Ephemerides Astronomicae Anni Intercalaris 1780. Ad Meridianum

Total Page:16

File Type:pdf, Size:1020Kb

Ephemerides Astronomicae Anni Intercalaris 1780. Ad Meridianum Informazioni su questo libro Si tratta della copia digitale di un libro che per generazioni è stato conservata negli scaffali di una biblioteca prima di essere digitalizzato da Google nell’ambito del progetto volto a rendere disponibili online i libri di tutto il mondo. Ha sopravvissuto abbastanza per non essere più protetto dai diritti di copyright e diventare di pubblico dominio. Un libro di pubblico dominio è un libro che non è mai stato protetto dal copyright o i cui termini legali di copyright sono scaduti. La classificazione di un libro come di pubblico dominio può variare da paese a paese. I libri di pubblico dominio sono l’anello di congiunzione con il passato, rappresentano un patrimonio storico, culturale e di conoscenza spesso difficile da scoprire. Commenti, note e altre annotazioni a margine presenti nel volume originale compariranno in questo file, come testimonianza del lungo viaggio percorso dal libro, dall’editore originale alla biblioteca, per giungere fino a te. Linee guide per l’utilizzo Google è orgoglioso di essere il partner delle biblioteche per digitalizzare i materiali di pubblico dominio e renderli universalmente disponibili. I libri di pubblico dominio appartengono al pubblico e noi ne siamo solamente i custodi. Tuttavia questo lavoro è oneroso, pertanto, per poter continuare ad offrire questo servizio abbiamo preso alcune iniziative per impedire l’utilizzo illecito da parte di soggetti commerciali, compresa l’imposizione di restrizioni sull’invio di query automatizzate. Inoltre ti chiediamo di: + Non fare un uso commerciale di questi file Abbiamo concepito Google Ricerca Libri per l’uso da parte dei singoli utenti privati e ti chiediamo di utilizzare questi file per uso personale e non a fini commerciali. + Non inviare query automatizzate Non inviare a Google query automatizzate di alcun tipo. Se stai effettuando delle ricerche nel campo della traduzione automatica, del riconoscimento ottico dei caratteri (OCR) o in altri campi dove necessiti di utilizzare grandi quantità di testo, ti invitiamo a contattarci. Incoraggiamo l’uso dei materiali di pubblico dominio per questi scopi e potremmo esserti di aiuto. + Conserva la filigrana La "filigrana" (watermark) di Google che compare in ciascun file è essenziale per informare gli utenti su questo progetto e aiutarli a trovare materiali aggiuntivi tramite Google Ricerca Libri. Non rimuoverla. + Fanne un uso legale Indipendentemente dall’utilizzo che ne farai, ricordati che è tua responsabilità accertati di farne un uso legale. Non dare per scontato che, poiché un libro è di pubblico dominio per gli utenti degli Stati Uniti, sia di pubblico dominio anche per gli utenti di altri paesi. I criteri che stabiliscono se un libro è protetto da copyright