Software Pipelining for the Pegasus IR

Total Page:16

File Type:pdf, Size:1020Kb

Software Pipelining for the Pegasus IR Software Pipelining for the Pegasus IR Cody Hartwig Elie Krevat [email protected] [email protected] Abstract significant performance improvement. Software pipelining in general has been the source Modern processors, especially VLIW processors, of- of much research, and we cover a brief classification ten have the ability to execute multiple instructions and survey of the most popular techniques in Sec- simultaneously. Taking advantage of this capabil- tion 2. Our approach differs from previous research ity is crucial for high performance software applica- because we apply our algorithms in the context of tions. Software pipelining is a technique designed to Pegasus: an intermediate representation used by the increase the level of parallelism in loops. We pro- CASH compiler [4, 5]. The CASH compiler translates pose a new approach to software pipelining based on programs written in C into implementations of hard- direct manipulations of control flow graphs in Pe- ware components. Pegasus was designed to support gasus: an intermediate representation used by the spatial computation, so operations in a program cor- CASH compiler. In this paper, we describe the de- respond to actual hardware operations, and a Pegasus sign and implementation of our software pipelining graph models both the data flow and control flow of algorithm. Additionally, we provide a detailed analy- a program. In Pegasus, basic blocks in the control sis of the metrics and heuristics used by our algorithm flow graph are combined into hyperblocks that rep- in the context of a simple code example. resent units of speculative work. So while previous approaches to software pipelining use a loop body of 1 Introduction instructions, our approach makes use of hyperblocks, operators, and a representation that reveals depen- Modern VLIW architectures can schedule multiple in- dencies in a control flow graph. By implementing structions at once, but they are constrained by data this approach in Pegasus and not the generated as- and control dependencies that limit the opportunity sembly code, we abstract away lower-level resource for parallel execution. True data dependencies occur constraints that are handled in the later stages of when an instruction depends on the result of a previ- compilation. ous instruction. Other data dependencies occur when To implement software pipelining in Pegasus, we two operations write to the same variable, or an in- propose a localized and iterative approach that put variable to an instruction is written to by a later pipelines operations one at a time. Our approach instruction. Control dependencies occur when pred- computes operation outputs for future loop iterations icated instructions are conditionally executed. Soft- in the current iteration. Pipelining an operation con- ware compilers use parallelization techniques to work sists of moving that operation from the hyperblock of around these dependencies and exploit as much in- a loop body into the hyperblock’s pre-header, and the struction level parallelism as possible from a given data-flow for values before and after executing that program. operation are fed into the loop hyperblock. Then Software pipelining is a highly effective technique each loop iteration uses the value of the operation al- to increase the level of available parallelism in the ready computed, either in the pre-header or during a body of a loop by restructuring the code to overlap previous iteration, and computes the operation value operations from different iterations. By overlapping for a future iteration. This approach is analogous to iterations, there are more instructions available for preparing temporary variables of future iterations to scheduling and better opportunities to schedule in- make the loop body schedule more efficient. structions in parallel. Since the code in a loop may An operation is a candidate to be pipelined if it be executed many times over, even a small improve- matches a number of possible patterns, described ment in instruction level parallelism can lead to a fully in Section 4. Pattern matching in Pegasus is a 1 simple local decision, since patterns depend only on veals enough instructions to improve the instruction the type of operation and the source of its inputs. In level parallelism without creating too much code size our current implementation, because we do not create expansion. A pattern recognition stage then iden- an epilogue, operations must also be side-effect free tifies a repeating kernel from the unrolled loop that (e.g., loads may be pipelined but not stores). Our can be scheduled efficiently. A well known example of approach also chooses operations to pipeline that are this technique is Aiken and Nicolau’s Perfect Pipelin- on the most expensive paths from the beginning to ing [1, 2]. the end of a hyperblock. This heuristic for choosing the next operation to pipeline tends to decouple the Alternatively, modulo scheduling techniques focus more expensive operations from