pillitteri I., Sciortino S., D’Agostino D., Haberl F., Watson M., Wilms J., Salvaterra R., De Luca A. Results from DROXO IV. EXTraS discovery of an X-ray flare from the Class I protostar candidate ISO-Oph 85 2016, A&A 587, A36 86. Antoniucci S., Nucita A.A., Giannini T., Lorenzetti D., Stelzer B., Gerardi D., Delle Rose S., Di Paola A., Giordano M., Manni L., Strafella F. 2015, A&A 584, A21 First X-ray dectection of the young variable V1180 Cas 85. Stelzer B. 2015, AN 336, 493 Variability of young stellar objects: Accretion, disks, outflows, and magnetic activity 84. Osten R., Melis C., Stelzer B., Bannister K.W., Radigan J., Burgasser A.J., Wolszczan A. & Luhman K.L. 2015, ApJ 805, L3 The Deepest Constraints on Radio and X-ray Magnetic Activity in Ultracool Dwarfs from WISE J104915.57-531906.1 83. Borsa F., Scandariato G., Rainer M., ... Stelzer B. 2015, A&A 578A, 64 The GAPS Programme with HARPS-N at TNG. VII. Putting exoplanets in the stellar context: magnetic activity and asteroseismology of τ Bootis A 82. Maldonado J., Affer L., Micela G., Scandariato G., Damasso M., Stelzer B., et al. 2015, A&A 557A, 132 Stellar parameters of early M dwarfs from ratios of spectral features at optical wavelengths 81. Frasca A., Biazzo K., Lanzafame A.C., Alcal´aJ.M., Brugaletta E., Klutsch A., Stelzer B., et al.
    [Show full text]
  • Stable and Unstable Accretion in the Classical T Tauri Stars IM Lup and RU Lup As Observed by MOST
    Mon. Not. R. Astron. Soc. 000, 000–000 (2015) Printed 27 August 2018 (MN LATEX style file v2.2) Stable and unstable accretion in the classical T Tauri stars IM Lup and RU Lup as observed by MOST Michal Siwak1⋆, Waldemar Ogloza1, Slavek M. Rucinski2, Anthony F. J. Moffat3, Jaymie M. Matthews4, Chris Cameron5, David B. Guenther6, Rainer Kuschnig4,9, Jason F. Rowe7, Dimitar Sasselov8, Werner W. Weiss9 1Mount Suhora Astronomical Observatory, Cracov Pedagogical University, ul. Podchorazych 2, 30-084 Cracov, Poland 2Department of Astronomy and Astrophysics, University of Toronto, 50 St. George St., Toronto, Ontario, M5S 3H4, Canada 3D´epartment de Physique, Universit´ede Montr´eal, C.P.6128, Succursale: Centre-Ville, Montr´eal, QC, H3C 3J7, Canada 4Department of Physics & Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, B.C., V6T 1Z1, Canada 5Department of Mathematics, Physics & Geology, Cape Breton University, 1250 Grand Lake Road, Sydney,NS, B1P 6L2, Canada 6Institute for Computational Astrophysics, Department of Astronomy and Physics, Saint Marys University, Halifax, N.S., B3H 3C3, Canada 7NASA Ames Research Center, Moffett Field, CA 94035, USA 8Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA 9Universit¨at Wien, Institut f¨ur Astrophysik, T¨urkenschanzstrasse 17, A-1180 Wien, Austria Accepted 2015 December 2; Received 2015 November 11; in original form 2015 September 6 ABSTRACT Results of the time variability monitoring of the two classical T Tauri stars, RU Lup and IM Lup, are presented. Three photometric data sets were utilised: (1) simultaneous (same field) MOST satellite observations over four weeks in each of the years 2012 and 2013, (2) multicolour observations at the SAAO in April – May of 2013, (3) archival V - filter ASAS data for nine seasons, 2001 – 2009.