variano da Paese a Paese e non possiamo offrire indicazioni se un determinato uso del libro è consentito. Non dare per scontato che poiché un libro compare in Google Ricerca Libri ciò significhi che può essere utilizzato in qualsiasi modo e in qualsiasi Paese del mondo. Le sanzioni per le violazioni del copyright possono essere molto severe. Informazioni su Google Ricerca Libri La missione di Google è organizzare le informazioni a livello mondiale e renderle universalmente accessibili e fruibili. Google Ricerca Libri aiuta i lettori a scoprire i libri di tutto il mondo e consente ad autori ed editori di raggiungere un pubblico più ampio. Puoi effettuare una ricerca sul Web nell’intero testo di questo libro da http://books.google.com 1 ศากาศทาๆ73m87.8118กค.ก.อยากทรา 210.66) TRA 1 NATIONALBIBLIOTHEK ÖSTERREICHISCHE 210660 - B AL ALT . S 9 . 1963 si - - TAN ASTRONOM SPECULA AS MICA MEDIOS 11 . UNAWth MULUI EDIC WWWWWWWWWWWWWWWWWWW MALAW I WWWWWWWWWWWWWW WYTYYYYYYYYYYYYYY WW AICHE ABOUT 564 OR WA 2004 REN . wy Shar an . Calor delin . ROSSUM Dom .Cagnonicul Mediol . EPHEMERIDES ASTRONOMICAE Anni intercalaris 1780 . AD MERIDIANUM MEDIOLANENSEM SU P P U IA T AE AB ANGELO DE CESARIS ACCEDIT APPENDIX Cum Obſervationibus & Opuſculis & c . & c . & c . Lamis je . MEDIOLANI . MDCCLXXIX . APUD JOSEPH GALEATIUM REGIUM TYPOGRAPHUM · Superiorum permiſu . 210660 - B . 1780 . 107731 . O WIEN NALB OS FESTA MOBILI A . Septuageſima . - - - - - - - - - - 23 . Januarii Dies Cinerum - - - - - - - - - • 9 . Februarii Paſcha Reſurrectionis - - - - - - - 26 . Martii Rogationes Ritu Romano . 2 . 3 . ) Aſcenſio Domini - - - - . - - Rogationes Ritu Ambroliano - Pentecoſtes - - . - - - - - Dominica SS . Trinitatis . Solemnitas Corporis Chriſti - Adventu Ritu Ambroſiano - - 12 . [ Novembris Adventu Ritu Romano - - . - 3 . [ Deecmbris CYCLORUM NUMERI . Numerus aureus - - - - 14 ] Indi tio Romana - - - - 13 Cyclus Solis - - - - - - 25 Littera Martyrologii - - D Epacta - - - - - - - - - 23 1 Littera Dominicalis - - ' b . A QUATUOR ANNI TEMPORA . Vere - - - - - - - - - - - 16 . 18 . 19 . Februarii Æltate - - - - . - - . - - - - 17 . 19 . 20 . Maji Autumno . - . - - - . - 20 . 22 . 23 . Septembris Hyeme - - - - - - - - - - - - - 20 . 22 . 23 . Decembris . OBLIQUITAS ECLIPTICAE . 1 . Januarii 23° 28 ' 10 " , 3 1 . Aprilis 23 . 28 . 10 , 8 1 . Julii 23 . 28 . II , 3 I , Octobris 23 . 28 . II , 8 ECLIPSES ANNI 1780 . 4 Maji . Eclipſis Solis Mediolani inviſibilis : con jun tio 1h 317 18 Maji . Eclipſis Lunae Mediolani inviſibilis : op poſitio rih 45 ' mane . O & tobris . Eclipſis Solis Mediolani inviſibilis : con jun & io 6h 3 ' 12 Novembris . Eclipſis Lunae Mediolani viſibilis . Initium 3h 58 ' ) Medium 5 . 24 ) mane . · Finis 7 . o ) | Quantitas Eclipfis 7 - digit . in partibus Lunae Auſtralibus . : In Appendice ad Ephemerides habentur , quae ſequuntur . De maxima phaſi anuli Saturni exeunte anno 1780 . D . REGGIO . Obſervationes macularum Solis & c . D . ORIANI . Supputatio obſervationum Eclipſis Solis 24 . Jun . 