longer path depen- on creating a schedule from one iteration of a loop dencies, so after software pipelining more operations that can be repeated without violating any resource are scheduled in parallel. and precedence constraints. A minimum initiation While the potential benefit of software pipelining interval is calculated for the minimum number of in- is substantial, possible negative side effects are in- structions required to separate repeated iterations of creased register pressure and wasted speculative op- the schedule. If the scheduler fails to find a schedule erations. The increase in register pressure can come with the minimum initiation interval, it will incre- from computing instructions from multiple iterations ment this interval and iterate the same process. Ex- at once, and can result in register spilling. Wasted amples of this technique include Lam’s hierarchical speculative operations can occur when extra instruc- reduction method that handle conditional statements tions are computed to prepare a very tightly pipelined on VLIW machines [9] and Rau’s Iterative Modulo loop that has a control flow which executes the loop Scheduling [13, 15]. Rau also discusses how regis- only a very few times or not at all. If not handled ter pressure and allocation strategies are affected by correctly, these side effects can eliminate the benefit his approach, but specifically avoids the problem of of software pipelining, and even do more harm than what to do when there are not enough available reg- good. Since scheduling with resource constraints is a isters [14]. well known NP-hard problem [7], heuristics are gen- erally used to avoid the worst of these situations, and Percolation scheduling applies many atomic pro- a feedback approach between the different stages of gram transformations to a parallel execution control- the compiler can provide better hints as to the most flow graph based on a number of guidance rules effective strategies. For example, a less aggressive and heuristics (including information from data- software pipelining strategy should be implemented dependency analysis). The nodes in a parallel execu- in response to register spilling. We do not explicitly tion graph contain many operations, and operations implement such a feedback loop, but this is an area are moved between nodes if there are no dependency for future work that is fully compatible with our ap- constraints [6, 10, 11, 12]. proach. At a basic level, Percolation Scheduling may ap- 2 Related Work pear similar to our approach, however, the transfor- mations of Percolation Scheduling are actually very Many algorithms exist to perform software pipelin- different because they change the order of indepen- ing, and using a classification developed by Allan dent operations. Since the Pegasus graph encapsu- et al. [3] these algorithms generally perform either lates both data-flow and control-flow information, the kernel recognition or modulo scheduling. Percolation ordering of a series of operators in a Pegasus hyper- scheduling [10] is an additional approach with a more block must always be respected, since operations that localized decision process that doesn’t fit exactly into appear later in the ordering depend on the results either of the previous classifications, although its con- of earlier operations. The parallel execution graph cepts of primitive transformations are combined with used in Percolation Scheduling does not have these loop unrolling in Aiken’s Perfect Pipelining kernel desirable dependence properties built into the graph- recognition algorithm [2]. ical structure. Also, Percolation Scheduling produces Kernel recognition techniques assume the schedule code explosions by visiting nodes on every global con- for loop iterations is fixed and unroll the loop some trol path between moves, while our pattern matching n number of times, choosing a value of n that re- algorithm makes use of localized decisions. 2 3 Approach mu mu mu mu 1 mu mu const We propose implementing software pipelining pred through direct manipulation of Pegasus graphs. op load cast op The primary goal of this approach is to reduce data dependencies between operations in an effort output output output output to increase the opportunity for instruction level parallelism. Figure 1: Patterns recognized by software pipelining At a high level, we implement software pipelining include side-effect free operations with inputs that by moving operations between iterations of a loop. are mus or constants. For example, if a value is loaded from memory in a loop body, we can move that load to the previous loop iteration. In this way, the loaded value is avail- 4 Design able immediately at the beginning of new iterations and uses of it are not required to wait for a load de- In this section we describe the specific algorithm we lay. Meanwhile, the current iteration will execute the have designed to implement software pipelining in Pe- load that will be used by the next iteration. This ef- gasus as well as show a simple example execution of fectively decouples the dependency between the load this algorithm.
