PROVENANCE AND PALEOTECTONIC SETTING OF NORTH AMERICAN TRIASSIC STRATA IN : THE SEDIMENTARY RECORD OF PERICRATONIC TERRANE ACCRETION IN THE NORTHERN CANADIAN CORDILLERA

by

LUKE PATRICK BERANEK

M.Sc., Idaho State University, 2005 B.Sc., University of Wisconsin - Eau Claire, 2003

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

in

THE FACULTY OF GRADUATE STUDIES (GEOLOGICAL SCIENCES)

THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver)

April 2009

©Luke Patrick Beranek, 2009

ABSTRACT Detrital mineral geochronology, trace element and Nd isotope geochemistry, and field studies provide constraints for the source and paleotectonic setting of Late Devonian to Late Triassic North American strata in the northern Cordillera. Late Devonian-Early Mississippian clastic wedge deposits in northern Yukon and Northwest Territories record the influx of northerly derived sediment from the Innuitian orogenic belt. Isotopic data suggest that Innuitian clastic material was consistently recycled into post-Late Devonian Cordilleran margin strata. Early to Late Triassic sedimentation in Yukon was related to Late Permian-Early Triassic collision of the pericratonic Yukon-Tanana terrane (YTT) with western North America. Permo-Triassic closure of a marginal back-arc basin, whose remnants comprise the Slide Mountain terrane (SMT), juxtaposed YTT against the ancestral North American margin. The age and nature of this collision is analogous to that of the Sonoman orogeny in the southwestern United States and argues for accretionary tectonism along much of the Cordilleran margin during final construction of the Pangean supercontinent. Three stages of basin evolution following Late Permian-Early Triassic tectonism are now recognized in the northern Cordillera: (1) Early(?) to Middle Triassic SMT-YTT overlap assemblage- Early(?) to Middle Triassic coarse sandstone and conglomerate underlain by SMT in southeastern Yukon have detrital mineral ages which suggest that these strata represent westerly derived, first- cycle deposits shed from YTT following collision. (2) Early(?) to Middle Triassic peripheral foreland basin - Ladinian (Middle Triassic) strata in southeastern Yukon contain detrital mineral ages which document the first known occurrences of sediment derived from allochthonous terranes to the west deposited on North America. These data call for pre-Ladinian peripheral foreland basin development along the former Cordilleran margin. This depocentre is now largely buried under younger Mesozoic allochthons; however, Early(?) to Middle Triassic rocks that comprise the YTT-SMT overlap may represent correlatives to these Ladinian strata. (3) Middle to Late Triassic overlap assemblage – Tectonic quiescence in Middle to Late Triassic time led to development of an overlap assemblage linking the YTT, SMT, and ancestral North American margin. These units comprise a geodynamic linkage between outboard pericratonic terranes and the North American plate.

ii TABLE OF CONTENTS

ABSTRACT ...... ii TABLE OF CONTENTS...... iii LIST OF TABLES ...... ix LIST OF FIGURES ...... x PREFACE ...... xii ACKNOWLEDGEMENTS ...... xiii CO-AUTHORSHIP STATEMENT...... xiv CHAPTER 1 - INTRODUCTION...... 1 1.1 INTRODUCTION...... 2 1.2 PALEOZOIC DEVELOPMENT OF YUKON-TANANA TERRANE ...... 4 1.2.1 Late Devonian - Early Mississippian...... 4 1.2.2 Early Mississippian - Middle Permian...... 6 1.2.3 Middle Permian - Triassic...... 6 1.3 EVIDENCE FOR LATE PERMIAN-EARLY TRIASSIC TECTONISM ...... 8 1.3.1 Late Permian-Early Triassic magmatic cessation ...... 9 1.3.2 Late Permian-Early Triassic deformation and unconformities...... 9 1.3.3 Triassic sedimentary rocks of the eastern Cordillera in western Canada ...... 10 1.4 PROJECT OUTLINE...... 11 1.4.1 Establishing a detrital zircon reference frame for the post-Devonian Cordilleran miogeocline in northern Canada...... 12 1.4.2 Defining provenance correlations between North American Triassic strata in the eastern Canadian Cordillera ...... 13 1.4.3 Late Permian-Early Triassic closure of the Slide Mountain-Golconda Ocean ...... 14 1.4.4 Paleogeography of the Late Triassic Bug Island limestone...... 14 1.4.5 Collision-related Triassic sedimentation in southeastern Yukon...... 14 1.5 REFERENCES ...... 16 CHAPTER 2 – DETRITAL ZIRCON GEOCHRONOLOGY OF THE LATE DEVONIAN TO EARLY MISSISSIPPIAN ELLESMERIAN CLASTIC WEDGE, NORTHWESTERN CANADA: INSIGHTS ON THE INNUITIAN OROGEN AND EVOLUTION OF THE NORTHERN CORDILLERAN MIOGEOCLINE...... 20 2.1 INTRODUCTION...... 21 2.1.1 Devono-Mississippian deformation in Yukon and Northwest Territories...... 21 2.1.2 Devono-Mississippian Cordilleran margin strata ...... 22 2.1.3 Provenance of mid-Paleozoic strata in Yukon and Northwest Territories...... 23 2.2 INNUITIAN OROGENESIS ...... 23 2.2.1 Early Silurian – Accretion of Pearya...... 24 2.2.2 Early Devonian – Romanzof orogeny ...... 25 2.2.3 Late Devonian to Early Mississippian – Ellesmerian orogeny...... 26 2.3 LATE DEVONIAN AND MISSISSIPPIAN STRATA OF NORTHERN YUKON AND NORTHWEST TERRITORIES ...... 26 2.3.1 Late Devonian Imperial Formation ...... 27 2.3.2 Late Devonian to Early Mississippian Tuttle Formation...... 29

iii 2.4 LATE DEVONIAN TURBIDITE BASIN AND MISSISSIPPIAN CLASTIC SHELF OF WEST-CENTRAL AND EASTERN YUKON ...... 31 2.4.1 Late Devonian Prevost Formation, upper Earn Group ...... 32 2.4.2 Mississippian Keno Hill Quartzite and Tsichu formation...... 32 2.5 PREVIOUS DETRITAL ZIRCON STUDIES AND REFERENCE FRAMES ...... 32 2.5.1 Arctic reference frame...... 33 2.5.2 Western Laurentian reference frame...... 33 2.5.3 Provenance correlations ...... 34 2.6 ANALYTICAL METHODS AND DATA PRESENTATION ...... 34 2.7 DETRITAL ZIRCON RESULTS...... 36 2.7.1 Late Devonian Imperial Formation ...... 36 2.7.2 Late Devonian – Early Mississippian Tuttle Formation...... 36 2.7.3 Late Devonian Prevost Formation, upper Earn Group ...... 39 2.7.4 Mississippian Keno Hill Quartzite ...... 39 2.7.5 Mississippian Tsichu formation ...... 40 2.8 PROVENANCE CORRELATIONS ...... 42 2.8.1 Late Devonian Imperial Formation ...... 42 2.8.1.1 Interpretation...... 42 2.8.2 Late Devonian – Early Mississippian Tuttle Formation...... 45 2.8.2.1 Interpretation...... 45 2.8.3 Late Devonian to Mississippian Cordilleran margin strata ...... 46 2.8.3.1 Interpretation...... 47 2.9 SYNTHESIS...... 48 2.10 REFERENCES ...... 50 CHAPTER 3 – PROVENANCE AND STRATIGRAPHIC FRAMEWORK OF NORTH AMERICAN TRIASSIC STRATA, WEST-CENTRAL TO SOUTHEASTERN YUKON: CORRELATIONS WITH THE WESTERN CANADA SEDIMENTARY BASIN...... 55 3.1 INTRODUCTION...... 56 3.1.1 Western Canada Sedimentary Basin ...... 56 3.1.2 Triassic continental margin strata of Yukon ...... 56 3.1.3 Characterizing North American Triassic strata in Yukon ...... 58 3.2 STRATIGRAPHIC FRAMEWORK AND SAMPLE LOCALITIES...... 60 3.2.1 Mount Christie and Jones Lake formation stratotype locations, Selwyn Mountains, eastern Yukon...... 60 3.2.2 Mount Christie and Jones Lake formations, Ogilvie Mountains, west-central Yukon.. 64 3.2.3 Jones Lake Formation, Sheldon Lake map area, eastern Yukon ...... 67 3.2.4 Hoole Formation, Quiet Lake map area, eastern Yukon ...... 69 3.2.5 Toad Formation, La Biche River map area, southeasternmost Yukon...... 70 3.3 NORTHERN CORDILLERAN REFERENCE FRAMES...... 70 3.3.1 Provenance correlations ...... 71 3.4 ANALYTICAL METHODS AND DATA PRESENTATION ...... 71 3.4.1 U-Pb geochronology ...... 71 3.4.2 Ar-Ar geochronology ...... 73 3.4.3 Whole-rock trace element and Nd isotope geochemistry ...... 74 3.5 NEW CONODONT BIOSTRATIGRAPHY...... 74 3.5.1 Mount Christie Formation stratotype ...... 74 3.5.2 Jones Lake Formation stratotype...... 75 3.6 WHOLE-ROCK TRACE ELEMENT GEOCHEMISTRY ...... 76 3.6.1 Mount Christie Formation stratotype ...... 76 3.6.2 Mount Christie Formation, Ogilvie Mountains...... 76

iv 3.6.3 Jones Lake Formation stratotype...... 76 3.6.4 Jones Lake Formation, Ogilvie Mountains...... 77 3.7 WHOLE-ROCK NEODYMIUM ISOTOPE GEOCHEMISTRY ...... 78 3.7.1 Mount Christie Formation stratotype ...... 78 3.7.2 Jones Lake Formation stratotype...... 78 3.8 DETRITAL MUSCOVITE GEOCHRONOLOGY ...... 78 3.8.1 Mount Christie Formation stratotype ...... 78 3.8.2 Jones Lake Formation stratotype ...... 78 3.9 DETRITAL ZIRCON GEOCHRONOLOGY ...... 79 3.9.1 Jones Lake Formation stratotype...... 79 3.9.2 Jones Lake Formation, Ogilvie Mountains, west-central Yukon ...... 80 3.9.3 Jones Lake Formation, Sheldon Lake map area, eastern Yukon ...... 82 3.9.4 Hoole Formation, Quiet Lake map area, eastern Yukon ...... 83 3.9.5 Toad Formation, La Biche River map area, southeasternmost Yukon...... 83 3.10 WHOLE-ROCK PROVENANCE CORRELATIONS ...... 84 3.10.1 Mount Christie Formation ...... 84 3.10.2 Jones Lake Formation...... 85 3.11 DETRITAL MINERAL PROVENANCE CORRELATIONS...... 86 3.11.1 Mount Christie and Jones Lake formation stratotypes...... 86 3.11.1.1 Detrital zircon provenance...... 86 3.11.1.2 Detrital muscovite provenance ...... 87 3.11.2 Jones Lake Formation, Ogilvie Mountains ...... 88 3.11.3 Jones Lake Formation, Sheldon Lake map area ...... 88 3.11.4 Hoole Formation, Quiet Lake map area ...... 89 3.11.5 Toad Formation, La Biche River map area ...... 90 3.12 CONCLUSIONS...... 90 3.13 REFERENCES ...... 94 CHAPTER 4 – PERMO-TRIASSIC CLOSURE OF THE CORDILLERAN MARGINAL OCEAN BASIN: U-PB DETRITAL ZIRCON AND AR-AR DETRITAL MUSCOVITE CONSTRAINTS FROM TRIASSIC SILICICLASTIC STRATA ASSOCIATED WITH SLIDE MTN. TERRANE IN YUKON, NORTHERN BRITISH COLUMBIA, AND ALASKA ...... 98 4.1 INTRODUCTION...... 99 4.1.1 Slide Mountain terrane and related Triassic strata in the northern Cordillera ...... 99 4.1.2 Testable hypotheses for the source of Triassic strata ...... 102 4.2 SAMPLE LOCALITIES AND GEOLOGIC FRAMEWORK...... 103 4.2.1 Taylor Highway locality, Eagle quadrangle, eastern Alaska...... 103 4.2.2 Clinton Creek asbestos mine, western Yukon...... 103 4.2.3 Tummel fault zone, Glenlyon map area, central Yukon ...... 107 4.2.4 Northern Finlayson Lake district, southeastern Yukon...... 109 4.2.5 McNeil Lake klippen, southeastern Yukon ...... 112 4.2.6 Sylvester allochthon, northern British Columbia...... 112 4.3 DETRITAL MINERAL REFERENCE FRAMES FOR THE NORTHERN CORDILLERA ...... 116 4.3.1 Ancestral North American margin ...... 116 4.3.2 Yukon-Tanana terrane ...... 117 4.4 ANALYTICAL METHODS AND DATA PRESENTATION ...... 118 4.4.1 U-Pb geochronology ...... 118 4.4.2 Ar-Ar geochronology ...... 119 4.5 RESULTS ...... 120 4.5.1 Taylor Highway locality, Eagle quadrangle, eastern Alaska...... 120 4.5.2 Clinton Creek asbestos mine, western Yukon...... 120

v 4.5.3 Tummel fault zone, Glenlyon map area, central Yukon ...... 122 4.5.4 Northern Finlayson Lake district, southeastern Yukon...... 124 4.5.5 McNeil Lake klippen, southeastern Yukon ...... 126 4.5.6 Sylvester allochthon, northern British Columbia...... 127 4.6 PROVENANCE CORRELATIONS ...... 128 4.6.1 Eastern Alaska – Western Yukon border region ...... 128 4.6.2 Tummel fault zone, Glenlyon map area, central Yukon ...... 131 4.6.3 Northern Finlayson Lake district and McNeil Lake klippen, southeastern Yukon...... 134 4.6.4 Sylvester allochthon ...... 136 4.7 CONCLUSIONS...... 137 4.7.1 New detrital mineral reference frame for the northern Cordillera...... 137 4.7.2 Triassic stratigraphic linkages in the peri-Laurentian realm ...... 137 4.7.3 Paleogeographic implications...... 139 4.7.4 Correlations with Sonoman orogenesis ...... 139 4.8 REFERENCES ...... 142 CHAPTER 5 – LATE TRIASSIC ‘TETHYAN’ CONODONTS IN THE PERI-LAURENTIAN REALM: NORTH AMERICAN DETRITAL ZIRCONS DE-BUG THE BUG ISLAND LIMESTONE?...... 149 5.1 INTRODUCTION...... 150 5.1.1 Review of terrane and paleobiogeographic analysis in the Canadian Cordillera...... 150 5.1.2 Exotic conodonts in the peri-Laurentian realm? ...... 152 5.1.3 Testing models for Tethyan faunal occurrences in the Canadian Cordillera ...... 153 5.2 REGIONAL GEOLOGY OF THE FINLAYSON LAKE MAP AREA...... 155 5.2.1 Yukon-Tanana and Slide Mountain terranes ...... 155 5.2.2 Triassic strata – The Bug Island limestone...... 156 5.3 DETRITAL ZIRCON REFERENCE FRAMES ...... 157 5.3.1 Ancestral North American margin ...... 157 5.3.2 Yukon-Tanana terrane ...... 157 5.3.3 Finlayson Lake area...... 158 5.3.4 Late Triassic strata associated with Slide Mountain terrane...... 158 5.3.5 Tethyan sequences in Himalaya...... 158 5.3.6 Detrital zircon statistics ...... 159 5.4 ANALYTICAL METHODS AND DATA PRESENTATION ...... 159 5.5 RESULTS ...... 160 5.6 PROVENANCE CORRELATIONS ...... 161 5.7 DISCUSSION ...... 162 5.7.1 Detrital zircon provenance...... 162 5.7.2 Evaluation of Tethyan fossils in the Cordillera...... 163 5.8 SYNTHESIS...... 167 5.9 REFERENCES ...... 168 CHAPTER 6 – TRIASSIC PERIPHERAL FORELAND BASIN DEVELOPMENT AND OVERLAP ASSEMBLAGES IN THE NORTHERN NORTH AMERICAN CORDILLERA: NEW INSIGHTS ON THE ACCRETION OF YUKON-TANANA AND RELATED TERRANES ...... 172 6.1 INTRODUCTION...... 173 6.1.1 A new model for Permo-Triassic tectonism in the northern Cordillera...... 173 6.1.2 Testing for collision-related and overlap assemblages in southeastern Yukon ...... 175 6.2 YUKON-TANANA TERRANE...... 177 6.2.1 Overview ...... 177

vi 6.2.2 Tectonic assemblages of Yukon-Tanana terrane...... 177 6.2.3 Linkages between Yukon-Tanana and other terranes ...... 179 6.3 SAMPLE LOCALITIES AND GEOLOGIC SETTING ...... 179 6.3.1 Middle Triassic strata, Frances Lake map area, southeastern Yukon...... 179 6.3.2 Middle Triassic strata, Watson Lake map area, southeastern Yukon ...... 181 6.3.3 Middle to Late Triassic strata, Cassiar terrane, Quiet Lake map area ...... 182 6.3.4 Middle to Late Triassic strata, Cassiar terrane, Finlayson Lake map area ...... 184 6.3.5 Late Triassic(?) Faro Peak formation, Yukon-Tanana terrane, central Yukon ...... 185 6.3.6 Middle to Late Jurassic strata, Dawson map area, west-central Yukon...... 186 6.4 NORTH AMERICAN CONTINENTAL MARGIN REFERENCE FRAMES...... 188 6.4.1 Cordilleran margin strata ...... 188 6.4.2 Detrital zircon statistics ...... 189 6.5 ANALYTICAL METHODS AND DATA PRESENTATION ...... 189 6.5.1 U-Pb geochronology ...... 189 6.5.2 Ar-Ar geochronology ...... 191 6.5.3 Whole-rock trace element and Nd isotope geochemistry ...... 192 6.6 WHOLE-ROCK TRACE ELEMENT GEOCHEMISTRY ...... 192 6.6.1 Middle Triassic strata, Frances and Watson Lake map areas...... 192 6.6.2 Middle to Late Triassic strata, Cassiar terrane, Finlayson Lake map area ...... 192 6.6.3 Middle to Late Jurassic strata, Dawson map area, west-central Yukon...... 193 6.7 WHOLE-ROCK NEODYMIUM ISOTOPE GEOCHEMISTRY ...... 195 6.7.1 Middle Triassic strata, Frances Lake map area ...... 195 6.7.2 Middle Triassic strata, Watson Lake map area ...... 195 6.8 DETRITAL ZIRCON GEOCHRONOLOGY ...... 195 6.8.1 Middle Triassic strata, Frances and Watson Lake map areas, southeastern Yukon... 195 6.8.2 Middle to Late Triassic strata, Cassiar terrane, southeastern Yukon...... 196 6.8.3 Faro Peak formation, Yukon-Tanana terrane, central Yukon...... 197 6.8.4 Jurassic Lower Schist division, Dawson map area, west-central Yukon ...... 197 6.9 DETRITAL MUSCOVITE GEOCHRONOLOGY ...... 198 6.9.1 Middle Triassic strata, Frances Lake map area ...... 198 6.9.2 Middle to Late Triassic strata, Cassiar terrane, Finlayson Lake map area ...... 199 6.10 WHOLE-ROCK PROVENANCE CORRELATIONS ...... 199 6.10.1 Middle Triassic strata, Frances and Watson Lake map areas...... 199 6.10.2 Middle to Late Triassic strata, Cassiar terrane, southeastern Yukon...... 200 6.10.3 Middle to Late Jurassic strata, west-central Yukon...... 201 6.11 DETRITAL MINERAL PROVENANCE CORRELATIONS...... 202 6.11.1 Middle Triassic strata, Frances and Watson Lake map areas...... 202 6.11.1.1 Interpretation...... 205 6.11.2 Middle to Late Triassic strata, Hoole Formation, Cassiar terrane ...... 205 6.11.2.1 Interpretation...... 206 6.11.3 Middle to Late Triassic strata, Cassiar terrane, Finlayson Lake map area ...... 206 6.11.3.1 Interpretation...... 207 6.11.4 Faro Peak formation, Yukon-Tanana terrane, central Yukon...... 207 6.11.4.1 Interpretation...... 208 6.11.5 Middle to Late Jurassic strata, Dawson map area, west-central Yukon...... 209 6.11.5.1 Interpretation...... 210 6.12 TRIASSIC PERIPHERAL FORELAND BASIN DEVELOPMENT...... 210 6.12.1 Interpretation ...... 212 6.13 TRIASSIC OVERLAP ASSEMBLAGE DEVELOPMENT...... 213 6.14 SYNTHESIS...... 214 6.15 REFERENCES ...... 215

vii CHAPTER 7 – CONCLUSIONS AND DIRECTIONS FOR FUTURE RESEARCH...... 221 7.1 CONTRIBUTIONS TO THE CORDILLERAN KNOWLEDGE BASE ...... 222 7.2 KEY RESULTS...... 223 7.3 FUTURE RESEARCH...... 224 7.4 REFERENCES ...... 228

APPENDICES ...... 230 APPENDIX A – CHAPTER 2 DATA REPOSITORY ...... 231 APPENDIX B – CHAPTER 3 DATA REPOSITORY...... 253 U-PB DETRITAL ZIRCON DATA ...... 254 TRACE ELEMENT GEOCHEMICAL DATA ...... 268 AR-AR DETRITAL MUSCOVITE DATA ...... 270 SM-ND ISOTOPIC DATA ...... 270 CONODONT BIOCHRONOLOGY (REPORT FROM M.J. ORCHARD)...... 271 APPENDIX C – CHAPTER 4 DATA REPOSITORY ...... 273 U-PB DETRITAL ZIRCON DATA ...... 274 AR-AR DETRITAL MUSCOVITE DATA ...... 304 APPENDIX D – CHAPTER 5 DATA REPOSITORY ...... 305 APPENDIX E – CHAPTER 6 DATA REPOSITORY...... 308 U-PB DETRITAL ZIRCON DATA ...... 309 TRACE ELEMENT GEOCHEMICAL DATA ...... 323 AR-AR DETRITAL MUSCOVITE DATA ...... 324 SM-ND ISOTOPIC DATA ...... 324

viii LIST OF TABLES

TABLE 2.1 DETRITAL ZIRCON AGE PEAKS IN THE NORTHERN CORDILLERA...... 37

TABLE 3.1 WHOLE-ROCK GEOCHEMICAL REFERENCE FRAME IN NORTHERN CORDILLERA .. 79

TABLE 3.2 DETRITAL ZIRCON AGE PEAKS IN THE NORTHERN CORDILLERA...... 81

TABLE 4.1 DETRITAL ZIRCON AGE PEAKS IN THE NORTHERN CORDILLERA...... 125

TABLE 5.1 DETRITAL ZIRCON AGE PEAKS IN THE NORTHERN CORDILLERA...... 164

TABLE 6.1 WHOLE-ROCK AND ND ISOTOPE GEOCHEMISTRY IN NORTHERN CORDILLERA .. 194 TABLE 6.2 DETRITAL ZIRCON AGE PEAKS IN THE NORTHERN CORDILLERA...... 204

TABLE A1 LOCATION DATA FOR DETRITAL ZIRCON SAMPLES IN CHAPTER 2...... 231

TABLE B1 LOCATION DATA FOR DETRITAL ZIRCON SAMPLES IN CHAPTER 3 ...... 253 TABLE B2 LOCATION DATA FOR WHOLE-ROCK GEOCHEMICAL SAMPLES IN CHAPTER 3 ... 253 TABLE B3 LOCATION DATA FOR AR-AR SAMPLES IN CHAPTER 3...... 253 TABLE B4 LOCATION DATA FOR ND ISOTOPE SAMPLES IN CHAPTER 3 ...... 253

TABLE C1 LOCATION DATA FOR DETRITAL ZIRCON SAMPLES IN CHAPTER 4 ...... 273 TABLE C2 LOCATION DATA FOR AR-AR SAMPLES IN CHAPTER 4...... 273

TABLE D1 LOCATION DATA FOR DETRITAL ZIRCON SAMPLE IN CHAPTER 5...... 305

TABLE E1 LOCATION DATA FOR DETRITAL ZIRCON SAMPLES IN CHAPTER 6 ...... 308 TABLE E2 LOCATION DATA FOR DETRITAL ZIRCON SAMPLES IN CHAPTER 6 ...... 308 TABLE E3 LOCATION DATA FOR AR-AR SAMPLES IN CHAPTER 6...... 308 TABLE E4 LOCATION DATA FOR ND ISOTOPE SAMPLES IN CHAPTER 6 ...... 308

ix LIST OF FIGURES

FIGURE 1.1 TECTONIC ELEMENTS OF NORTH AMERICAN CORDILLERA ...... 3 FIGURE 1.2 TERRANE MAP OF ALASKAN AND CANADIAN CORDILLERAS ...... 5 FIGURE 1.3 PALEOZOIC PALEOGEOGRAPHY OF PERI-LAURENTIAN TERRANES...... 7 FIGURE 1.4 U-PB AND FOSSIL AGES FOR ROCKS OF YUKON-TANANA TERRANE ...... 8

FIGURE 2.1 PHANEROZOIC OROGENIC BELTS OF NORTH AMERICA...... 22 FIGURE 2.2 GEOLOGIC MAP OF ARCTIC ALASKA, NORTHERN YUKON, AND NWT ...... 24 FIGURE 2.3 PALEOZOIC PALEOGEOGRAPHY OF PERI-LAURENTIAN TERRANES...... 25 FIGURE 2.4 DEV.-MISS. STRATIGRAPHIC AND TECTONIC FRAMEWORK IN N. YUKON, NWT.. 27 FIGURE 2.5 TERRANE MAP OF ALASKAN AND CANADIAN CORDILLERAS ...... 28 FIGURE 2.6 IMPERIAL AND TUTTLE FORMATION SAMPLE MAP IN N. RICHARDSON MTNS..... 30 FIGURE 2.7 IMPERIAL AND TUTTLE FORMATION SAMPLE MAP IN PEEL PLATEAU ...... 31 FIGURE 2.8 DETRITAL ZIRCON AGE SPECTRA FOR IMPERIAL FORMATION SAMPLES ...... 38 FIGURE 2.9 DETRITAL ZIRCON AGE SPECTRA FOR TUTTLE FORMATION STRATA ...... 40 FIGURE 2.10 DETRITAL ZIRCON AGE SPECTRA FOR MISSISSIPPIAN STRATA...... 41 FIGURE 2.11 NORMALIZED RELATIVE PROBABILITY PLOT FOR CHAPTER 2 SAMPLES...... 44 FIGURE 2.12 LATE DEVONIAN-EARLY MISSISSIPPIAN GLOBAL PALEOGEOGRAPHY...... 49

FIGURE 3.1 TERRANE MAP OF ALASKAN AND CANADIAN CORDILLERAS ...... 57 FIGURE 3.2 NORTH AMERICAN TRIASSIC ROCKS IN YUKON...... 59 FIGURE 3.3 TRIASSIC STRATIGRAPHIC FRAMEWORK IN E. CANADIAN CORDILLERA ...... 60 FIGURE 3.4 PALEOZOIC PALEOGEOGRAPHY OF PERI-LAURENTIAN TERRANES...... 61 FIGURE 3.5 BEDROCK GEOLOGY OF THE WILSON SYNCLINE AREA...... 63 FIGURE 3.6 PANORAMIC VIEW OF THE WILSON SYNCLINE...... 63 FIGURE 3.7 STRATIGRAPHIC COLUMN FOR WESTERN LIMB OF WILSON SYNCLINE...... 64 FIGURE 3.8 OUTCROP PICTURES OF MT. CHRISTIE AND JONES LAKE FM. STRATOTYPES ...... 65 FIGURE 3.9 BEDROCK GEOLOGY OF MOUNT ROBERT SERVICE AREA ...... 66 FIGURE 3.10 OUTCROP PICTURES OF MT. CHRISTIE AND JONES LK. FM. IN OGILVIE MTNS..... 67 FIGURE 3.11 SIMPLIFIED BEDROCK GEOLOGY OF CONNOLLY CALDERA AREA ...... 68 FIGURE 3.12 OUTCROP PICTURES OF THE CONNOLLY CALDERA AREA...... 68 FIGURE 3.13 SIMPLFIED BEDROCK GEOLOGY ALONG S. CANOL RD. SOUTH OF ROSS RIVER .. 69 FIGURE 3.14 OUTCROP PICTURES OF HOOLE FORMATION ...... 70 FIGURE 3.15 CHONDRITE-NORMALIZED REE PLOTS, MT. CHRISTIE AND JONES LK. FMS...... 77 FIGURE 3.16 DETRITAL ZIRCON AGE SPECTRA FOR JONES LAKE FM. STRATOTYPE...... 82 FIGURE 3.17 DETRITAL ZIRCON AGE SPECTRA FOR JONES LAKE FM., OGILVIE MTNS...... 83 FIGURE 3.18 DETRITAL ZIRCON AGE SPECTRA FOR VARIOUS TRIASSIC SAMPLES...... 84 FIGURE 3.19 INITIAL EPSILON ND VERSUS 147SM/144 ND PLOT ...... 91 FIGURE 3.20 NORMALIZED RELATIVE PROBABILITY PLOT FOR CHAPTER 3 SAMPLES...... 92