1778 . & c . D . REGGIO . Obſervatio Eclipſis Solis 24 . Junii 1778 . cum tabulis Mayerianis & Eulerianis comparata . D . ORIANI . Obſervationes tres Lunae & c . cum tabulis Mayerianis & Eulerianis comparatae & c . D . ORIANI . Commentarius de aedificio & machinis Speculae Medio lanenſis . D . DE CESARIS . SC JANUARIUS 1780 . " - Phaenomena & Obſervationes | Dies Phaenomena & Obfervationes Solis . | Lunae . Sol Luna : 6 in parallelo y Leporis culm . 2 ad » & « Librae oh 37 ' & sh 30 ' | | Toh 24 ' Tad 8 Scorpii lih2 ' , ad Saturai NI 9 in parall . B Corvi culm . 16h 57 ' 1 18h 43 " 10 in parall . g Hydrae culm . 17h 36 ' 3 ad a Ophiuci 22h 23 ' 12 ' in nodo defcendente Saturni Novilunium sh 26 : | 13 in parall . & Corvi culm . 16h 16 ' 8 Apogea , ad & Capri zohol 16 in parall . & Leporis culm . 9h 25 ma : & 3 Aquar . ſh " 3 ; ' & sh ust 16 in parall . Leporis culm . gk 43 ' 12 ad 33 Piſcium 2h sin , 19 in ligno Aquarii 21h 3 14 Primus Quadrans gh si ' . 24 in parall . Á Ceti culm . th 4 ' 117 ] ad 1 & 2 » Tauri rih 40 . in parall . 8 Scorpii calm . igh 22 ' 18 ad125 & 132 Taur : 16h 45 ' & 10k 9 ' || 29 in parall . « Leporis culm . gh 34 ' in Imm . 1th o ' ) in mol in parall . s Canis majoris culm . 1919 19 ad & Gemin . Em . 17 36 ' ) dift" . 14 ' | gh 33 " 20 ad x Geminorum 19h 14 121 Plenilunium yh 180 23 Apogea , ad Leonis 19k 55 ? 24 ad , Leonis zh 12 ! 25 adc & Virg . sh 10 ' & 16h 377 Dies Phåenomena Eo Obſervationes 127 ad Jovis 3h 67 * * * . | Planetarum . ad . x & a Virg . Icks ' & 15h 32 ' | | JUltimus Quadrans 23h 277 4 Mars ad a Aquarii 4h 45 ' diff . 28 ad « Librae 6h : ; ' . lat . 33 • 1 : 9 | ad » & a Librae 6h 9 ? & 11h 18 ? s Saturn , ad + Ophiuci diff . lat . 14 ' 1 . ad 3 Scorpii 16h 30 ' , au Saturni 10 Saturnus ad y Ophiuci diff . lat . I 19h 431 10 30 ' • 31 ad é Ophiuci 3h 537 10 Venus ad , Capri diff . lat . 10251 Planctae in parallelis fixarum . | 10 Venus ad Capri diff lat . 101 Saturnus menſe toto prope pa 11 Mars ad Aquarii . diff . lat . 15 ' rallelos 8 Scorpii , & Ś Ceti . ] ] 11 Mercurius ad fc Sagittarii diff ! Jupiter 8 Orionis , 7 B Librae , 1 lat . S 13 a Aquar . , 26 20m2 Monocer 11 13 Venus ad . Capri diff . lat . 15 ' Mars i § Ophiuci Virginis , 2 iz Venus ad y Capri diff . lat . 56 ' x Orionis , 3 Eridani , 4x Vir - II 18 Venus ad Capri diff . lat . 57 ' | ginis , 6 B Librae , 8 Orionis | 22 Veous ad Aquarii diff . lat . 28 8 a Hydrae , 10 , Eridani , 13 23 Mercurius in elongat . maximal 8 Aquarii , 16 Antinoi , 208 | | | 25 Mercurius ad ö Sagittarii diff . Virginis , 23 Serpentis , 25 ft lat . 24 ' | Serpentis , 29 y Antinoi . | : 8 Saturnus ad u Ophiuci diff . lat . Vénus id Scorpii , Corvi , 3 81 T 10 21 & Leporis , 8 6 Ceti , 14 . Le 1L 28 | Venus ad o Aquarii diff . lat . 