Recommended publications
  • Optimal Software Pipelining: Integer Linear Programming Approach
    OPTIMAL SOFTWARE PIPELINING: INTEGER LINEAR PROGRAMMING APPROACH by Artour V. Stoutchinin Schooi of Cornputer Science McGill University, Montréal A THESIS SUBMITTED TO THE FACULTYOF GRADUATESTUDIES AND RESEARCH IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTEROF SCIENCE Copyright @ by Artour V. Stoutchinin Acquisitions and Acquisitions et Bibliographie Services services bibliographiques 395 Wellington Street 395. nie Wellington Ottawa ON K1A ON4 Ottawa ON KI A ON4 Canada Canada The author has granted a non- L'auteur a accordé une licence non exclusive licence allowing the exclusive permettant à la National Library of Canada to Bibliothèque nationale du Canada de reproduce, loan, distribute or sell reproduire, prêter, distribuer ou copies of this thesis in microform, vendre des copies de cette thèse sous paper or electronic formats. la fome de microfiche/^, de reproduction sur papier ou sur format électronique. The author retains ownership of the L'auteur conserve la propriété du copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. thesis nor substantialextracts fiom it Ni la thèse ni des extraits substantiels may be printed or otherwise de celle-ci ne doivent être imprimés reproduced without the author's ou autrement reproduits sans son permission. autorisation- Acknowledgements First, 1 thank my family - my Mom, Nina Stoutcliinina, my brother Mark Stoutchinine, and my sister-in-law, Nina Denisova, for their love, support, and infinite patience that comes with having to put up with someone like myself. I also thank rny father, Viatcheslav Stoutchinin, who is no longer with us. Without them this thesis could not have had happened.
    [Show full text]
  • Decoupled Software Pipelining with the Synchronization Array
    Decoupled Software Pipelining with the Synchronization Array Ram Rangan Neil Vachharajani Manish Vachharajani David I. August Department of Computer Science Princeton University {ram, nvachhar, manishv, august}@cs.princeton.edu Abstract mentally affect run-time performance of the code. Out-of- order (OOO) execution mitigates this problem to an extent. Despite the success of instruction-level parallelism (ILP) Rather than stalling when a consumer, whose dependences optimizations in increasing the performance of micropro- are not satisfied, is encountered, the OOO processor will ex- cessors, certain codes remain elusive. In particular, codes ecute instructions from after the stalled consumer. Thus, the containing recursive data structure (RDS) traversal loops compiler can now safely assume average latency since ac- have been largely immune to ILP optimizations, due to tual latencies longer than the average will not necessarily the fundamental serialization and variable latency of the lead to execution stalls. loop-carried dependence through a pointer-chasing load. Unfortunately, the predominant type of variable latency To address these and other situations, we introduce decou- instruction, memory loads, have worst case latencies (i.e., pled software pipelining (DSWP), a technique that stati- cache-miss latencies) so large that it is often difficult to find cally splits a single-threaded sequential loop into multi- sufficiently many independent instructions after a stalled ple non-speculative threads, each of which performs use- consumer. As microprocessors become wider and the dis- ful computation essential for overall program correctness. parity between processor speeds and memory access laten- The resulting threads execute on thread-parallel architec- cies grows [8], this problem is exacerbated since it is un- tures such as simultaneous multithreaded (SMT) cores or likely that dynamic scheduling windows will grow as fast chip multiprocessors (CMP), expose additional instruction as memory access latencies.