FIGURE 4.1 TERRANE MAP OF ALASKAN AND CANADIAN CORDILLERAS ...... 100 FIGURE 4.2 PALEOZOIC PALEOGEOGRAPHY OF PERI-LAURENTIAN TERRANES...... 102 FIGURE 4.3 TRIASSIC STRATIGRAPHIC FRAMEWORK FOR THE SLIDE MTN. TERRANE...... 104 FIGURE 4.4 SIMPLIFIED BEDROCK GEOLOGY OF E. ALASKA/W. YUKON BORDER REGION.. 105 FIGURE 4.5 SIMPLIFIED BEDROCK GEOLOGY OF CLINTON CREEK MINE AREA...... 106 FIGURE 4.6 BEDROCK GEOLOGY OF TUMMEL FAULT ZONE, GLENLYON MAP AREA...... 108 FIGURE 4.7A SIMPLIFIED BEDROCK GEOLOGY OF N. FINLAYSON LAKE AREA...... 110 FIGURE 4.7B SCHEMATIC STRATIGRAPHIC SECTION THROUGH N. FINLAYSON LK. AREA ..... 111 FIGURE 4.8A SIMPLIFIED BEDROCK GEOLOGY OF MCNEIL LAKE AREA...... 113

x FIGURE 4.8B SCHEMATIC OPTIONS FOR STRATIGRAPHY IN MCNEIL LAKE AREA ...... 113 FIGURE 4.9 BEDROCK GEOLOGY OF CUSAC GOLD PROPERTY, TABLE MTN. AREA...... 115 FIGURE 4.10 DETRITAL ZIRCON AGE SPECTRA FOR CLINTON CK. AND E. AK SAMPLES ...... 121 FIGURE 4.11 DETRITAL ZIRCON AGE SPECTRA FOR GLENLYON MAP AREA...... 123 FIGURE 4.12 DETRITAL ZIRCON AGE SPECTRA OF N. FINLAYSON AND MCNEIL LK. AREAS.. 126 FIGURE 4.13 DETRITAL ZIRCON AGE SPECTRA FOR SYLVESTER ALLOCHTHON...... 129 FIGURE 4.14 DETRITAL MUSCOVITE AGE SPECTRA ...... 130 FIGURE 4.15 NORMALIZED RELATIVE PROBABILITY PLOT FOR CHAPTER 4 SAMPLES...... 132 FIGURE 4.16 LATE PERMIAN – EARLY TRIASSIC GLOBAL PALEOGEOGRAPHY...... 141

FIGURE 5.1 TERRANE MAP OF ALASKAN AND CANADIAN CORDILLERAS ...... 151 FIGURE 5.2 PALEOZOIC PALEOGEOGRAPHY OF PERI-LAURENTIAN TERRANES...... 153 FIGURE 5.3 LATE TRIASSIC GLOBAL PALEOGEOGRAPHY...... 154 FIGURE 5.4 SIMPLIFIED BEDROCK GEOLOGY OF NORTHERN FINLAYSON LAKE AREA ...... 155 FIGURE 5.5 SCHEMATIC STRATIGRAPHIC SECTION THROUGH N. FINLAYSON LK. AREA ..... 156 FIGURE 5.6 DETRITAL ZIRCON AGE SPECTRA FOR THE BUG ISLAND LIMESTONE...... 161 FIGURE 5.7 NORMALIZED RELATIVE PROBABILITY PLOT ...... 165

FIGURE 6.1 TERRANE MAP OF ALASKAN AND CANADIAN CORDILLERAS ...... 174 FIGURE 6.2 PALEOZOIC PALEOGEOGRAPHY OF PERI-LAURENTIAN TERRANES...... 178 FIGURE 6.3 NORTH AMERICAN TRIASSIC ROCKS IN YUKON...... 180 FIGURE 6.4 SIMPLIFIED BEDROCK GEOLOGY OF FINLAYSON AND FRANCES LAKE AREAS . 181 FIGURE 6.5 SIMPLIFIED BEDROCK GEOLOGY OF N. WATSON LAKE MAP AREA ...... 183 FIGURE 6.6 SIMPLIFIED BEDROCK GEOLOGY ALONG S. CANOL RD., MT. GREEN AREA...... 183 FIGURE 6.7 SIMPLIFIED BEDROCK GEOLOGY OF MCNEIL LAKE AREA...... 184 FIGURE 6.8 BEDROCK GEOLOGY NEAR FARO TOWNSITE ...... 186 FIGURE 6.9 BEDROCK GEOLOGY NEAR BLIND CREEK, EAST OF FARO ...... 187 FIGURE 6.10 BEDROCK GEOLOGY OF MOUNT ROBERT SERVICE AREA ...... 188 FIGURE 6.11 CHONDRITE-NORMALIZED REE PLOTS, TRIASSIC AND JURASSIC STRATA...... 193 FIGURE 6.12 DETRITAL ZIRCON AGE SPECTRA FOR FRANCES AND WATSON LK. AREAS...... 196 FIGURE 6.13 DETRITAL ZIRCON AGE SPECTRA FOR CASSIAR TERRANE SAMPLES ...... 197 FIGURE 6.14 DETRITAL ZIRCON AGE SPECTRA FOR THE FARO PEAK FORMATION...... 198 FIGURE 6.15 DETRITAL ZIRCON AGE SPECTRA FOR THE LOWER SCHIST DIVISION...... 198 FIGURE 6.16 DETRITAL MUSCOVITE AGE SPECTRA FROM MCNEIL LAKE AREA...... 199 FIGURE 6.17 INITIAL EPSILON ND VERSUS 147SM/144 ND PLOT...... 201 FIGURE 6.18 DISTRIBUTION OF LATE TRIASSIC TO MID-JURASSIC INTRUSIVES IN YUKON ... 209 FIGURE 6.19 SCHEMATIC PERIPHERAL FORELAND BASIN ...... 211 FIGURE 6.20 ESTIMATES ON PERIPHERAL FORELAND BASIN FACIES BELTS ...... 213

xi PREFACE

There’s gold, and it’s haunting and haunting; It’s luring me on as of old; Yet it isn’t the gold that I’m wanting So much as just finding the gold. It’s the great, big, broad land ‘way up yonder, It’s the forests where silence has lease; It’s the beauty that thrills me with wonder, It’s the stillness that fills me with peace.

-Robert Service, From The Spell of the Yukon

xii ACKNOWLEDGEMENTS

This dissertation benefited from the assistance of many people. I am indebted to my supervisor Jim Mortensen who proposed this project and introduced me to the many wonders of Yukon. Jim provided constant moral and scientific support in an independent, free-thinking work environment that exceeded my expectations. The large analytical database produced by this project was fully funded by NSERC Discovery grants to Mortensen. Maurice Colpron and Don Murphy from the Yukon Geological Survey and JoAnne Nelson from the British Columbia Geological Survey were fantastic mentors that fostered this project since its inception. Conversations and time in the field with them greatly improved my understanding and appreciation of regional tectonics and sedimentation. Maurice Colpron is also thanked for sharing many of his phenomenal illustrations. Field logistics and helicopter budget for this project over three summers was supported by the Yukon Geological Survey. Co-advisors Michael Orchard at the Geological Survey of Canada and Stuart Sutherland and Paul Smith at the University of British Columbia (UBC) are thanked for their many comments and conversations regarding paleontology and Cordilleran geology. Richard Friedman at the Pacific Centre for Isotopic and Geochemical Research at UBC has been a tremendous personal and scientific resource. His positive demeanor and knowledge of U-Pb zircon geochronology were highly appreciated on a daily basis. I am thankful for my remarkable colleagues and friends at UBC, past and present, including Elspeth Barnes, Andrew Caruthers, Evan Crawford, Sarah Gordee, Amber Henry, Chris Leslie, the lovely Inês Nobre Silva, Kirsten Rasmussen, Tyler Ruks, and Reza Tafti. Mary Jessica Della Vedova is also thanked for her patience and friendship. Finally, my parents and family have provided unwavering support for my scientific and personal desires during the past 10 years of university studies. I thank them for coming on this journey with me.

xiii CO-AUTHORSHIP STATEMENT The five manuscripts of this dissertation are coauthored with several colleagues. I designed the research programme with my supervisor Jim Mortensen, acted as the principal investigator for field and U-Pb analytical studies, and I was the primary author for all manuscripts. My supervisor Jim Mortensen offered comments and revisions to each of the five manuscripts. Tom Ullrich conducted all Ar-Ar muscovite geochronology. General contributions from coauthors are outlined below and stated in section 1.4.

CHAPTER 2 Detrital zircon geochronology of the Late Devonian to Early Mississippian Ellesmerian clastic wedge, northwestern Canada: Insights on the Innuitian orogen and evolution of the northern Cordilleran miogeocline Authors: Beranek, L.P., Allen, T., Fraser, T., Hadlari, T., Lane, L., Mortensen, J.K., and Zantvoort, W.

Coauthors Allen, Fraser, Hadlari, Lane, Mortensen, and Zantvoort provided samples for analysis and general comments about regional geology.

CHAPTER 3 Provenance and stratigraphic framework of North American Triassic strata, west- central to southeastern Yukon: Correlations with the Western Canada Sedimentary Basin Authors: Beranek, L.P., Mortensen, J.K., Orchard, M.J., and Ullrich, T.

Coauthor Orchard conducted all conodont biochronology and offered comments on an earlier version of this manuscript.

CHAPTER 4 Permo-Triassic closure of the Cordilleran marginal ocean basin: U-Pb detrital zircon and Ar-Ar detrital muscovite constraints from Triassic siliciclastic strata associated with Slide Mountain terrane in Yukon, northern British Columbia, and eastern Alaska Authors: Beranek, L.P., Mortensen, J.K., and Ullrich, T.

CHAPTER 5 Late Triassic ‘Tethyan’ conodonts in the peri-Laurentian realm: North American detrital zircons de-bug the Bug Island limestone? Authors: Beranek, L.P., Murphy, D.C., Orchard, M.J., and Mortensen, J.K.

Coauthors Murphy and Orchard contributed comments on an early version of this manuscript.

CHAPTER 6 Triassic peripheral foreland basin development and overlap assemblages in the northern North American Cordillera: New insights on the accretion of Yukon-Tanana and related terranes Authors: Beranek, L.P., Mortensen, J.K., and Ullrich, T.

xiv

Chapter 1:

Introduction

1 1.1 INTRODUCTION The North American Cordillera represents a type example of an accretionary orogen, formed in large part by the tectonic addition of terranes against the western margin of Laurentia (Coney et al., 1980). Recognition and study of these terranes has been fundamental to the understanding of Cordilleran geodynamics (Monger and Price, 2002). As a result, hypotheses concerning the initial development of the orogen can be tested directly by examining the suture zone where Cordilleran terranes were emplaced over the North American craton. The core of the eastern Canadian Cordillera in Yukon and northern British Columbia provides an ideal laboratory for such terrane analysis because it encompasses the contact between pericratonic terranes and the ancestral North American margin (Nelson et al., 2006). The current working hypothesis in the northern Cordillera features the Yukon-Tanana (YTT) and Slide Mountain (SMT) terranes accreting to the western edge of North America in Late Permian-Early Triassic time (Mortensen et al., 2007; Colpron and Nelson, in press). No geologic or temporal constraints related to accretion have been developed on the cratonal side of this presumed collisional event; however, bedrock mapping studies have documented that broadly similar Triassic sedimentary rocks form the youngest stratigraphic units on YTT, SMT, and the North American miogeocline in eastern Yukon (Mortensen and Jilson, 1985; Murphy et al., 2006). This observation led to the hypothesis that Triassic rocks were deposited within a collision- related basin superposed on the northern Cordilleran margin that subsequently developed into overlap assemblage. An early Mesozoic terrane-craton sedimentary linkage would fundamentally define a Late Permian-Early Triassic accretion event between pericratonic elements and western North America. This investigation evaluated the source and paleotectonic setting for North American Triassic strata in eastern Alaska, Yukon, and northern British Columbia. The primary project goal was to test the hypothesis of a Triassic overlap assemblage recording juxtaposition of YTT and related terranes with North America. Five separate studies were constructed to address the primary project goal and examine the mid- Paleozoic to early Mesozoic evolution of the northern Cordilleran margin. An overview

2 of the regional geology and motivation for these investigations are outlined in this chapter.

Figure 1.1 – Paleozoic and early Mesozoic terranes of the North American Cordillera. Elements are grouped relative to their paleogeographic or faunal affinity in Paleozoic time. Canadian Cordillera shown in Figure 1.2. Terrane abbreviations: QN – Quesnellia, SM- Slide Mountain, ST – Stikinia, WR – Wrangellia, YT – Yukon-Tanana in the Coast Mountains. Other abbreviations: B.C. – British Columbia, CA – California, NV – Nevada, OR – Oregon, U.S.A. – United States of America. Modified from Colpron and Nelson (in press).

3 1.2 PALEOZOIC DEVELOPMENT OF YUKON-TANANA TERRANE The YTT is one of the largest tectonic elements of the North American Cordillera, underlying western and southern Yukon and portions of easternmost Alaska, and British Columbia (Figure 1.1, YT in Figure 1.2; Mortensen, 1992; Colpron and Nelson, 2006). Dextral transcurrent faulting affected the configuration of YTT (Gabrielse et al., 2006), dissecting it into two main components, an arcuate body on the west and a semicircular outlier on the east. Counterclockwise oroclinal rotation of Stikinia (ST in Figures 1.1, 1.2) and western YTT is the preferred mechanism to explain the arcuate nature of the terrane (see Mihalynuk et al., 1994). Initial bedrock mapping studies on YTT suggested that it was a mélange of highly metamorphosed rocks whose internal stratigraphy was completely obscured by tectonism (Tempelman-Kluit, 1979). Subsequent investigations established YTT as a single entity comprised of variably deformed metamorphic rocks within an internally coherent, discernable stratigraphic framework (e.g., Mortensen and Jilson, 1985; Mortensen, 1992). Most recently, whole-rock geochemical analyses, high-precision U-Pb zircon geochronology, and detailed geologic mapping allowed Colpron and Nelson (2006, and references therein) to define a consistent tectonostratigraphic and magmatic framework for YTT. These assemblages characterize three stages of geodynamic development for the terrane, Late Devonian-Early Mississippian, Early Mississippian-Middle Permian, and Middle Permian to Triassic.

1.2.1 Late Devonian – Early Mississippian Back-arc extension led to the separation of west-facing continental margin and arc fragments from the northwestern Laurentian margin in latest Devonian time, contemporaneous with development of the Antler and Innuitian orogenies in southwestern and northern Laurentia, respectively (Figure 1.3a; Piercey et al., 2004; Nelson et al., 2006). These rifted pericratonic assemblages comprised the foundation for the northern Cordilleran elements YTT, Quesnellia (QN in Figures 1.1, 1.2), and Stikinia. The Eastern Klamath and Northern Sierra terranes, presently exposed in northern California, are interpreted to form the southern portion of this peri-Laurentian ribbon fragment (Colpron et al., 2007). Latest Devonian extension also generated a marginal

4 ocean basin, referred to as the Slide Mountain-Golconda Ocean, in the YTT back-arc region alongside the ancestral North American margin (Figure 1.3a,b). The Snowcap and Finlayson assemblages are the oldest identified units of YTT (Colpon et al., 2006). The pre-Late Devonian Snowcap assemblage represents the lowest structural level of the terrane and consists of metasedimentary and metavolcanic rocks of continental margin affinity (Nelson et al., 2006). The Finlayson assemblage is recognized as a package of continental arc and back-arc rocks that cover and intrude the basement of YTT. Late Devonian to Early Mississippian volcanic and intrusive rocks yield U-Pb zircon ages from ca. 357-390 Ma, comprising the Ecstall and Finlayson magmatic cycles of YTT (Figure 1.4; Mortensen, 1992; Colpron et al., 2006).

Figure 1.2 – Terrane map of the Canadian and Alaskan Cordillera. Modified from Colpron et al. (2007).

5 1.2.2 Early Mississippian – Middle Permian The mid- to late Paleozoic record of YTT consists primarily of metavolcanic and intrusive rocks of the Finlayson and Klinkit assemblages (Colpron et al.. 2006). Finlayson assemblage igneous rocks are recognized to have continental-arc geochemical affinities whereas those of the Klinkit assemblage correlate with an island-arc tectonic setting (Piercey et al., 2006). Volcanic arc activity during this time ranged from ca. 269- 357 Ma, comprising the Wolverine, Little Salmon, and Klinkit cycles (Figure 1.4). Mississippian to Permian Klinkit assemblage rocks in southern Yukon are interpreted to be correlative with both the Harper Ranch and Lay Range assemblages of Quesnellia in central and southern British Columbia and the Stikine assemblage of Stikinia in northwestern British Columbia (see dark green polygons labeled HR in Figure 1.2; Simard et al., 2003; Gunning et al., 2006). As a consequence, YTT may form the basement to Mesozoic Quesnellia and Stikinia (Mortensen, 1992; Colpron et al., 2006). Late Paleozoic reversal in arc polarity dramatically changed the geodynamic setting of YTT. By the Middle Permian, the west-facing magmatic arc system that existed for ~120 million years ceased by an unknown mechanism and subduction of Slide Mountain-Golconda Ocean lithosphere commenced under the eastern margin of the terrane (Figure 1.3b; Mortensen, 1992; Colpron et al., 2006). Therefore, by this time, the marginal ocean basin between YTT and ancestral North America had reached its greatest expanse. The mid- to late Paleozoic geometry and width of the basin is not clear; however, many terranes related to YTT, such as Quesnellia and Stikinia, have occurrences of Permian McCloud fauna, also observed on the North American craton in Texas (see Figure 1.2b; Miller, 1987; Colpron et al., 2007). This may suggest that the pericratonic terranes did not travel more than a few thousand kilometres from the Laurentian continent (Belasky et al., 2002).

1.2.3 Middle Permian to Triassic West-dipping subduction along the eastern margin of YTT progressively closed the Slide Mountain-Golconda Ocean and accommodated eastward transport of the peri-

6 Figure 1.3 – Paleozoic paleogeographic evolution of northwestern Laurentia and adjacent pericratonic terranes. Gold discs indicate McCloud faunal occurrences.

YTT – Yukon-Tanana terrane

Modified from Colpron et al. (2007).

Laurentian terranes towards western North America (Figure 1.3c). Calc-alkaline, felsic metavolcanic and metaplutonic rocks of the Middle to latest Permian Klondike assemblage formed by this east-facing arc system and represent the youngest units of YTT (Mortensen, 1990; Colpron et al., 2006). Klondike assemblage rocks yield U-Pb zircon ages from ca. 253-269 Ma (Mortensen, 1992; Colpron et al., 2006). Remnants of the Slide Mountain-Golconda Ocean in the northern Cordillera are referred to as the Slide Mountain assemblage and consist of Late Devonian to Permian deep-water marine stata, mafic igneous rocks of oceanic affinity, and slivers of oceanic lithosphere (Colpron et al., 2006). In western Canada and adjacent Alaska, these rocks comprise the Slide Mountain terrane (SMT; SM in Figures 1.1, 1.2; Harms et al., 1984; Struik and Orchard, 1985). The Slide Mountain assemblage shares lithologic and age characteristics with Havallah sequence rocks of the Golconda allochthon in the southwestern United States (see location in Figures 1.1, 1.3c). The SMT and Golconda allochthon both represent the easternmost terranes in the Cordillera, and are typically

7

Figure 1.4 – Probability density plot for the ages of Yukon-Tanana terrane rocks. Solid black line indicates U-Pb zircon ages; apparent lull during Pennsylvanian-Permian time reflects mafic and intermediate volcanism that did not generate much zircon. Dotted black line corresponds to fossil ages, mainly from conodonts (see Orchard, 2006). Fin – Finlayson, Wolv. – Wolverine. From Colpron et al. (2006).

in thrust-related contact with North American continental margin strata (Nelson, 1993; Dickinson, 2006; Murphy et al., 2006).

1.3 EVIDENCE FOR LATE PERMIAN-EARLY TRIASSIC TECTONISM Accretion of the peri-Laurentian terranes against the western edge of North America is widely interpreted to have commenced in Early to Middle Jurassic time because intense deformation and stitching plutons of that age occur in the southern Canadian Cordillera (e.g., Gabrielse and Yorath, 1991; Murphy et al., 1995). However, field and analytical studies in western Canada have reported compelling evidence for Late Permian-Early Triassic (ca. 250 Ma) collision (e.g., Read and Okulitch, 1977; Mortensen et al., 2007). Latest Paleozoic to earliest Mesozoic collision in western Canada is a viable hypothesis because it most easily explains coeval magmatic cessation, deformation, unconformities, and the composition of Triassic siliciclastic rocks in the Canadian Cordillera. Furthermore, it is analogous to Late Permian-Early Triassic Sonoman orogenesis in the southwestern United States.

8 1.3.1 Late Permian-Early Triassic magmatic cessation U-Pb zircon ages from Klondike assemblage rocks demonstrate that widespread YTT arc magmatism ceased by ca. 253 Ma (Mortensen, 1992). As a direct result, this suggests subduction of Slide Mountain-Golconda Ocean lithosphere under YTT also concluded by ca. 253 Ma. The simplest explanation for magmatic cessation would be full closure of the marginal ocean basin by Late Permian-Early Triassic time, thus requiring proximity between pericratonic terranes and the North American margin (see Figure 1.3c).

1.3.2 Late Permian-Early Triassic deformation and unconformities Late Permian to Middle Triassic deformation has been documented in numerous localities throughout the Cordillera. Sub-Triassic unconformities or depositional hiatuses are typically described at these localities (e.g., Read and Okulitch, 1977). In western Yukon, three suites of YTT and SMT rocks demonstrate latest Paleozoic-earliest Mesozoic deformation. Berman et al. (2007) reported that garnet porphyroblasts in mid-Paleozoic mica schist contain monazite inclusions with U-Pb ages ca. 239 Ma, recording amphibolite facies metamorphism at conditions near 9 kbar and 600°C. Detrital zircons from the mica schist have low Th/U overgrowths that indicate metamorphism ca. 260 ± 3 Ma (Villeneuve et al., 2003). In an adjacent area, cross- cutting field relationships allowed Mortensen et al. (2007) to document that Middle to Late Permian Klondike assemblage rocks were ductily deformed twice by ca. 250 Ma. Finally, Htoon (1981) demonstrated that metavolcanic rocks associated with SMT in western Yukon yield whole-rock isotopic ages ca. 260 Ma and inferred that a Permian metamorphic event affected those units. Read and Okulitch (1977) suggested that sub-Triassic angular unconformities on Quesnellia in southern British Columbia indicate Late Permian to Middle Triassic uplift and erosion (their Tahltanian and Sonoman orogenies). Schiarizza (1989) concluded that SMT rocks in southern British Columbia were faulted over the continental margin in Late Permian-Early Triassic time, similar to Havallah sequence units of the Sonoman orogeny in Nevada.

9 Sub-Triassic unconformities are also recognized along the Cordilleran miogeocline in Yukon, British Columbia, and Alberta (Gibson and Barclay, 1989; Gordey and Anderson, 1993; Davies, 1997). However, there is no direct evidence for pre-Triassic deformation in continental margin strata of western Canada. Farther south in the western United States, repeated episodes of late Paleozoic uplift and erosion affected Cordilleran margin rocks preceding the Sonoman orogeny (Trexler et al., 2004).

1.3.3 Triassic sedimentary rocks of the eastern Cordillera in western Canada Despite the compelling nature for Late Permian-Early Triassic tectonism in western Canada, there is a paucity of information regarding the source of Triassic Cordilleran margin strata. Muscovite-bearing siliciclastic rocks sit above a sub-Triassic unconformity on YTT, SMT, and the North American margin in Yukon, and are typically located near major structures along the eastern margins of the terranes. The source of the muscovite is not constrained and mica does not typically occur in the underlying North American Paleozoic stratigraphy. Therefore, the spatial proximity of North American Triassic strata to micaceous metamorphic rocks of YTT is conspicuous and may suggest stratigraphic coherence between the two elements. Northerly derived Triassic strata of Arctic Canada contain ubiquitous ca. 430-700 Ma detrital zircon populations that may have been sourced from the Innuitian orogenic belt (see location on inset map of Figure 1.1; Miller et al., 2006). Limited detrital zircon studies of North American Triassic strata in the southern Canadian Cordillera led Ross et al. (1997) to a similar conclusion. The ultimate source of Innuitian-derived detrital zircon in Cordilleran margin strata is unconstrained and remains as a fundamental problem to address in North American geology. However, Nd isotope signatures in post- Late Devonian continental margin strata suggest the Innuitian signal is substantial and that it dramatically influenced the composition of the miogeocline (Garzione et al., 1997). The source of fine-grained Triassic strata of Quesnellia and the North American margin has been addressed in southern British Columbia. Unterschutz et al. (2002) reported that Late Triassic strata of Quesnellia have trace element and Nd isotope signatures indicating mixture of primitive and evolved source material, similar to coeval continental margin strata (see Boghossian et al., 1996). Unterschutz et al. (2002)

10 concluded that these compositions define a Late Triassic depositional tie between Quesnellia and western North America. The early Mesozoic paleogeography of Cordilleran terranes remains a point of contention because geologic, paleontologic, and paleomagnetic datasets are typically not in agreement with each other (Haggart et al., 2006). The affinity of the peri-Laurentian terranes is intriguing because geodynamic models suggest their development alongside western Laurentia (Figure 1.3; Colpron et al., 2007); however, these terranes contain faunal assemblages that are both endemic and exotic with respect to the eastern proto- Pacific Ocean and North American craton (Monger and Ross, 1971). For example, Late Triassic carbonate overlying the SMT in southeastern Yukon, informally named the Bug Island limestone, yields conodonts that are typical of late early Norian strata along the Tethyan margin in central Europe (Orchard, 2006). This may suggest an exotic origin for the Bug Island limestone (Johnston, 2008).

1.4 PROJECT OUTLINE The investigation of a Triassic overlap assemblage in Yukon was initially conceived by M. Colpron of the Yukon Geological Survey and J.K. Mortensen of the University of British Columbia in November 2004. An outline of project scope and goals was first defined in July 2005 by Colpron, Mortensen, and myself. It was hypothesized that provenance analysis would be the most promising approach to examine the affinity of Triassic rocks because the pericratonic terranes and North American margin have different mid- to late Paleozoic magmatic and deformational histories (see section 1.2). Therefore, the YTT should yield detrital zircon and muscovite populations of unique ages with respect to Cordilleran margin. Five studies, comprising chapters 2-6, were designed and implemented to complete the primary project goal. Unless noted, I was the principal investigator for all field studies. Field work took place during the summers of 2005-2007 and comprised measurement, description, and sampling of previously described mid-Paleozoic to mid- Mesozoic stratigraphic sections in Yukon, northern British Columbia, and eastern Alaska (see Beranek and Mortensen, 2006; 2007; 2008). I conducted all detrital zircon sample preparation and U-Pb data collection by laser-ablation inductively coupled plasma mass

11 spectroscopy (LA-ICP-MS) at the Pacific Centre for Isotopic and Geochemical Research (PCIGR), at the University of British Columbia. I was the main author on all manuscripts comprising chapters 2-6 but comments from coauthors are acknowledged to have improved the text and rationale. The motivation behind each of the five studies, and roles of the coauthors, are listed below.

1.4.1 Establishing a detrital zircon reference frame for the post-Late Devonian Cordilleran miogeocline in northern Canada Previous detrital zircon provenance analysis of post-Late Devonian Cordilleran margin strata in western Canada and adjacent Alaska recognized unique early Paleozoic (ca. 430 Ma) grains that have no obvious Laurentian source (Ross et al., 1997; Gehrels et al., 1999). In these studies, U-Pb ages were measured using thermal-ionization mass spectroscopy (TIMS) methods, which are both time consuming and expensive. As a result, the number of individual zircon grains analyzed per sample was low (i.e., n < 40). Miller et al. (2006) generated a large dataset (i.e., n = 100 per sample) on their study of Triassic strata in the circum-Arctic region by using LA-ICP-MS. These extensive datasets defined a much broader early Paleozoic to late Neoproterozoic signal than previously recognized. These age signatures were also observed in preliminary LA- ICP-MS detrital zircon studies on North American strata in Yukon (Beranek and Mortensen, 2007). The source of Paleozoic sedimentary rocks along the northern Cordilleran margin must be well-defined to access the source of North American Triassic strata. For this reason, Chapter 2 tested the provenance of Late Devonian to Mississippian siliciclastic strata in northern Yukon and Northwest Territories. Based on paleocurrent indicators, geophysical datasets, and geologic inferences, these strata were previously interpreted to be sourced directly from the Innuitian orogenic belt, the suggested origin of ca. 430 Ma detrital zircons. The products of this study were two-fold: constraining the provenance of non-Laurentian, early Paleozoic detrital zircons in North American continental margin strata and defining a regional framework for future studies on Triassic rocks in the northern Cordillera.