18 poris , i8 y Corvi , 21 a Librae , | 29 Mercarius in nodo deſcendente . ' 36 * Capri , 31d Eridani . tiji Mercurius 6 54 Eridani , 13 7 & 8 | Leporis , 187 Corvi , 25 g Lepor . LIN TESIS Tamno hebdomada JANUARIUS 1786 . Na Dies menfis Ægaatio , Diffe | Longitudo | Afcenfio 1 Declinatie Dies addenda rentia Solis recta Solis Solis tesnpori Auſtralis vero ut babeatur - medium M . S . S . S . G . M . S . G . M . S . G . M . S . c Sat . 3 . 58 , 5 9 . 10 . 45 . 48 1 281 . 42 . 30 | 23 . 1 . 54 Døm . 4 . 26 , 8 284 9 . 11 . 47 . O 282 . 48 . 44 22 . 56 . 45 on sono O Now Lun . 4 . , S4 , 8 OO 9 . 12 . 48 . 12 383 . 54 . 54 | 22 . 51 . 8 Mar . : S . 22 , 4 9 . 13 . 49 . 24 285 . o . 57 | 22 . 45 . 3 Mer . s . 49 , 6 9 . 14 . 5o . 36 | 286 . 6 54 22 . 38 . 31 Jov . 6 . 16 , 4 9 . IS . 51 . 48 287 . 12 . 45 | 22 . 31 . c a 7 VenVen .. 6 . 42 , 7 co 9 . 16 . 52 . 59 288 . 18 . 29 22 . 24 . gSat . 7 . 8 , 5 9 . 17 . 54 . IT 289 . 24 . 5 / 22 . 16 . 13 9 Dóm % 33 , 7 9 ; 18 . 55 . 22 290 . 29 . 33 22 . 7 . 54 9 . 19 . 56 . 32 1291 . 34 . 53 21 . 59 . IC asa 1 . 8 . 22 , 5 9 . 99393 20 . 57 . 42 292 . 40 . 3 | 21 , So . O 8 . 46 , 0 9 . 21 . 58 , SI 1 . 293 . 45 . 5 . 21 . 40 . 23 19 . 8 , 9 9 . dodal 22 . 59 . 59 | 294 . 49 . 56 21 .
Recommended publications
  • And Space-Based Photometry
    Mon. Not. R. Astron. Soc. 000, 1–17 (2002) Printed 5 December 2018 (MN LATEX style file v2.2) Transit analysis of the CoRoT-5, CoRoT-8, CoRoT-12, CoRoT-18, CoRoT-20, and CoRoT-27 systems with combined ground- and space-based photometry St. Raetz1,2,3⋆, A. M. Heras3, M. Fern´andez4, V. Casanova4, C. Marka5 1Institute for Astronomy and Astrophysics T¨ubingen (IAAT), University of T¨ubingen, Sand 1, D-72076 T¨ubingen, Germany 2Freiburg Institute of Advanced Studies (FRIAS), University of Freiburg, Albertstraße 19, D-79104 Freiburg, Germany 3Science Support Office, Directorate of Science, European Space Research and Technology Centre (ESA/ESTEC), Keplerlaan 1, 2201 AZ Noordwijk, The Netherlands 4Instituto de Astrof´ısica de Andaluc´ıa, CSIC, Apdo. 3004, 18080 Granada, Spain 5Instituto Radioastronom´ıa Milim´etrica (IRAM), Avenida Divina Pastora 7, E-18012 Granada, Spain Accepted 2018 November 8. Received: 2018 November 7; in original from 2018 April 6 ABSTRACT We have initiated a dedicated project to follow-up with ground-based photometry the transiting planets discovered by CoRoT in order to refine the orbital elements, constrain their physical parameters and search for additional bodies in the system. From 2012 September to 2016 December we carried out 16 transit observations of six CoRoT planets (CoRoT-5b, CoRoT-8b, CoRoT-12b, CoRoT-18b, CoRoT-20 b, and CoRoT-27b) at three observatories located in Germany and Spain. These observations took place between 5 and 9 yr after the planet’s discovery, which has allowed us to place stringent constraints on the planetary ephemeris. In five cases we obtained light curves with a deviation of the mid-transit time of up to ∼115 min from the predictions.