    [Show full text]
  • Pos(MULTIF2017)001
    Multifrequency Astrophysics (A pillar of an interdisciplinary approach for the knowledge of the physics of our Universe) ∗† Franco Giovannelli PoS(MULTIF2017)001 INAF - Istituto di Astrofisica e Planetologia Spaziali, Via del Fosso del Cavaliere, 100, 00133 Roma, Italy E-mail: [email protected] Lola Sabau-Graziati INTA- Dpt. Cargas Utiles y Ciencias del Espacio, C/ra de Ajalvir, Km 4 - E28850 Torrejón de Ardoz, Madrid, Spain E-mail: [email protected] We will discuss the importance of the "Multifrequency Astrophysics" as a pillar of an interdis- ciplinary approach for the knowledge of the physics of our Universe. Indeed, as largely demon- strated in the last decades, only with the multifrequency observations of cosmic sources it is possible to get near the whole behaviour of a source and then to approach the physics governing the phenomena that originate such a behaviour. In spite of this, a multidisciplinary approach in the study of each kind of phenomenon occurring in each kind of cosmic source is even more pow- erful than a simple "astrophysical approach". A clear example of a multidisciplinary approach is that of "The Bridge between the Big Bang and Biology". This bridge can be described by using the competences of astrophysicists, planetary physicists, atmospheric physicists, geophysicists, volcanologists, biophysicists, biochemists, and astrobiophysicists. The unification of such com- petences can provide the intellectual framework that will better enable an understanding of the physics governing the formation and structure of cosmic objects, apparently uncorrelated with one another, that on the contrary constitute the steps necessary for life (e.g. Giovannelli, 2001).
    [Show full text]
  • Hubbl E Space T El Escope Wfpc2 Imaging of Fs Tauri and Haro 6-5B1 John E.Krist,2 Karl R.Stapelfeldt,3 Christopher J.Burrows,2,4 Gilda E.Ballester,5 John T
    THE ASTROPHYSICAL JOURNAL, 501:841È852, 1998 July 10 ( 1998. The American Astronomical Society. All rights reserved. Printed in U.S.A. HUBBL E SPACE T EL ESCOPE WFPC2 IMAGING OF FS TAURI AND HARO 6-5B1 JOHN E.KRIST,2 KARL R.STAPELFELDT,3 CHRISTOPHER J.BURROWS,2,4 GILDA E.BALLESTER,5 JOHN T. CLARKE,5 DAVID CRISP,3 ROBIN W.EVANS,3 JOHN S.GALLAGHER III,6 RICHARD E.GRIFFITHS,7 J. JEFF HESTER,8 JOHN G.HOESSEL,6 JON A.HOLTZMAN,9 JEREMY R.MOULD,10 PAUL A. SCOWEN,8 JOHN T.TRAUGER,3 ALAN M. WATSON,11 AND JAMES A. WESTPHAL12 Received 1997 December 18; accepted 1998 February 16 ABSTRACT We have observed the Ðeld of FS Tauri (Haro 6-5) with the Wide Field Planetary Camera 2 on the Hubble Space Telescope. Centered on Haro 6-5B and adjacent to the nebulous binary system of FS Tauri A there is an extended complex of reÑection nebulosity that includes a di†use, hourglass-shaped structure. H6-5B, the source of a bipolar jet, is not directly visible but appears to illuminate a compact, bipolar nebula which we assume to be a protostellar disk similar to HH 30. The bipolar jet appears twisted, which explains the unusually broad width measured in ground-based images. We present the Ðrst resolved photometry of the FS Tau A components at visual wavelengths. The Ñuxes of the fainter, eastern component are well matched by a 3360 K blackbody with an extinction ofAV \ 8. For the western star, however, any reasonable, reddened blackbody energy distribution underestimates the K-band photometry by over 2 mag.