12 Chapter 2 comprises a version of a manuscript to be submitted for publication. L. Lane of the Geological Survey of Canada, T. Allen and T. Fraser of the Yukon Geological Survey, T. Hadlari and W. Zanvoort of the Northwest Territories Geoscience Office, and J.K. Mortensen donated rock samples (Imperial and Tuttle formations) for detrital zircon analysis and will be coauthors on the submitted manuscript. Three samples collected during the course of my dissertation research (Prevost and Tsichu formations) were also analyzed. Comments from T. Hadlari, J.K. Mortensen, and L. Lane on an early manuscript were incorporated into the version of Chapter 2 in this dissertation.

1.4.2 Defining provenance correlations between North American Triassic strata in the eastern Canadian Cordillera A stratigraphic, age, and compositional study of North American Triassic rocks from west-central to southeastern Yukon, comprising Chapter 3, was designed to test correlation between miogeoclinal strata in Yukon with coeval rocks in British Columbia and Alberta. In concert with results from Chapter 2, these data established a continental margin signature in Yukon that can be directly compared to Cordilleran strata derived from pericratonic terranes. Detrital muscovite analyses described in Chapter 3 were conducted by coauthor T. Ullrich at the PCIGR. Whole-rock trace element geochemical samples were analyzed by inductively coupled plasma atomic emission (ICP-AES) and ICP-MS at the ALS Chemex laboratories in North Vancouver, British Columbia. Whole-rock Sm-Nd isotope geochemical analysis by TIMS was carried out by B. Kieffer at the PCIGR. New conodont collections were analyzed by coauthor M.J. Orchard of the Geological Survey of Canada. Chapter 3 has been prepared as a manuscript to be submitted for publication. Comments from coauthors J.K. Mortensen and M.J. Orchard on an early manuscript were included into the version of Chapter 3.

13 1.4.3 Late Permian-Early Triassic closure of the Slide Mountain-Golconda Ocean The hypothesized Late Permian-Early Triassic closure of the Slide Mountain- Golconda Ocean in northern Canada was tested in Chapter 4. In this study, the provenance of 20 sedimentary rock samples was evaluated to constrain the source of Triassic strata associated with the SMT and their provenance correlation with units discussed in chapters 2 and 3. These data were also used to construct a holistic model for the evolution of the Slide Mountain-Golconda Ocean marginal basin, including comparison between Late Permian-Early Triassic tectonism in northern Canada and the Sonoman orogeny in Nevada. A version of Chapter 4 will be submitted for publication. Detrital muscovite analyses were conducted by coauthor T. Ullrich at the PCIGR. Coauthor J.K. Mortensen provided comments on an early edition of the manuscript.

1.4.4 Paleogeography of the Late Triassic Bug Island limestone The paleogeographic affinity and origin of several Cordilleran terranes is still under debate. The source of sandy material in the Bug Island limestone was evaluated in Chapter 5 to test possible exotic versus peri-Laurenitian affinities for the SMT and Late Triassic conodont fauna that are similiar to Tethyan collections in Europe. U-Pb detrital zircon ages from the Bug Island limestone were correlated to other Cordilleran units using the reference frames built in chapters 2-4. A version of Chapter 5 will be submitted for publication. Discussion with, and comments from, coauthors D.C. Murphy of the Yukon Geological Survey, M.J. Orchard, and J.K. Mortensen improved the rationale and scope of this chapter.

1.4.5 Collision-related Triassic sedimentation in southeastern Yukon The provenance of North American Triassic siliciclastic rocks adjacent to the YTT and SMT in southeastern Yukon were examined in Chapter 6. This chapter tests the hypothesis that these strata filled a collision-related, peripheral foreland basin situated along the North American margin. This chapter also evaluated the source of Jurassic strata in two locations in order to test other Mesozoic sedimentary patterns in Yukon.

14 A modified version of Chapter 6 will be submitted for publication. Whole-rock geochemical data described in Chapter 6 will not be included in the submission. Detrital muscovite dates reported in this chapter were conducted by coauthor T. Ullrich of the PCIGR. Whole-rock trace element geochemical samples were analyzed by ICP-AES and ICP-MS at the ALS Chemex laboratories in North Vancouver, British Columbia. Whole- rock Sm-Nd isotope geochemical analysis by TIMS was completed by B. Kieffer at the PCIGR. Coauthor J.K. Mortensen provided comments on an early draft of this manuscript.

15 1.5 REFERENCES Belasky, P., Stevens, C.H., and Hanger, R.A., 2002, Early Permian location of western North American terranes based on brachiopod, fusulinid, and coral biogeography: Palaeoceanography, Palaeoclimatology, Palaeoecology, v. 179, p. 245-266. Beranek, L.P., and Mortensen, 2006, Triassic overlap assemblages in the northern Cordillera: Preliminary results from the type section of the Jones Lake Formation, Yukon and Northwest Territories (NTS 105I/13), in Emond, D.S., Bradshaw, G.D., Lewis, L.L., and Weston, L.H., eds., Yukon Exploration and Geology 2005: Yukon Geological Survey, p. 79-91. Beranek, L.P., and Mortensen, J.K., 2007, Investigating a Triassic overlap assemblage in Yukon: On-going field studies and preliminary detrital zircon age data, in Emond, D.S., Lewis, L.L., and Weston, L.H., eds., Yukon Exploration and Geology 2006: Yukon Geological Survey, p. 83-92. Beranek, L.P., and Mortensen, 2008, New stratigraphic and provenance studies of Triassic sedimentary rocks in Yukon and northern British Columbia, in Emond, D.S., Blackburn, L.R., Hill, R.P., and Weston, L.H., eds., Yukon Exploration and Geology 2007: Yukon Geological Survey, p. 115-124. Berman, R.G., Ryan, J.J., Gordey, S.P., and Villeneuve, M., 2007, Permian to Cretaceous polymetamorphic evolution of the Stewart River region, Yukon-Tanana terrane, Yukon, Canada: P-T evolution linked with in situ SHRIMP monazite geochronology: Journal of Metamorphic Geology, v. 25, p. 803-827. Boghossian, N.D., Patchett, P.J., Ross, G.M., and Gehrels, G.E., 1996, Nd isotopes and the source of sediments in the miogeocline of the Canadian Cordillera: Journal of Geology, v. 104, p. 259-277. Colpron, M., and Nelson, J.L., eds., 2006, Paleozoic evolution and metallogeny of pericratonic terranes at the ancient Pacific margin of North America, Canadian and Alaskan Cordillera: Geological Association of Canada Special Paper 45, 523 p. Colpron, M., and Nelson, J.L., in press, The Northwest Passage: Incursion of Baltican and Siberan crustal fragments into eastern Panthalassa, and the mid-Paleozoic to early Mesozoic evolution of the Cordilleran margin of western North America, in Cawood, P., and Kröner, A., eds., Accretionary orogens: Geological Society of London Special Publication. Colpron, M., Nelson, J.L., and Murphy, D.C., 2006, A tectonostratigraphic framework for the pericratonic terranes of the northern Canadian Cordillera, in Colpron M., and Nelson, J.L., eds., Paleozoic evolution and metallogeny of pericratonic terranes at the ancient Pacific margin of North America, Canadian and Alaskan Cordillera: Geological Association of Canada Special Paper 45, p. 1-23. Colpron, M., Nelson, J.L., and Murphy, D.C., 2007, Northern Cordilleran terranes and their interactions through time: GSA Today, v. 17, p. 4-10. Coney, P.J., Jones, D.L., and Monger, J.W.H., 1980, Cordilleran suspect terranes: Nature, v. 288, p. 329-333. Davies, G.R., 1997, The Triassic of the Western Canada Sedimentary Basin: tectonic and stratigraphic framework, paleogeography, paleoclimate, and biota: Bulletin of Canadian Petroleum Geology, v. 45, p. 434-460.

16 Dickinson, W.R., 2006, Geotectonic evolution of the Great Basin: Geosphere, v. 2, p. 353-368. Gabrielse, H., and Yorath, C.J., eds., 1991, Geology of the Cordilleran Orogen in Canada: Geological Survey of Canada, The Geology of North America, v. G-2, 844 p. Gabrielse, H., Murphy, D.C., and Mortensen, J.K., 2006, Cretaceous and Cenozoic dextral orogen-parallel displacements, magmatism, and paleogeography, north- central Canadian Cordillera, in Haggart, J.W., Enkin, R.J., and Monger, J.W.H., eds., Paleogeography of the North American Cordillera: Evidence for and against large-scale displacements: Geological Association of Canada, Special Paper 46, p. 255-276. Garzione, C.N., Patchett, P.J., Ross, G.M., and Nelson, J.L., 1997, Provenance of Paleozoic sedimentary rocks in the Canadian Cordilleran miogeocline: a Nd isotopic study: Canadian Journal of Earth Sciences, v. 34, p. 1603-1618. Gehrels, G.E., Johnsson, M.J., and Howell, D.G., 1999, Detrital zircon geochronology of the Adams Argillite and Nation River Formation, east-central Alaska, U.S.A.: Journal of Sedimentary Research, v. 69, p. 135-144. Gibson, D.W., and Barclay, J.E., 1989, Middle Absaroka Sequence – the Triassic stable craton, in Ricketts, B., ed., Western Canada Sedimentary Basin: Canadian Society of Petroleum Geologists, Special Publication no. 30, p. 219-233. Gordey, S.P., and Anderson, R.G., 1993, Evolution of the northern Cordilleran miogeocline, Nahanni map area (105I), Yukon and Northwest Territories: Geological Survey of Canada Memoir 428, 214 p. Gunning, M.H., Hodder, R.W., and Nelson, J.L., 2006, Contrasting styles and their tectonic implications for the Paleozoic Stikine assemblage, western Stikine terrane, northwestern British Columbia, in Colpron M., and Nelson, J.L., eds., Paleozoic evolution and metallogeny of pericratonic terranes at the ancient Pacific margin of North America, Canadian and Alaskan Cordillera: Geological Association of Canada Special Paper 45, p. 210-227. Haggart, J.W., Enkin, R.J., and Monger, J.W.H., eds., Paleogeography of the North American Cordillera: Evidence for and against large-scale displacements: Geological Association of Canada Special Paper 46, 429 p. Harms, T.A., Coney, P.J., and Jones, D.L., 1984, The Sylvester allochton, Slide Mountain terrane, British Columbia: A correlative of oceanic terranes of northern Alaska: Geological Society of America, Abstracts with Programs, v. 16, p. 288. Htoon, M., (1979), Geology of the Clinton Creek asbestos deposit, Yukon Territory: M.Sc. thesis, University of British Columbia, Vancouver. Johnston, S.J., 2008, The Cordilleran ribbon continent of North America: Annual Review of Earth and Planetary Sciences, v. 36, p. 495-530. Mihalynuk, M.G., Nelson, J., and Diakow, L.J., 1994, Cache Creek terrane entrapment: Oroclinal paradox within the Canadian Cordillera: Tectonics, v. 13, 575-595. Miller, M.M., 1987, Dispersed remnants of a northeast Pacific fringing arc: upper Paleozoic terranes of Permian McCloud faunal affinity, western U.S.: Tectonics, v. 6, p. 807-830. Miller, E.L., Toro, J., Gehrels, G.E., Amato, J.M., Prokopiev, A., Tuchkova, M.I., Akinin, V.V., Dumitru, T.A., Moore, T.E., and Cecile, M.P., 2006, New insights

17 into Arctic paleogeography and tectonics from U-Pb detrital zircon geochronology: Tectonics, v. 25, p. 1-19. Monger, J.W.H., and Ross, C.A., 1971, Distribution of Fusulinaceans in the western Canadian Cordillera: Canadian Journal of Earth Sciences, v. 8, p. 259-278. Monger, J.W.H., and Price, R.A., 2002, The Canadian Cordillera: geology and tectonic evolution: Canadian Society of Exploration Geophysicists Recorder, February, p. 17-36. Mortensen, J.K., 1990, Geology and U-Pb geochronology of the Klondike district, west- central Yukon: Canadian Journal of Earth Sciences, v. 27, p. 903-914. Mortensen, J.K., 1992, Pre-mid-Mesozoic evolution of the Yukon-Tanana terrane, Yukon and Alaska: Tectonics, v. 11, p. 836-853. Mortensen, J.K., and Jilson, G.A., 1985, Evolution of the Yukon-Tanana terrane, Yukon and Alaska: Geology, v. 13, p. 806-810. Mortensen, J.K., Beranek, L.P., Murphy, D.C., 2007, Permo-Triassic orogeny in the northern Cordillera?: Sonoma north: Geological Society of America, Abstracts with Programs, 103rd Annual Meeting, Bellingham, Washington. Murphy, D.C., van der Heyden, P., Parrish, R.R., Klepacki, D.W., McMillian, W., Struik, L.C., and Gabites, J., 1995, New geochronological constraints on Jurassic deformation of the western edge of North America, southeastern Canadian Cordillera, in Miller, D.M., and Busby, C., eds., Jurassic magmatism and tectonics of the North American Cordillera: Geological Society of America Special Paper 299, p. 159-171. Murphy, D.C., Mortensen, J.K., Piercey, S.J., Orchard, M.J., and Gehrels, G.E., 2006, Mid-Paleozoic to early Mesozoic tectonostratigraphic evolution of Yukon-Tanana and Slide Mountain terranes and affiliated overlap assemblages, Finlayson Lake massive sulphide district, southeastern Yukon in Colpron, M., and Nelson, J.L., eds., Paleozoic evolution and metallogeny of pericratonic terranes at the ancient Pacific margin of North America, Canadian and Alaskan Cordillera: Geological Association of Canada Special Paper 45, p. 75-105. Nelson, J.L., 1993, The Sylvester allochthon: Upper Paleozoic marginal-basin and island- arc terranes in northern British Columbia: Canadian Journal of Earth Sciences, v. 30, 631-643. Nelson, J.L, Colpron, M., Piercey, S.J., Dusel-Bacon, C., Murphy, D.C., and Roots, C.F., 2006, Paleozoic tectonic and metallogenic evolution of the pericratonic terranes in Yukon, northern British Columbia and eastern Alaska, in Colpron, M., and Nelson, J.L., eds., Paleozoic evolution and metallogeny of pericratonic terranes at the ancient Pacific margin of North America, Canadian and Alaskan Cordillera: Geological Association of Canada Special Paper 45, p. 323-360. Orchard, M.J., 2006, Late Paleozoic and Triassic conodont faunas of Yukon and northern British Columbia and implications for the evolution of the Yukon-Tanana terrane, in Colpron, M., and Nelson, J.L., eds., Paleozoic evolution and metallogeny of pericratonic terranes at the ancient Pacific margin of North America, Canadian and Alaskan Cordillera: Geological Association of Canada, Special Paper 45, p. 229-260. Piercey, S.J., Murphy, D.C., Mortensen, J.K., and Creaser, R., 2004, Mid-Paleozoic initiation of the northern Cordilleran marginal back-arc basin: geologic,

18 geochemical, and neodymium isotope evidence from the oldest mafic magmatic rocks in Yukon-Tanana terrane, Finlayson Lake district, southeast Yukon, Canada: Geological Society of America Bulletin, v. 116, p. 1087-1106. Piercey, S.J., Nelson, J.L., Colpron, M., Dusel-Bacon, C., Simard, R-L, and Roots, C.F., 2006, Paleozoic magmatism and crustal recycling along the ancient Pacific margin of North America, northern Cordillera, in Colpron M., and Nelson, J.L., eds., Paleozoic evolution and metallogeny of pericratonic terranes at the ancient Pacific margin of North America, Canadian and Alaskan Cordillera: Geological Association of Canada Special Paper 45, p. 281-322. Read, P.B., and Okulitch, A.V., 1977, The Triassic unconformity of south-central British Columbia: Canadian Journal of Earth Sciences, v. 14, p. 606-638. Ross, G.M., Gehrels, G.E., and Patchett, P.J., 1997, Provenance of Triassic strata in the Cordilleran miogeocline, western Canada: Bulletin of Canadian Petroleum Geology, v. 45, p. 461-473. Schiarizza, P., 1989, Structural and stratigraphic relationships between the Fennel Formation and Eagle Bay assemblage, western Omineca belt, south-central British Columbia: Implications for Paleozoic tectonics along the paleocontinental margin of western North America: M.Sc thesis, University of Calgary, Calgary, Alberta, 343 p. Simard, R-L, Dostal, J., and Roots, C.F., 2003, Development of late Paleozoic volcanic arcs in the Canadian Cordillera: an example from the Klinkit Group, northern British Columbia and southern Yukon: Canadian Journal of Earth Sciences, v. 40, p. 907-924. Struik, L.C., and Orchard, M.J., 1985, Late Paleozoic conodonts from ribbon chert delineate imbricate thrusts within the Antler Formation of the Slide Mountain terrane, central British Columbia: Geology, v. 13, p. 784-798. Tempelman-Kluit, D.J., 1979, Transported cataclasite, ophiolite, and granodiorite in Yukon: evidence of arc-continent collision: Geological Survey of Canada Paper 79-14, 27 p. Trexler, J.H., Cashman, P.H., Snyder, W.S., and Davydov, V.I., 2004, Late Paleozoic tectonism in Nevada: Timing, kinematics, and tectonic significance: Geological Society of America Bulletin, v. 116, p. 525-538. Unterschutz, J.L.E., Creaser, R.A., Erdmer, P., Thompson, R.I., and Daughtry, K.L., 2002, North American margin origin of Quesnel terrane strata in the southern Canadian Cordillera: inferences from geochemical and Nd isotopic characteristics of Triassic metasedimentary rocks: Geological Society of America Bulletin: v. 114, p. 462-475. Villeneuve, M.E., Ryan, J.J., Gordey, S.P., and Piercey, S.J., 2003, Detailed thermal and provenance history of the Stewart River area (Yukon-Tanana terrane, western Yukon) through application of SHRIMP, Ar-Ar and TIMS: Geological Association of Canada–Mineralogical Association of Canada Abstracts, v. 28, p. 344.

19

Chapter 2:

Detrital zircon geochronology of the Late Devonian to Early Mississippian Ellesmerian clastic wedge, northwestern Canada: Insights on the Innuitian orogen and evolution of the northern Cordilleran miogeocline1

1A version of this chapter will be submitted for publication. Beranek, L.P., Allen, T., Fraser, T., Hadlari, T., Lane, L., Mortensen, J.K., and Zantvoort, W., Detrital zircon geochronology of the Late Devonian to Early Mississippian Ellesmerian clastic wedge, northwestern Canada: Insights on the Innuitian orogen and evolution of the Cordilleran miogeocline.

20 2.1 INTRODUCTION The Ellesmerian orogeny (sensu stricto) comprises Late Devonian to Early Mississippian compressional deformation that affected early Paleozoic strata in the Canadian Arctic Islands and northern Greenland (Thorsteinsson and Tozer, 1970). The current working hypothesis for Ellesmerian development proposes that deformation is related to final growth of the Innuitian orogen, an early Paleozoic mountain belt formed by convergence between the Franklinian margin of northern Laurentia and another continental landmass (Figures 2.1, 2.2; Trettin et al., 1991). Although a coherent tectonic framework has been established for over thirty years, an outstanding problem in Innuitian geology is that the bulk of the orogenic hinterland was removed from northern Laurentia via opening of the Arctic Ocean and subsequently foundered (Miller et al., 2006). This missing element is referred to as Crocker Land (Embry, 1992), named for the mythical landmass described by Arctic explorer Robert Peary (see Figure 2.2). Recent stratigraphic, structural, and terrane analysis studies in northern Canada and Alaska have rekindled interest in Innuitian tectonism and Crocker Land, highlighting their possible role in regional Paleozoic geodynamics and geochemical evolution of Laurentian miogeoclinal strata (Patchett et al., 1999; Colpron and Nelson, in press). Research avenues into the stratigraphic and structural records of Paleozoic deformation outside of the classic Ellesmerian orogenic belt are attractive target regions to test hypotheses on Arctic tectonics. Specifically, the northern Yukon-Northwest Territories (NWT) area is highly prospective because it represents a relatively unexplored region in terms of detailed isotopic and structural studies. Furthermore, this area is unique because it comprises the transition zone between the Franklinian and Cordilleran miogeoclines and structural belts (see Figure 2.1).

2.1.1 Devono-Mississippian deformation in Yukon and Northwest Territories Recent surface and geophysical investigations have delineated early and mid- Paleozoic compressional structures in northern Yukon and NWT that may be related to Arctic orogenesis outside the classic Ellesmerian belt (Lane, 2007). These structures predate, and also accommodate deformation of, northerly and easterly derived

21

Figure 2.1 – Map highlighting early to mid-Paleozoic strata in northwestern Canada and early Paleozoic and Mesozoic orogenic belts of Laurentia. Modified from Patchett et al. (1999).

Late Devonian to Early Mississippian strata (Lane, 2007). In Yukon and NWT, these sedimentary rocks consist of the Imperial and Tuttle formations, comprising a siliciclastic package >3000 metres thick (Gordey et al., 1991). Structural linkages between Yukon-NWT deformation and the Ellesmerian orogeny (sensu stricto), if present, are concealed under the Beaufort Sea (Figure 2.2; Lane, 2007). However, it is widely hypothesized that the Imperial and Tuttle formations comprise foreland deposits of the Ellesmerian orogenic belt (e.g., Gordey et al., 1991). Consequently, these formations are typically referred to as clastic wedge deposits, implying provenance connections with the Innuitian hinterland.

2.1.2 Devono-Mississippian Cordilleran margin strata Contemporaneous with Innuitian tectonism in the Canadian Arctic, extension occurred along portions of northwestern Laurentia and in Selwyn Basin, an early to mid- Paleozoic depocentre in eastern Yukon (Figure 2.3a). Colpron et al. (2007) interpreted continental margin fragments like Yukon-Tanana terrane separated from Laurentia at this

22 time, generating a marginal ocean or back-arc basin, referred to as the Slide Mountain- Golconda Ocean, between outboard elements and North America (Figure 2.3a). If Ellesmerian deformation affected northern Yukon, clastic wedge deposits probably dispersed to the south and west towards the Slide Mountain-Golconda Ocean (Fig 2.3a). Following this punctuated extensional event, a Mississippian to Triassic clastic shelf developed along the northern Cordilleran margin (Figure 2.3b; Gordey and Anderson, 1993).

2.1.3 Provenance of mid-Paleozoic strata in Yukon and Northwest Territories Provenance and stratigraphic analysis of clastic wedge deposits provides fundamental examination of orogenic development (e.g., Ross et al., 2005). In geologically modified systems like the Innuitian orogen, isotopic or geochemical characterization of foreland strata can offer crucial insights on the lithologic makeup of tectonically removed hinterland rocks. This study reports new detrital zircon ages (776 grains) from two suites of Late Devonian and Mississippian strata in Yukon and NWT. The first suite sampled the Imperial and Tuttle formations to evaluate their source and presumed correlation with the Ellesmerian orogenic belt. Previous detrital zircon studies in the Alaskan and Canadian Arctic outside of Yukon and NWT generated a reference frame for Ellesmerian deposits and possibly Crocker Land (e.g., McNicoll et al., 1995; Gehrels et al., 1999; Miller et al., 2006), making provenance interpretation feasible. The second suite, sampled at a reconnaissance level, focused on mid-Paleozoic continental margin strata in west-central and eastern Yukon. These samples test the hypothesis that Ellesmerian-derived sediment was dispersed southward along the Cordilleran margin and Yukon-Tanana back-arc region by the Middle Mississippian.

2.2 INNUITIAN OROGENESIS Early Paleozoic marine strata of northernmost North America were deposited along the north-facing Franklinian margin (e.g., Trettin et al., 1991; Figure 2.1). Convergence along the Franklinian margin began by Silurian time with the arrival and oblique collision of allochthonous terrane(s). Below, three tectonic ± magmatic events

23

Figure 2.2 – Map of the main tectonic elements of Arctic Alaska and adjacent Yukon and NWT regions. Modified from Colpron and Nelson (in press).

associated with development of Innuitian orogen are summarized. A comprehensive list of deformational phases and structural styles is available in Trettin (1991).

2.2.1 Early Silurian - Accretion of Pearya Innuitian deformation commenced with Early Silurian (ca. 440 Ma) oblique accretion of Pearya against the Franklinian margin. Presently, this terrane is located along northern Ellesmere Island, outboard of early Paleozoic strata in the Clements Markham fold belt (Figure 2.2) and is interpreted to be an orphaned block of the submerged orogenic hinterland. Pearya did not collide as a coherent block, but rather as several fault slices that accreted via sinistral strike slip motion (Trettin, 1991b). Middle Devonian (ca. 390 Ma) granitic intrusions were emplaced in the Canadian Arctic Islands following accretion of Pearya. Pearya is comprised of Grenville-aged crystalline rocks (ca. 1000 Ma) that are overlain by Late Proterozoic to Early Ordovician marine strata and early Paleozoic volcanic rocks (Trettin, 1991b). Its geologic history includes a Middle Ordovician orogenic event comparable in both age and character to the Taconic orogeny (Trettin, 1998). Early Paleozoic faunal collections of Pearya are similar to those of Siberia and

24

Figure 2.3 – Paleozoic paleogeographic evolution of northwestern Laurentia. Devono-Mississippian Antler orogen and Roberts Mountain allochthon on maps for geographic aid. Miss. – Misssissippian, YTT – Yukon-Tanana terrane. Modified from Colpron et al. (2007).

Greenland (Trettin, 1991). In combination, the lithologic age, structural history, and faunal associations of Pearya rocks are consistent with an origin near the Caledonian orogen.

2.2.2 Early Devonian - Romanzof orogeny In northern Alaska and Yukon, Lane (2007) restricted late Early Devonian to earliest Middle Devonian deformation affecting rocks of the eastern Arctic Alaska terrane as the Romanzof orogeny (see Figure 2.2). Romanzof deformation comprises north- directed thrust faults and tight folds cross-cut by Late Devonian (362-375 Ma) plutons (Mortensen and Bell, 1991; Lane, 2007). Lane (2007) interpreted south-directed facies changes and decrease in Romanzof deformation intensity in northern Yukon to reflect progressive south-vergent tectonism. The timing and structural style of deformation is similar to that in the adjacent Canadian Arctic Islands, therefore, Lane (2007) interpreted the Romanzof event records penultimate collision of a continent-scale terrane against the northern Laurentian margin, preceding final Innuitian orogenesis in Late Devonian to Early Mississippian time. Basement rocks exposed along the southern Arctic Alaska terrane in the (Hammond and Coldfoot subterranes of Figure 2.2) contain metaigneous rocks with ages ca. 540-560, 670-700, and 970 Ma (e.g., Amato et al., 2006). In Hammond

25 subterrane, plutons emplaced into these successions have yielded discordant U-Pb zircon analyses of broadly Devonian age (Moore et al., 1994). The early Paleozoic history of Coldfoot terrane encompasses the Ambler arc, a Late Devonian (378-386 Ma) volcanic- plutonic complex (McClelland et al., 2006). The Ambler arc probably faced south (present coordinates) and was generated by subduction of oceanic crust now preserved as Angayucham terrane ophiolites (see Figure 2.2). Late Devonian magmatism in southern Arctic Alaska began 5-10 million years after the Romanzof orogeny and may be genetically related to other Innuitian events (Colpron and Nelson, in press).

2.2.3 Late Devonian to Early Mississippian – Ellesmerian orogeny The Ellesmerian orogeny (sensu stricto) comprised the final stage of Paleozoic deformation in northern Laurentia. Late Devonian to Early Mississippian deformation associated with the Ellesmerian orogeny affected the entire Innuitian tectonic province, producing a sinuous fold belt >375 km wide (Trettin, 1991). Syntectonic granitic intrusions in the Canadian Arctic Islands yield U-Pb zircon ages from 360-365 Ma. Ellesmerian orogenesis in the Canadian Arctic Islands produced an aerially extensive, south- and west-directed clastic wedge that was deformed in Early Mississippian time (Trettin, 1991). In northern Yukon, open to closed detached folds and thrust faults are interpreted to indicate south to southeast-vergent crustal shortening of Ellesmerian age (Lane, 2007). Specifically, Lane (2007) reported mid-Paleozoic strata of northern Yukon were folded in the Mississippian and concluded that Ellesmerian deformation progressed to the south. The trend of these structures ends near the eastern limit of Arctic Alaska terrane (see Figure 2.2).

2.3. LATE DEVONIAN AND MISSISSIPPIAN STRATA OF NORTHERN YUKON AND NORTHWEST TERRITORIES By Late Devonian (Frasnian) time, the existing carbonate platform in the Peel Plateau of northern Yukon and adjacent NWT was succeeded by sandstone, siltstone, and shale. This succession is regionally referred to as the Imperial Assemblage, and consists,

26

Figure 2.4 – Stratigraphic and tectonic framework for Devonian and Mississippian strata in Yukon and NWT. Modified from Gordey et al. (1991). Geologic time scale of Ogg et al. (2008).

from oldest to youngest, of the Horn River Group (Hare Indian and Canol formations) and Imperial, Tuttle, and Ford Lake formations (Figure 2.4).

