Butterflies & Moths

Total Page:16

File Type:pdf, Size:1020Kb

Butterflies & Moths Plants Management summary Key actions Potential benefits Rare arable plants • Where conditions allow, leave crop headlands Will create the conditions arable plants unsprayed and unfertilised, establish open need to germinate and set seed each year cultivated margins or field corners, leave cereal stubbles over winter Grassland plants • Management of species-rich grasslands should Traditional management, usually by grazing not be changed without advice or cutting for hay, maintains species- richness • Calcareous grasslands are best managed by An open and varied sward will allow a range grazing, and regimes may need to be tailored of chalk and limestone grassland species to to the site flourish • Dry acid grasslands and lowland heaths need The right management will be needed to careful management, seek advice maintain these habitats in good condition Grassland • Follow agri-environment scheme guidelines Can help restore species-rich grasslands restoration and with many ecological and environmental arable reversion benefits Uncropped field • Establish margins by natural regeneration or Can help restore diverse plant communities margins sowing. Margins should not be sown where rare around arable and grass fields. arable plants are present. Elephant hawkmoth © Rob Wolton, Hedgelink Options especially relevant for plants Code Countryside stewardship options Tier Butterflies and moths are among the most strikingly bright AB7 Whole crop cereals Mid Butterflies & and beautiful insect species found in the British countryside. AB10 Unharvested cereal headland Mid They need specific plant species for the caterpillars to feed AB11 Cultivated areas for arable plants Mid moths on, flowers as nectar sources for the adults, and safe places to AB14 Harvested low input cereal Mid shelter and overwinter. Butterflies and moths can be regarded GS2 Permanent grassland with very low inputs (outside SDAs) Mid as indicators of habitat quality on a farm: the more butterflies GS5 Permanent grassland with very low inputs in SDA Mid and moths there are, the more likely the farm will have a rich GS6 Management of species-rich grassland Higher variety of wildlife. GS7 Restoration towards species-rich grassland Higher GS8 Creation of species-rich grassland Higher GS15 Haymaking supplement Mid Key points Find out more at: • Butterflies and moths need nectar sources, specific www.plantlife.org.uk www.naturalengland.org.uk www.floodplainmeadows.org.uk foodplants for the caterpillars, and sheltered areas • Grassland, hedgerows, field margins and woodland habitats are all valuable • Creating a variety of habitat types will benefit the widest range of species 88 Wildlife and Farming Wildlife and Farming 89 Butterflies & moths Around 60 species of butterfly are seen regularly in the UK, comprising less than 3% of British Lepidoptera The most common butterflies and moths are those that are (butterflies and moths). The less demanding, whose caterpillars feed on a common plant or remaining 2, 500 or so species are a number of different plants. Meadow brown and gatekeeper moths but, as most of them fly at butterflies, for example, lay their eggs on grasses, while commas, night, they are far less well known. peacocks and small tortoiseshells lay on nettles. Widespread Farmland is the main habitat species such as these will benefit from management that for over three quarters of British encourages a diversity of plants and habitat types on the farm. butterflies. Many butterflies and moths, both common and rare, Butterflies and moths vary in their mobility, with the more have suffered population declines, Caterpillars of the gatekeeper butterfly feed widespread species often able to travel large distances to feed but a range of measures can help on grasses © Mark Kilner CC BY NC SA 2.0 and lay eggs. Others, usually the habitat specialists, may be encourage them and increase their weak fliers and will need all their habitat requirements met in a numbers on farmland. small area. Moths and butterflies, such as these marbled whites, require suitable breeding habitat as Butterflies and moths have complex life cycles, comprising egg, well as nectar sources © Tara Proud caterpillar, pupa, and adult stages. Some