    [Show full text]
  • Probing Protoplanetary Disk Upper Atmospheres for Heating and Dust Settling Using Synthetic CO Spectra Josiah Lewis Covenant College
    Clemson University TigerPrints Publications Physics and Astronomy 7-1-2010 Probing Protoplanetary Disk Upper Atmospheres for Heating and Dust Settling using Synthetic CO Spectra Josiah Lewis Covenant College Martin Kronberg University of Washington Sean D. Brittain Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/physastro_pubs Part of the Astrophysics and Astronomy Commons Recommended Citation Please use publisher's recommended citation. This Article is brought to you for free and open access by the Physics and Astronomy at TigerPrints. It has been accepted for inclusion in Publications by an authorized administrator of TigerPrints. For more information, please contact [email protected]. Journal of the Southeastern Association for Research in Astronomy, 4, 20-25, 2010 July 1 °c 2010. Southeastern Association for Research in Astronomy. All rights reserved. PROBING PROTOPLANETARY DISK UPPER ATMOSPHERES FOR HEATING AND DUST SETTLING USING SYNTHETIC CO SPECTRA Josiah Lewis1 Covenant College, Box 625, 14049 Scenic Highway, GA 30790 Martin Kronberg1 University of Washington, Seattle, C319 Physics/Astronomy Building, Seattle, WA 98195 and Sean Brittain Department of Physics and Astronomy, Clemson University, Clemson, SC 29634-0978 ABSTRACT CO emission is a useful probe of the warm gas distribution in the planet forming regions of disks around Herbig Ae/Be (HAeBe) stars. We model UV fluoresced and thermally excited CO in the circumstellar disks of several HAeBes. We find indications of dust settling in the upper atmospheres of HD 141569 and HD 97048 and a correlation between PAH luminosity and gas heating in these two systems. Subject headings: circumstellar matter—line: profiles—planetary systems: protoplanetary disks— stars: individual (HD 100546, HD 1415469, HD 97048) 1.
    [Show full text]
  • Arxiv:0808.3207V1 [Astro-Ph] 23 Aug 2008 Nfgr .Nwonsaswr Rtdrcl Icvrdi C in Discovered Directly H first Were and Surroun Stars Variability Area Newborn the of 4
    Handbook of Star Forming Regions Vol. II Astronomical Society of the Pacific, 2008 Bo Reipurth, ed. Chamaeleon Kevin L. Luhman Department of Astronomy and Astrophysics The Pennsylvania State University University Park, PA 16802, USA Abstract. The dark clouds in the constellation of Chamaeleon have distances of 160-180pc from the Sun and a total mass of ∼5000 M⊙. The three main clouds, Cha I, II, and III, have angular sizes of a few square degrees and maximum extinctions of AV ∼ 5-10. Most of the star formation in these clouds is occurring in Cha I, with the remainder in Cha II. The current census of Cha I contains 237 known members, 33 of which have spectral types indicative of brown dwarfs (>M6). Approximately 50 members of Cha II have been identified, including a few brown dwarfs. When interpreted with the evolutionary models of Chabrier and Baraffe, the H-R diagram for Cha I exhibits a median age of ∼2 Myr, making it coeval with IC 348 and slightly older than Taurus (∼1 Myr). TheIMF ofChaI reachesa maximumat a massof0.1-0.15 M⊙, and thus closely resembles the IMFs in IC 348 and the Orion Nebula Cluster. The disk fraction in Cha I is roughly constant at ∼ 50% from 0.01 to 0.3 M⊙ and increases to ∼ 65% at higher masses. In comparison, IC 348 has a similar disk fraction at low masses but a much lower disk fraction at M ∼> 1 M⊙, indicating that solar-type stars have longer disk lifetimes in Cha I. 1. Introduction The southern constellation of Chamaeleon contains one of the nearest groups of dark clouds to the Sun (d ∼ 160-180 pc).