    [Show full text]
  • VLIW Architectures Lisa Wu, Krste Asanovic
    CS252 Spring 2017 Graduate Computer Architecture Lecture 10: VLIW Architectures Lisa Wu, Krste Asanovic http://inst.eecs.berkeley.edu/~cs252/sp17 WU UCB CS252 SP17 Last Time in Lecture 9 Vector supercomputers § Vector register versus vector memory § Scaling performance with lanes § Stripmining § Chaining § Masking § Scatter/Gather CS252, Fall 2015, Lecture 10 © Krste Asanovic, 2015 2 Sequential ISA Bottleneck Sequential Superscalar compiler Sequential source code machine code a = foo(b); for (i=0, i< Find independent Schedule operations operations Superscalar processor Check instruction Schedule dependencies execution CS252, Fall 2015, Lecture 10 © Krste Asanovic, 2015 3 VLIW: Very Long Instruction Word Int Op 1 Int Op 2 Mem Op 1 Mem Op 2 FP Op 1 FP Op 2 Two Integer Units, Single Cycle Latency Two Load/Store Units, Three Cycle Latency Two Floating-Point Units, Four Cycle Latency § Multiple operations packed into one instruction § Each operation slot is for a fixed function § Constant operation latencies are specified § Architecture requires guarantee of: - Parallelism within an instruction => no cross-operation RAW check - No data use before data ready => no data interlocks CS252, Fall 2015, Lecture 10 © Krste Asanovic, 2015 4 Early VLIW Machines § FPS AP120B (1976) - scientific attached array processor - first commercial wide instruction machine - hand-coded vector math libraries using software pipelining and loop unrolling § Multiflow Trace (1987) - commercialization of ideas from Fisher’s Yale group including “trace scheduling” - available
    [Show full text]
  • Static Instruction Scheduling for High Performance on Limited Hardware
    This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2017.2769641, IEEE Transactions on Computers 1 Static Instruction Scheduling for High Performance on Limited Hardware Kim-Anh Tran, Trevor E. Carlson, Konstantinos Koukos, Magnus Själander, Vasileios Spiliopoulos Stefanos Kaxiras, Alexandra Jimborean Abstract—Complex out-of-order (OoO) processors have been designed to overcome the restrictions of outstanding long-latency misses at the cost of increased energy consumption. Simple, limited OoO processors are a compromise in terms of energy consumption and performance, as they have fewer hardware resources to tolerate the penalties of long-latency loads. In worst case, these loads may stall the processor entirely. We present Clairvoyance, a compiler based technique that generates code able to hide memory latency and better utilize simple OoO processors. By clustering loads found across basic block boundaries, Clairvoyance overlaps the outstanding latencies to increases memory-level parallelism. We show that these simple OoO processors, equipped with the appropriate compiler support, can effectively hide long-latency loads and achieve performance improvements for memory-bound applications. To this end, Clairvoyance tackles (i) statically unknown dependencies, (ii) insufficient independent instructions, and (iii) register pressure. Clairvoyance achieves a geomean execution time improvement of 14% for memory-bound applications, on top of standard O3 optimizations, while maintaining compute-bound applications’ high-performance. Index Terms—Compilers, code generation, memory management, optimization ✦ 1 INTRODUCTION result in a sub-optimal utilization of the limited OoO engine Computer architects of the past have steadily improved that may stall the core for an extended period of time.
    [Show full text]
  • Introduction to Software Pipelining in the IA-64 Architecture
    Introduction to Software Pipelining in the IA-64 Architecture ® IA-64 Software Programs This presentation is an introduction to software pipelining in the IA-64 architecture. It is recommended that the reader have some exposure to the IA-64 architecture prior to viewing this presentation. Page 1 Agenda Objectives What is software pipelining? IA-64 architectural support Assembly code example Compiler support Summary ® IA-64 Software Programs Page 2 Objectives Introduce the concept of software pipelining (SWP) Understand the IA-64 architectural features that support SWP See an assembly code example Know how to enable SWP in compiler ® IA-64 Software Programs Page 3 What is Software Pipelining? ® IA-64 Software Programs Page 4 Software Pipelining Software performance technique that overlaps the execution of consecutive loop iterations Exploits instruction level parallelism across iterations ® IA-64 Software Programs Software Pipelining (SWP) is the term for overlapping the execution of consecutive loop iterations. SWP is a performance technique that can be done in just about every computer architecture. SWP is closely related to loop unrolling. Page 5 Software Pipelining i = 1 i = 1 i = 2 i = 1 i = 2 i = 3 i = 1 i = 2 i = 3 i = 4 Time i = 2 i = 3 i = 4 i = 5 i = 3 i = 4 i = 5 i = 6 i = 4 i = 5 i = 6 i = 5 i = 6 i = 6 ® IA-64 Software Programs Here is a conceptual block diagram of a software pipeline. The loop code is separated into four pipeline stages. Six iterations of the loop are shown (i = 1 to 6).