species live as adults for Butterflies and climate change only a few days or weeks, while others live for many months and The red admiral butterfly used only to be seen as a summer hibernate over the winter. Some moths live as caterpillars for a visitor to Britain but, since the 1990s, it has been recorded few years. The most important requirements of adult butterflies overwintering here in ever-increasing numbers. They are and moths are suitable sites for laying their eggs and sufficient now seen in every month of the year, even flying amongst nectar sources to supply them with food. Sheltered areas are snowdrops in February! This is a sign of one impact of climate particularly important. Butterflies and moths will make use of all change on British wildlife. UK Butterfly Monitoring Scheme areas of the farm - hedgerows, margins, meadows and grassland, data show that other butterflies, such as the speckled wood, wet flushes and patches of woodland. are expanding their ranges northwards in Butterflies will take nectar from a range of plants, but plants such response to warmer as knapweeds, scabious, thistles, marjoram, teasel, fleabane temperatures. By Close-up of comma butterfly eggs on and bird’s-foot trefoil are especially favoured. Because different linking habitats such common nettle © Gilles San Martin CC BY NC 3.0 butterfly and moth species are on the wing at different times as hedgerows and throughout the spring and summer it is important to have a woodlands to facilitate succession of flowering plants through the season. Early nectar movements across sources include sallow and blackthorn blossom, self-heal, the farmed landscape, primrose and lady’s smock, while important late sources of nectar butterflies and other are bramble and ivy. Berries, including blackberries, are also wildlife can be helped useful. Moths are important pollinators and some plants, such as to adapt to the the campions, have evolved to be pollinated by moths. changing climate. Breeding requirements vary according to the species. Some © Martin Warren, Butterfly Conservation moths and butterflies have very precise needs for egg-laying. Female silver-spotted skippers, for example, are extremely fussy, Silver-spotted skippers have precise laying single eggs on the leaf blades of sheep’s fescue in short requirements for egg-laying turf, up to 4cm, and often next to patches of bare ground. This, © Mark Kilner CC BY NC SA 2.0 and other so-called specialist species, often depend on tailored management to maintain the correct habitat. 90 Wildlife and Farming Wildlife and Farming 91 Butterflies & moths Habitat management Hedgerows and field margins Hedgerows are vital for these insects on farmland. Semi-natural grassland Butterflies will make great use of hedgerow Semi-natural grasslands containing nectar, such as bramble, and caterpillars of many wild grasses and flowers, such as butterflies and moths will feed on hedgerow unimproved calcareous or wet species. Hedgerows provide important shelter in grasslands, are some of the richest exposed agricultural landscapes. Leaving hedges habitats for butterflies. Semi-natural uncut, or cutting not more than once every three grasslands provide breeding habitat years, helps eggs and caterpillars to survive. Brown for over 90% of resident butterfly hairstreak butterflies, for example, lay their eggs on species, with just under half of young blackthorn, and the eggs need to overwinter these largely relying on calcareous safely before the caterpillars hatch and feed on the grassland. new leaves in spring. Butterflies and moths have suffered from overly intense hedge management. Management of calcareous grasslands The figure of eight moth, for example, has declined should aim for a mosaic of different by 95% over the last 35 years. The chalkhill blue butterfly is confined to calcareous grasslands habitats, with patches of bare ground Orange tip butterflies use cuckooflower both © Mark Kilner CC BY NC SA 2.0 and scrub, variations in sward height, and abundant as a nectar source and a caterpillar foodplant Field margins are very important for butterflies and moths, nectar sources. Most often this is achieved through © Guido Gerding CC BY SA 3.0 especially in arable areas (Box 21). Field margins that contain stock grazing. Management