    [Show full text]
  • Ioptron AZ Mount Pro Altazimuth Mount Instruction
    ® iOptron® AZ Mount ProTM Altazimuth Mount Instruction Manual Product #8900, #8903 and #8920 This product is a precision instrument. Please read the included QSG before assembling the mount. Please read the entire Instruction Manual before operating the mount. If you have any questions please contact us at [email protected] WARNING! NEVER USE A TELESCOPE TO LOOK AT THE SUN WITHOUT A PROPER FILTER! Looking at or near the Sun will cause instant and irreversible damage to your eye. Children should always have adult supervision while observing. 2 Table of Content Table of Content ......................................................................................................................................... 3 1. AZ Mount ProTM Altazimuth Mount Overview...................................................................................... 5 2. AZ Mount ProTM Mount Assembly ........................................................................................................ 6 2.1. Parts List .......................................................................................................................................... 6 2.2. Identification of Parts ....................................................................................................................... 7 2.3. Go2Nova® 8407 Hand Controller .................................................................................................... 8 2.3.1. Key Description .......................................................................................................................
    [Show full text]
  • Naming the Extrasolar Planets
    Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named.
    [Show full text]
  • Modeling of PMS Ae/Fe Stars Using UV Spectra,
    A&A 456, 1045–1068 (2006) Astronomy DOI: 10.1051/0004-6361:20040269 & c ESO 2006 Astrophysics Modeling of PMS Ae/Fe stars using UV spectra, P. F. C. Blondel1,2 andH.R.E.TjinADjie1 1 Astronomical Institute “Anton Pannekoek”, University of Amsterdam, Kruislaan 403, 1098 SJ Amsterdam, The Netherlands e-mail: [email protected] 2 SARA, Kruislaan 415, 1098 SJ Amsterdam, The Netherlands Received 13 February 2004 / Accepted 13 October 2005 ABSTRACT Context. Spectral classification of PMS Ae/Fe stars, based on visual observations, may lead to ambiguous conclusions. Aims. We aim to reduce these ambiguities by using UV spectra for the classification of these stars, because the rise of the continuum in the UV is highly sensitive to the stellar spectral type of A/F-type stars. Methods. We analyse the low-resolution UV spectra in terms of a 3-component model, that consists of spectra of a central star, of an optically-thick accretion disc, and of a boundary-layer between the disc and star. The disc-component was calculated as a juxtaposition of Planck spectra, while the 2 other components were simulated by the low-resolution UV spectra of well-classified standard stars (taken from the IUE spectral atlases). The hot boundary-layer shows strong similarities to the spectra of late-B type supergiants (see Appendix A). Results. We modeled the low-resolution UV spectra of 37 PMS Ae/Fe stars. Each spectral match provides 8 model parameters: spectral type and luminosity-class of photosphere and boundary-layer, temperature and width of the boundary-layer, disc-inclination and circumstellar extinction.
    [Show full text]
  • September 2020 BRAS Newsletter
    A Neowise Comet 2020, photo by Ralf Rohner of Skypointer Photography Monthly Meeting September 14th at 7:00 PM, via Jitsi (Monthly meetings are on 2nd Mondays at Highland Road Park Observatory, temporarily during quarantine at meet.jit.si/BRASMeets). GUEST SPEAKER: NASA Michoud Assembly Facility Director, Robert Champion What's In This Issue? President’s Message Secretary's Summary Business Meeting Minutes Outreach Report Asteroid and Comet News Light Pollution Committee Report Globe at Night Member’s Corner –My Quest For A Dark Place, by Chris Carlton Astro-Photos by BRAS Members Messages from the HRPO REMOTE DISCUSSION Solar Viewing Plus Night Mercurian Elongation Spooky Sensation Great Martian Opposition Observing Notes: Aquila – The Eagle Like this newsletter? See PAST ISSUES online back to 2009 Visit us on Facebook – Baton Rouge Astronomical Society Baton Rouge Astronomical Society Newsletter, Night Visions Page 2 of 27 September 2020 President’s Message Welcome to September. You may have noticed that this newsletter is showing up a little bit later than usual, and it’s for good reason: release of the newsletter will now happen after the monthly business meeting so that we can have a chance to keep everybody up to date on the latest information. Sometimes, this will mean the newsletter shows up a couple of days late. But, the upshot is that you’ll now be able to see what we discussed at the recent business meeting and have time to digest it before our general meeting in case you want to give some feedback. Now that we’re on the new format, business meetings (and the oft neglected Light Pollution Committee Meeting), are going to start being open to all members of the club again by simply joining up in the respective chat rooms the Wednesday before the first Monday of the month—which I encourage people to do, especially if you have some ideas you want to see the club put into action.