2.3.1 Late Devonian Imperial Formation The Frasnian to Famennian Imperial Formation (Figure 2.4) is comprised of fine- grained sandstone and shale that crop out in the Richardson Mountains area of northern Yukon, eastern Mackenzie Mountains along the Yukon-NWT border, and areas east of Fort McPherson in the region of NWT (Figures 2.5-2.7). Imperial Formation sandstone is typically composed of quartz, feldspar, chert (white, green, and grey coloured), and accessory white mica. The Imperial Formation ranges in thickness from 590-1690 m with the greatest accumulation in the lower Peel River area of northwestern NWT (Gordey et al., 1991).

27

Figure 2.5 – Tectonic element map of the Canadian Cordillera. Black stars indicate locations of Keno Hill Quartzite, Prevost Formation, and Tsichu formation samples. Dashed box shows area of Figure 2.6. AB – Alberta, AK – Alaska, B.C. – British Columbia, NWT – Northwest Territories, U.S.A. – United States of America, YT – Yukon Territory. Modified from Colpron et al. (2007).

In its type area, the Imperial Formation in the Mackenzie Mountains consists of intercalated sandstone lobe and lobe-fringe deposits within a submarine fan-slope complex (Hadlari et al., submitted). Southwest-dipping seismic reflectors and paleocurrent measurements indicate the turbidite complex was westward prograding, suggesting the Imperial Formation had a source from the east-northeast (Hadlari et al., submitted). Turbiditic sandstone in northern Yukon and NWT to the north and west of the Mackenzie Mountains contain paleocurrent indicators displaying southward paleoflow directions (Gordey et al., 1991).

28 Four samples of Imperial Formation were selected for detrital zircon analysis (samples I1-I4; see Figures 2.6, 2.7). Sample I1 was collected from the submarine fan facies of Hadlari et al. (submitted) in the eastern Mackenzie Mountains, ~100 m above the base of the formation. Samples I2-I4 were collected from along the Dempster Highway in northern Yukon and NWT (Figure 2.6). The stratigraphic position of samples I2-I4 is uncertain; however, palynomorphs constrain their age as Frasnian to Fammenian (Braman and Hills, 1992; L. Lane, pers.comm.).

2.3.2 Late Devonian – Early Mississippian Tuttle Formation The Famennian to Tournaisian Tuttle Formation is defined as a package of coarse-grained clastic rocks overlying the Imperial Formation exposed in the Richardson Mountains and Peel Plateau regions of northern Yukon (Figures 2.6, 2.7; Fraser and Allen, 2006). Surface and borehole studies indicate the Tuttle Formation is up to 1420 m thick (Pugh, 1983; Gordey et al., 1991). Pugh (1983) proposed the lowermost occurrence of coarse-grained clastic strata conformably overlying Imperial Formation rocks represents the base of the Tuttle Formation. The transition is a facies boundary documenting a lateral and vertical grain- size boundary that is essentially diachronous (Pugh, 1983). Therefore, the terms ‘upper Imperial Formation’ and ‘lower Tuttle Formation’ may be somewhat ambiguous and geographic location may be of more importance than stratigraphic position (T. Hadlari, pers.comm.). Fraser and Allen (2006) completed the most recent study of the Tuttle Formation and measured stratigraphic sections along the Road and Trail rivers in northern Yukon. They interpreted five lithofacies associations: fining-upward sandstone (most common), massive sandstone, siltstone, conglomerate, and diamictite (least common). There is no consensus on the depositional setting for Tuttle Formation strata; both marine and non- marine alternatives have been suggested (Lutchman, 1977; Hills and Braman, 1978). However, all workers agree Tuttle Formation strata were deposited by a south-flowing sedimentary system.

29 Figure 2.6 – Sketch map of the northern Richardson Mountains, Yukon and NWT. Black stars indicate locations of detrital zircon samples (see text). Grey area represents a portion of the Peel Plateau region in Figure 2.7.

In its type section, the formation consists of chert conglomerate, very poorly sorted quartz and chert lithic sandstone, and sandstone, siltstone, and shale (Pugh, 1983). Chert lithics are varicolored (white, buff, grey, yellow, orange, pale green). Gordey et al. (1991) interpreted a local source region because chert is known in northern Yukon. Detrital mica occurs in sandstone, siltstone, and shale of the Tuttle Formation. Five samples of the Tuttle Formation were selected for detrital zircon analysis (Figures 2.6, 2.7). Samples T1 and T2 were collected along the Road River, from exposures of the lower Tuttle Formation. Sample T3 was taken from outcrop of the upper Tuttle Formation, 25 km to the southeast. Samples T4 and T5 have an unknown stratigraphic positions. Samples T1-T4 were collected from stratigraphic sections described by Fraser and Allen (2006).

30

Figure 2.7 – Sample locations of Imperial and Tuttle formation rocks in the Richardson Mountains and Peel Plain region shown with black stars.

2.4 LATE DEVONIAN TURBIDITE BASIN AND MISSISSIPPIAN CLASTIC SHELF OF WEST-CENTRAL AND EASTERN YUKON South of the Peel Plateau region, the character of the northern Cordilleran miogeocline changed markedly in Late Devonian time (Gordey et al., 1991). By the Famennian, the deep-water, craton-derived sedimentary system of the Selwyn Basin transitioned into an active tectonic environment with block uplifts resulting in north- and west-derived chert-rich turbiditic clastics (Gordey and Anderson, 1993). These coarse clastic deposits in west-central and eastern Yukon comprise strata of the Earn Basin. Subsequently, a stable clastic shelf developed over this region by the Early to Middle Mississippian (Gordey et al., 1991).

31 2.4.1 Late Devonian Prevost Formation, upper Earn Group Siliciclastic strata of the Early to Late Devonian Earn Group in central and eastern Yukon record the progression from marine shelf quiescence to tectonic instability (Gordey et al., 1991). This study focused on exposures of the upper Earn Group in eastern Yukon, formally defined as the Prevost Formation by Gordey et al. (1982). The mid-Famennian to Tournaisian (?) Prevost Formation (>900 m-thick) comprises chert pebble conglomerate and chert lithic sandstone deposited in a submarine fan complex (Gordey and Anderson, 1993). Paleocurrent measurements indicate southeast-directed paleoflow, with derivation from uplifted blocks of Late Proterozoic to early Paleozoic sandstone and chert (Gordey et al., 1991). This study included one detrital zircon sample from the Prevost Formation collected from the Sheldon Lake map area of eastern Yukon (Figure 2.5). At this location, the Prevost Formation comprises grey, coarse-grained, poorly sorted, chert lithic sandstone to pebble conglomerate.

2.4.2 Mississippian Keno Hill Quartzite and Tsichu formation Mississippian strata in west-central and eastern Yukon document the return of a stable clastic shelf environment following deposition of the upper Earn Group (Figure 2.4; Gordey and Anderson, 1993). This study included three samples of Mississippian quartz sandstone from this clastic shelf. One sample of Keno Hill Quartzite was collected along the Dempster Highway in the Ogilvie Mountains north of Dawson (Figure 2.5). Two samples of Tsichu formation sandstone were taken from the Selwyn Mountains of easternmost Yukon (Figure 2.5). These samples were collected from the uppermost Tsichu formation, below the overlying Late Mississippian-Permian Mount Christie Formation type section.

2.5 PREVIOUS DETRITAL ZIRCON STUDIES AND REFERENCE FRAMES Detrital zircon provenance studies have been a vital tool in understanding the evolution of continental margin sedimentation along northern and western North America (e.g., Gehrels et al., 1995). These investigations generated repeatable and statistically

32 reliable U-Pb datasets that fundamentally defined reference frames for Arctic- and western Laurentian-derived sedimentary rocks.

2.5.1 Arctic reference frame Detrital zircon analysis of the Ellesmerian clastic wedge in the Canadian Arctic Islands provided the foundation for the Arctic reference frame. A total of 31 detrital zircons from Middle (Eifelian) to Late (Frasnian) Devonian strata gave ages in the range of 1004-1200, 1570-2002, 2250-2470, and 2620-3000 Ma (McNicoll et al., 1995). One 424 Ma grain was also analyzed from the sample suite. Gehrels et al. (1999) evaluated the provenance of the Late Devonian Nation River Formation in eastern Alaska, a turbiditic sandstone unit equivalent to the Imperial Formation. Detrital zircon ages from that unit were mainly 424-434, 1815-1838, 1874- 1921, and 2653-2771 Ma. Gehrels et al. (1999) suggested Pearya, Siberia, or other parts of the Innuitian hinterland were a likely source for these grains. In particular, ca. 430 Ma zircons were conspicuous because no suitable parent rocks exist in western Laurentia. However, ca. 430 Ma igneous rocks are known to occur in Alexander terrane, a highly- displaced northern Cordilleran tectonic element with Caledonian-Baltican affinity similar to Pearya (Gehrels et al., 1996). Miller et al. (2006) generated a large detrital zircon database for Triassic rocks of both Arctic Alaska terrane and the Sverdrup Basin in the Canadian Arctic Islands. Their samples from the northerly-derived Triassic Ivishak and Pat Bay formations, and also the Bjorne Formation, were rich in 445-490 and 500-600 Ma detrital zircon. Miller et al. (2006) concluded that some of these populations were probably derived from the now- missing Crocker Land or terranes of similar affinity.

2.5.2 Western Laurentian reference frame Provenance studies in western Canada and eastern Alaska demonstrated that Neoproterozoic-Devonian Cordilleran margin strata uniformly contain Early Proterozoic and Archean (1800-3000 Ma) detrital zircon populations derived from crystalline basement rocks of the adjacent Laurentian autochthon (e.g., Gehrels and Ross, 1998). These zircons identify, or provide an isotopic fingerprint for, a North American source.

33 Post-Late Devonian miogeoclinal strata in British Columbia and Alberta are also observed to have Early Proterozoic and Archean detrital zircons; however, these populations are mixed with subordinate early Paleozoic (ca. 430 Ma), Neoproterozoic (ca. 1000 Ma), and Paleoproterozoic to Mesoproterozoic (1500-1650 Ma) ages (Ross et al., 1997; Gehrels and Ross, 1998). The source for ca. 430 Ma zircons is relatively unconstrained; Ross et al. (1997) hypothesized these grains were recycled through the Ellesmerian clastic wedge deposits which may have covered most of the Canadian Shield.

2.5.3 Provenance correlations Detrital zircon data collected from Neoproterozoic to Triassic strata in eastern Alaska and northwestern Canada have been compiled and processed through a Microsoft Excel macro that establishes statistically reliable age peaks (Table 2.1). This macro was also used to determine statistical reliability for samples discussed by this study, allowing simple comparison and correlation between all datasets.

2.6 ANALYTICAL METHODS AND DATA PRESENTATION Detrital zircons were dated using laser ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS) at the Pacific Centre for Isotopic and Geochemical Research (PCIGR), University of British Columbia. Zircons were separated from 2-5 kg samples using conventional Wilfley table, heavy liquid, and magnetic methods. A random portion of each of the zircon concentrates was mounted in an epoxy puck along with several grains of the 337 Ma Plešovice (Sláma et al., 2008) and 1099 Ma FC-1 (Paces and Miller, 1993) standard zircons and brought to a very high polish to expose the interior of the grains. The surface of the mount was washed for 10 minutes with dilute nitric acid and rinsed in ultraclean water prior to analysis. Zircons were analyzed with a New Wave UP- 213 laser ablation system and Thermo-Finnigan Element2 single collector, double- focusing, magnetic sector ICP-MS, following similar operating parameters as those described by Chang et al. (2006). Line scans rather than spot analyses were employed to minimize elemental fractionation. Typically, 35% laser power and 25 micron laser diameter were used.

34 Background levels were measured with the laser off for 25 seconds, followed by data collection with the laser on for approximately 47 seconds. The time-integrated signals were analyzed using the GLITTER software package described by Van Achterbergh et al. (2001) and Jackson et al. (2004), which automatically subtracts background measurements, propagates all analytical errors, and calculates isotopic ratios and ages. Corrections for mass and elemental fractionation were made by bracketing analyses of unknown grains with replicate analyses of the standard zircon. A typical analytical session consisted of four analyses of the standard zircon, followed by five analyses of unknown zircons, one standard analysis, five unknown analyses, etc., and finally four standard analyses. Interpreted ages and isotopic ratios are presented in Appendix A. All errors reported are at the 1-sigma level. Interpreted ages for grains <1000 Ma are based from 206Pb/238U ages. For detrital zircons >1000 Ma, 207Pb/206Pb ages are used, which underestimate the true age for discordant grains. However, Precambrian zircons with >10% discordance are not included in the results or age plots. U-Pb zircon age data are presented in relative probability plots with stacked histograms, prepared using the Isoplot 3.0 Excel macro of Ludwig (2003). These plots contain both a relative probability curve corresponding to age peaks and a histogram (e.g., Link et al., 2005). Each detrital zircon sample comprises two plots: one from 0 to 3000 Ma in 50 Ma bins to show the entire age spectrum and one from 200 to 700 Ma in 5 Ma bins to highlight young populations (Figures 2.8-2.10). This is the most straightforward way to display the quantity of zircon analyzed and the important Paleozoic age populations of each sample. Age peaks were determined by using the Detrital Zircon Age Pick macro created by G.E. Gehrels for Microsoft Excel; this macro processes given ages and errors at the 1- sigma level and produces age groupings and peaks at the 2-sigma level. A normalized probability plot containing samples from this study and previously published data is displayed in Figure 2.11; this plot was produced from macro developed by G.E. Gehrels.

35 2.7 DETRITAL ZIRCON RESULTS 2.7.1 Late Devonian Imperial Formation Sample I1 (n = 52) Sandstone from the lower Imperial Formation in the Mackenzie Mountains, NWT, contained detrital zircon age peaks at 434, 443, 551, 648, 692, 919, 951, 1022, 1208, 1210, 1399, 1455, and 1597 Ma. Single-grain early Paleozoic ages were at 374, 384, and 404 Ma.

Sample I2 (n = 47) Feldspar- and mica-bearing calcareous sandstone collected near Campbell Lake, NWT, included age peaks at 426, 1099, 1216, 1374, 1697, 1901, 2038, and 2570 Ma. The youngest single-grain ages occurred at 358, 381, and 388 Ma.

Sample I3 (n = 60) Chert lithic sandstone with accessory muscovite sampled near Eagle Plains, Yukon, contained age peaks at 401, 435, 937, 1080, 1328, 1878, 1997, 2356, 2543, and 2826 Ma. One 389 Ma grain was analyzed.

Sample I4 (n = 44) Sandstone that crops out just north of the Yukon-NWT border along the Dempster highway contained large age peaks at 1172, 1423, 1813, 1930, 1966, and 2062 Ma. The youngest single-grain ages were at 395 and 417 Ma.

2.7.2 Late Devonian – Early Mississippian Tuttle Formation Sample T1 (n = 71) Lower Tuttle Formation sandstone collected along the Road River in northern Yukon had age peaks at 398, 1201, 1321, 1866, 2188, 2362, 2394, 2523, 2585, and 2681. Other single-grain ages occurred at 382, 431, 463, 472, 511, 580 Ma.

36 TABLE 2.1 - STATISTICALLY RELIABLE DETRITAL ZIRCON AGE PEAKS IN ALASKA AND NW CANADA

Known U-Pb Age Peak Occurrences (Ma) 360 - 500 Ma Late Triassic Pat Bay Formation, Canadian Arctic Islands1: 433, 473 Early Triassic Bjorne Formation, Canadian Arctic Islands1: 454 Early Triassic Ivishak Formation, Ledge Member, northern Alaska1: 417, 465 Late Devonian Nation River Formation, eastern Alaska2: 432 Alexander terrane, Alaska3: 357, 368, 429, 460, 478, 483

500 - 700 Ma Late Triassic Pat Bay Formation, Canadian Arctic Islands: 569, 661 Early Triassic Ivishak Formation, Ledge Member, northern Alaska: 530, 565, 680 Alexander terrane, Alaska: 598

700 - 1000 Ma Late Triassic Pat Bay Formation, Canadian Arctic Islands: 921 Early Triassic Ivishak Formation, Ledge Member, northern Alaska: 882

1000 - 1400 Ma Late Triassic Pat Bay Formation, Canadian Arctic Islands: 1072, 1133, 1256 Early Triassic Bjorne Formation, Canadian Arctic Islands: 1214, 1367 Early Triassic Ivishak Formation, Ledge Member, northern Alaska: 1065, 1187 Pennsylvanian-Permian British Columbia and Alberta miogeocline4: 1023, 1040, 1110, 1148, 1236 Ellesmerian clastic wedge, Canadian Arctic Islands5: 1121, 1141, 1146 Ordovician-Lower Devonian British Columbia and Alberta miogeocline4: 1028 Lower Cambrian Adams Argillite, eastern Alaska2: 1081 Alexander terrane, Alaska: 1009, 1031, 1058, 1105, 1157 Early Neoproterozoic Pinguicula Group, northern Yukon6: 1066, 1134, 1166, 1238

1400 - 1700 Ma Late Triassic Pat Bay Formation, Canadian Arctic Islands: 1655 Early Triassic Bjorne Formation, Canadian Arctic Islands: 1661 Alexander terrane, Alaska: 1477 Early Neoproterozoic Pinguicula Group, northern Yukon: 1438, 1448, 1453, 1636, 1651 Wernecke Supergroup, northern Yukon7: ca. 1600

1700 - 2000 Ma Late Triassic Pat Bay Formation, Canadian Arctic Islands: 1836 Middle to Late Triassic British Columbia and Alberta miogeocline8: 1745, 1823, 1823, 1838, 1856, 1886 Early Triassic Bjorne Formation, Canadian Arctic Islands: 1769, 1849, 1934, 1989 Pennsylvanian-Permian British Columbia and Alberta miogeocline: 1799, 1841, 1889 Late Devonian Nation River Formation, eastern Alaska: 1824, 1880, 1896, 1920 Pre-Late Devonian Snowcap assemblage, central Yukon9: 1867, 1941 Ordovician-Lower Devonian British Columbia and Alberta miogeocline: 1809, 1842, 1860, 1913, 1960 Lower Cambrian Adams Argillite, eastern Alaska: 1804, 1838, 1861 Neoproterozoic to Cambrian B.C. and Alta. miogeocline4: 1766, 1788, 1819, 1839, 1872, 1905, 1993 Alexander terrane, Alaska: 1737, 1756

2000 - 2500 Ma Early Triassic Bjorne Formation, Canadian Arctic Islands: 2435 Pre-Late Devonian Snowcap assemblage, central Yukon: 2080, 2142 Ordovician-Lower Devonian British Columbia and Alberta miogeocline: 2025, 2073, 2100 Neoproterozoic to Cambrian British Columbia and Alberta miogeocline: 2321, 2341, 2397, 2421

2500+ Ma Middle to Late Triassic British Columbia and Alberta miogeocline: 2713, 2736 Early Triassic Bjorne Formation, Canadian Arctic Islands: 2726 Early Triassic Ivishak Formation, Ledge Member, northern Alaska: 2634 Pre-Late Devonian Snowcap assemblage, central Yukon: 2641, 2715, 2757, 2801 Neoproterozoic to Cambrian British Columbia and Alberta miogeocline: 2579, 2642, 2900

37 Table 2.1 (previous page) – 1Miller et al. (2006); 2Gehrels et al. (1999); 3Gehrels et al. (1996); 4Gehrels and Ross (1998); 5McNicoll et al. (1995); 6Rainbird et al. (1997); 7Furlanetto et al. (2009); 8Ross et al. (1997); 9M.Colpron and S.Piercey, unpublished.

Figure 2.8 – Relative probability plots with histograms showing detrital zircon ages from the Imperial Formation in northern Yukon and NWT.

38 Sample T2 (n = 67) Lower Tuttle Formation sandstone collected near sample T1 contained age peaks at 1110, 1173, 1275, 1460, 1832, 1924, 2310, 2364, 2674, and 2705 Ma. Single-grain ages were analyzed at 371, 380, 387, 432, 445, and 662 Ma.

Sample T3 (n = 61) Upper Tuttle Formation sandstone sampled along the Road River in northern Yukon had age peaks at 436, 448, 465, 1149, 1257, 1303, 1619, 1764, 1848, and 1931 Ma. The youngest grains analyzed were 414 and 417 Ma.

Sample T4 (n = 74) Quartz pebble conglomerate from an unknown stratigraphic position contained age peaks at 1014, 1154, 1213, 1503, 1623, 1848, 1875, 1937, 2583, and 2683 Ma. The youngest single-grain ages were at 372, 379, 381, 387, 444, 459, 497, and 675 Ma.

Sample T5 (n = 62) Chert lithic sandstone sampled at an unknown stratigraphic position near Eagle Plains, northern Yukon, had age peaks at 367, 1091, 1252, 1385, 1504, 1894, and 1956 Ma. Other Paleozoic single-grain ages were at 427, 485, and 557 Ma.

2.7.3 Late Devonian Prevost Formation, upper Earn Group Chert lithic sandstone contained detrital zircon (n = 74) with age peaks at 1755, 1826, 1896, 2000, 2066, 2098, 2485, 2562, 2676, and 2697 Ma. The youngest zircons consisted of single-grain ages at 1043, 1169, and 1355 Ma.

2.7.4 Mississippian Keno Hill Quartzite Fine- to medium-grained quartz sandstone from the Ogilvie Mountains contained detrital zircon (n = 63) with age peaks at 433, 471, 907, 1127, 1638, 1694, 1830, 2698, and 2780 Ma.

39 2.7.5 Mississippian Tsichu formation Sample TS1 (n = 45) Tsichu formation quartz sandstone collected ~150 m below the Late Mississippian to Permian Mount Christie Formation contained age peaks at 377, 430, 1042, and 1731 Ma.

Figure 2.9 – Relative probability plots with histograms showing detrital zircon ages from the Tuttle Formation in northern Yukon.

40 Sample TS2 (n = 66) Tsichu formation quartz sandstone sampled immediately below the contact with the overlying Mount Christie Formation contained age peaks at 382, 425, 493, 1033, 1119, 1265, 1483, 1597, 1778, 1941, 2629, 2670, and 2773 Ma.

Figure 2.10 – Relative probability plots with histograms showing detrital zircon ages from Mississippian strata in west-central and eastern Yukon.

41 2.8 PROVENANCE CORRELATIONS 2.8.1 Late Devonian Imperial Formation The Imperial Formation detrital zircon suite (>200 grains) consisted of shared ca. 430, 1000-1200, and 1800-2000 Ma age peaks in most samples. However, the profile of sample I1 was distinct from that of samples I2-I4, possibly indicating a different source area for lower Imperial Formation strata in the Mackenzie Mountains. Sample I1 (Figure 2.8) contained Mesoproterozoic age peaks at 1022, 1208, 1210, 1399, 1455, and 1597 Ma that are also observed in rocks of the Proterozoic Wernecke Supergroup and Pinguicula Group in northern Yukon, Pennsylvanian-Permian miogeocline of British Columbia and Alberta, and Triassic Bjorne and Pat Bay formations of the Canadian Arctic Islands (Table 2.1). Late Proterozoic peaks occurred at 551, 648, 692, 909, and 951 Ma, but only the 909 Ma peak has been previously observed, and that in the Pat Bay Formation. Paleozoic age peaks at 434 and 443 Ma compare favorably with those in the Late Devonian Nation River Formation of eastern Alaska and Triassic Pat Bay Formation (Table 2.1; Figure 2.11) Samples I2-I4 (Figure 2.8) had Paleoproterozoic to Archean age peaks at 1813, 1878, 1901, 1930, 1966, 1997, and 2570 Ma that are consistent with the Neoproterozoic to Lower Devonian miogeocline in British Columbia and Alberta and Nation River Formation. Mesoproterozoic ages at 1080, 1099, 1172, 1216, and 1374 Ma overlap with peaks in the Cambrian Adams Argillite of eastern Alaska, Triassic Bjorne Formation, and Alexander terrane of southeastern Alaska (Table 2.1). Early Paleozoic detrital zircon age peaks at 367, 436, and 465 Ma are also witnessed in Alexander terrane and Triassic Ivishak and Pat Bay formations in Arctic Alaska and Canadian Arctic Islands.

2.8.1.1 Interpretation Provenance correlations pertaining to sample I1 are consistent with a source from the Ellesmerian orogenic belt. Detrital zircon results are also in agreement with geophysical and paleocurrent data from the lower Imperial Formation in the Mackenzie Mountains that indicate a northeastern source. Specifically, age peaks at 434 and 443 Ma correlate with similar populations in northerly derived Devonian and Triassic strata in northern Alaska and Canadian Arctic Islands; early Paleozoic zircons there are

42 hypothesized to be derived from volcanic rocks of the Innuitian hinterland. Single-grain occurrences at 374 and 384 Ma suggest a northern source and are probably derived from Late Devonian intrusions in Ellesmerian fold belt. Conspicuous Mesoproterozoic peaks at 1455 and 1597 Ma in sample I1 may provide further constraints on the lithologic makeup of the Innuitian hinterland. These age peaks are recognized in the Proterozoic Wernecke Supergroup and Pinguicula Group of northern Yukon and 1470-1670 Ma detrital zircons have been observed in Devonian and Triassic strata in the Canadian Arctic Islands and Alexander terrane (Table 2.1). Pearya and Crocker Land are thought to have Caledonian-Baltican affinities like those of Alexander terrane (e.g., Colpron and Nelson, in press), and Mesoproterozoic age peaks in sample I1 may have sampled part of the Innuitian basement or recycled equivalents. However, since these grains are observed in Proterozoic rocks in Yukon (Rainbird et al., 1997) they may have been recycled through Laurentian sedimentary rocks uplifted and eroded during Ellesmerian deformation. The presence of chert lithics and 1800-2000 Ma age peaks in Imperial Formation sandstone are compatible with that assumption. The ultimate source of 1000- 1200 Ma zircon is difficult to ascertain because these zircons have several possible source reservoirs, including the Grenville Province of eastern Laurentia (Rainbird et al., 1992), crystalline basement of Pearya (Trettin, 1991b), and possible crystalline rocks under the Cordilleran margin (Jefferson and Parrish, 1989). Samples I2-I4 had demonstrable age peaks at 367, 436, and 465 Ma and multiple single-grain occurrences from 374-389 Ma. As with sample I1, these populations are consistent with age populations in other Arctic sedimentary units interpreted to have northern provenance from the Innuitian hinterland and Late Devonian intrusive rocks in the Ellesmerian foreland (Miller et al., 2006). Prominent Paleoproterozoic and Archean age peaks in these strata probably reflect the recycling of Laurentian zircon from uplifted Paleozoic rocks in the Ellesmerian fold belt (Figure 2.11).

43

Figure 2.11 – Normalized probability plot for samples from this and previous studies. References available in Table 2.1. Z-C – Neoproterozoic to Cambrian miogeocline of British Columbia (B.C) and Alberta, Dev. – Devonian, Fm. – Formation, fm. – formation (informal), Qtze . – Quartzite.

44 2.8.2 Late Devonian – Early Mississippian Tuttle Formation Detrital zircon results from the Tuttle Formation (335 grains) showed 1000-1200 and 1800-1900 Ma provenance linkages across the suite and similar age peaks as the Imperial Formation. Specifically, samples T1 and T2 of the lower Tuttle Formation had Paleoproterozoic to Archean age peaks at 1832, 1866, 1924, 2310, 2394, and 2585 Ma correlating with Neoproterozoic-Triassic Cordilleran margin strata, Adams Argillite, pre- Late Devonian continental margin rocks of the Snowcap assemblage in central Yukon, and Nation River Formation (Figures 2.9, 2.11; Table 2.1). Mesoproterozoic ages at 1110 and 1460 Ma are also observed in the Pinguicula Group, Pennsylvanian-Permian Cordilleran miogeocline, and Alexander terrane. The 398 Ma peak in sample T1 has no corollary but may overlap with igneous rocks that intrude Arctic Alaska terrane (Moore et al., 1994). Samples T3-T5, comprising unconstrained and upper Tuttle Formation strata, had Paleoproterozoic to Archean age peaks at 1619, 1764, 1848, 1894, 1931, 1937, 1956, and 2583 Ma, akin to Neoproterozoic-Permian Cordilleran margin strata, Snowcap assemblage, Nation River Formation, and Bjorne Formation (Table 2.1). Mesoproterozoic age peaks at 1149 and 1213 Ma and are also seen in Ellesmerian clastic wedge deposits in the Canadian Arctic Islands, Pennsylvanian-Permian Cordilleran margin strata, and Bjorne Formation. Paleozoic populations at 367, 436, and 465 Ma are also contained in Alexander terrane and Triassic Ivishak and Pat Bay formations.