prescriptions are wildflowers (either sown or naturally regenerated) will be much usually site specific and, in all situations, the right more valuable than grass-only strips. Common blue butterflies, grazing pressure is vital for creating the desired for example, use bird’s foot trefoil both as a nectar source and habitat. a caterpillar foodplant, and orange tips use cuckooflower in the same way. Leaving some field margins uncut each year will allow Damp, unimproved grasslands, such as the culm plants to flower, and provide undisturbed breeding habitats. grasslands in the south-west of England, are A variety of sward heights will also benefit more species; for strongholds for some declining species such as the example, retention of nettle patches of different heights in sunny marsh fritillary butterfly. These and other species- locations will help small tortoiseshell and peacock butterflies. rich wet grasslands, such as floodplain meadows, Field margins adjacent to hedgerows or ditches are especially rely on the continuation of
Recommended publications
  • Bad Bugs: Warehouse Beetle
    Insects Limited, Inc. Pat Kelley, BCE Bad Bugs: Warehouse Beetle complaining customer. That is the nature of the Warehouse beetle. Let’s take a close look at this common stored product insect: The Warehouse beetle prefers feeding on animal protein. This could be anything from road kill to dog food to powdered cheese and milk. The beetle will feed on plant material but a dead insect or mouse would be its preferred food source. You will often find Warehouse beetles (Trogoderma spp.) feeding on dead insects. It is important to empty these lights on a regular basis. The larva (see figure) of the Warehouse beetle is approximately 1/4-inch-long Larval color varies from yellowish/white to dark brown as the larvae mature. Warehouse beetle larvae have two different tones of hairs on the posterior end. These guard hairs protect them against attack from the rear. The Warehouse beetle has about 1,706 hastisetae hairs If there is an insect that is truly a voracious feeder and about 2,196 spicisetae hairs according to a and a potential health hazard to humans and publication by George Okumura. Since a larva sheds young animals, the Warehouse beetle falls into that its hairs during each molt, the damage of this pest category because of the long list of foods that it insect comes from the 1000’s of these pointed hairs attacks. Next to the dreaded quarantine pest, that escape and enter a finished food product as an the Khapra beetle, it is the most serious stored insect fragment. These insect fragments then can be product insect pest with respect to health.
    [Show full text]
  • Butterfly Anatomy [Online]
    02 July 2015 (original version 01 January 2014) © Peter Eeles Citation: Eeles, P. (2015). Butterfly Anatomy [Online]. Available from http://www.dispar.org/reference.php?id=6 [Accessed July 2, 2015]. Butterfly Anatomy Peter Eeles This paper contains a condensed summary on the anatomy of the imago (adult), ovum (egg), larva (caterpillar) and pupa (chrysalis). Many of the features discussed on this page are referred to from the taxonomy section of the UK Butterflies website since they are used in butterfly classification. Imago The body of the adult butterfly is comprised of 3 segments - head, thorax and abdomen. The eyes, antennae, proboscis and palpi are all positioned on the head. The legs and wings are attached to the thorax. The reproductive organs and spiracles are part of the abdomen. All of these features are discussed in detail below and the illustrations below provide an overview of the majority of these features. Chequered Skipper (Carterocephalus palaemon) Photo © Pete Eeles Eyes The head contains a pair of compound eyes, each made up of a large number of photoreceptor units known as ommatidia. Each ommatidium includes a lens (the front of which makes up a single facet at the surface of the eye), light-sensitive visual cells and also cells that separate the ommatidium from its neighbours. The image below shows a closeup of the head of a Pyralid moth, clearly showing the facets on the surface of the eye. A butterfly is able to build up a complete picture of its surroundings by synthesising an image from the individual inputs provided by each ommatidium.