    [Show full text]
  • Chemical Similarities Between Galactic Bulge and Local Thick Disk Red Giants: O, Na, Mg, Al, Si, Ca, and Ti
    A&A 513, A35 (2010) Astronomy DOI: 10.1051/0004-6361/200913444 & c ESO 2010 Astrophysics Chemical similarities between Galactic bulge and local thick disk red giants: O, Na, Mg, Al, Si, Ca, and Ti A. Alves-Brito1,2, J. Meléndez3, M. Asplund4, I. Ramírez4, and D. Yong5 1 Universidade de São Paulo, IAG, Rua do Matão 1226, Cidade Universitária, São Paulo 05508-900, Brazil e-mail: [email protected] 2 Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia 3 Centro de Astrofísica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto, Portugal e-mail: [email protected] 4 Max Planck Institut für Astrophysik, Postfach 1317, 85741 Garching, Germany 5 Research School of Astronomy and Astrophysics, The Australian National University, Cotter Road, Weston, ACT 2611, Australia Received 9 October 2009 / Accepted 13 January 2010 ABSTRACT Context. The formation and evolution of the Galactic bulge and its relationship with the other Galactic populations is still poorly understood. Aims. To establish the chemical differences and similarities between the bulge and other stellar populations, we performed an elemen- tal abundance analysis of α- (O, Mg, Si, Ca, and Ti) and Z-odd (Na and Al) elements of red giant stars in the bulge as well as of local thin disk, thick disk and halo giants. Methods. We use high-resolution optical spectra of 25 bulge giants in Baade’s window and 55 comparison giants (4 halo, 29 thin disk and 22 thick disk giants) in the solar neighborhood. All stars have similar stellar parameters but cover a broad range in metallicity (−1.5 < [Fe/H] < +0.5).
    [Show full text]
  • IAU Division C Working Group on Star Names 2019 Annual Report
    IAU Division C Working Group on Star Names 2019 Annual Report Eric Mamajek (chair, USA) WG Members: Juan Antonio Belmote Avilés (Spain), Sze-leung Cheung (Thailand), Beatriz García (Argentina), Steven Gullberg (USA), Duane Hamacher (Australia), Susanne M. Hoffmann (Germany), Alejandro López (Argentina), Javier Mejuto (Honduras), Thierry Montmerle (France), Jay Pasachoff (USA), Ian Ridpath (UK), Clive Ruggles (UK), B.S. Shylaja (India), Robert van Gent (Netherlands), Hitoshi Yamaoka (Japan) WG Associates: Danielle Adams (USA), Yunli Shi (China), Doris Vickers (Austria) WGSN Website: https://www.iau.org/science/scientific_bodies/working_groups/280/ ​ WGSN Email: [email protected] ​ The Working Group on Star Names (WGSN) consists of an international group of astronomers with expertise in stellar astronomy, astronomical history, and cultural astronomy who research and catalog proper names for stars for use by the international astronomical community, and also to aid the recognition and preservation of intangible astronomical heritage. The Terms of Reference and membership for WG Star Names (WGSN) are provided at the IAU website: https://www.iau.org/science/scientific_bodies/working_groups/280/. ​ ​ ​ WGSN was re-proposed to Division C and was approved in April 2019 as a functional WG whose scope extends beyond the normal 3-year cycle of IAU working groups. The WGSN was specifically called out on p. 22 of IAU Strategic Plan 2020-2030: “The IAU serves as the ​ internationally recognised authority for assigning designations to celestial bodies and their surface features. To do so, the IAU has a number of Working Groups on various topics, most notably on the nomenclature of small bodies in the Solar System and planetary systems under Division F and on Star Names under Division C.” WGSN continues its long term activity of researching cultural astronomy literature for star names, and researching etymologies with the goal of adding this information to the WGSN’s online materials.