    [Show full text]
  • Tetrahedral Hydrocarbon Nanoparticles in Space: X-Ray Spectra
    Mon. Not. R. Astron. Soc. 000, 1–7 (2018) Printed 15 October 2018 (MN LATEX style file v2.2) Tetrahedral hydrocarbon nanoparticles in space: X-ray spectra G. Bilalbegovic´1, A. Maksimovic´2, L. A. Valencic3;4 1Department of Physics, Faculty of Science, University of Zagreb, Bijenickaˇ cesta 32, 10000 Zagreb, Croatia 2Center of Excellence for Advanced Materials and Sensing Devices, Rudjer Boskoviˇ c´ Institute, Bijenickaˇ cesta 54, 10000 Zagreb, Croatia 3NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA 4The Johns Hopkins University, Department of Physics & Astronomy, 366 Bloomberg Center, 3400 N. Charles St., Baltimore, MD 21218, USA 15 October 2018 ABSTRACT It has been proposed, or confirmed, that diamond nanoparticles exist in various environ- ments in space: close to active galactic nuclei, in the vicinity of supernovae and pulsars, in the interior of several planets in the Solar system, in carbon planets and other exoplanets, carbon- rich stars, meteorites, in X-ray active Herbig Ae/Be stars, and in the interstellar medium. Using density functional theory methods we calculate the carbon K-edge X-ray absorption spectrum of two large tetrahedral nanodiamonds: C26H32 and C51H52. We also study and test our methods on the astrophysical molecule CH4, the smallest C-H tetrahedral structure. A possible detection of nanodiamonds from X-ray spectra by future telescopes, such as the project Arcus, is proposed. Simulated spectra of the diffuse interstellar medium using Cyg X-2 as a source show that nanodiamonds studied in this work can be detected by Arcus, a high resolution X-ray spectrometer mission selected by NASA for a Phase A concept study.
    [Show full text]
  • The Loopy UV Line Profiles of RU Lupi: Accretion, Outflows, and Fluorescence
    submitted to AJ The loopy UV line profiles of RU Lupi: accretion, outflows, and fluorescence Gregory J. Herczeg1, Frederick M. Walter2, Jeffrey L. Linsky1, G¨osta F. Gahm3, David R. Ardila4, Alexander Brown5, Christopher M. Johns-Krull6, Michal Simon2, Jeff A. Valenti7 ABSTRACT We present far-ultraviolet spectra of the classical T Tauri star RU Lupi covering the 912–1710 A˚ spectral range, as observed by the HST /STIS and FUSE satellites. We use these spectra, which are rich in emission and absorption lines, to probe both the accreting and outflowing gas. Absorption in the Lyα profile constrains the extinction to AV ∼ 0.07 mag, which we confirm with other diagnostics. We estimate a mass −8 −1 accretion rate of (5 ± 2) × 10 M⊙ yr using the optical-NUV accretion continuum. The accreting gas is also detected in bright, broad lines of C IV, Si IV, and N V, which all show complex structures across the line profile. Many other emission lines, including those of H2 and Fe II, are pumped by Lyα. RU Lupi’s spectrum varies significantly in the FUV; our STIS observations occurred when RU Lupi was brighter than several other observations in the FUV, possibly due to a high mass accretion rate. Subject headings: accretion, accretion disks — circumstellar matter — line: iden- tification — stars: individual (RU Lupi) — stars: pre-main sequence — ultraviolet: stars 1. INTRODUCTION Classical T Tauri stars (CTTSs) are likely prototypes of the young Sun when it was accreting arXiv:astro-ph/0504654v1 29 Apr 2005 material from its circumstellar disk. In the standard
    [Show full text]
  • Where Are the Hot Ion Lines in Classical T Tauri Stars Formed?