2.8.2.1 Interpretation Samples T1 and T2 of the lower Tuttle Formation primarily display Laurentian provenance with 1832-2585 Ma age peaks that are ubiquitous to the Neoproterozoic- Triassic Cordilleran margin and Cambrian and Devonian rocks of eastern Alaska (Table 2.1; Figure 2.11). Only one early Paleozoic age peak is recognized at 398 Ma; however, several single-grain occurrences were analyzed at 371-472 Ma. In concert with stratigraphic indicators suggesting southward paleoflow for the Tuttle Formation, these Paleozoic ages are consistent with northern provenance from igneous rocks of the Innuitian tectonic province. Paleoproterozoic age peaks, similar to those of the Imperial

45 Formation, likely reflect recycling of older Laurentian strata, as with previous interpretations on the provenance of variegated chert lithics in Tuttle Formation rocks. The remaining samples from upper and unconstrained Tuttle Formation locations have well-defined Paleozoic age peaks at 367, 436, and 465 Ma, as are also seen in the northerly derived Ivishak and Pat Bay formations and Alexander terrane. Along with single-grain analyses from 372-459 Ma, provenance from the Innuitian hinterland and Ellesmerian fold belt is likely. Samples T3-T5 display 1848-2583 Ma age peaks that correlate with the Laurentian reference frame. As before, this probably records recycling of older Paleozoic sedimentary rocks in the Ellesmerian fold belt.

2.8.3 Late Devonian to Mississippian Cordilleran margin strata Comparison of continental margin samples (>240 zircons) from eastern and central Yukon suggests the Late Devonian Prevost Formation of the upper Earn Group has dramatically different provenance from the Mississippian Keno Hill Quartzite and Tsichu formation (Figure 2.10). Prevost Formation sandstone contains Paleoproterozoic to Archean age peaks at 1755, 1826, and 1896 Ma that correlate with Neoproterozoic- Cambrian and Triassic miogeoclinal rocks, Nation River Formation, and Alexander terrane. The Keno Hill Quartzite has Paleoproterozoic to Archean peaks at 1638 and 1830 Ma also seen in Pinguicula Group rocks of the Ogilvie Mountains, Neoproterozoic- Triassic Cordilleran margin strata, and the Adams Argillite of eastern Alaska (Table 2.1). One Mesoproterozoic peak at 1127 Ma is consistent with the Pinguicula Group, Ellesmerian clastic wedge in the Canadian Arctic Islands, and Triassic Pat Bay Formation. Paleozoic populations at 433 and 471 Ma are observed in the Nation River and Pat Bay formations. The 433 Ma peak is also seen in the Imperial and Tuttle formations of this study. Tsichu formation sandstone from eastern Yukon has age peaks at 1597, 1731, 1778, 1941, and 2649 Ma. The 1597 Ma peak is conspicuous and rare to Laurentian deposits; it is also observed in sample I1 and may have correlations with ca. 1600 Ma detrital zircons in the Wernecke Supergroup of northern Yukon. The other peaks are

46 observed in Neoproterozoic-Cambrian Cordilleran margin strata, Snowcap assemblage, Triassic Ivishak Formation, and Alexander terrane.

2.8.3.1 Interpretation Prevost Formation age peaks from 1755-1895 Ma are similar to pre-Late Devonian Cordilleran margin strata and affirm the hypothesis that the upper Earn Group was sourced by local Paleozoic rocks during regional extension and block uplift (cf., Gordey and Anderson, 1993). Unlike other samples in this suite, the Prevost Formation contains no detrital zircon younger than Mesoproterozoic. The Keno Hill Quartzite sample has minimal correlation with Prevost Formation sandstone (Figure 2.11); however, similar Precambrian age peaks are observed in the Imperial and Tuttle formations and classic Ellesmerian clastic wedge deposits (Figure 2.11). Paleozoic age peaks at 433 and 471 Ma have demonstrable overlap with the Imperial and Tuttle formations of this study and Nation River and Pat Bay formation rocks. Tsichu formation sandstone also showed correlations to the Imperial and Tuttle formations with 377, 382, 425, 430, 495, and 1597 Ma age peaks. Together, these data support the hypothesis that Mississippian clastic shelf strata along the eastern Slide Mountain-Golconda Ocean had a partial northern provenance from the Innuitian orogenic belt. The age of the Keno Hill Quartzite and Tsichu formation samples is not well- constrained; however, a conservative estimate is that Arctic-derived detrital zircons were common to the Cordilleran margin ~30 million years after commencement of Ellesmerian orogenesis. Some provenance correlations exist between the pre-Late Devonian Snowcap assemblage, a continental margin succession that forms the lowest structural level of the Yukon-Tanana terrane (Colpron et al., 2006), and the Tuttle and Tsichu formations. Devine et al. (2006) reported that mid-Paleozoic schist of the terrane in southeastern Yukon contains zircon cores with ages at 473, 524, 620-680, 1000, 1800-2000, 2400, and 2600-2800 Ma. These cores were likely inherited from Snowcap assemblage rocks. Although unconstrained, the presence of 473-680 Ma zircon may be explained by an Innuitian source.

47 2.9 SYNTHESIS Detrital zircon analyses of Late Devonian to Mississippian strata in northwestern Canada provide several lines of evidence for a partial source from the Innuitian tectonic province. In particular, results from this study: (1) are consistent with paleocurrent, sedimentary facies, and geophysical data sets from northern Yukon and NWT; (2) provide a valuable new detrital zircon reference frame that can be applied to future studies of post-Late Devonian strata in the northern Cordillera; (3) add to the knowledge base concerning the lithologic makeup of Crocker Land; and (4) support the hypothesis that the Imperial and Tuttle formations comprise syntectonic Ellesmerian clastic wedge strata in northern Yukon and NWT. Consequently, these data are also in agreement with hypothetical structural linkages between northern Yukon and the Ellesmerian fold belt (sensu stricto) presently obscured by the Beaufort Sea. Hints at the hypothesized Caledonian-Baltican signature of Crocker Land and Pearya is observed with ca. 430 Ma and Mesoproterozoic age peaks uncommon to Laurentia. Although speculative, rare ca. 400 and 690 Ma zircons may also be derived from Arctic Alaska terrane. Provenance associations between Devono-Mississippian strata and the Innuitian hinterland allow paleogeographic constraints on various tectonic elements adjacent to North America in mid-Paleozoic time. A Late Devonian-Mississippian plate reconstruction is depicted in Figure 2.12, with Arctic Alaska, Crocker Land, and Pearya (AA, CL, and PE in Figure 2.12) in proximity to, or juxtaposed with, North America. Several other tectonic elements in the Cordillera have lithologic assemblages, faunal associations, and detrital zircon records that are similar to those of the Ellesmerian clastic wedge and they also are interpreted to have Caledonian origins and may have interacted with North America (Colpron and Nelson, in press; e.g., Alexander – AX and Yreka terranes – YR in Figure 2.12). Orogenic development of the Ellesmerian system is portrayed in Figures 2.3 and 2.12 to be contemporaneous with separation of Yukon-Tanana terrane (YT in Figure 2.12) from the western margin of Laurentia. Ellesmerian-derived sediment dispersed from the Innuitian highlands by Early to Middle Mississippian time towards the south-

48 southwest into the Slide Mountain-Golconda Ocean. Future provenance studies on mid- to late Paleozoic continental margin strata south of Yukon, in British Columbia or western U.S., may be able to constrain the southernmost extent of this provenance signal.

Figure 2.12 - Late Devonian to Mississippian paleogeography. Important to this study is development of the Ellesmerian orogeny, subduction and onset of back-arc rifting along northwestern Laurentia, and dispersal of Innuitian detritus south along the Cordilleran margin. Abbreviations: AA – Arctic Alaska; AFR – Africa; ARB – Arabia; AVL – Avalonia; AX – Alexander; BAR – Barentsia; BAL – Baltica; CL – “Crocker Land”; FW – Farewell; IND – India; KAZ –Kazakstania; LAU – Laurentia; MEX – Mexico; OK – Okanagan terrane; PE – Pearya; SAM – South America; SCH – South China; SEU – southern Europe; SIB – Siberia; YR –Yreka (including Trinity, and parts of Shoo Fly and Okanagan); YT – Yukon-Tanana terrane. From Colpron and Nelson (in press).

49 2.10 REFERENCES Amato, J., Toro, J., Miller, E., and Gehrels, G.E., 2006, Late Proterozoic magmatism in Alaska and its implications for paleogeographic reconstructions of the Arctic Alaska-Chukotka plate: Geological Society of America, Abstracts with Programs, v. 38, p. 13. Bazard, D. R., Butler, R. F., Gehrels, G. E., and Soja, C. M., 1995, Early Devonian paleomagnetic data from the Lower Devonian Karheen Formation suggest Laurentia-Baltica connection for the Alexander terrane: Geology, v. 23, p. 707-710. Beranek, L.P., and Mortensen, J.K., 2008, New stratigraphic and provenance studies of Triassic sedimentary rocks in Yukon and northern British Columbia, in Emond, D.S., Blackburn, L.R., Hill, R.P., and Weston, L.H., Yukon Exploration and Geology 2007: Yukon Geological Survey, p. 115-124. Boghossian, N.D., Patchett, P.J., Ross, G.M., and Gehrels, G.E., 1996, Nd isotopes and the source of sediments in the miogeocline of the Canadian Cordillera: Journal of Geology, v. 104, p. 259-277. Braman, D.R., and Hills, L.V., 1992, Upper Devonian and Lower Carboniferous miospores, western District of Mackenzie and Yukon Territory, Canada. Paleontographica Canadiana, v. 8, 97 p. Chang, S. Vervoort, J.D., McClelland, W.C., and Knaack, C., 2006, U-Pb dating of zircon by LA-ICP-MS: Geochemistry, Geophysics, Geosystems, v. 7, Q05009 doi:10.1029/2005GC001100. Colpron, M., and Nelson, J.L., in press, The Northwest Passage: Incursion of Baltican and Siberan crustal fragments into eastern Panthalassa, and the mid-Paleozoic to early Mesozoic evolution of the Cordilleran margin of western North America, in Cawood, P., and Kröner, A., eds., Accretionary orogens: Geological Society of London Special Publication. Colpron, M., Nelson, J.L., and Murphy, D.C., 2006, A tectonostratigraphic framework for the pericratonic terranes of the northern Canadian Cordillera, in Colpron M., and Nelson, J.L., eds., Paleozoic evolution and metallogeny of pericratonic terranes at the ancient Pacific margin of North America, Canadian and Alaskan Cordillera: Geological Association of Canada Special Paper 45, p. 1-23. Colpron, M., Nelson, J. L., Murphy, D. C., 2007, Northern Cordilleran terranes and their interactions through time: GSA Today, v. 17, no. 4/5, p. 4-10. Devine, F., Carr, S.D., Murphy, D.C., Davis, W.J., Smith, S., and Villeneuve, M., 2006, Geochronological and geochemical constraints on the origin of the Klatsa metamorphic complex: Implications for Early Mississippian high-pressure metamorphism within Yukon-Tanana terrane, in Colpron M., and Nelson, J.L., eds., Paleozoic evolution and metallogeny of pericratonic terranes at the ancient Pacific margin of North America, Canadian and Alaskan Cordillera: Geological Association of Canada Special Paper 45, p. 107-130. Embry, A.F., 1992, Crocker Land: the northwest source area for the Sverdrup Basin, Canadian Arctic Archipelago, in Vorren, T.O., ed., Arctic geology and petroleum potential: Norwegian Petroleum Society Special Publication, v. 2, p. 204-216.

50 Fraser, T.A., and Allen, T.L., 2007, Field investigations of the Upper Devonian to Lower Carboniferous Tuttle Formation, eastern Richardson Mountains, Yukon, in Emond, D.S., Lewis, L.L., and Weston, L.H., eds., Yukon Exploration and Geology 2006: Yukon Geological Survey, p. 157-173. Furlanetto, F., Thorkelson, D.J., Davis, W.J., Gibson, H.D., Rainbird, R.H., and Marshall, D.D., 2009, Preliminary results of detrital zircon geochronology, Wernecke Supergroup, Yukon, in Weston, L.H., Blackburn, L.R., and Lewis, L.L., eds., Yukon Exploration and Geology 2008: Yukon Geological Survey, po. 125-135. Gehrels, G.E., Butler, R.F., and Bazard, D.R., 1996, Detrital zircon geochronology of the Alexander terrane, southeastern Alaska: Geological Society of America Bulletin, v. 108, p. 722-734. Gehrels, G.E., and Ross, G.M., 1998, Detrital zircon geochronology of Neoproterozoic to Permian miogeoclinal strata in British Columbia and Alberta: Canadian Journal of Earth Sciences, v. 35, 1380-1401. Gehrels, G.E., Dickinson, W.R., Ross, G.M., Stewart, J.H., and Howell, J.G., 1995, Detrital zircon reference for Cambrian to Triassic miogeoclinal strata of western North America: Geology, v. 23, p. 831-834. Gehrels, G.E., Johnsson, M.J., and Howell, D.G., 1999, Detrital zircon geochronology of the Adams Argillite and Nation River Formation, East-Central Alaska, U.S.A.: Journal of Sedimentary Research, v. 69, p. 135-144. Goodfellow, W.D., Cecile, M.P., and Leybourne, M.I., 1995, Geochemistry, petrogenesis, and tectonic setting of lower Paleozoic alkalic and potassic volcanic rocks, northern Canadian Cordilleran miogeocline: Canadian Journal of Earth Sciences, v. 32, p. 1236-1254. Gordey, S.P., and Irwin, S.E.B., 1987, Geology, Sheldon Lake and Tay River map areas, Yukon Territory: Geological Survey of Canada, Map 19-1987, 1: 250 000 scale. Gordey, S.P., and Anderson, R.G., 1993, Evolution of the northern Cordilleran miogeocline, Nahanni map area (105I), Yukon and Northwest Territories: Geological Survey of Canada Memoir 428, Ottawa, Canada, 214 p. Gordey, S.P., Abbott, J.G., and Orchard, M.J., 1982, Devono-Mississippian (Earn Group) and younger strata in east-central Yukon, in Current Research, Part B: Geological Survey of Canada Paper 82-1B, p. 93-100. Gordey, S. P., Geldsetzer, H. H. J., Morrow, D. W., Bamber, E. W., Henderson, C. M., Richards, B. C., McGugan, A., Gibson, D. W., and Poulton, T. P., 1991, Upper Devonian to Middle Jurassic assemblages. Pt. A. Ancestral North America, in Gabrielse, H., and Yorath, C. J., eds., Geology of the Cordilleran orogen in Canada: Geological Society of America, Decade of North American Geology G- 2, p. 221–328. Hadlari, T., Tyloski, S.A., Lemieux, Y., Zantvoort, W.G., Catuneanu, O., submitted, Slope and submarine fan turbidite facies of the Upper Devonian Imperial Formation, northern Mackenzie Mountains, NWT: Bulletin of Canadian Petroleum Geology. Hills, L.V., and Braman, D.R., 1978, Sedimentary structures of the Imperial Formation in Embry, A.F. (compiler), Display Summaries, Core and Field Sample Conference: Canadian Society of Petroleum Geologists, p. 35-37.

51 Jefferson, C.W., and Parrish, R.R., 1989, Late Proterozoic stratigraphy, U-Pb zircon ages, and rift tectonics, Mackenzie Mountains, northwestern Canada: Canadian Journal of Earth Sciences, v. 26, p. 1784-1801. Jackson, S.E., Pearson, N.J., Griffin, W.L., and Belousova, E.A., 2004, The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology: Chemical Geology, v. 211, p. 47-69. Lane, L. S., 2007, Devonian-Carboniferous paleogeography and orogenesis, northern Yukon and adjacent Arctic Alaska: Canadian Journal of Earth Sciences, v. 44, 679-694. Link, P.K., Fanning, C.M., and Beranek, L.P., 2005, Reliability and longitudinal change of detrital zircon age spectra in the Snake River system, Idaho and Wyoming: An example of reproducing the bumpy barcode: Sedimentary Geology, v. 182, p. 101-142. Ludwig, K.R., 2003, User’s manual for Isoplot 3.0: A geochronologcal toolkit for Microsoft Excel: Berkeley Geochronology Center Special Publication 4, 71 p. Lutchman, M., 1977, Mississippian clastic wedge in Lower Mackenzie Energy Corridor Study, Geological Component: Geochem Laboratories Ltd. and AGAT Consultants Ltd., p. M1-M10. McClelland, W.C., Schmidt, J.M., and Till, A.B., 2006, New SHRIMP ages from Devonian felsic volcanic and Proterozoic plutonic rocks of the southern Brooks Range, Alaska: Geological Society of America, Abstracts with Programs, v. 38, p. 12. McNicoll, V.J., Harrison, J.C., Trettin, H.P., and Thorsteinsson, R., 1995, Provenance of the Devonian clastic wedge of Arctic Canada: Evidence provided by detrital zircon ages, in Dorobek, S.L. and Ross, G.M., eds., Stratigraphic evolution of foreland basins: Society of Economic Paleontologists and Mineralogists, Special Publication 52, p. 77-93. Miller, E.L., Toro, J., Gehrels, G.E., Amato, J.M., Prokopiev, A., Tuchkova, M.I., Akinin, V.V., Dumitru, T.A., Moore, T.E., and Cecile, M.P., 2006, New insights into Arctic paleogeography and tectonics from U-Pb detrital zircon geochronology: Tectonics, v. 25, p. 1-19. Moore, T.E., Wallace, W.K., Bird, K.J., Karl, S.M., Mull, C.G., and Dillon, J.T., 1994, Geology of northern Alaska, Chapter 3, in Plafker, G., and Berg, H.C., eds., The Geology of Alaska: Geological Society of America, The Geology of North America, v. G-1, p. 49-140. Mortensen, J.K., and Bell, U-Pb zircon and titanite geochronology of the Mount Sedgewick pluton, northern Yukon Territory in Radiogenic age and isotope studies, Report 4: Geological Survey of Canada Paper 90-2, p. 19-24. Ogg, J.G., Ogg, G., and Gradstein, F.M., 2008, The concise geologic time scale: Cambridge University Press. Paces, J.B., and Miller, J.D., 1993, Precise U-Pb ages of Duluth Complex and related mafic intrusions, northeastern Minnesota: Geochronological insights to physical petrogenetic, paleomagnetic, and tectonomagmatic process associated with the 1.1 Ga Midcontinent Rift System: Journal of Geophysical Research, v. 98, p. 13997-14013.

52 Patchett, P.J., Roth, M.A., Canale, B.S., de Freitas, T.A., Harrison, J.C., Embry, A.F., and Ross, G.M., 1999, Nd isotopes, geochemistry, and constraints on sources of sediments in the Franklinian mobile belt, Arctic Canada: Geological Society of America Bulletin, v. 111, p. 578-589. Pugh, D.C., 1983, Pre-Mesozoic geology in the subsurface of Peel River map-area, Yukon Territory and District of Mackenzie: Geological Survey of Canada Memoir 401. Rainbird, R.H., Heaman, L.H., and Young, G., 1992, Sampling Laurentia: detrital zircon geochronology offers evidence for an extensive Neoproterozoic river system originating from the Grenville orogen: Geology, v. 20, p. 351-354. Rainbird, R.H., McNicoll, V.J., Theriault, R.J., Heaman, L.M., Abbot, J.G., Long, D.G.F., and Thorkelson, D.J., 1997, Pan-continental river system draining Grenville orogen recorded by U-Pb and Nd-Sr geochronology of Neoproterozoic quartzarenites and mudrocks, northwestern Canada: Journal of Geology, v. 105, p. 1-17. Ross, G.M., Gehrels, G.E., and Patchett, P.J., 1997, Provenance of Triassic strata in the Cordilleran miogeocline, western Canada: Bulletin of Canadian Petroleum Geology, v. 45, p. 461-473. Ross, G.M., Patchett, P.J., Hamilton, M., Heaman, L., DeCelles, P.G., Rosenberg, E., Giovanni, M.K., 2005, Evolution of the Cordilleran orogen (southwestern Alberta, Canada) inferred from detrital mineral geochronology, geochemistry, and Nd isotopes in the foreland basin: Geological Society of America Bulletin, v. 117, p. 747-763. Sláma, J. Košler, J., Condon, D.J., Crowley, J.L., Gerdes, A., Hanchar, J.M., Horstwood, M.S.A., Morris, G.A., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, B., Tubrett, M.N., and Whitehouse, M.J., 2008, Plešovice zircon – A new natural reference material for U-Pb and Hf isotopic microanalysis: Chemical Geology, v. 249, p. 1-35. Thorsteinsson, R., and Tozer, E.T., 1970, Geology of the Arctic Archipelago in Douglas, R.J.W, ed., Geology and Economic Minerals of Canada: Geological Survey of Canada Economic Geology Report no. 1, p. 547-590. Trettin, H. P., ed., 1991, Geology of the Innuitian Orogen and Arctic Platform of Canada and Greenland: Geological Survey of Canada, Geology of Canada, 569 p. Trettin, H. P., 1991b, The Proterozoic to Late Silurian record of Pearya, Chapter 9 in Trettin, H. P., ed., Geology of the Innuitian Orogen and Arctic Platform of Canada and Greenland: Geological Survey of Canada, Geology of Canada, p. 239-261. Trettin, H.P., 1998, Pre-Carboniferous geology of the northern part of the Arctic Islands: Geological Survey of Canada Bulletin 425. Trettin, H. P., Okulitch, A. V., Harrison, J. C., Brent, T. A., Fox, F. G., Packard, J. J., Smith, G. P., Zolnai, A. I., 1991, Silurian - Early Carboniferous deformational phases and associated metamorphism and plutonism, Arctic Islands in Trettin, H. P., ed., Geology of the Innuitian Orogen and Arctic Platform of Canada and Greenland: Geological Survey of Canada, Geology of Canada, 293-341.

53 Trettin, H. P., Mayr, U., Long, G. D. F. & Packard, J. J., 1991b, Cambrian to Early Devonian basin development, sedimentation and volcanism, Arctic Islands, Chapter 8, in Trettin, H. P., ed., Geology of the Innuitian Orogen and Arctic Platform of Canada and Greenland: Geological Survey of Canada, Geology of Canada, p. 165-238 Van Achterbergh, E., Ryan, C.G., Jackson, S.E., and Griffin, W.L., 2001, Data reduction software for LA-ICP-MS, in Sylvester, P.J., ed., Laser Ablation-ICP-Mass Spectrometry in the Earth Sciences: Principles and Applications: Mineralogical Association of Canada (MAC) Short Course Series, Ottawa, Canada 42, p. 239- 243.

54

Chapter 3:

Provenance and stratigraphic framework of North American Triassic strata, west-central to southeastern Yukon: Correlations with the Western Canada Sedimentary Basin1

1A version of this chapter will be submitted for publication. Beranek, L.P., Mortensen, J.K., Orchard, M.J., and Ullrich, T., Provenance and stratigraphic framework for North American Triassic strata, west-central to southeastern Yukon: Correlations with the Western Canada Sedimentary Basin.

55 3.1 INTRODUCTION 3.1.1 Western Canada Sedimentary Basin Triassic strata of the eastern Cordillera and adjacent autochthon in western Canada are recognized as a variable sequence of continental margin rocks exposed from the Beaufort Sea south to the United States border (Gibson, 1993). Study of this sedimentary record has historically focused on the Western Canada Sedimentary Basin (WCSB) of British Columbia and Alberta (Figure 3.1), where Triassic rocks host over 975 million barrels of conventional oil and 10 trillion cubic feet of marketable gas (Davies, 1997). Numerous surficial and subsurface investigations in the WCSB have generated a robust geologic and paleogeographic framework for the early Mesozoic (e.g., Gibson and Barclay, 1989; Davies, 1997). These workers concluded that Triassic rocks were deposited in a west-facing, mid-latitudinal, passive margin environment along the western Pangean supercontinent. Paleocurrent, sedimentary facies, and isopach data collected from Triassic WCSB strata define the presence of a westward-thickening prism with a source from the east- northeast. Isotopic provenance data have demonstrated these units comprise recycled components from the adjacent Laurentian craton and Innuitian orogenic belt of Arctic Canada (Boghossian et al, 1996; Ross et al., 1997).

3.1.2 Triassic continental margin strata of Yukon Triassic strata of west-central to southeastern Yukon are preserved in discontinuous belts, mainly east of the Tintina fault (Figure 3.2). The majority of North American Triassic rocks in this part of Yukon were deposited within a clastic shelf system that developed over late Neoproterozoic to Late Devonian basinal and turbidite assemblages of the Selwyn and Earn basins (Gordey et al., 1991; Gordey and Anderson, 1993; Figure 3.1). Subordinate Triassic rocks are associated with the Cassiar terrane, a displaced fragment of the Cordilleran miogeocline located southwest of the Tintina fault (Figures 3.1, 3.2). In the Paleozoic, Cassiar terrane strata were deposited in a platformal marine setting outboard of the basinal Selwyn-Kechika depocentres (see Figure 3.1; Gordey and Anderson, 1993).

56

Figure 3.1 – Simplified map of the Canadian and Alaskan Cordillera identifying general locations of continental margin deposits. AK – Alaska, B.C. – British Columbia, NWT – Northwest Territories, U.S.A. – United States of America, WCSB – Western Canada Sedimentary Basin, YT – Yukon Territory. Modified from Colpron et al. (2007).

Regional syntheses on early Mesozoic sedimentation in western Canada typically note the occurrence of Triassic strata in Yukon (Gibson, 1993) but these units have not been explicitly assigned to the WCSB. However, bedrock mapping and conodont collections have defined the lithologic character and age of Triassic strata in Yukon, suggesting intrabasinal correlations across the territory and permissive linkages with coeval rocks of the WCSB (e.g., Gordey and Anderson, 1993; Orchard, 2006). A systematic regional study of Triassic strata in Yukon has not been undertaken and comprehensive examination has consisted only of stratigraphic measurement and

57 description of the early Olenekian Jones Lake Formation type section along the eastern Yukon-NWT border (Figure 3.3; Gordey et al., 1981; Gordey and Anderson, 1993). Consequently, Early to Late Triassic rocks in west-central to eastern Yukon are typically assigned to the Jones Lake Formation, regardless of lithologic or age similarity with the stratotype location (e.g., Gordey, 2008). Correlations in provenance and stratigraphy across the Triassic clastic shelf system, or with the WCSB, are therefore more assumed rather than proven. In contrast to the established paleogeographic model for the WCSB, the current working hypothesis in the northern Cordillera contends North American Triassic rocks were deposited along the eastern margin of a back-arc basin named the Slide Mountain- Golconda Ocean (Colpron et al., 2007). This ocean developed as a marginal basin alongside western North America from mid- to late Paleozoic time coincident with magmatic arc activity on the adjacent Yukon-Tanana terrane (Figure 3.4a, b; Nelson et al., 2006). Closure of the Slide Mountain-Golconda Ocean began by the Middle Permian (Figure 3.4c), facilitating transport of peri-Laurentian (Intermontane) terranes towards the North American continent (see Figure 3.1 for terranes and locations). Remnants of this closed ocean basin comprise the Slide Mountain terrane, typically forming thrust- imbricated packages that structurally overlie North American strata.

3.1.3 Characterizing North American Triassic strata in Yukon Constraints on the composition and stratigraphic framework of early Mesozoic continental margin strata in Yukon would fill a sizeable knowledge gap in Cordilleran geology (cf., Nelson et al., 2006). Furthermore, geochemical and isotopic characterization of these strata has potential to test internal continuity between Triassic clastic shelf rocks in Yukon and correlation with WCSB units of the southern Canadian Cordillera (Figure 3.3). This study reports new whole-rock and detrital mineral provenance data collected from Permian and Triassic sedimentary rocks in five locations of west-central and southeastern Yukon, including the Jones Lake Formation type section. These data provide a valuable new reference frame in Yukon, allowing comparison with other databases from northwestern Canada and Alaska. New and pre-existing (Orchard, 2006)

58 conodont biochronology resolve the depositional age of sampled units. In general, these data suggest Triassic rocks in Yukon and WCSB have a similar source, reflecting isotopic and geochemical homogeneity along the western Laurentian margin (cf., Ross et al., 1997).

Figure 3.2 – Distribution of North American Triassic strata shown in red. Boxed regions indicate sample locations presented in this work. Fm. – Formation, Hwy. – highway, MC – Mount Christie, JL – Jones Lake. Map base from Gordey and Makepeace (2001).

59

Figure 3.3 – Triassic stratigraphic framework for west-central to eastern Yukon and eastern Cordilleran deposits of the Western Canada Sedimentary Basin. Jones Lake Formation type section age constraints include new data from this study. B.C. – British Columbia, Fm. – Formation, lst. – limestone, Silt. Mbr. – Siltstone member, Whse. – Whitehorse. Adapted from Gibson and Barclay (1989). Geologic time scale of Ogg et al. (2008).