    [Show full text]
  • Territorial Defence in the Speckled Wood Butterfly (Pararge Aegeria) : the Resident Always Wins
    Anim. Behav., 1978,26, 138-147 TERRITORIAL DEFENCE IN THE SPECKLED WOOD BUTTERFLY (PARARGE AEGERIA) : THE RESIDENT ALWAYS WINS BY N. B. DAVIES Edward Grey Institute, Department of Zoology, Oxford Abstract. Males competed for territories, spots of sunlight on the ground layer of woodland, which were the best places for finding females . At any one time only 60% of the males had territories ; the remainder patrolled for females up in the tree canopy . Males continually flew down from the canopy and rapidly took over vacant sunspots . However, if the sunspot was already occupied, then the intruder was always driven back by the owner . Experiments showed that this was true even if the owner had been in occupation for only a few seconds . The rule for settling contests was thus `resident wins, intruder retreats' . Experiments showed that escalated contests only occurred when both contestants `thought' they were the resident . These results support the theoretical predictions of Maynard Smith & Parker (1976) . The reason intruders accept defeat immediately without a serious fight may be that contests are costly and territories abundant. How should an animal behave in a contest and insect contests provide a better scope for situation if it is to maximize its fitness? The this. answer is that it all depends on how the other In this paper I will show, by means of some contestants behave. Maynard Smith & Price simple field experiments, how territorial contests (1973) have shown that the strategy actually are settled in a species of butterfly . The results adopted will be an `evolutionarily stable strategy' are in accord with the predictions of Maynard or ESS.
    [Show full text]
  • Term Review of the EU Biodiversity Strategy to 2020 in Relation to Target 3A – Agriculture
    Service contract to support follow-up actions to the mid- term review of the EU biodiversity strategy to 2020 in relation to target 3A – Agriculture Final Report 19th June 2017 Funded by European Commission, DG Environment In collaboration with 2 Disclaimer: The arguments expressed in this report are solely those of the authors, and do not reflect the opinion of any other party. The report as a whole should be cited as follows: Siriwardena, G. and Tucker, G. (eds) (2017) Service contract to support follow-up actions to the mid-term review of the EU biodiversity strategy to 2020 in relation to target 3A – Agriculture. Report to the European Commission, Institute for European Environmental Policy, London. The following individual chapters should be cited as follows: Chapter 2: Siriwardena, G and Pringle, H (2017) Development of a methodology for the assessment of potential agriculture-related drivers on the status of habitats and species. In G Siriwardena & G Tucker (eds) Service contract to support follow-up actions to the mid-term review of the EU biodiversity strategy to 2020 in relation to target 3A – Agriculture, pp 25-48. Report to the European Commission, Institute for European Environmental Policy, London. Chapter 3: Pringle, H, Koeble, R, Paracchini M L, Rega, C, Henderson, I, Noble, D, Gamero, A, Vorisek, P, Škorpilová, J, Schmucki, R, Siriwardena, G, Allen, B, and Tucker, G (2017) Review of data sources and preparation of a metadatabase. In G Siriwardena & G Tucker (eds) Service contract to support follow-up actions to the mid-term review of the EU biodiversity strategy to 2020 in relation to target 3A – Agriculture, pp 49-60.
    [Show full text]
  • The Use of Radiation Is Improving the Biological Control of Insect Pests
    by Jorge Hendrichs and To Kill a Pest Alan Robinson The use of radiation is improving the biological control of insect pests. he IAEA’s support to Member States in What is Biological Control? the field of insect pest control has mainly Despite centuries of technological development, Tfocused on the Sterile Insect Technique (SIT), insect pests continue to exact a very high toll on which is a type of insect birth control, where mass agricultural production and human health. A well- reared and systematically released sterile males established, successful approach to this problem is of the target pest insect mate with wild females the use of natural enemies, called biological control in the field, thereby interfering in an environment- agents, to manage pest populations. The biological friendly way with the reproduction of the pest control agent can be a predator, a parasitoid, a bac- A giant ichneumon wasp population. This approach effectively reduces terium, a fungus or a virus. In this article we will con- adult boring the surface the use of insecticides and has been successfully centrate on predators, which eat the pest (prey), and of fir trunk infested with used to manage, and in some cases eradicate, parasitoids, which parasitize the pest (host) by sting- wood wasp larvae. populations of major pest insects. Nevertheless, ing and thereby laying eggs into it. (Photo: Boris Hrasovec, there are other areas where Member States can Faculty of Forestry, benefit from radiation in the field of entomology. When insects escape their native natural enemies, Bugwood.org) One of these is biological control.