    [Show full text]
  • Register Assignment for Software Pipelining with Partitioned Register Banks
    Register Assignment for Software Pipelining with Partitioned Register Banks Jason Hiser Steve Carr Philip Sweany Department of Computer Science Michigan Technological University Houghton MI 49931-1295 ¡ jdhiser,carr,sweany ¢ @mtu.edu Steven J. Beaty Metropolitan State College of Denver Department of Mathematical and Computer Sciences Campus Box 38, P. O. Box 173362 Denver, CO 80217-3362 [email protected] Abstract Trends in instruction-level parallelism (ILP) are putting increased demands on a machine’s register resources. Computer architects are adding increased numbers of functional units to allow more instruc- tions to be executed in parallel, thereby increasing the number of register ports needed. This increase in ports hampers access time. Additionally, aggressive scheduling techniques, such as software pipelining, are requiring more registers to attain high levels of ILP. These two factors make it difficult to maintain a single monolithic register bank. One possible solution to the problem is to partition the register banks and connect each functional unit to a subset of the register banks, thereby decreasing the number of register ports required. In this type of architecture, if a functional unit needs access to a register to which it is not directly connected, a delay is incurred to copy the value so that the proper functional unit has access to it. As a consequence, the compiler now must not only schedule code for maximum parallelism but also for minimal delays due to copies. In this paper, we present a greedy framework for generating code for architectures with partitioned register banks. Our technique is global in nature and can be applied using any scheduling method £ This research was supported by NSF grant CCR-9870871 and a grant from Texas Instruments.
    [Show full text]
  • The Bene T of Predicated Execution for Software Pipelining
    Published in HICSS-26 Conference Pro ceedings, January 1993, Vol. 1, pp. 497-506. 1 The Bene t of Predicated Execution for Software Pip elining Nancy J. Warter Daniel M. Lavery Wen-mei W. Hwu Center for Reliable and High-Performance Computing University of Illinois at Urbana/Champaign Urbana, IL 61801 Abstract implementations for the Warp [5] [3] and Cydra 5 [6] machines. Both implementations are based on the mo dulo scheduling techniques prop osed by Rau and Software pipelining is a compile-time scheduling Glaeser [7]. The Cydra 5 has sp ecial hardware sup- technique that overlaps successive loop iterations to p ort for mo dulo scheduling in the form of a rotating expose operation-level paral lelism. An important prob- register le and predicated op erations [8]. In the ab- lem with the development of e ective software pipelin- sence of sp ecial hardware supp ort in the Warp, Lam ing algorithms is how to hand le loops with conditional prop oses mo dulo variable expansion and hierarchical branches. Conditional branches increase the complex- reduction for handling register allo cation and condi- ity and decrease the e ectiveness of software pipelin- tional constructs resp ectively [3]. Rau has studied the ing algorithms by introducing many possible execution b ene ts of hardware supp ort for register allo cation [9]. paths into the scheduling scope. This paper presents In this pap er we analyze the implications and b en- an empirical study of the importanceofanarchi- e ts of predicated op erations for software pip elining tectural support, referredtoaspredicated execution, lo ops with conditional branches.