3.2. STRATIGRAPHIC FRAMEWORK AND SAMPLE LOCALITIES 3.2.1 Mount Christie and Jones Lake formation stratotype locations, Selwyn Mountains, eastern Yukon The Mississippian-Permian Mount Christie and Triassic Jones Lake formation type sections are exposed within a continuous section in the Little Nahanni River map area (NTS 105A), along the western limb of the Wilson Syncline, ~50 km southeast of Macmillian Pass (Figs. 3.2, 3.5-3.7). Gordey and Anderson (1993) measured, described, reported conodont ages, and formally assigned stratigraphic nomenclature for the section. This study re-visited these type localities, re-measured the composite section, and sampled strata for provenance analysis and improved age control (see Figure 3.7). Stratigraphic thicknesses acquired by this study differ slightly from those reported by Gordey and Anderson; these new values are used in unit descriptions and on Figure 3.7.

60 The Mount Christie Formation stratotype comprises into two informal members (cf., Gordey and Anderson, 1993; Figure 3.7): a lower shale member (550 m-thick) and an upper chert and shale member (200 m-thick). The lower member disconformably overlies the Mississippian Tsichu formation (informal; Gordey and Anderson, 1993) and is composed of dark grey, green-grey, and red-brown weathering, siliceous shale with minor parallel- to wavy-laminated siltstone. The upper member consists of splintery shale and siltstone intercalated with thin- to medium-bedded, locally nodular, grey and black chert. Barite nodules, up to 0.3 m in diametre, are readily observed above the 400 m-level (Figures 3.7, 3.8a,b).

Figure 3.4 – Paleozoic paleogeographic evolution of northwestern Laurentia and outboard pericratonic terranes.

YTT – Yukon-Tanana terrane

Modified from Colpron et al. (2007).

61 Fine-grained detrital muscovite occurs along bedding planes throughout the formation. Red weathering limestone containing Early Permian conodonts forms the boundary between the lower and upper members (Gordey and Anderson, 1993). The contact with the Jones Lake Formation is not exposed at surface; Gordey and Anderson (1993) chose the last occurrence of chert to signify the approximate location of the uppermost Mount Christie Formation. The fine grain size, general lack of sedimentary structures, and cherty nature of the Mount Christie Formation type section suggests sub-wavebase deposition in an offshore environment that at times was sediment starved (Gordey and Anderson, 1993). The Jones Lake Formation type section comprises two informal members (cf., Gordey and Anderson, 1993; Figure 3.7): a lower member (330 m-thick) and an upper member (>400 m-thick). The lower member consists of recessive to moderately resistant, muscovite-bearing, calcareous shale, and parallel- to ripple cross-laminated, siltstone and very fine-grained sandstone (Figure 3.8c). The upper member is composed of sandy limestone and resistant, parallel- to ripple cross-laminated siltstone and fine-grained sandstone with subordinate shale. The upper member forms the core of the Wilson Syncline and has an erosional top. Gordey and Anderson (1993) reported early Olenekian (Smithian) conodonts from a sandy limestone layer approximately 330 m above the formation base. Orchard (2006) described older, reworked Induan (Griesbachian and Dienerian), late Mississippian, and Early Permian conodonts from this layer. Jones Lake Formation sandstone typically contains angular to subrounded, monocrystalline, fine sand-sized quartz and 5-10% muscovite. Beds have sharp bases and are normally graded. Micro-hummocky and swaley laminations are present within the lower member (Figure 3.9d). Limited (n = 5) paleocurrent measurements from ripple cross-laminae tentatively indicate east-southeastward-directed (margin-parallel) paleoflow. Gordey and Anderson (1993) concluded that wave-induced facies in the Jones Lake Formation type section represent a lower shoreface environment. However, >200 m of shale in the lower member and limestone horizons in the upper member indicate excursions in sedimentary source, eustasy, and/or accommodation space.

62

Figure 3.5 – Simplified geology of the Wilson Syncline region, Little Nahanni River map area. NWT – Northwest Territories. Adapted from Gordey and Anderson (1993).

Figure 3.6 – View to northwest along the axis of the Wilson Syncline. Black arrows show locations of conodont collections reported by Gordey and Anderson (1993). Abbreviations: fm. – formation (informal), Fm. – Formation, M – Mississippian, P – Permian, T – Triassic.

63

Figure 3.7 – Composite measured section along western limb of Wilson Syncline. Symbols indicate approximate sample locations. Conodont ages are from this study. DM – detrital muscovite sample, DZ – detrital zircon sample, f.ss – fine sandstone, mbr. – member, Miss. – Mississippian, m.ss – medium-grained sandstone, Nd – neodymium sample, Perm. – Permian, sh. – shale, slt. – siltstone.

3.2.2 Mount Christie and Jones Lake formations, Ogilvie Mountains, west-central Yukon This study examined Permian and Triassic strata exposed east of the Dempster Highway, in the Ogilvie Mountains, ~65 km northeast of Dawson, adjacent to Mount Robert Service (Figures 3.2, 3.9). This area was first mapped and described at a detailed scale by Tempelman-Kluit (1970) and Green (1972). Thompson et al. (1994) produced the most recent 1:50,000 geologic map (NTS 116B/8) of the region and referred to Permian and Triassic strata therein as equivalents to the Mount Christie and Jones Lake formations of Gordey and Anderson (1993).

64

Figure 3.8 – (a) splintery shale and chert, Mount Christie Formation stratoype (hammer for scale); (b) white dashed line highlighting barite boulders in the upper member, Mount Christie Formation (hammer for scale); (c) typical ripple cross-lamination in the lower Jones Lake Formation type section (pencil for scale); (d) micro-hummocky and swaley structures in lower Jones Lake Formation (pencil for scale).

The Mount Christie Formation comprises white, grey-green, and maroon weathering, grey, thinly bedded shale adjacent to Mount Robert Service (Figure 3.10a). Templeman-Kluit (1970) suggested the Mount Christie Formation is ~150 m-thick in this region. The contact with the overlying Jones Lake Formation is covered; however, Green (1972) noted that in other portions of the Dawson map area (NTS 116B) Triassic rocks are observed to bevel underlying Permian strata and sit in slight angular unconformity with them. The Jones Lake Formation at this location is tentatively divided into two informal members: a lower member (~300 m-thick; unit 15 of Templeman-Kluit, 1970) and an upper member (~100 m-thick). The lower member comprises tan to brown weathering, brown to grey, thin to thickly bedded, parallel- to wavy- to ripple cross-laminated, calcareous, muscovite-bearing, shale to fine-grained sandstone (Figure 3.10b).

65

Figure 3.9 – Geologic map of the Mount Robert Service region, Ogilvie Mountains, Dawson Map Area. Black stars indicate locations of detrital zircon samples. White area represents undifferentiated Paleozoic strata. After Thompson et al. (1994).

The lithologic character of lower member strata is simliar to that of the Jones Lake Formation type section. Templeman-Kluit (1970) reported sandstone from the lower member contains minor, but ubiquitous sodic plagioclase, angular quartz grains, and up to 10% detrital muscovite, which he interpreted to be from a metamorphic source terrain. The upper member contains recessive shale, siltstone, coarse-grained chert lithic arenite, feldspathic wacke, carbonaceous limestone, and bioclastic and pelecypod-bearing limestone. Templeman-Kluit (1970) and Orchard (2006) reported macro and microfossil collections indicating early Olenekian to Norian ages for these strata. This study collected shale samples from each formation for whole-rock trace element geochemistry. Four detrital zircon samples, two from each informal member, were selected from the Jones Lake Formation (samples OG1-OG4; Figure 3.9).

66

Figure 3.10 – (a) typical view of the uppermost Mount Christie Formation near Mount Robert Service (hammer for scale); (b) wavy- to cross-laminated, micaceous siltstone and fine sandstone of the lower Jones Lake Formation alongside Mount Robert Service (hammer for scale).

3.2.3 Jones Lake Formation, Sheldon Lake map area, eastern Yukon Triassic Jones Lake Formation strata lie in fault contact with Cretaceous South Fork Volcanics and Paleozoic Road River and Earn group rocks in the southwestern Sheldon Lake (NTS 105J) map area, ~50 km northeast of Ross River (Gordey and Irwin, 1987; Figures 3.2, 3.11). Immediately south of the Connolly caldera, Jones Lake Formation rocks comprise grey weathering, grey, thickly bedded, parallel to wavy- to ripple cross-laminated, silty to sandy to bioclastic limestone (Figure 3.12a) with subordinate shale and siltstone. Exposure in this area is limited and restricted to the south side of the east-trending drainage south of the Connolly caldera (Figure 3.12b). Regional conodont collections from Jones Lake Formation strata range from late Carnian to Rhaetian in age. In Sheldon Lake map area, Late Triassic rocks contain conodonts that are typical of coeval WCSB strata (Orchard, 2006). Sandy limestone containing Norian conodonts, located immediately south of Connolly caldera (see Figure 3.12a), was selected for detrital zircon analysis (sample SL).

67

Figure 3.11 – Simplified geologic map of the Connolly caldera region, Sheldon Lake map area. Black star indicates location of detrital zircon sample SL. After Gordey and Irwin (1987).

Figure 3.12 - (a) resistant, Late Triassic silty to sandy limestone of the Jones Lake Formation, south of Connolly caldera, sampled for detrital zircon analysis (hammer for scale); (b) view to northeast of local geology around the sample SL site. Abbreviations: KSF – Cretaceous South Fork volcanics; TJ – Triassic Jones Lake Formation; DMP – Devono-Mississippian Prevost Formation; OSR – Ordovician-Silurian Road River Group.

68 3.2.4 Hoole Formation, Quiet Lake map area, eastern Yukon Triassic Hoole Formation strata are exposed immediately west of the South Canol Road, in Quiet Lake (NTS 105F) map area, ~20 km southwest of Ross River (Figures 3.2, 3.13). Hoole Formation strata occur south of the Tintina fault and are assigned to the parautochthonous Cassiar terrane. In this region, the Hoole Formation strata comprise tan to buff weathering, light to medium grey, thin to medium bedded, parallel- to wavy-laminated, calcareous in part, muscovite-bearing in part, siltstone to fine-grained sandstone (Figure 3.14a, b). Southwest of Mount Cook, these rocks sit in the upper plate of the St. Cyr thrust fault and contain early to late Carnian conodonts (Tempelman-Kluit, 1977; Tempelman-Kluit, unpublished Ram Creek 1:50,000 map; Orchard, 2006).

Figure 3.13 – Simplified geologic map along the South Canol Road, ~20 km southwest of Ross River, highlighting the Triassic Hoole Formation. Black star indicates location of detrital zircon sample HL. After Templeman-Kluit (unpublished).

69

Figure 3.14 – (a,b) thin to medium bedded, parallel- to wavy-laminated, fine- to medium-grained sandstone of the Triassic Hoole Formation, immediately southeast of Mount Cook, west of South Canol Road (hammer for scale in a; pencil for scale in b).

3.2.5 Toad Formation, La Biche River map area, southeastern Yukon Permian and Triassic siliciclastic strata crop out in the headwaters of Tika Creek in La Biche River map area (NTS 95C) of southeasternmost Yukon (Figure 3.2; L. Lane, 2008, pers. comm.). The upper portion of this section is unconformably overlain by the Cretaceous Chinkeh and Garbutt formations (Khudoley, 2003). Immediately below this unconformity, shale and sandstone are interpreted to comprise the Toad Formation (L. Lane, pers.comm). Utting et al. (2005) concluded that Toad Formation strata in an adjacent map area contain Griesbachian (early Induan) palynomorphs. Preliminary palynomorph collections from this section suggest it may be as old as Middle Permian (J. Utting, unpublished). One sample of Toad Formation sandstone (sample TF) from the Tika Creek area was selected for detrital zircon analysis.

3.3 NORTHERN CORDILLERAN REFERENCE FRAMES Numerous studies have collected geochemical and isotopic data from continental margin strata in Canada and Alaska to characterize the composition of the northern Cordilleran and Franklinian miogeoclines. This work has created robust whole-rock Nd

70 isotope (see Table 3.1) and detrital zircon reference frames (e.g., Garzione et al., 1997, Gehrels and Ross, 1998; Patchett et al., 1999; Miller et al., 2006). In general, two distinct signatures have been observed: (1) pre-Late Devonian strata have evolved whole-rock Nd signatures (i.e., εNd (t) = -20) and are rich in early Precambrian (1800-3000 Ma) detrital zircons with minor Middle to Late Proterozoic input; and (2) post-Late Devonian rocks have prominent early Paleozoic (370-450 Ma), Neoproterozoic (530-700; 1000-1300 Ma), and Mesoproterozoic (1400-1600 Ma) detrital zircon age peaks and whole-rock Nd signatures that are interpreted to reflect mixing of isotopically juvenile and evolved source rocks (i.e., εNd (t) = -8). Northerly derived units of Late Devonian to Late Triassic age in Alaska, Yukon, and Northwest Territories contain ca. 430, ca. 1000, and 1400-1600 Ma detrital zircon (Gehrels et al., 1999; Miller et al., 2006, Beranek, Chapter 2), consistent with data from northerly derived Ellesmerian clastic wedge deposits in the Canadian Arctic Islands (McNicoll et al., 1995). Therefore, the working hypothesis in the northern Cordillera consists of early Paleozoic detrital zircons being ultimately sourced from volcanic rocks of the Innuitian orogenic belt, now submerged under the Arctic Ocean.

3.3.1 Provenance correlations Detrital zircon data collected from Neoproterozoic to Triassic strata in eastern Alaska and northwestern Canada have been compiled and processed through a Microsoft Excel macro that establishes statistically reliable age peaks (Table 3.2). This macro was also used to determine statistical reliability for Triassic samples discussed by this study, allowing simple comparison between all datasets.

3.4 ANALYTICAL METHODS AND DATA PRESENTATION 3.4.1 U-Pb geochronology Detrital zircons were dated using laser ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS) at the Pacific Centre for Isotopic and Geochemical Research (PCIGR), University of British Columbia. Zircons were separated from 2-5 kg samples using conventional Wilfley table, heavy liquid, and magnetic methods. A random portion of each of the zircon concentrates was mounted in an epoxy puck along with several

71 grains of the 337 Ma Plešovice (Sláma et al., 2008) and 1099 Ma FC-1 (Paces and Miller, 1993) standard zircons and brought to a very high polish to expose the interior of the grains. The surface of the mount was washed for 10 minutes with dilute nitric acid and rinsed in ultraclean water prior to analysis. Zircons were analyzed with a New Wave UP- 213 laser ablation system and Thermo-Finnigan Element2 single collector, double- focusing, magnetic sector ICP-MS, following similar operating parameters as those described by Chang et al. (2006). Line scans rather than spot analyses were employed to minimize elemental fractionation. Typically, 35% laser power and 25 micron laser diameter were used. Background levels were measured with the laser off for 25 seconds, followed by data collection with the laser on for approximately 47 seconds. The time-integrated signals were analyzed using the GLITTER software package described by Van Achterbergh et al. (2001) and Jackson et al. (2004), which automatically subtracts background measurements, propagates all analytical errors, and calculates isotopic ratios and ages. Corrections for mass and elemental fractionation were made by bracketing analyses of unknown grains with replicate analyses of the standard zircon. A typical analytical session consists of four analyses of the standard zircon, followed by five analyses of unknown zircons, one standard analysis, five unknown analyses, etc., and finally four standard analyses. Interpreted ages and isotopic ratios are presented in Appendix B. All errors reported are at the 1-sigma level. Interpreted ages for grains <1000 Ma are based from 206Pb/238U ages. For detrital zircons >1000 Ma, 207Pb/206Pb ages are used, which underestimate the true age for discordant grains. However, Precambrian zircons with >10% discordance are not included in the results or age plots. U-Pb zircon age data are presented in relative probability plots with stacked histograms, prepared using the Isoplot 3.0 Excel macro of Ludwig (2003). These plots contain both a relative probability curve corresponding to age peaks and a histogram (e.g., Link et al., 2005). Each detrital zircon sample comprises two plots: one from 0 to 3000 Ma in 50 m.y. bins to show the entire age spectrum and one from 200 to 700 Ma in 5 m.y. bins to highlight young populations (Figures 3.17-3.19). This is the most

72 straightforward way to display the quantity of zircon analyzed and the important Paleozoic age populations of each sample. Age peaks were determined by using the Detrital Zircon Age Pick macro created by G.E. Gehrels for Microsoft Excel; this macro processes given ages and errors at the 1- sigma level and produces age groupings and peaks at the 2-sigma level. A normalized probability plot containing samples from this study and previously published data is displayed in Figure 3.20; this plot was produced from macro developed by G.E. Gehrels.

3.4.2 Ar-Ar geochronology Detrital muscovite separates were hand-picked, washed in acetone, dried, wrapped in aluminum foil and stacked in an irradiation capsule with similar-aged samples and neutron flux monitors (Fish Canyon Tuff sanidine, 28.02 Ma; Renne et al., 1998). Samples were irradiated at the McMaster Nuclear Reactor in Hamilton, Ontario, for 90 MWH, with a neutron flux of approximately 6x1013 neutrons/cm2/s. Analyses (n = 48) of 16 neutron flux monitor positions produced errors of < 0.5% in the J value. The samples were analyzed at the Noble Gas Laboratory at the PCIGR. Mineral separates were step-heated at incrementally higher powers in the defocused beam of a 10W CO2 laser (New Wave Research MIR10) until fused. The gas evolved from each step was analyzed by a VG5400 mass spectrometer equipped with an ion-counting electron multiplier. All measurements were corrected for total system blank, mass spectrometer sensitivity, mass discrimination, radioactive decay during and subsequent to irradiation, as well as interference from atmospheric Ar contamination and the irradiation 40 39 37 39 of Ca, Cl and K (isotope production ratios: ( Ar/ Ar)K = 0.0302 ± 0.00006, ( Ar/ Ar)Ca 36 39 37 39 = 1416.4 ± 0.5, ( Ar/ Ar)Ca = 0.3952 ± 0.0004, Ca/K = 1.83 ± 0.01( ArCa/ ArK)). Detrital muscovite grains were too fine-grained to analyze individually, therefore this study reports two ages, plateau and integrated, for each multigrain sample. The plateau age is the error-weighted mean of the heating steps comprising the plateau, whereas the integrated age is the volume-weighted mean of all the steps, calculated by recombining the isotopic measurements of all the heating steps. The plateau and correlation ages were calculated using Isoplot 3.0 (Ludwig, 2003) and are listed in Appendix B. Errors are quoted at the 2-sigma (95% confidence) level

73 and are propagated from all sources except mass spectrometer sensitivity and age of the flux monitor. The best statistically-justified plateau and plateau age were picked based on the following criteria: (1) three or more contiguous steps comprising more than 50% of the 39Ar; (2) probability of fit of the weighted mean age greater than 5%; and (3) slope of the error-weighted line through the plateau ages equals zero at 5% confidence.

3.4.3 Whole-rock trace element and Nd isotope geochemistry Fourteen samples were analyzed for whole-rock major and trace and rare earth element geochemistry at the ALS Chemex laboratories in North Vancouver, British Columbia (Appendix B). Geochemical data were collected by inductively coupled plasma atomic emission (ICP-AES) and inductively coupled plasma mass spectrometry (ICP-MS). Five of the above samples were also selected for whole-rock Nd isotope geochemistry at PCIGR using thermal ionization mass spectrometry (TIMS) following the dissolution and analytical methods of Pretorius et al. (2006) and Weis et al. (2006). Neodymium isotope data are listed in Appendix B and presented relative to the La Jolla standard, with an analytical uncertainty of 0.511852 ± .000015 (2σ). Conversion of initial 143Nd/144Nd ratios into εNd values, adjusted to the time of sedimentation, and

depleted mantle model ages (TDM) were calculated by equations defined in DePaolo (1981).

3.5 NEW CONODONT BIOSTRATIGRAPHY 3.5.1 Mount Christie Formation stratotype Red-weathering limestone ~200 m beneath the top of the Mount Christie Formation type section (C-307444, see Appendix B; Figure 3.7) yielded the early Artinskian (Early Permian) taxa Sweetognathus inornatus Ritter and Mesogondolella bisselli (Clark & Behnken). These conodonts have been previously observed in the type section and other localities in eastern Yukon (Orchard, 2006). The Colour Alteration Index (CAI) for these conodonts ranged from 4.5-5.5. Sweetognathus is rare in continental margin rocks of Yukon but has been observed with Mesogondolella bisselli in Slide Mountain terrane strata of northern

74 British Columbia and type Harper Ranch Group of Quesnellia (see locations in Figure 3.1; Orchard, 1991). Elsewhere, Mount Christie Formation rocks also contain the late Artinskian Neostreptognathodus pequopensis Behnken, which occurs in Slide Mountain terrane strata of southeastern Yukon (Murphy et al., 2006; Orchard, 2006).

3.5.2 Jones Lake Formation stratoype Conodonts were only retrieved from the lowermost 340 metres of the Jones Lake Formation type section. Therefore, the age of the entire upper member is presently unconstrained. CAI values for all samples ranged from 4.5-5.0. Calcareous sandstone (C-307445; Figure 3.7) collected ~75 m above the base of the formation contained the late Induan-early Olenekian (Dienerian-Smithian) conodonts Scythogondolella? sp. and Neospathodus dieneri Sweet. The latter conodont is a cosmopolitan species in the Cordillera and is also observed in Dienerian strata of the exotic Cache Creek terrane in southern British Columbia (Orchard, 1991). This collection also contained reworked fragments of Devonian Icriodus sp. and Permian Mesogondolella? sp. Calcareous siltstone (C-307446; Figure 3.7) sampled ~45 m above the Dienerian- Smithian collection contained early Olenekian conodonts Borinella chowadensis Orchard, Discretella discreta (Muller), Neospathodus cf. pakistansensis Sweet, and Ns. cf. posterolongatus Zhao & Orchard. All of these conodonts have been recognized in the WCSB of northeastern British Columbia (Orchard, 2007). Reworked late Mississippian Gnathodus cf. girtyi Hass and Early Permian Mesogondolella sp. are also observed. Neospathodus pakistansensis has been identified in the Arctic (Orchard, 2008) and in Mesozoic rocks of Stikinia (Orchard, 1991). Poorly preserved neospathodids of probably Early Triassic age have also been observed in the Nicola Group of Quesnellia (Orchard, 1991). Sandy limestone collected from the base of the upper member (C-307447; Figure 3.7), which had previously yielded Smithian fauna (Orchard 1991; Gordey and Anderson 1993), contained the mid-Smithian conodonts Neospathodus posterolongatus, Ns. pakistanensis, Ns. waageni Sweet, Scythogondolella? aff. crenulata (Mosher), S. mosheri (Kozur & Mostler), Borinella chowadensis, and Wapitiodus robustus Orchard.

75 Reworked early-middle Pennsylvanian species of Idiognathodus, Idiognathoides, and Rhachistognathus, and Permian Mesogondolella were also present. Most of the conodonts in this sandy limestone horizon are known to be widespread in Lower Triassic strata of both the WCSB and the Sverdrup basin of the Canadian Arctic Islands (Orchard 1991; 2006), where most are known in association with Romunduri Zone ammonoids (Orchard, 2008). Orchard (2006) noted reworked Induan conodonts Neogondolella ex gr. carinata (Clark) and Neospathodus dieneri Sweet from this stratigraphic level.

3.6 WHOLE-ROCK TRACE ELEMENT GEOCHEMISTRY 3.6.1 Mount Christie Formation stratotype Five samples of shale to silty shale from the Mount Christie Formation type section (Figures 3.7, 3.15a) showed similar profiles with chondrite-normalized (Sun and

McDonough, 1989) light rare earth element (REE) enrichment ([La/YbN]= 8) and negative Eu anomalies (europium anomaly of ~65%; Eu/Eu*= 0.65). Three of five samples displayed slight concave-up heavy REE patterns. Barium enrichment is pronounced, ranging from 2470-5937 ppm. The Th/Cr ratio (0.066-0.125) of these samples increased upsection towards the Jones Lake Formation, whereas the ratios for Th/Co (1-5), La/Co (3.2-20.4), and Cr/V (0.409-0.888) decreased upsection.

3.6.2 Mount Christie Formation, Ogilvie Mountains Two samples of Mount Christie Formation shale from the Ogilvie Mountains (Figure 3.15b), separated by <50 m at the top of the Permian stratigraphic section, had enriched light REE values ([La/Yb]N = ~6.7) and negative Eu anomalies (Eu/Eu* = ~0.67). Barium concentrations were at 1205 and 5490 ppm. Trace element ratios of Th/Cr (0.1, 0.066), Th/Co (0.319, 0.268), La/Co (1.69, 1.06), Cr/V (0.731, 0.697), Th/Sc (0.319, 0.312), and La/Sc (1.69, 1.23), decreased upsection towards the Jones Lake Formation.

3.6.3 Jones Lake Formation stratotype Nine samples of shale to silty shale from the Jones Lake Formation type section contained patterns (Figures 3.7, 3.15c) of enriched light REE values ([La/YbN] = ~9),

76 negative Eu anomalies (Eu/Eu*= 0.65), and flat to slightly concave-up heavy REE profiles. Barium values ranged from 476-4656 ppm. Trace element ratios of Th/Cr (0.1- 0.127) and Cr/V (0.187-0.833) showed general increasing trends upsection, with minor enrichments at the base of the upper member; Th/Co (0.85-1.76) and La/Co (2.89-5.35) ratios decreased upsection.

3.6.4 Jones Lake Formation, Ogilvie Mountains Five samples of shale to silty shale (Figure 3.15d) from the Jones Lake Formation in the Ogilvie Mountains (three from lower member, two from upper member) had enriched light REE values ([La/Yb]N from 6.5-9.8), negative Eu anomalies (Eu/Eu* from 0.577-0.714), and nearly flat heavy REE profiles. Barium concentrations ranged from 885-3380 ppm. Ratios for Th/Co (0.431-1.77), La/Co (1.95-5.77), Cr/V (0.552-1.06), and Th/Sc (0.258-0.324) are highly variable but Th/Cr (0.046-0.16) and La/Sc (1.14- 3.05) decreased upsection.

Figure 3.15 – Plots of chondrite-normalized (Sun and McDonough, 1989) REE data from the Mount Christie and Jones Lake formations, Ogilvie and Selwyn mountains.

77 3.7 WHOLE-ROCK NEODYMIUM ISOTOPE GEOCHEMISTRY 3.7.1 Mount Christie Formation stratotype One sample from the upper member (Figure 3.7; Table 3.1), immediately beneath the Jones Lake Formation, was analyzed for Nd isotope geochemistry. The analysis yielded an 143Nd/144Nd ratio of 0.512063 ± 8, which converted to epsilon notation at the

approximate time of deposition indicates εNd (275 Ma) of -8.2.

3.7.2 Jones Lake Formation stratotype Four samples were selected for Nd isotope geochemistry (Figure 3.7; Table 3.1).

Two samples from the lower member gave εNd (248 Ma) values at -9.3 and -10.3. Two

samples from the upper member yielded εNd (248 Ma) values at -9.1 and -10.1.

3.8 DETRITAL MUSCOVITE GEOCHRONOLOGY 3.8.1 Mount Christie Formation stratotype Ar-Ar detrital muscovite analyses were conducted on a sample collected ~125 m above early Artinskian limestone (Figure 3.7). Single muscovite grains were too fine- grained to analyze individually and these crystals yielded very little gas during incremental heating, typically with the bulk of the argon evolved in one or two steps. Three single-step heating analyses on all muscovite grains yielded a plateau age of 436 ± 28 Ma and an integrated age of 430 ± 47 Ma.

3.8.2 Jones Lake Formation stratotype Detrital muscovites separated from calcareous siltstone ~75 metres above the base of the Jones Lake Formation (Figure 3.7) were too fine for single-grain analysis. Three single-step heating analyses of all muscovite grains gave a plateau age of 363 ± 26 Ma and an integrated age of 360 ± 35 Ma.