    [Show full text]
  • Butterfly Monitoring Scheme
    BUTTERFLY MONITORING SCHEME Report to recorders 2004 The Butterfly Monitoring Scheme Report to Recorders 2004 J NICK GREATOREX-DAVIES & DAVID B ROY CEH Monks Wood Abbots Ripton Huntingdon Cambs PE28 2LS April 2005 CONTENTS Page SUMMARY 1 INTRODUCTION 2 Origins, organisation and aims of the BMS 2 Sites gained 2 Lost sites regained 3 Sites lost 4 Distribution of sites 5 UPDATES ON THE CONTINUED DEVELOPMENT OF THE 6 BMS AND TRANSECT RECORDING Development of transect recording 6 New BMS website 7 A new version of Transect Walker 8 SUMMARY OF THE 2001 SEASON 9 Weather summary for 2003 and 2004 9 Review of trends in 2004 9 Overall changes in abundance: another good year for butterflies 9 Overall changes in phenology 10 Changes in individual species: no highestor lowest indices 11 Spring species improved 11 Whites remain unchanged but Brimstone does well 11 Good year for Holly Blue but most other blues declined 12 A good year for fritillaries 12 Small Tortoiseshell fluctuations 12 A poorer year for migrants 13 Relatively small changes amongst the satyrids 13 Tabular summary of changes 2003 to 2004 14 COMPARISON OF THE 29 YEARS OF THE BMS 16 REFERENCES 17 PUBLICATIONS in 2004/5 17 ACKNOWLEDGEMENTS 18 APPENDIX I Collated indices graphs, 1976-2004 19 Page Figures Figure 1. Fluctuations in the mean index of abundance. 9 Figure 2. Variation in trends of generalist and specialist species measured from over 29 10 years (1976-2004). Figure 3. Trends towards earlier appearance of both spring and summer generations of 10 bi- or multivoltine species.
    [Show full text]
  • The Butterfly Handbook General Advice Note on Mitigating the Impacts of Roads on Butterfly Populations
    The butterfly handbook General advice note on mitigating the impacts of roads on butterfly populations working towards Natural England for people, places and nature The butterfly handbook General advice note on mitigating the impacts of roads on butterfly populations including a case study on mitigation for the Marsh Fritillary butterfly along the A30 Bodmin to Indian Queens road improvement scheme Adrian Spalding Spalding Associates (Environmental) Ltd Norfolk House 16-17 Lemon Street Truro TR1 2LS www.spaldingassociates.co.uk ISBN: 1 903798 25 6 This publication was jointly funded by English Nature and the Highways Agency Forward The second half of the last century saw dramatic changes in the countryside of Britain. Our native wildlife continues to be threatened as habitats are damaged or destroyed. Butterflies have probably never been as endangered as they are today following decades of loss of key semi-natural habitats such as flower-rich grasslands. This report is extremely valuable and timely as it concerns an increasingly important habitat for butterflies and other insects. Road verges can help conserve butterflies and other wildlife as they are an opportunity to provide suitable breeding habitats for many species, and provide crucial links between the patches of habitat that remain. Butterflies are highly sensitive indicators of the environment and we know that conservation measures for this group will help many other less well-known components of our biodiversity. Road verges already provide valuable habitats for a wide range of species but this report shows how they can be made even better and contribute an ever more important role in the future.