    [Show full text]
  • Software Pipelining of Nested Loops
    Software Pipelining of Nested Loops Kalyan Muthukumar and Gautam Doshi Intel Corporation 2200 Mission College Blvd., Santa Clara, CA 95052, U.S.A. fkalyan.muthukumar, [email protected] Abstract. Software pipelining is a technique to improve the perfor- mance of a loop by overlapping the execution of several iterations. The execution of a software-pipelined loop goes through three phases: prolog, kernel, and epilog. Software pipelining works best if most of the time is spent in the kernel phase rather than in the prolog or epilog phases. This can happen only if the trip count of a pipelined loop is large enough to amortize the overhead of prolog and epilog phases. When a software- pipelined loop is part of a loop nest, the overhead of filling and draining the pipeline is incurred for every iteration of the outer loop. This pa- per introduces two novel methods to minimize the overhead of software- pipeline fill/drain in nested loops. In effect, these methods overlap the draining of the software pipeline corresponding to one outer loop iter- ation with the filling of the software pipeline corresponding to one or more subsequent outer loop iterations. This results in better instruction- level parallelism (ILP) for the loop nest, particularly for loop nests in which the trip counts of inner loops are small. These methods exploit ItaniumTM architecture software pipelining features such as predication, register rotation, and explicit epilog stage control, to minimize the code size overhead associated with such a transformation. However, the key idea behind these methods is applicable to other architectures as well.
    [Show full text]
  • Software Pipelining for Transport-Triggered Architectures
    Software Pipelining for Transport-Triggered Architectures Jan Hoogerbrttgge Henk Corporaal Hans Mulder Delft University of Technology Department of Electrical Engineering Section Computer Architecture and Digital Systems Abstract As stated in [5] transport-triggered MOVE architectures have extra irtstxuction scheduling degrees of tkeedom. This paper investigates if and how those extra degrees influence the software pipelining This paper discusses software pipelining for a new class of ar- iteration initiation interval. It therefore adapts the existing algo- chitectures that we call transport-triggered. These architectures reduce the interconnection requirements between function units. rithms for software pipelining as developed by Lam [2]. It is shown that transport-triggering may lead to a significant reduction They also exhibit code scheduling possibilities which are not avail- of the iteration initiation interval and therefore to an increase of able in traditional operation-triggered architectures. In addition the the MIPS and/or MFLOPS rate. scheduling freedom is extended by the use of so-called hybrid- pipelined function utits. The remainder of this paper starts with an introduction of the MOVE class of architectures; it clari6es the idea of transport- In order to exploit this tleedom, existing scheduling techniques triggered architectures. Section 3 formulates the software pipelin- need to be extended. We present a software pipelirtirtg tech- nique, based on Lam’s algorithm, which exploits the potential of ing problem and its algorithmic solution for trrmsport-triggered architectures. Section 4 describes the architecture characteristics !mnsport-triggered architectures. and benchmarks used for the measurements. In order to research Performance results are presented for several benchmak loops. the influence of the extra scheduling freedom, the algorithm has Depending on the available transport capacity, MFLOP rates may been applied to the benchmarks under dfierent scheduling disci- increase significantly as compared to scheduling without the ex~a plines.
    [Show full text]
  • A Simple, Verified Validator for Software Pipelining
    A Simple, Verified Validator for Software Pipelining (verification pearl) Jean-Baptiste Tristan Xavier Leroy INRIA Paris-Rocquencourt INRIA Paris-Rocquencourt B.P. 105, 78153 Le Chesnay, France B.P. 105, 78153 Le Chesnay, France [email protected] [email protected] Abstract unrolling the loop then performing acyclic scheduling. Software Software pipelining is a loop optimization that overlaps the execu- pipelining is implemented in many production compilers and de- tion of several iterations of a loop to expose more instruction-level scribed in several compiler textbooks [1, section 10.5] [2, chapter parallelism. It can result in first-class performance characteristics, 20] [16, section 17.4]. In the words of the rather dramatic quote but at the cost of significant obfuscation of the code, making this above, “truly desperate” programmers occasionally perform soft- optimization difficult to test and debug. In this paper, we present a ware pipelining by hand, especially on multimedia and signal pro- translation validation algorithm that uses symbolic evaluation to de- cessing kernels. tect semantics discrepancies between a loop and its pipelined ver- Starting in the 1980’s, many clever algorithms were designed sion. Our algorithm can be implemented simply and efficiently, is to produce efficient software pipelines and implement them either provably sound, and appears to be complete with respect to most on stock hardware or by taking advantage of special features such modulo scheduling algorithms. A conclusion of this case study is as those of the IA64 architecture. In this paper, we are not con- that it is possible and effective to use symbolic evaluation to reason cerned about the performance characteristics of these algorithms, about loop transformations.