78 TABLE 3.1 - SELECTED WHOLE-ROCK TRACE ELEMENT AND ND ISOTOPE GEOCHEMICAL RESULTS FROM THIS AND PREVIOUS STUDIES

147 144 143 144 This Study Sm (ppm) Nd (ppm) Sm/ Nd Nd/ Nd εNd(t) TDM (Ga) [La/Yb]N Eu/Eu* Cr/V Th/Sc La/Sc Th/Cr Ba (ppm) Permian Mount Christie Fm. (type) 5.5 29 0.1189 0.512063 ± 8 -8.2 1.74 7.97 0.657 0.888 * * 0.125 2740 Permian Mount Christie Fm. (Ogilvie) 3.3 15.2 0.1377 * * * 6.75 0.656 0.731 0.319 1.69 0.1 1205 Permian Mount Christie Fm. (Ogilvie) 2.6 12.7 0.1298 * * * 6.7 0.69 0.697 0.312 1.23 0.066 5490 Triassic Jones Lake Fm. (type) 6.44 39.6 0.1019 0.512009 ± 6 -9.3 1.55 8.35 0.677 0.187 * * 0.1 4489 Triassic Jones Lake Fm. (type) 5.1 30.6 0.1046 0.511960 ± 6 -10.3 1.65 9.99 0.624 0.833 * * 0.12 2298 Triassic Jones Lake Fm. (type) 5.46 26.7 0.1281 0.512062 ± 6 -9.1 1.93 6.41 0.635 0.855 * * 0.16 476 Triassic Jones Lake Fm. (type) 8.01 43.4 0.1157 0.511986 ± 6 -10.1 1.8 9.61 0.639 0.833 * * 0.127 928 Triassic Jones Lake Fm. (Ogilvie) 6.7 34.1 0.1246 * * * 8.09 0.618 0.552 0.314 2.83 0.12 1395 Triassic Jones Lake Fm. (Ogilvie) 4.5 23.4 0.122 * * * 6.54 0.655 1.06 0.259 3.05 0.16 885 Triassic Jones Lake Fm. (Ogilvie) 7.7 41.1 0.1188 * * * 9.87 0.621 0.748 0.324 2.93 0.127 1345 Triassic Jones Lake Fm. (Ogilvie) 4.6 25 0.1167 * * * 7.16 0.577 1.05 0.258 2.77 0.062 1040 Triassic Jones Lake Fm. (Ogilvie) 5.3 25 0.1345 * * * 6.37 0.714 0.792 0.31 1.14 0.046 3380

Yukon / Northwest Territories Cambrian Slats Creek Fm.1 4.69 21.2 0.1138 0.511908 ± 8 -10 2.17 8.79 0.73 1 0.3496 1.987 0.05 648 Cambrian Slats Creek Fm. 4.67 28.1 0.1004 0.511595 ± 5 -13.8 1.95 8.74 0.75 0.28 0.8797 2.699 0.169 2250 Ordovician Road River Group1 1.66 8.33 0.1207 0.512130 ± 7 -5 1.49 9.94 0.86 0.29 0.2054 1.768 0.086 527 Ordovician Road River Group 1.99 10.3 0.1171 0.512006 ± 7 -7.3 1.63 5.28 0.8 0.43 0.3496 1.667 0.157 616 Late Devonian Imperial Fm.1 7.34 37.6 0.1181 0.512099 ± 7 -6.8 1.61 6.64 0.79 0.49 0.4609 1.51 0.082 1160 Late Devonian Imperial Fm. 1.86 9.57 0.1173 0.511863 ± 7 -11.4 1.86 9.61 0.79 1.09 0.761 2.629 0.049 286 Early Mississippian Tuttle Fm.1 1.65 8.43 0.1181 0.511998 ± 8 -8.8 1.66 * * * * * * * Early Mississippian Tuttle Fm. 1.01 6.09 0.1007 0.511976 ± 7 -8.4 1.43 * * * * * * * Mississippian Keno Hill Quartzite1 1.76 9.65 0.1102 0.511888 ± 6 -10.9 1.7 * * * * * * * Permian Jungle Creek Fm.1 4.79 27.8 0.1041 0.511966 ± 8 -9.8 1.49 * * * * * * * Permian Mount Christie Fm.1 3.34 18.1 0.1116 0.512210 ± 6 -5.4 1.24 * * * * * * *

British Columbia / Alberta Ordovician Road River Group 2.58 21.2 0.0735 0.511685 ± 6 -11.5 1.47 10.4 0.81 0.2 0.1909 0.903 0.052 2820 Ordovician Road River Group 2.4 11.1 0.1165 0.511755 ± 7 -12.8 2.02 14.7 0.88 0.79 0.5938 2.171 0.123 1200 Ordovician Road River Group 0.84 6.32 0.895 0.511755 ± 7 -7.2 1.31 8.3 0.93 0.03 0.3787 2.15 0.023 173 Late Devonian Earn Group1 2.64 17.6 0.0909 0.511895 ± 6 -9.3 1.42 13 1.1 0.06 0.6747 3.581 0.047 4990 Late Devonian Earn Group 1.23 9.77 0.0763 0.511983 ± 7 -7.2 1.18 9.9 1.1 0.06 0.3549 2.145 0.049 2433 Late Devonian Earn Group 0.71 5.22 0.082 0.511645 ± 7 -13.9 1.61 10.3 1.52 0.13 0.7832 3.15 0.079 1980 Permian Johnston Canyon Fm.2 4.99 29.67 0.1016 0.512141 ± 7 -6.4 1.23 * * * * * * * Permian Johnston Canyon Fm. 1.65 9.34 0.1068 0.512093 ± 8 -7.5 1.35 * * * * * * * Triassic Sulphur Mountain Fm.2 4.06 21.37 0.1149 0.512136 ± 6 -7.3 1.39 * * * * * * * Triassic Sulphur Mountain Fm.3 ** * *-7.5******** Triassic Toad Formation3 ** * *-6.5******** Triassic Toad Formation * * * * -10 * * * * * * * * Triassic Liard Formation3 ** * *-9.3******** Triassic Liard Formation * * * * -8.8 * * * * * * * * Triassic Whitehorse Formation2 0.31 1.76 0.1162 0.512161 ± 6 -6.8 1.25 * * * * * * * Triassic Whitehorse Formation3 ** * *-7********

Table 3.1 – Whole-rock trace element and Nd isotope values from this and previous studies. 1Garzione et al. (1997); 2Boghossian et al. (1996); 3Ross et al. (1997).

3.9 DETRITAL ZIRCON GEOCHRONOLOGY 3.9.1 Jones Lake Formation stratotype Sample JL1 (n = 25) Calcareous sandstone collected ~75 m above the Mount Christie Formation contact (Figures 3.7, 3.17) contained detrital zircon age peaks at 405, 437, 451, 1155, 1834 Ma. Other single-grain ages occurred at 388, 584, 572, 638, 670, 1483, 1578, and 1657 Ma.

79 Sample JL2 (n = 147) Calcareous sandstone of the basal upper member (Figures 3.7, 3.17) yielded age peaks at 364, 373, 406, 414, 433, 478, 492, 524, 552, 601, 632, 671, 878, 933, 981, 1098, 1200, 1260, 1316, 1385, 1423, 1474, 1571, 1650, 1745, 1837, 1944, 1997, and 2640 Ma. Other single-grain ages were analyzed at 338, ca. 2970, and 3039 Ma.

3.9.2 Jones Lake Formation, Ogilvie Mountains, west-central Yukon Sample OG1 (n = 28) Calcareous micaceous siltstone to sandstone collected from the basal Jones Lake Formation (Figure 3.18) contained detrital zircon age peaks at 984, 1627, and 1946 Ma. Single-grain ages occurred at 369, 519, 537, 563, 585, 657, 773, ca. 1050, ca. 1350, 1428, and 1552 Ma.

Sample OG2 (n = 50) Calcareous sandstone of the lower member had detrital zircon age peaks at 1020, 1409, 1577, 1622, 1895, and 1983 Ma (Figure 3.18). Other single-grain ages were at 371, 415, 426, 438, ca. 460, 470, 491, 533, ca. 623, 2608, and 2731 Ma.

Sample OG3 (n = 62) Coarse-grained, calcareous, chert lithic sandstone of the basal upper member contained age peaks at 382, 431, 477, 513, 542, 972, 1061, 1130, 1794, 1944, 2472, 2622, 2711, and 2867 Ma (Figure 3.18). Single-grain ages occurred at 1457 and 1523 Ma.

Sample OG4 (n = 89) Fine- to medium-grained feldspathic wacke of the upper member had detrital zircon age peaks at 393, 401, 422, 430, 451, 467, 594, 636, 944, 1096, 1278, 1342, 1500, 1627, 1801, 1878, and 1991 Ma (Figure 3.18). Single-grain ages occurred at 350, 416, 418, 512, 534, 540, ca. 2550, 2715, 2804, 2893, and 3091 Ma.

80 TABLE 3.2 - STATISTICALLY RELIABLE DETRITAL ZIRCON AGE PEAKS IN ALASKA AND NW CANADA

Known U-Pb Age Peak Occurrences (Ma) 360 - 500 Ma Late Triassic Pat Bay Formation, Canadian Arctic Islands1: 433, 473 Early Triassic Bjorne Formation, Canadian Arctic Islands1: 454 Early Triassic Ivishak Formation, Ledge Member, northern Alaska1: 417, 465 Mississippian Keno Hill Quartzite and Tsichu formation, Yukon2: 382, 415, 431 Early Mississippian Tuttle Formation, northern Yukon2: 371, 381, 387, 398, 415, 436, 446, 462, 484, 495 Late Devonian Imperial Formation, Yukon and NWT2: 383, 393, 403, 428, 434, 442 Late Devonian Nation River Formation, eastern Alaska3: 432 Alexander terrane, Alaska4: 357, 368, 429, 460, 478, 483

500 - 700 Ma Late Triassic Pat Bay Formation, Canadian Arctic Islands: 569, 661 Early Triassic Ivishak Formation, Ledge Member, northern Alaska: 530, 565, 680 Mississippian Keno Hill Quartzite and Tsichu formation, Yukon: 573 Late Devonian Imperial Formation, northern Yukon and NWT: 551, 648, 692 Alexander terrane, Alaska: 598

700 - 1000 Ma Late Triassic Pat Bay Formation, Canadian Arctic Islands: 921 Early Triassic Ivishak Formation, Ledge Member, northern Alaska: 882 Mississippian Keno Hill Quartzite and Tsichu formation, Yukon: 907 Late Devonian Imperial Formation, northern Yukon and NWT: 920, 949

1000 - 1400 Ma Late Triassic Pat Bay Formation, Canadian Arctic Islands: 1072, 1133, 1256 Early Triassic Bjorne Formation, Canadian Arctic Islands: 1214, 1367 Early Triassic Ivishak Formation, Ledge Member, northern Alaska: 1065, 1187 Pennsylvanian-Permian British Columbia and Alberta miogeocline5: 1023, 1040, 1110, 1148, 1236 Mississippian Keno Hill Quartzite and Tsichu formation, Yukon: 1046, 1121, 1263 Early Mississippian Tuttle Formation, northern Yukon: 1025, 1160, 1253 Late Devonian Imperial Formation, northern Yukon and NWT: 1076, 1171 Ellesmerian clastic wedge, Canadian Arctic Islands6: 1121, 1141, 1146 Ordovician-Lower Devonian British Columbia and Alberta miogeocline5: 1028 Lower Cambrian Adams Argillite, eastern Alaska4: 1081 Alexander terrane, Alaska: 1009, 1031, 1058, 1105, 1157 Early Neoproterozoic Pinguicula Group, northern Yukon7: 1066, 1134, 1166, 1238

1400 - 1700 Ma Late Triassic Pat Bay Formation, Canadian Arctic Islands: 1655 Early Triassic Bjorne Formation, Canadian Arctic Islands: 1661 Mississippian Keno Hill Quartzite and Tsichu formation, Yukon: 1608, 1694 Early Mississippian Tuttle Formation, northern Yukon: 1502, 1622 Late Devonian Imperial Formation, northern Yukon and NWT: 1405, 1697 Alexander terrane, Alaska: 1477 Early Neoproterozoic Pinguicula Group, northern Yukon: 1438, 1448, 1453, 1636, 1651 Wernecke Supergroup, northern Yukon8: ca. 1600

1700 - 2000 Ma Late Triassic Pat Bay Formation, Canadian Arctic Islands: 1836 Middle to Late Triassic British Columbia and Alberta miogeocline9: 1745, 1823, 1823, 1838, 1856, 1886 Early Triassic Bjorne Formation, Canadian Arctic Islands: 1769, 1849, 1934, 1989 Pennsylvanian-Permian British Columbia and Alberta miogeocline: 1799, 1841, 1889 Mississippian Keno Hill Quartzite and Tsichu formation, Yukon: 1785, 1827, 1938 Early Mississippian Tuttle Formation, northern Yukon: 1849, 1935 Late Devonian Imperial Formation, northern Yukon and NWT: 1828, 1965 Late Devonian Prevost Formation, eastern Yukon2: 1755, 1826, 1896 Late Devonian Nation River Formation, eastern Alaska: 1824, 1880, 1896, 1920 Pre-Late Devonian Snowcap assemblage, central Yukon10: 1867, 1941 Ordovician-Lower Devonian British Columbia and Alberta miogeocline: 1809, 1842, 1860, 1913, 1960 Lower Cambrian Adams Argillite, eastern Alaska: 1804, 1838, 1861 Neoproterozoic to Cambrian B.C. and Alta. miogeocline5: 1766, 1788, 1819, 1839, 1872, 1905, 1993 Alexander terrane, Alaska: 1737, 1756

2000 - 2500 Ma Early Triassic Bjorne Formation, Canadian Arctic Islands: 2435 Mississippian Keno Hill Quartzite and Tsichu formation, Yukon: 2269 Early Mississippian Tuttle Formation, northern Yukon: 2203, 2333, 2463 Late Devonian Imperial Formation, northern Yukon and NWT: 2043, 2238, 2316 Late Devonian Prevost Formation, eastern Yukon: 2000, 2066, 2098, 2485 Pre-Late Devonian Snowcap assemblage, central Yukon: 2080, 2142 Ordovician-Lower Devonian British Columbia and Alberta miogeocline: 2025, 2073, 2100 Neoproterozoic to Cambrian British Columbia and Alberta miogeocline: 2321, 2341, 2397, 2421

2500+ Ma Middle to Late Triassic British Columbia and Alberta miogeocline: 2713, 2736 Early Triassic Bjorne Formation, Canadian Arctic Islands: 2726 Early Triassic Ivishak Formation, Ledge Member, northern Alaska: 2634 Mississippian Keno Hill Quartzite and Tsichu formation, Yukon: 2506, 2672, 2893 Early Mississippian Tuttle Formation, northern Yukon: 2534, 2595, 2683, 2777, 2850, 2951, 3076, 3119 Late Devonian Imperial Formation, northern Yukon and NWT: 2573, 2693, 2784, 2817 Late Devonian Prevost Formation, eastern Yukon: 2562, 2676, 2697 Pre-Late Devonian Snowcap assemblage, central Yukon: 2641, 2715, 2757, 2801 Neoproterozoic to Cambrian British Columbia and Alberta miogeocline: 2579, 2642, 2900

81 Table 3.1 – (Previous page): 1Miller et al. (2006); 2L.Beranek, Chapter 2; 3Gehrels et al. (1999); 4Gehrels et al. (1996); 5Gehrels and Ross (1998); 6McNicoll et al. (1995); 7Rainbird et al. (1997); 8Furlanetto et al. (2009); 9Ross et al. (1997); 10M.Colpron and S.Piercey, unpublished.

Figure 3.16 – Relative probability plots with histograms showing detrital zircon ages from the Jones Lake Formation stratotype location. See Figure 3.7 for stratigraphic location of samples.

3.9.3 Jones Lake Formation, Sheldon Lake map area, eastern Yukon Sample SL (n = 62) Sandy limestone collected south of Connolly caldera contained age peaks at 414, 427, 594, 941, 1035, 1312, 1432, 1572, 1661, 2054, and 2090 Ma (Figure 3.19). Single- grain ages occurred at 371, ca. 395, 523, 568, 618, 622, 642, and 657 Ma.

3.9.4 Hoole Formation, Quiet Lake map area, eastern Yukon Sample HL (n = 60) Fine-grained micaceous sandstone of the Hoole Formation contained age peaks at 1210, 1543, 1705, 1836, 2027, 2084 and 2677 Ma (Figure 3.19). Single-grain analyses were at 433, ca. 1050, and ca. 1665 Ma.

82 3.9.5 Toad Formation, La Biche River map area, southeastern Yukon Sample TF (n = 74) Sandstone from the Tika Creek area contained age peaks at 465, 967, 1058, 1094, 1142, 1242, 1549, 1589, 1657, 1758, 1803, 1889, 1969, 2728, and 2830 (Figure 3.19). Other single-grain analyses were at 331, 401, ca. 410, ca. 435, and 621 Ma.

Figure 3.17 – Relative probability plots with histograms showing detrital zircon ages from the Jones Lake Formation, Ogilvie Mountains, west-central Yukon. See Figure 3.9 for location of samples.

83

Figure 3.18 – Relative probability plots with histograms showing detrital zircon ages for Toad Formation, Hoole Formation, and Jones Lake Formation in Sheldon Lake map area.

3.10 WHOLE-ROCK PROVENANCE CORRELATIONS 3.10.1 Mount Christie Formation Geochemical signatures from fine-grained Mount Christie Formation strata in the Selwyn and Ogilvie mountains displayed enriched REE patterns that define a partial source from granitic, upper crustal rocks (McLennan et al., 2003). In the Cordillera, these profiles are typically interpreted to reflect a cratonal source from Precambrian rocks and recycled equivalents in western Canada (see Table 3.1; Garzione et al., 1997). Trace element ratios from Selwyn and Ogilvie mountains samples show upsection enrichments in relatively compatible, ferromagnesian elements such as Co, V, Sc, and Cr (Table 3.1). These signatures, with respect to other Mount Christie Formation samples, indicate addition of mineral phases such as chromite, ultimately derived from mafic or ultramafic igneous rocks (McLennan et al., 2003). In particular, Cr/V and Th/Cr ratios

84 compare well with those of Ordovician Road River Group samples that contain significant alkaline volcanic rock components (Table 3.1). Similarly, 147Sm/144Nd values (up to 0.1377) for the Mount Christie Formation are enriched relative to other Cordilleran deposits and are suggestive of a mafic source constituent. The high barium content of Mount Christie Formation rocks (up to 5490 ppm) reflects the presence of barite nodules observed in outcrop at the stratotype location; however, these nodules were not observed in the Ogilvie Mountains. Regionally, the underlying Earn Group is known to contain stratiform barite horizons and high barium concentrations (Table 3.1). Recycling of these rocks during the Mississippian to Permian may account for Mount Christie Formation data. Whole-rock Nd isotope geochemical analysis was limited to one sample; however, the εNd (275 Ma) value of -8.2 is consistent with post-Devonian strata in the northern Cordillera (Table 3.1). Furthermore, Boghossian et al. (1996) and Garzione et al. (1997) concluded that since there are no crystalline source rocks along western

Laurentia with the εNd (t) values observed in Devonian-Permian miogeoclinal strata, the signatures likely reflect mixing of juvenile (young mantle extraction age) and evolved (upper crustal) source rocks. Patchett et al. (1999) used Nd isotope databases from the Cordilleran and Franklinian miogeoclines to suggest that growth of the Innuitian orogen and its foreland basin dispersed isotopically juvenile material across northern and western Laurentia. Deposits sourced from this orogen must have been systemically cannibalized and recycled into the miogeocline (Boghossian et al., 1996). 147 144 The Sm/ Nd value of 0.1189, corresponding to an εNd (275 Ma) value of -8.2, is higher with respect to most Cordilleran strata but overlaps with ratios from the Imperial and Tuttle formations (Table 3.1; Figure 3.19). Notably, the Devono-Mississippian Imperial and Tuttle formations are northerly sourced, having Nd isotope and detrital zircon linkages with the Innuitian orogenic belt (Garzione et al., 1997; Beranek, Chapter 2).

3.10.2 Jones Lake Formation Fine-grained sedimentary rocks from the Jones Lake Formation in the Selwyn and Ogilvie mountains have enriched REE signatures representative of an upper crustal

85 source (McClennan et al., 2003). In particular, [La/Yb]N and Eu/Eu* ratios compare well with Paleozoic Cordilleran deposits (Table 3.1). The Jones Lake Formation type section displays Cr and Co enrichment in the lower member whereas the Ogilvie Mountains section displays upsection increases in Cr and Sc relative to incompatible elements Th and La. These data, coupled with 147Sm/144Nd values up to 0.1345, suggest mixing of a mafic component with the upper crustal signature observed with the REEs. Barium concentrations up to ~4500 ppm indicate recycling of older Paleozoic strata, including the Mount Christie Formation, into the Triassic section. This hypothesis is consistent with the presence of older, reworked conodont elements in Triassic strata (Orchard, 2006). Neodymium isotope values from the type section range from -10.1 to -9.1, similar to other Cordilleran margin deposits, including Triassic WCSB strata (Table 3.1; Figure 3.19). Akin to analyses of Paleozoic strata, Nd isotope values for Triassic rocks have no known corollary with crystalline source rocks exposed along the Cordilleran margin,

suggesting a mixture of juvenile (εNd (t) = ~ 0 to +5) and evolved (εNd (t) = ~ 20) material. Boghossian et al. (1996) and Ross et al. (1997) hypothesized a mixed Innuitian- Laurentian source for the Toad, Liard, Sulphur Mountain, and Whitehorse formations in British Columbia and Alberta to explain the Nd isotope data.

3.11 DETRITAL MINERAL PROVENANCE CORRELATIONS 3.11.1 Mount Christie and Jones Lake formation stratotypes 3.11.1.1 Detrital zircon provenance Comparison of detrital zircon age peaks between samples of the lower and upper Jones Lake Formation type section show internal consistency but the disparity in number of analyses (25 vs. 147) makes robust assessment unfeasible. However, there is no detrital zircon evidence indicating the lower and upper members have significantly different provenance. Jones Lake Formation samples contained age peaks at 1745, 1834, 1837, 1997, and 2640 Ma, similar to multiple assemblages in northwestern Laurentia, including Neoproterozoic-Triassic strata of the WCSB and Triassic rocks of Arctic Alaska and Canadian Arctic Islands (see Table 3.2; Figure 3.20). Early to Middle Proterozoic

86 occurrences at 1423, 1474, and 1650 Ma overlap with age peaks from the Proterozoic Pinguicula Group of northern Yukon, Triassic rocks of the Canadian Arctic Islands, and Alexander terrane, a highly-displaced northern Cordilleran element with Baltican- Caledonian affinity (Gehrels et al., 1996). Middle to Late Proterozoic ages at 552, 601, 671, 878, 1098, 1155, and 1260 Ma are consistent with peaks in the Pinguicula Group, Pennsylvanian-Permian WCSB strata, Devono-Mississippian strata of northern Canada, Triassic Pat Bay and Ivishak formations of the Canadian Arctic Islands and Alaska, and Alexander terrane. Early Paleozoic age peaks in the lower and upper members at 373, 405, 406, 414, 433, 451, and 492 Ma are widespread in northern Laurentian deposits, observed in Late Devonian to Mississippian strata of Alaska and Yukon, Triassic rocks in the Canadian Arctic Islands and Alaska, and Alexander terrane (Figure 3.20). One 338 Ma zircon was also observed; although not defined as a population, this age is interesting because it corresponds to a known pulse of magmatism in the adjacent Yukon-Tanana terrane (Colpron et al., 2006).

3.11.1.2 Detrital muscovite provenance Detrital muscovite analyses from the Mount Christie and Jones Lake formations, yielding integrated ages at 430 ± 47 Ma and 360 ± 35 Ma, respectively, cannot be directly tied to other rock assemblages because suitable age databases have not been constructed along the Cordilleran miogeocline. No Paleozoic muscovite-bearing igneous or metamorphic rock units are known along the Laurentian autochthon in northwestern Canada, and the Paleozoic sedimentary record is mostly void of this mineral. However, Devine et al. (2006) demonstrated that muscovite in Yukon-Tanana terrane rocks in southeastern Yukon, presently ~200 km southwest of the Wilson Syncline, yield single- crystal Ar-Ar ages at 353 Ma. These ages are interpreted to record a regional exhumation event. Furthermore, cryptic Devono-Mississippian (ca. 360 Ma) deformation affected pre-Late Devonian rocks of Yukon-Tanana terrane in central and southeastern Yukon (e.g., Murphy et al., 2006). Although speculative, the occurrences of 338 Ma zircon and 360 Ma muscovite in the Jones Lake Formation stratotype location are consistent with an outboard, igneous-

87 metamorphic source terrain present along the Cordilleran miogeocline. However, a more robust dataset is needed to provide evidence for Triassic juxtaposition of Yukon-Tanana terrane with North America. Analytical errors associated with the 430 ± 47 Ma detrital muscovite age from the Mount Christie Formation poorly constrained the provenance of the unit. Nonetheless, the ca. 430 Ma age is compelling along with the 433 and 437 Ma detrital zircon age peaks in the overlying Jones Lake Formation type section.

3.11.2 Jones Lake Formation, Ogilvie Mountains Jones Lake Formation samples from the Ogilvie Mountains contained detrital zircon ages suggesting provenance continuity between the informal lower and upper members and also with the stratotype location in eastern Yukon. Like the type section, samples OG1 and OG2 from the lower member have less total analyses than the upper member; this in turn leads to more single-grain occurrences which are not statistically reliable. Jones Lake Formation samples from the Mount Robert Service region had Early Proterozoic to Archean age peaks at 1794, 1801, 1878, 1895, 1944, 1946, 1983, 1991, 2472, and 2711 Ma that compare favorably with Neoproterozoic to Triassic WCSB strata, Late Devonian to Mississippian strata of Alaska and northern Yukon, and Triassic Bjorne Formation of northern Canada (Table 3.2; Figure 3.20). Early to Middle Proterozoic peaks at 1409, 1500, 1622, and 1627 Ma are observed in Pinguicula Group rocks of the Ogilvie Mountains and Mississippian Tuttle Formation of northern Yukon. Middle to Late Proterozoic ages at 594, 944, 1020, 1061, 1096, and 1130 Ma correspond to peaks in Ordovician to Permian WCSB strata, the Imperial Formation, and Triassic strata of the Canadian Arctic Islands. Paleozoic populations occur at 382, 393, 401, 422, 430, 431, 451, 467, and 477 Ma, matching age peaks in Late Devonian to Mississippian strata of eastern Alaska and Yukon, Triassic strata in Arctic Canada and Alaska, and Alexander terrane (Figure 3.20). A single grain in sample OG4 at 350 Ma is consistent with known U-Pb ages from metaplutonic rocks of Yukon-Tanana terrane (Colpron et al., 2006). A single grain occurrence has statistical limitations; however, Early Mississippian zircon and the

88 micaceous nature of Ogilvie and Selwyn mountains Jones Lake Formation strata are consistent with an outboard source.

3.11.3 Jones Lake Formation, Sheldon Lake map area Late Triassic sandy limestone assigned to the Jones Lake Formation yielded detrital zircon signatures that are compatible with other exposures of the unit in the Ogilvie and Selwyn mountains. Early Proterozoic to Archean peaks at 2054 and 2090 Ma correspond to those observed in a sample of the Late Devonian Prevost Formation collected from the Connolly caldera region (Table 3.2). Early to Middle Proterozoic ages at 1432 and 1661 Ma compare with peaks in the Pinguicula Group and Triassic Bjorne Formation. Middle to Late Proterozoic peaks occurring at 594, 941, and 1035 Ma correlate with ages in the Imperial Formation, Pennsylvanian-Permian WCSB strata, and Alexander terrrane. Minor Paleozoic peaks are observed at 414 and 427 Ma are also observed in the Imperial and Tuttle Formations of northern Yukon, Triassic Ivishak Formation, and Alexander terrane. Single-grain ages at 371 and ca. 395 Ma are consistent with other Paleozoic and Triassic units in northwestern Canada.

3.11.4 Hoole Formation, Quiet Lake map area Detrital zircon analysis of Hoole Formation sandstone suggests Late Triassic strata of the parautochthonous Cassiar terrane have similar provenance to Jones Lake Formation and WCSB rocks. However, in comparison, the Hoole Formation has more Early Proterozoic and Archean zircon than Jones Lake Formation strata. This may indicate latitudinal control on detrital zircon populations or lack of dilution by early Paleozoic and Neoproterozoic grains. Hoole Formation strata are characterized by detrital zircon age peaks at 1836, 2027, and 2677 Ma that match those of Neoproterozoic to Triassic WCSB strata, Cambrian Adams Argillite of eastern Alaska, Late Devonian Prevost Formation, and Mississippian strata of northern Yukon (Table 3.2; Figure 3.20). A minor 1210 Ma peak has similarity with the Triassic Bjorne Formation in the Canadian Arctic Islands. The

89 Hoole Formation also contained one 433 Ma grain, consistent with Late Devonian- Triassic rocks in northwestern Canada (Table 3.1).

3.11.5 Toad Formation, La Biche River map area Toad Formation sandstone from southeasternmost Yukon shares provenance linkages with other Triassic strata of this study, including the Jones Lake Formation type section. Early Proterozoic to Archean age peaks at 1758, 1803, 1889, 1969, and 2728 Ma are also observed in Ordovician to Triassic WCSB strata, Late Devonian Imperal and Prevost formations, and Alexander terrane (Table 3.2; Figure 3.20). Early to Middle Proterozoic occurrences at 1589 and 1657 Ma correspond to known peaks in the Pinguicula Group, Cambrian Adams Argillite, Mississippian strata of Yukon, and Triassic Pat Bay and Bjorne formations. Middle Proterozoic ages at 1058, 1142, and 1242 Ma are seen in the Pinguicula Group, Pennsylvanian to Permian WCSB strata, Devonian clastic wedge deposits in the Canadian Arctic Islands, and Alexander terrane. One minor Paleozoic peak occurs at 465 Ma, consistent with the Mississippian Tuttle Formation, Early Triassic Ivishak Formation, and Alexander terrane. Multiple Paleozoic single-grain ages occur at 401, ca. 410, and ca. 435 Ma, similar to age peaks of Triassic rocks in Yukon. The Toad Formation also contains one 331 Ma zircon; as with the occurrence of Early Mississippian grains in Jones Lake Formation strata, this corresponds with U-Pb zircon ages of igneous rocks on Yukon-Tanana terrane.

