bioRxiv preprint doi: https://doi.org/10.1101/198036; this version posted October 3, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. A feed-forward relay between Bicoid and Orthodenticle regulates the timing of embryonic patterning in Drosophila Authors: Rhea R. Datta1, Jia Ling1, Jesse Kurland2,3, Xiaotong Ren1, Zhe Xu1, Gozde Yucel1, Jackie Moore1, Leila Shokri2,3, Isabel Baker1, Timothy Bishop1, Paolo Struffi1, Rimma Levina1, Martha L. Bulyk2,3, Robert J. Johnston4, and Stephen Small1,5,6* 1. Center for Developmental Genetics, Department of Biology, New York University, 100 Washington Square East, New York, NY 10003-6688, USA. 2. Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA 3. Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA. 4. Department of Biology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218-2685, USA 5. Corresponding author * Correspondence:
[email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/198036; this version posted October 3, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract The K50 homeodomain (K50HD) protein Orthodenticle (Otd) is critical for anterior patterning and brain and eye development in most metazoans.