    [Show full text]
  • Pleione (BU Tauri, 28 Tauri)
    Pleione (BU Tauri, 28 Tauri) Wolfgang Vollmann Abstract: The classical Be star Pleione (BU Tau, 28 Tau) is presented with the current astrophysical model. Brightness measurements with a DSLR camera, transformed to Johnson V show a yearly increase of 0.011 mag for the time period 2011 to 2020 (JD 2455800 to 2458950). Aktuelle Vorstellung von Pleione Pleione war in der griechischen Mythologie die Gattin des Titanen Atlas und die Mutter der Pleiaden, der sieben Schwestern. Die nach ihnen benannten 9 Sterne bilden den für das freie Auge auffallenden Sternhaufen Messier 45 im Rücken des Sternbilds Stier [1]. Alle neun hellen Sterne des Sternhaufens sind heiße, leuchtkräftige B-Sterne. Pleione ist ein Hauptreihenstern vom Spektraltyp B8 mit einer Oberflächentemperatur von 12.000 K, der im Kern Wasserstoff zu Helium fusioniert. Die weiteren hellen Plejadensterne sind bereits entwickelte Unterriesen wie Merope bzw. Riesensterne wie Alkyone. Pleione leuchtet aus der Entfernung von 385 Lichtjahren mit 190-facher Sonnenleuchtkraft. Der Stern ist 3,2 mal größer als die Sonne und hat 3,4 Sonnenmassen. Pleione ist einer der klassischen „Be“-Sterne, der im Spektrum deutliche Emissionslinien des Wasserstoffs zeigt, besonders in der tiefroten H-alpha-Linie. Erstmals wurde das Be-Phänomen bei Gamma Cassiopeiae durch visuelle spektroskopische Beobachtungen entdeckt (Angelo Secchi, 1867). Diese Emissionslinien entstehen in einer Wasserstoffgasscheibe um den Stern. Pleione rotiert extrem schnell mit 330 km/s am Äquator (165-mal schneller als die Sonne) und benötigt für eine Umdrehung nur einen halben Tag. Durch die extrem schnelle Rotation ist der Stern in den Polregionen stark abgeplattet. Die hohe Rotationsgeschwindigkeit in der Äquatorebene ist unter anderem auch an der Entstehung der Wasserstoffscheibe um den Stern beteiligt [6].
    [Show full text]
  • Planets and Exoplanets
    NASE Publications Planets and exoplanets Planets and exoplanets Rosa M. Ros, Hans Deeg International Astronomical Union, Technical University of Catalonia (Spain), Instituto de Astrofísica de Canarias and University of La Laguna (Spain) Summary This workshop provides a series of activities to compare the many observed properties (such as size, distances, orbital speeds and escape velocities) of the planets in our Solar System. Each section provides context to various planetary data tables by providing demonstrations or calculations to contrast the properties of the planets, giving the students a concrete sense for what the data mean. At present, several methods are used to find exoplanets, more or less indirectly. It has been possible to detect nearly 4000 planets, and about 500 systems with multiple planets. Objetives - Understand what the numerical values in the Solar Sytem summary data table mean. - Understand the main characteristics of extrasolar planetary systems by comparing their properties to the orbital system of Jupiter and its Galilean satellites. The Solar System By creating scale models of the Solar System, the students will compare the different planetary parameters. To perform these activities, we will use the data in Table 1. Planets Diameter (km) Distance to Sun (km) Sun 1 392 000 Mercury 4 878 57.9 106 Venus 12 180 108.3 106 Earth 12 756 149.7 106 Marte 6 760 228.1 106 Jupiter 142 800 778.7 106 Saturn 120 000 1 430.1 106 Uranus 50 000 2 876.5 106 Neptune 49 000 4 506.6 106 Table 1: Data of the Solar System bodies In all cases, the main goal of the model is to make the data understandable.