    [Show full text]
  • Build Linux Kernel with Open64
    Build Linux kernel with Open64 Qing Zhu1, Tao Wang2, Gang Yu1, Kun Ling2, Jian-xin Lai1 1Unix System Lab, Hewlett-Packard Company 2 State Key Laboratory of Computer Architecture, Institute of Computing Technology 1{qing.zhu2, yu.gang, jianxin.lai}@hp.com, 2{wangtao2010, lingkun}@ict.ac.cn Abstract architectures are principal and popular in IT industry, proving Open64 is an open source, optimizing compiler. The goal of the the success on these two platforms will impress more people on compiler is to be an alternative back-end of GCC. To improve Open64. Open64’s code quality, enhance GCC-compatibility and attrac- • Provide a good research platform to improve the kernel’s per- t more users to the Open64 community, it is important to build formance by advanced optimizations. Especially, to enable I- significant applications like Linux kernel with Open64. This paper PA/IPO (Inter-Procedure Analysis and Optimization) on kernel describes the work of building and running up Linux kernel with build, show how much performance improvement that IPA/IPO Open64. As an experience report, the general build, triage approach will give us on standard system software like operating system and tackling method for commonly issues on building kernel with kernel. non-gnu are discussed. Now, the officially maintained open64.net trunk on x8664 target and the Loongcc[1] branch on MIPS64 target In this paper, we make a summary of general practices in ker- have all successfully built up and run the Linux kernel. nel building process on different architectures. These approaches and experience may help other targets to conduct kernel building Keywords Open64, Linux kernel, Loongcc, X86-64, MIPS-64, and build other Open64 support platforms effectively.
    [Show full text]
  • For More Details, See Downloadable Description
    Title: Open64 Compiler infrastructure for emerging multicore/manycore architecture Presenters All Symposium Tutorial Organizer: Guang R. Gao, University of Delaware (open to all attendees at no charge) Barbara Chapman, University of Houston Tony Linthicum & Anshuman Dasgupta, Qualcomm Inc. Tuesday, April 15th at 7:00 PM Juergen Ributzka, University of Delaware Abstract Open64 was originally developed by SGI and released as the MIPSpro compiler. It has been well- recognized as an industrial-strength production compiler for high-performance computing. It includes advanced interprocedural optimizations, loop nest optimizations, global scalar optimizations, and code generation with advanced global register allocation and software pipelining. It was open-sourced in 2000 after it was retargeted to the Itanium processor. Now, Open64 are accepted by many compiler researchers as a good infrastructure for the research on new compiler optimizing technologies, especially the for the emerging multi-core/many-core architecture. Presentation Outline 7:00pm – 7:30pm A Briefly Introduction to Open64 Presenter: Guang R. Gao, University of Delaware Abstract: Open64 was originally developed by SGI and released as the MIPSpro compiler. It has been well recognized as an industrial-strength production compiler for high-performance computing. It includes advanced interprocedural optimizations, loop nest optimizations, global scalar optimizations, and code generation with advanced global register allocation and software pipelining. It was open- sourced in 2000 after it was retargeted to the Itanium processor. There have been a number of subsequent branches and improvements to the compiler since then. Intel adopted the Open64 compiler for compiler-related research and subsequently released it as the Open Research Compiler (ORC) starting Jan 2002.
    [Show full text]