    Accretion, winds and jets: High-energy emission from young stellar objects Dissertation zur Erlangung des Doktorgrades des Departments Physik der Universit¨at Hamburg vorgelegt von Hans Moritz G¨unther aus Hamburg Hamburg 2009 ii Gutachter der Dissertation: Prof. Dr. J. H. M. M. Schmitt Prof. Dr. E. Feigelson Gutachter der Disputation: Prof. Dr. P. H. Hauschildt Prof. Dr. G. Wiedemann Datum der Disputation: 13.03.2009 Vorsitzender des Pr¨ufungsausschusses: Dr. R. Baade Vorsitzender des Promotionsausschusses: Prof. Dr. R. Klanner Dekan der MIN Fakult¨at: Prof. Dr. A. Fr¨uhwald (bis 28.02.2009) Prof. Dr. H. Graener (ab 01.03.2009) iii Zusammenfassung Sterne entstehen durch Gravitationsinstabilit¨aten in molekularen Wolken. Wegen der Erhaltung des Drehimpulses geschieht der Kollaps nicht sph¨arisch, sondern das Material f¨allt zun¨achst auf eine Akkretionsscheibe zusammen. In dieser Doktorarbeit wird hochenergetische Strahlung von Sternen untersucht, die noch aktiv Material von ihrer Scheibe akkretieren, aber nicht mehr von einer Staub- und Gash¨ulle verdeckt sind. In dieser Phase nennt man Sterne der Spektraltypen A und B Herbig Ae/Be (HAeBe) Sterne, alle sp¨ateren Sterne heißen klassische T Tauri Sterne (CTTS); eigentlich werden beide Typen ¨uber spektroskopische Merkmale definiert, aber diese fallen mit den hier genannten Entwicklungsstadien zusammen. In dieser Arbeit werden CTTS und HAeBes mit hochaufl¨osender Spektroskopie im R¨ontgen- und UV-Bereich untersucht und Simulationen f¨ur diese Stadien gezeigt. F¨ur zwei Sterne werden R¨ontgenspektren reduziert und vorgestellt: Der CTTS V4046 Sgr wurde mit Chandra f¨ur 100 ks beobachtet. Die Lichtkurve dieser Beobachtung zeigt einen Flare und die Triplets der He Isosequenz (Si xiii, Ne ix und O vii) deuten auf hohe Dichten im emittierenden Plasma hin.
    [Show full text]
  • Astronomy Astrophysics
    A&A 453, 101–119 (2006) Astronomy DOI: 10.1051/0004-6361:20053894 & c ESO 2006 Astrophysics On the difference between nuclear and contraction ages, W. Lyra1,2,3,A.Moitinho4,N.S.vanderBliek1,andJ.Alves5 1 Cerro Tololo Interamerican Observatory, Casilla 603 La Serena, Chile 2 Observatório do Valongo/UFRJ, Ladeira do Pedro Antônio 43, 20080-090 Rio de Janeiro, Brazil 3 Department of Astronomy and Space Physics, Uppsala Astronomical Observatory, Box 515, 751 20 Uppsala, Sweden e-mail: [email protected] 4 Observatório Astronómico de Lisboa, Tapada da Ajuda, 1349-018 Lisbon, Portugal 5 European Southern Observatory, Karl-Schwarzschild 2, 85748 Garching, Germany Received 23 July 2005 / Accepted 20 February 2006 ABSTRACT Context. Ages derived from low mass stars still contracting onto the main sequence often differ from ages derived from the high mass ones that have already evolved away from it. Aims. We investigate the general claim of disagreement between these two independent age determinations by presenting UBVRI pho- tometry for the young galactic open clusters NGC 2232, NGC 2516, NGC 2547 and NGC 4755, spanning the age range ∼10–150 Myr Methods. We derived reddenings, distances, and nuclear ages by fitting ZAMS and isochrones to color–magnitudes and color–color di- agrams. To derive contraction ages, we used four different pre-main sequence models, with an empirically calibrated color-temperature relation to match the Pleiades cluster sequence. Results. When exclusively using the V vs. V − I color–magnitude diagram and empirically calibrated isochrones, there is consistency between nuclear and contraction ages for the studied clusters.