    [Show full text]
  • Butterflies and Day Flying Moths of the Malvern Hills
    Butterflies and Day andDay Butterflies the Malvern Hills the Malvern Flying Moths of Mothsof Flying fl ying mothsoftheMalvern Hillstoencourage ‘A fullcolourguidetothebutterfl ‘A people toget outrecordingandtoidentify what theyfi nd.’ ies andday Photographs by David Armitage, Bridget Olesky, David Green and Alan Barnes Acknowledgements CONTENTS PAGE Compiled and edited by Susan Clarke and Jenny Joy, helped by many colleagues from Butterfl y Conservation, English Nature, Malvern Hills Introduction 3 AONB Offi ce, Malvern Hills Conservators as well as volunteers, landowners, Management of the Hills 4 The butterfl ies of the Malvern Hills 5 butterfl y and moth recorders, transect walkers and others who provided What are butterfl ies and moths? 5 material, information, advice and commented on the draft. Many thanks to: Why look for butterfl ies and day-fl ying moths? 5 David Armitage, Mike Bradley, Trevor Bucknall, Colin and Helen Dolding, Life cycle 6 Ian Duncan, David Green, Dr Gilbert Greenall, Cherry Greenway, Michael How to identify 7 Harper, Ian Hart, Rob Harvard, Peter Holmes, Chris Johnson, Richard When and where to look 7 Flight periods of butterfl ies and moths 9 Newton, Bridget Oleksy, John Tilt, Trevor Trueman, Gordon Whiting, Mike Sites to visit 10 Williams and Digby Wood. (map centre pages) Recording your sightings 11 Butterfl y research 12 Transect information 12 Species accounts 15 Small Skipper 15 Large Skipper 16 Brimstone 16 Large White, Small White & Green-veined White 16 Orange-tip 17 Green Hairstreak 17 White-letter Hairstreak 18 Small Copper 18 Common Blue 18 Holly Blue 19 Red Admiral, Small Tortoiseshell, Peacock & Comma 19 High Brown Fritillary 20 Silver-washed Fritillary 21 Speckled Wood 21 Marbled White 21 Grayling 22 Small Heath 22 Gatekeeper, Meadow Brown & Ringlet 23 Six-spot Burnet 24 Drab Looper 24 Hummingbird Hawkmoth 24 Scarlet Tiger 25 Cinnabar moth 25 Burnet Companion 25 Important information.
    [Show full text]
  • The Behaviour and Wing Morphology of The
    RADAR Research Archive and Digital Asset Repository The behaviour and wing morphology of the meadow brown butterfly (Maniola jurtina L.) in Britain: the influence of weather and location Celia Maier (1998) https://radar.brookes.ac.uk/radar/items/5aa9edb0-b9dc-4819-bf36-72f5d3ba1f52/1/ Note if anything has been removed from thesis: published paper at end of thesis Copyright © and Moral Rights for this thesis are retained by the author and/or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder(s). The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders. When referring to this work, the full bibliographic details must be given as follows: Maier, C (1998), The behaviour and wing morphology of the meadow brown butterfly (Maniola jurtina L.) in Britain : the influence of weather and location PhD, Oxford Brookes University WWW.BROOKES.AC.UK/GO/RADAR THE BEHAVIOUR AND WING MORPHOLOGY OF THE MEADOW BROWN BUTTERFLY (MANIOLA JURTINA L.) IN BRITAIN: THE INFLUENCE OF WEATHER AND LOCATION CELIA MAIER A thesis submitted in partial fulfilment of the requirements of Oxford Brookes University for the degree of Doctor of Philosophy April 1998 British Butterflies. w.s. Coleman, 1868 "THE MEADOW BROWN BUTTERFLY (Hipparchia Janira) Perhaps of all our butterflies this is the least attractive, being too common to excite interest from its rarity or difficulty of attainment, and too plain and homely to win regard.