    [Show full text]
  • And A-Type Stars in the Taurus
    DRAFT OF FEBRUARY 28, 2013 B- AND A-TYPE STARS IN THE TAURUS-AURIGA STAR FORMING REGION KUNAL MOOLEY1 ,LYNNE HILLENBRAND1 ,LUISA REBULL2 ,DEBORAH PADGETT 2,4 , AND GILLIAN KNAPP3 1Department of Astronomy, California Institute of Technology, 1200 E. California Blvd., MC 249-17, Pasadena, CA 91125, USA; [email protected] 2Spitzer Science Center, California Institute of Technology, Pasadena, CA 91125, USA 3Department of Astrophysics, Princeton University, Princeton, NJ, USA and 4current address: Goddard Space Flight Center, Greenbelt, MD, USA Draft of February 28, 2013 ABSTRACT We describe the results of a search for early-type stars associated with the Taurus-Auriga molecular cloud complex, a diffuse nearby star-forming region typically noted as lacking young stars of intermediate and high mass. We investigate several sets of possible O, B and early A spectral class members. The first set is a group of stars for which mid-infrared images show bright nebulae, all of which can be associated with stars of spectral type B. We model the scattered and emitted radiation from the reflection nebulosity and compare the results with the observed spectral energy distributions to test the plausibility of association of the B stars with the cloud. The second group of candidates investigated consists of early-type stars compiled from (i) literature listings in SIMBAD; (ii) B stars with infrared excesses selected from the Spitzer Space Telescope survey of the Taurus cloud; (iii) magnitude- and color-selected point sources from the Two Micron All Sky Survey; and (iv) spectroscopically identified early-type stars from the Sloan Digital Sky Survey coverage of the Taurus region.
    [Show full text]
  • STARDUST Newsletter of the Royal Astronomical Society of Canada Edmonton Centre
    STARDUST Newsletter of the Royal Astronomical Society of Canada Edmonton Centre January 2008 Volume 53 Issue 5 Mars, 18 December 2007. Photo by Murray Paulson. Inside this Issue Contact Information.................................................................................................................................................page 2 Upcoming Events, Meetings, Deadlines, Announcements.......................................................................................page 2 President's Report....................................................................................................................................................page 3 Observers Report.....................................................................................................................................................page 4 The Planets..............................................................................................................................................................page 5 Beating the Seeing Part IV.......................................................................................................................................page 5 Blotting Out Starlight..............................................................................................................................................page 7 Crescents and Full Moon Photo Ops........................................................................................................................page 8 One Starry Night in Beaumont.................................................................................................................................page
    [Show full text]
  • Comprehensive Time Series Analysis of the Transiting Extrasolar Planet WASP-33B,
    A&A 553, A44 (2013) Astronomy DOI: 10.1051/0004-6361/201219642 & c ESO 2013 Astrophysics Comprehensive time series analysis of the transiting extrasolar planet WASP-33b, G. Kovács1,2,T.Kovács1,J.D.Hartman3,G.Á.Bakos3,, A. Bieryla4,D.Latham4,R.W.Noyes4, Zs. Regály1, and G. A. Esquerdo4 1 Konkoly Observatory, 1121 Budapest, Hungary e-mail: [email protected] 2 Department of Physics and Astrophysics, University of North Dakota, 58202-7129 Grand Forks, ND, USA 3 Department of Astrophysical Sciences, Princeton University, 08544 Princeton, NJ, USA 4 Harvard–Smithsonian Center for Astrophysics, 02138 Cambridge, MA, USA Received 22 May 2012 / Accepted 5 March 2013 ABSTRACT Context. HD 15082 (WASP-33) is the hottest and fastest rotating star known to harbor a transiting extrasolar planet (WASP-33b). The lack of high precision radial velocity (RV) data stresses the need for precise light curve analysis and gathering further RV data. Aims. By using available photometric and RV data, we perform a blend analysis, compute more accurate system parameters, confine the planetary mass, and, attempt to cast light on the observed transit anomalies. Methods. We combined the original HATNet observations and various followup data to jointly analyze the signal content and extract the transit component and used our RV data to aid the global parameter determination. Results. The blend analysis of the combination of multicolor light curves yields the first independent confirmation of the planetary nature of WASP-33b. We clearly identify three frequency components in the 15–21 d−1 regime with amplitudes 7–5 mmag. These frequencies correspond to the δ Scuti-type pulsation of the host star.
    [Show full text]