    [Show full text]
  • High-Resolution Optical and Near-Infrared Imaging of Young Circumstellar Disks
    HIGH-RESOLUTION OPTICAL AND NEAR-INFRARED IMAGING OF YOUNG CIRCUMSTELLAR DISKS MARK McCAUGHREAN Astrophysikalisches Institut Potsdam KARL STAPELFELDT Jet Propulsion Laboratory, California Institute of Technology and LAIRD CLOSE Institute for Astronomy, University of Hawaii In the past five years, observations at optical and near-infrared wavelengths obtained with the Hubble Space Telescope and ground-based adaptive op- tics have provided the first well-resolved images of young circumstellar disks which may form planetary systems. We review these two observational tech- niques and highlight their results by presenting prototype examples of disks imaged in the Taurns-Auriga and Orion star-forming regions. As appropri- ate, we discuss the disk parameters that may be typically derived from the observations, as well as the implications that the observations may have on our understanding of, for example, the role of the ambient environment in shaping the disk evolution. We end with a brief summary of the prospects for future improvements in space- and ground-based optical/IR imaging tech- niques, and how they may impact disk studies. I. DIRECT IMAGING OF CIRCUMSTELLAR DISKS The Copernican demotion of humankind away from the center of our local planetary system also provided the shift in perspective re- quired to understand its cosmogony. Once it was apparent that the solar system comprised a number of planets in essentially circular and coplanar orbits around the Sun, theories for its formation were devel- oped involving condensation from a rotating disk-shaped primordial nebula, or Urnebel. The so-called "Kant-Laplace nebular hypothesis" eventually held sway in the latter half of the twentieth century af- ter lengthy competition with rival "catastrophic" theories (see Koerner 1997 for a review), and was subsequently vindicated by the discovery of analogues to the Urnebel around young stars elsewhere in the galaxy.
    [Show full text]
  • WIS-2015-07-Radioastronomie ALMA Teil4.Pdf (Application/Pdf 4.0
    Das Projekt ALMA Mater* Teil 4: Eine Beobachtung, die es in sich hat: eine „Kinderstube“ für Planeten *Wir verwenden die Bezeichnung Alma Mater als Synonym für eine Universität. Seinen Ursprung hat das Doppelwort im Lateinischen (alma: nähren, mater: Mutter). Im übertragenen Sinne ernährt die (mütterliche) Universität ihre Studenten mit Wissen. Und weiter gesponnen ernährt das Projekt ALMA auch die Schüler und Studenten mit Anreizen für das Lernen. (Zudem bedeutet das spanische Wort ‚Alma‘: Seele.) In Bezug (Materie bei T-Tauri-Sternen) zum Beitrag „Der Staubring von GG Tauri“ von Wolfgang Brandner in der Zeitschrift „Sterne und Weltraum“ (SuW) 7/2015, S.30/31, WIS-ID: 1285836 Olaf Fischer Im folgenden WIS-Beitrag steht ein atemberaubendes Beobachtungsergebnis von ALMA im Brennpunkt – die detaillierte Abbildung einer protoplanetaren Scheibe um einen entstehenden Stern – die potentielle Geburtsstätte für Planeten. Neben Beschreibungen und Erklärungen werden vor allem verschiedenartige Aktivitäten (Rechnungen zur Ma und Ph, Arbeit mit Karten, Bildauswertung, Diagramminterpretation, Papiermodell, Quartett) für Schüler angeboten, um diese Beobachtung und damit im Zusammenhang stehende Inhalte (insbesondere die Sternentstehung) besser zu verstehen, auch indem diese den Nutzen des Schulwissen entdecken. Der Wert von Kenntnissen auf verschiedenen Gebieten (Sprache, Mathematik, Naturwis- senschaft, Technik) wird spürbar. Der Beitrag eignet sich als Grundlage für Schülervorträge, die Arbeit in einer AG, wie auch für den Fachunterricht in der Oberstufe.
    [Show full text]