    [Show full text]
  • North Wales Branch Newsletter 2017
    North Wales Branch Newsletter 2017 2017 Contents Page 3 A Message from our Chairman Page 4 25 Years of Daily Moth Records Page 5 Glanville Fritillary Page 8 Adventures in North Wales Page 9 Home-made Moth Trap Page 10 Welsh Garden Moth Scheme Page 12 Branch Communication Page 13 Events Listings (Optional centre-spread pull-out) Page 16 AGM and Members’ Day Information Page 17 Finance Statement Page 18 Butterflies of Mynydd Marian Page 20 Eyarth Rocks Reserve Page 21 Cistus Forester Page 22 Why not make your nature walk count? Page 24 Studying the moths of bird nests Page 25 It’s an ill wind Page 27 Butterfly and Moth Recorders Page 28 Contacts Cover photos (Mark Sheridan) Top - The Mint Moth (Pyrausta aurata) Middle – Gatekeeper (Pyronia tithonus) Bottom – Merveille du Jour (Griposia aprilina) This newsletter is published by the North Wales Branch of Butterfly Conservation. Please note that the opinions expressed in this newsletter are not necessarily those of the Society or the Branch Registered Charity No.254937 2 2017 A Message from our Chairman Firstly, I would like to take this opportunity to thank Julie Horner, who has recently stepped down as our Newsletter Editor, for the time, effort and dedication she has devoted towards this task for the last six years. This has been a substantial undertaking on Julie’s part and we are extremely grateful for the contribution she has made towards the success of North Wales Branch. As many of you know, Julie is an accomplished artist and a selection of her beautiful butterfly paintings can be seen (and purchased!) from the display of her work at Pensychnant.
    [Show full text]
  • Butterfly Report 2019 Hengistbury Head
    Hengistbury Head Butterfly Census Annual Report 2019 Written by Venetia Powell There are around 59 species of butterfly present in the UK according to the UK Butterfly Monitoring Scheme (UKBMS); 25 of these species have been recorded around Hengistbury Head. The number of species in the UK are monitored in order to be able to assess and keep track of the change in climate. UKBMS are able to monitor climate change using the populations of butterfly and by looking at the living conditions of specified areas (habitats) and whether the populations increase or decline. For example, butterflies do not cope well in cold temperatures and therefore thrive more in warmth; they are more likely to seek shelter in colder climates to be able to restore their optimum body temperatures. This is because butterflies are cold blooded, meaning that they are unable to produce their own heat and therefore, would lack the energy they need to be able to fly. To be able to generate energy, they absorb heat from the sun hence why they cope better in warmer climates. Butterflies are important to the environment as they pollinate plants, the nectar providing them with energy. Method: For the past 41 years, Hengistbury Head have conducted a weekly butterfly transect walks during the breeding season. This transect consists of pathways dissecting various habitats. Data is recorded between the weeks of 1st April and 30th September due to the butterflies being more frequent during warmer temperatures; they tend to go into hiding and try to find shelter to keep warm in cooler conditions.
    [Show full text]
  • Forest Health Technology Enterprise Team
    Forest Health Technology Enterprise Team TECHNOLOGY TRANSFER Biological Control September 12-16, 2005 Mark S. Hoddle, Compiler University of California, Riverside U.S.A. Forest Health Technology Enterprise Team—Morgantown, West Virginia United States Forest FHTET-2005-08 Department of Service September 2005 Agriculture Volume I Papers were submitted in an electronic format, and were edited to achieve a uniform format and typeface. Each contributor is responsible for the accuracy and content of his or her own paper. Statements of the contributors from outside of the U.S. Department of Agriculture may not necessarily reflect the policy of the Department. The use of trade, firm, or corporation names in this publication is for the information and convenience of the reader. Such use does not constitute an official endorsement or approval by the U.S. Department of Agriculture of any product or service to the exclusion of others that may be suitable. Any references to pesticides appearing in these papers does not constitute endorsement or recommendation of them by the conference sponsors, nor does it imply that uses discussed have been registered. Use of most pesticides is regulated by state and federal laws. Applicable regulations must be obtained from the appropriate regulatory agency prior to their use. CAUTION: Pesticides can be injurious to humans, domestic animals, desirable plants, and fish and other wildlife if they are not handled and applied properly. Use all pesticides selectively and carefully. Follow recommended practices given on the label for use and disposal of pesticides and pesticide containers. The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, sex, religion, age, disability, political beliefs, sexual orientation, or marital or family status.
    [Show full text]