3.12 CONCLUSIONS This sample suite generated the first detrital zircon (>800 grains) and whole-rock geochemical reference frame characterizing the composition and source of Triassic continental margin strata in Yukon. These data support the hypothesis of intrabasinal provenance linkages between Early to Late Triassic exposures of the Jones Lake Formation. Stratigraphic age and lithologic differences in the formation across west- central to eastern Yukon do not appear to affect provenance determinations. Faunal, geochemical, and isotopic data from Jones Lake Formation rocks demonstrate

90

147 144 Figure 3.19 – Plot of εNd (t) vs. Sm/ Nd for samples of the Mount Christie and Jones Lake formation type sections. Grey area indicates general spread of values from the Road River Group and Imperial and Tuttle formations of Garzione et al. (1997). provenance correlations with the Toad Formation, and Middle to Late Triassic WCSB and Cassiar terrane strata, which is taken as evidence for a homogeneous sedimentary system along western Laurentia preceding large-scale terrane accretion (Ross et al., 1997; 2005). Therefore, Triassic strata of this study should be explicitly included into the WCSB. Detrital zircon and trace element data from North American Triassic rocks compare favorably with those of northerly derived stratigraphic units, including the Late Devonian Imperial and Nation River formations, Mississippian Tuttle Formation and Keno Hill Quartzite, and the Triassic Pay Bay and Ivishak formations. Provenance correlations between these units, notably with ca. 380-450 Ma detrital zircon populations, provides strong evidence for Paleozoic volcanic rocks of the Innuitian orogenic belt,

91

Figure 3.20 – Normalized relative probability plot comparing detrital zircon data from this and previous studies in the Cordillera. JLF – Jones Lake Formation, KHQ – Keno Hill Quartzite, O–D – Ordovician to Devonian, OG – Ogilvie Mountains, lP-P - Pennsylvanian-Permian, WCSB – Western Canada Sedimentary Basin, YTT – Yukon-Tanana terrane, Z-C – Neoproterozoic to Cambrian. Sources listed in Table 3.2.

92 and related post-tectonic plutonism, being the ultimate source of these grains (cf., Beranek, Chapter 2). Consistent with previous provenance studies, mid- to late Paleozoic continental margin rocks were likely cannibalized and recycled into the miogeocline, delivering the Innuitian signature to higher stratigraphic levels (Boghossian et al., 1996). Innuitian-derived clastic strata, reworked or primary, probably covered a large portion the Canadian Shield at one time (Ross et al., 1997) and these rocks were likely redistributed along the continental margin. Trace element enrichment involving ferromagnesian components, ubiquitous detrital muscovite, and single-grain occurrences of Early Mississippian detrital zircon in Triassic strata of Yukon are compelling. These signatures are not typical of other Cordilleran deposits (Tables 3.1, 3.2). However, these data are compatible with a partial sedimentary source from Yukon-Tanana terrane. Provenance data from North American Triassic rocks in Yukon may provide one line of evidence supporting an hypothesis that Cordilleran terranes were encroaching on, or had begun accreting to, the North American continental margin by earliest Mesozoic time.

93 3.13 REFERENCES Boghossian, N.D., Patchett, P.J., Ross, G.M., and Gehrels, G.E., 1996, Nd isotopes and the source of sediments in the miogeocline of the Canadian Cordillera: Journal of Geology, v. 104, p. 259-277. Chang, S. Vervoort, J.D., McClelland, W.C., and Knaack, C., 2006, U-Pb dating of zircon by LA-ICP-MS: Geochemistry, Geophysics, Geosystems, v. 7, Q05009 doi:10.1029/2005GC001100. Colpron, M., Nelson, J.L., and Murphy, D.C., 2006, A tectonostratigraphic framework for the pericratonic terranes of the northern Canadian Cordillera, in Colpron M., and Nelson, J.L., eds., Paleozoic evolution and metallogeny of pericratonic terranes at the ancient Pacific margin of North America, Canadian and Alaskan Cordillera: Geological Association of Canada Special Paper 45, p. 1-23. Colpron, M., Nelson, J.L., and Murphy, D.C., 2007, Northern Cordilleran terranes and their interactions through time: GSA Today, v. 17, p. 4-10. Davies, G.R., 1997, The Triassic of the Western Canada Sedimentary Basin: tectonic and stratigraphic framework, paleogeography, paleoclimate, and biota: Bulletin of Canadian Petroleum Geology, v. 45, p. 434-460. DePaolo, D.J., 1981, Neodymium isotopes in the Colorado Front Ranges and crust- mantle evolution in the Proterozoic: Nature, v. 291, p. 93-196. Devine, F., Carr, S.D., Murphy, D.C., Davis, W.J., Smith, S., and Villeneuve, M., 2006, Geochronological and geochemical constraints on the origin of the Klatsa metamorphic complex: Implications for Early Mississippian high-pressure metamorphism within Yukon-Tanana terrane, in Colpron M., and Nelson, J.L., eds., Paleozoic evolution and metallogeny of pericratonic terranes at the ancient Pacific margin of North America, Canadian and Alaskan Cordillera: Geological Association of Canada Special Paper 45, p. 107-130. Garzione, C.N., Patchett, P.J., Ross, G.M., and Nelson, J.L., 1997, Provenance of Paleozoic sedimentary rocks in the Canadian Cordilleran miogeocline: a Nd isotopic study: Canadian Journal of Earth Sciences, v. 34, p. 1603-1618. Gehrels, G.E., and Ross, G.M., 1998, Detrital zircon geochronology of Neoproterozoic to Permian miogeoclinal strata in British Columbia and Alberta: Canadian Journal of Earth Sciences, v. 35, 1380-1401. Gehrels, G.E., Butler, R.F., and Bazard, D.R., 1996, Detrital zircon geochronology of the Alexander terrane, southeastern Alaska: Geological Society of America Bulletin, v. 108, p. 722-734. Gehrels, G.E., Johnsson, M.J., and Howell, D.G., 1999, Detrital zircon geochronology of the Adams Argillite and Nation River Formation, East-Central Alaska, U.S.A.: Journal of Sedimentary Research, v. 69, p. 135-144. Gibson, D.W., 1993, Triassic; subchapter 4G, in Stott, D.F., and Aitken, J.D., eds., Sedimentary cover of the craton in Canada: Geological Society of America, The geology of North America, v. D-1, p. 294-320. Gibson, D.W., and Barclay, J.E., 1989, Middle Absaroka Sequence – the Triassic stable craton, in Ricketts, B., ed., Western Canada Sedimentary Basin: Canadian Society of Petroleum Geologists, Special Publication no. 30, p. 219-233. Gordey, S.P., 2008, Geology, Selwyn Basin (105J and 105K), Yukon: Geological Survey of Canada Open File 5438, 1:250,000 scale.

94 Gordey, S.P., and Anderson, R.G., 1993, Evolution of the northern Cordilleran miogeocline, Nahanni map area (105I), Yukon and Northwest Territories: Geological Survey of Canada Memoir 428, Ottawa, Canada, 214 p. Gordey, S.P., and Makepeace, A.J., 2001, Bedrock geology, Yukon Territory: Geological Survey of Canada Open File 3754, 1:1,000,000 scale. Gordey, S.P., Wood, D., and Anderson, R.G., 1981, Stratigraphic framework of southeastern Selwyn Basin, Nahanni map area, Yukon Territory and District of Mackenzie, in Current Research Part A: Geological Survey of Canada Paper 81-1A, p. 395-398. Gordey, S.P., and Irwin, S.E.B., 1987, Geology, Sheldon Lake and Tay River map areas, Yukon Territory: Geological Survey of Canada, Map 19-1987, 1: 250 000 scale. Gordey, S. P., Geldsetzer, H. H. J., Morrow, D. W., Bamber, E. W., Henderson, C. M., Richards, B. C., McGugan, A., Gibson, D. W., and Poulton, T. P., 1991, Upper Devonian to Middle Jurassic assemblages. Pt. A. Ancestral North America, in Gabrielse, H., and Yorath, C. J., eds., Geology of the Cordilleran orogen in Canada: Geological Society of America, Decade of North American Geology G- 2, p. 221–328. Green, L.H., 1972, Geology of Nash Creek, Larson Creek, and Dawson map areas, Yukon Territory: Geological Survey of Canada Memoir 364, 157 p. Furlanetto, F., Thorkelson, D.J., Davis, W.J., Gibson, H.D., Rainbird, R.H., and Marshall, D.D., 2009, Preliminary results of detrital zircon geochronology, Wernecke Supergroup, Yukon, in Weston, L.H., Blackburn, L.R., and Lewis, L.L., eds., Yukon Exploration and Geology 2008: Yukon Geological Survey, p. 125-135. Jackson, S.E., Pearson, N.J., Griffin, W.L., and Belousova, E.A., 2004, The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology: Chemical Geology, v. 211, p. 47-69. Khudoley, A.K., 2003, Geology, Tika Creek (95C/10), Yukon Territory and Northwest Territories: Geological Survey of Canada Open File 1660, 1:50,000 scale. Link, P.K., Fanning, C.M., and Beranek, L.P., 2005, Reliability and longitudinal change of detrital zircon age spectra in the Snake River system, Idaho and Wyoming: An example of reproducing the bumpy barcode: Sedimentary Geology, v. 182, p. 101-142. Ludwig, K.R., 2003, User’s manual for Isoplot 3.0: A geochronologcal toolkit for Microsoft Excel: Berkeley Geochronology Center Special Publication 4, 71 p. McLennan, S.M., Bock, B., Hemming, S.R., Hurowitz, J.A., Lev, S.M., and McDaniel, D.K., 2003, The roles of provenance and sedimentary processes in the geochemistry of sedimentary rocks, in Lentz, D.R., ed., Geochemistry of sediments and sedimentary rocks: Evolutionary considerations to mineral deposit- forming environments: Geological Association of Canada Geotext 4, p. 7-38. McNicoll, V.J., Harrison, J.C., Trettin, H.P., and Thorsteinsson, R., 1995, Provenance of the Devonian clastic wedge of Arctic Canada: Evidence provided by detrital zircon ages, in Dorobek, S.L. and Ross, G.M., eds., Stratigraphic evolution of foreland basins: Society of Economic Paleontologists and Mineralogists, Special Publication 52, p. 77-93. Miller, E.L., Toro, J., Gehrels, G.E., Amato, J.M., Prokopiev, A., Tuchkova, M.I., Akinin, V.V., Dumitru, T.A., Moore, T.E., and Cecile, M.P., 2006, New insights

95 into Arctic paleogeography and tectonics from U-Pb detrital zircon geochronology: Tectonics, v. 25, p. 1-19. Murphy, D.C., Mortensen, J.K., Piercey, S.J., Orchard, M.J., and Gehrels, G.E., 2006, Mid-Paleozoic to early Mesozoic tectonostratigraphic evolution of Yukon-Tanana and Slide Mountain terranes and affiliated overlap assemblages, Finlayson Lake massive sulphide district, southeastern Yukon in Colpron, M., and Nelson, J.L., eds., Paleozoic evolution and metallogeny of pericratonic terranes at the ancient Pacific margin of North America, Canadian and Alaskan Cordillera: Geological Association of Canada Special Paper 45, p. 75-105. Nelson, J.L, Colpron, M., Piercey, S.J., Dusel-Bacon, C., Murphy, D.C., and Roots, C.F., 2006, Paleozoic tectonic and metallogenic evolution of the pericratonic terranes in Yukon, northern British Columbia and eastern Alaska, in Colpron, M., and Nelson, J.L., eds., Paleozoic evolution and metallogeny of pericratonic terranes at the ancient Pacific margin of North America, Canadian and Alaskan Cordillera: Geological Association of Canada, Special Paper 45, p. 323-360. Ogg, J.G., Ogg, G., and Gradstein, F.M., 2008, The concise geologic time scale: Cambridge University Press. Orchard, M.J., 1991, Conodonts, time and terranes: an overview of the biostratigraphic record in the western Canadian Cordillera, in Orchard, M.J., and McCracken, A.D., Ordovician to Triassic Conodont Paleontology of the Canadian Cordillera: Geological Survey of Canada Bulletin 417, p. 299-335. Orchard, M.J., 2006, Late Paleozoic and Triassic conodont faunas of Yukon and northern British Columbia and implications for the evolution of the Yukon-Tanana terrane. in Colpron, M., and Nelson, J.L., eds., Paleozoic evolution and metallogeny of pericratonic terranes at the ancient Pacific margin of North America, Canadian and Alaskan Cordillera: Geological Association of Canada, Special Paper 45, p. 229-260. Orchard, M.J., 2007, Conodont diversity and evolution through the latest Permian and Early Triassic upheavals: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 252, p. 93-117. Orchard, M.J., 2008, Lower Triassic conodonts from the Canadian Arctic, their intercalibration with ammonoid-based stages and comparison with other North American Olenekian faunas: Polar Research, v. 27, p. 393-412. Paces, J.B., and Miller, J.D., 1993, Precise U-Pb ages of Duluth Complex and related mafic intrusions, northeastern Minnesota: Geochronological insights to physical petrogenetic, paleomagnetic, and tectonomagmatic process associated with the 1.1 Ga Midcontinent Rift System: Journal of Geophysical Research, v. 98, p. 13997-14013. Patchett, P.J., Roth, M.A., Canale, B.S., de Freitas, T.A., Harrison, J.C., Embry, A.F., and Ross, G.M., 1999, Nd isotopes, geochemistry, and constraints on sources of sediments in the Franklinian mobile belt, Arctic Canada: Geological Society of America Bulletin, v. 111, p. 578-589. Pretorius, W., Weis, D., Williams, G., Hanano, D., Kieffer, B., and Scoates, J.S., 2006, Complete trace elemental characterization of granitoid (USGS G-2, GSP-2) reference materials by high resolution inductively coupled plasma-mass spectrometry: Geostandards and Geoanalytical Research, v. 30, p. 39-54.

96 Rainbird, R.H., McNicoll, V.J., Theriault, R.J., Heaman, L.M., Abbot, J.G., Long, D.G.F., and Thorkelson, D.J., 1997, Pan-continental river system draining Grenville orogen recorded by U-Pb and Nd-Sr geochronology of Neoproterozoic quartzarenites and mudrocks, northwestern Canada: Journal of Geology, v. 105, p. 1-17. Renne, P.R., Swisher, C.C., III, Deino, A.L., Karner, D.B., Owens, T. and DePaolo, D.J., 1998, Intercalibration of standards, absolute ages and uncertainties in 39Ar/40Ar dating: Chemical Geology, v. 145, p. 117-152. Ross, G.M., Gehrels, G.E., and Patchett, P.J., 1997, Provenance of Triassic strata in the Cordilleran miogeocline, western Canada: Bulletin of Canadian Petroleum Geology, v. 45, p. 461-473. Ross, G.M., Patchett, P.J., Hamilton, M., Heaman, L., DeCelles, P.G., Rosenberg, E., Giovanni, M.K., 2005, Evolution of the Cordilleran orogen (southwestern Alberta, Canada) inferred from detrital mineral geochronology, geochemistry, and Nd isotopes in the foreland basin: Geological Society of America Bulletin, v. 117, p. 747-763. Sláma, J. Košler, J., Condon, D.J., Crowley, J.L., Gerdes, A., Hanchar, J.M., Horstwood, M.S.A., Morris, G.A., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, B., Tubrett, M.N., and Whitehouse, M.J., 2008, Plešovice zircon – A new natural reference material for U-Pb and Hf isotopic microanalysis: Chemical Geology, v. 249, p. 1-35. Sun, S.S., and McDonough, W.F., 1989, Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes in Saunders, A., and Norry, M., Magmatism in ocean basins: Geological Society of London Special Publication 42, p. 313-345. Tempelman-Kluit, D.J., 1970, Stratigraphy and structure of the “Keno Hill Quartzite” in Tombstone River – upper Klondike River map areas, Yukon Territory (116B/7, B/8): Geological Survey of Canada Bulletin 180, 102 p. Tempelman-Kluit, D.J., 1977, Geology of Quiet Lake (105F) and Finlayson Lake (105G) map areas: Geological Survey of Canada Open File 486, 1:250,000 scale. Thompson, R.I., Roots, C.F., and Mustard, P.S., 1994, Geology of Dawson map area (116B, C) northeast of Tintina trench: Geological Survey of Canada Open File 2849, 1:50,000 scale. Van Achterbergh, E., Ryan, C.G., Jackson, S.E., and Griffin, W.L., 2001, Data reduction software for LA-ICP-MS, in Sylvester, P.J., ed., Laser Ablation-ICP-Mass Spectrometry in the Earth Sciences: Principles and Applications: Mineralogical Association of Canada (MAC) Short Course Series, Ottawa, Canada 42, p. 239- 243. Weis, D., Kieffer, B., Maerchalk, C., Barling, J., de Jong, J., Williams, G.A., Hanano, D., Pretorius, W., Mattielli, N., Scoates, J.S., Goolaerts, A., Friedman, R.M., and Mahoney, J.B. ,2006, High-precision isotopic characterization of USGS reference materials by TIMS and MC-ICP-MS: Geochemistry Geophysics Geosystems, v. 7, Q08006, doi:10.1029/2006GC001283.

97

Chapter 4:

Permo-Triassic closure of the Cordilleran marginal ocean basin: U-Pb detrital zircon and Ar-Ar detrital muscovite constraints from Triassic siliciclastic strata associated with Slide Mountain terrane in Yukon, northern British Columbia, and eastern Alaska1

1A version of this chapter will be submitted for publication. Beranek, L.P., Mortensen, J.K., and Ullrich, T. Permo-Triassic closure of the Cordilleran marginal ocean basin: U-Pb detrital zircon and Ar-Ar detrital muscovite constraints from Triassic siliciclastic strata associated with Slide Mountain terrane in Yukon, northern British Columbia, and eastern Alaska.

98 4.1 INTRODUCTION The Slide Mountain terrane (SMT) comprises a narrow, discontinuous belt of variably deformed deep-water marine strata, mafic igneous rocks of oceanic affinity, and slivers of oceanic lithosphere from eastern Alaska to southern British Columbia (SM in Figure 4.1; Monger et al., 1991). Recognized as the easternmost terrane in the Canadian Cordillera, the SMT comprises remnants of a marginal back-arc basin, the Slide Mountain Ocean, which developed alongside northwestern Laurentia (Nelson, 1993). The ocean is interpreted to have been fully closed by Late Permian-Early Triassic time, juxtaposing outboard terranes with the western edge of North America (Mortensen et al., 2007). Thus, the SMT is observed in thrust-faulted contact with Cordilleran margin strata on its eastern side (NAm in Figure 4.1) and is bounded by allochthonous terranes, such as Yukon-Tanana (YTT) and Quesnellia, to the west (YT and QN in Figure 4.1). The composition and age of SMT rocks in western Canada is analogous to that of the Havallah sequence in the Golconda allochthon of Nevada, a vestige of the Golconda Ocean, which is similarly adjacent to North American continental margin strata and outboard terranes. Study of this Cordilleran marginal ocean basin, the Slide Mountain- Golconda Ocean, is therefore fundamental to deciphering the timing, style, and nature of poorly understood late Paleozoic to early Mesozoic accretionary tectonism in western Canada and United States.

4.1.1 Slide Mountain terrane and related Triassic strata in the northern Cordillera Allochthonous tectonic elements such as the YTT and Quesnellia that presently bound SMT on its western side are interpreted to be fragments of continental arc and margin affinity that separated from Laurentia in latest Devonian time (Nelson et al., 2006). Extension and spreading in the back-arc region of these terranes, most likely attributed to slab rollback, generated a marginal ocean basin (cf., Piercey et al., 2004), hereto referred to as the Slide Mountain-Golconda Ocean (Figure 4.2a,b). Oceanic igneous and sedimentary strata recording the Late Devonian to Middle Permian history of this marginal basin in northwestern Canada are named the Slide Mountain assemblage, whereas the remnants of this depocentre are known in the Cordilleran geodynamic framework as the SMT (Colpron et al., 2006)

99 Growth of the Slide Mountain-Golconda Ocean in the northern Cordillera concluded in Middle Permian time when west-dipping subduction initiated along the eastern margin of YTT (Figure 4.2b; Mortensen, 1992). U-Pb zircon and Ar-Ar white mica ages from felsic igneous rocks, eclogite, and blueschist record the onset of this subduction ca. 269 Ma (Erdmer et al., 1998; Nelson and Friedman, 2004). Subsequently, consumption of ocean lithosphere accommodated closure of the marginal basin and transport of outboard terranes towards the North American margin (Figure 4.2b,c).

Figure 4.1 – Terranes of the Alaskan and Canadian Cordilleras. Slide Mountain terrane shown in black. Black stars and italtic text indicate sample locations. Abbreviations: AB – Alberta, AK – Alaska, B.C. – British Columbia, N.W.T. – Northwest Territories, U.S.A. – United States of America. Modified from Colpron et al. (2007).

100 Several lines of evidence suggest full closure of the Slide Mountain-Golconda Ocean occurred in western Canada by Late Permian-Early Triassic time. Furthermore, broadly coeval occurrences of deformation, unconformities, and magmatic cessation provide compelling support for accretion of outboard terranes, such as YTT and Quesnellia, against the northwestern North American margin in the latest Paleozoic to earliest Mesozoic. For example, U-Pb zircon ages from Permian metavolcanic rocks demonstrate that YTT arc magmatism ceased by ca. 253 Ma (Mortensen, 1992), suggesting that subduction of oceanic lithosphere concluded by that time. Contemporaneously, amphibolite-facies metamorphism (~9kbar, 600°C) affected Paleozoic metaigneous and metasedimentary rocks of YTT in western Yukon during the Late Permian to Early Triassic (Villeneuve et al., 2003; Berman et al., 2007; Mortensen et al., 2007). Sub-Triassic unconformities are documented along the Cordilleran miogeocline and on SMT, YTT, Quesnellia, and Stikinia in western Canada. Read and Okulitch (1977) concluded that sub-Triassic unconformities on Quesnellia in southern British Columbia demonstrate uplift and erosion during the Late Permian to Middle Triassic. Early(?) to Late Triassic marine strata are deposited on, or structurally imbricated with, SMT and YTT rocks in eastern Alaska, Yukon, and northern British Columbia. Triassic strata associated with SMT typically comprise muscovite-bearing siliciclastics similar to coeval rocks to the east along the Cordilleran margin. This may provide evidence for an early Mesozoic sedimentary linkage between SMT and North America in the northern Cordillera (Gabrielse, 1991; Nelson, 1993; cf., Roback et al., 1994). The paleogeography of northern Cordilleran tectonic elements and related Triassic strata remains under debate. Mutually exclusive hypotheses suggest these assemblages developed alongside the western Laurentian margin (Colpron et al., 2007) or that they are highly displaced from their origin (Johnston, 2008); the accepted model in the northern Cordillera favors the former. However, some Permian and Late Triassic of SMT contain faunal groups rare to North American strata, including giant Parafusulina and the conodonts Epigondolella aff. E. spatulata and Paragondolella? hallstattensis (Nelson, 1993; Orchard, 2006). These fauna are more typical of McCloud and Tethyan collections, respectively, and the latter have been used to infer a large displacement

101 Figure 4.2 – Paleozoic paleogeographic evolution of northwestern Laurentia and pericratonic terranes.

YTT – Yukon-Tanana terrane

Modified from Colpron et al. (2007).

history for Cordilleran terranes (Carter et al., 1991; Belasky and Stevens, 2006).

4.1.2 Testable hypotheses for the source of Triassic strata Three end-member hypotheses exist for the source and paleogeography of Early(?) to Late Triassic sedimentary rocks associated with SMT in the northern Cordillera: (1) these units were deposited upon Slide Mountain assemblage rocks along the eastern margin of the Slide Mountain-Golconda Ocean, demonstrating an eastern source and linkage with the North American margin; (2) these strata were deposited adjacent to the Permian (and Triassic?) YTT arc in the western Slide Mountain-Golconda Ocean, prior to ocean closure, with YTT provenance and unclear paleogeographic affinity to Laurentia; or (3) their deposition postdates full closure of the Slide Mountain- Golconda Ocean, indicating sediment derivation from YTT and North America, forming

102 an overlap assemblage or “hard pin” between accreted elements and North America by early Mesozoic time. These hypotheses were evaluated by testing the detrital zircon provenance of Triassic strata in six locations in eastern Alaska, Yukon, and northern British Columbia. Single-grain Ar-Ar detrital muscovite ages from two detrital zircon samples were also determined. Provenance analysis is a valuable tool to constrain the source and approximate paleogeographic position of Triassic strata because robust U-Pb zircon age datasets exist for Paleozoic rocks of YTT and North American continental margin strata (Gehrels and Ross, 1998; Colpron et al., 2006).

4.2 SAMPLE LOCALITIES AND GEOLOGIC FRAMEWORK 4.2.1 Taylor Highway locality, Eagle quadrangle, eastern Alaska Slide Mountain assemblage rocks in the Eagle quadrangle, immediately west of the United States-Canadian border, ~60 km northeast of Chicken, Alaska, comprise serpentinized peridotite, pillowed greenstone, diabase, and Mississippian to Triassic metasedimentary strata (Figures 4.1, 4.3, 4.4). Initially defined as the Seventymile terrane, these rocks are considered to be equivalent to SMT in Canada (Harms et al., 1984; Dusel-Bacon and Harris, 2003). Slide Mountain units represent the structurally highest rocks in the region and form klippen on metasedimentary and Mississippian to Permian metavolcanic units (Dusel-Bacon et al., 2006). Triassic sedimentary rocks of this region are in depositional contact with underlying greenstone, have a low metamorphic grade, and are not penetratively deformed (Foster et al., 1994). Grey, fine-grained, muscovite-bearing sandstone exposed along the Taylor Highway was sampled for detrital zircon analysis (sample AK). A conodont collection near the sample locality indicated a latest Carnian and earliest Norian age (Foster et al., 1994; Dusel-Bacon and Harris, 2003).

4.2.2 Clinton Creek abstestos mine, western Yukon An imbricate stack of serpentinite and greenstone, mid-Paleozoic igneous and sedimentary rocks of YTT, and Triassic sedimentary rocks are exposed near the Clinton Creek asbestos mine, directly east of the United States-Canada border, ~80 km northwest

103 ework for Triassic sedimentary sedimentary Triassic for ework – Simplified stratigraphic fram Figure 4.3 Figure rocks associatedwithMountain– Slide lake. Alaska, Lk. – AK terrane. eds., Nelson, and Colpron from Modified (2008). al. et Ogg of scale Time (2006).

104

Figure 4.4 – Simplified geologic map of easternmost Alaska-westernmost Yukon. Black star indicates approximate location of detrital zircon sample AK. CC is Clinton Creek mine site. Modified from Dusel- Bacon et al. (2006).

of Dawson, Yukon (Figures 4.1, 4.3, 4.5; Abbott, 1983; Mortensen, 1988). Abbott (1983) divided the rock units at the mine site into two divisions: a sheared assemblage comprising greenschist facies igneous and metasedimentary rocks and a weakly deformed assemblage consisting primarily of Triassic strata. Htoon (1981) reported amphibolite, greenstone, and quartz-muscovite schist from the Clinton Creek mine area yielded 278 ± 10 Ma (K-Ar), 255.8 ± 23 (Rb-Sr), and 245 Ma (K-Ar) ages, respectively, concluding these rocks were subjected to a Permian metamorphic event. In an adjacent map area to the southeast, Berman et al. (2007) documented that garnet porphyroblasts in mid-Paleozoic YTT schist record amphibolite- facies metamorphism at conditions near 9 kbar and 600° C. Detrital zircons from the schist yield low Th/U rims indicating ca. 260 Ma metamorphism (Villeneuve et al., 2003). West of Clinton Creek, Mortensen et al. (2007) recognized Middle to Late

105 Permian metavolcanics of YTT contain two ductile fabrics that are cross-cut by ca. 250 intrusions. Regionally, YTT metaigneous rocks yield U-Pb zircon ages of 256-264, 345- 355, and 357-365 Ma (Mortensen, 1990; Colpron, 2006). Weakly deformed Triassic strata at the Clinton Creek mine site comprise light to dark grey, parallel laminated, muscovite-bearing, calcareous shale to medium-grained sandstone with subordinate black sooty shale and orange weathering, dark grey, argillaceous limestone. Four samples of Triassic sandstone were collected for detrital zircon analysis. Previous (see review by Orchard, 2006) and new conodont biostratigraphic data (M. Orchard, pers. comm.) constrain the age of these samples. Sample CC1, collected east of the Clinton Creek access road (Figure 4.5) is immediately underlain and overlain by limestone bearing early to middle Norian conodonts. Three samples (CC2-CC4) were collected from a 40 m-thick stratigraphic section structurally overlying sample CC1 and serpentinite along the headwall of the Porcupine Pit in the mine site proper (Figure 4.5); this section also contained Norian conodont elements.

Figure 4.5 – Simplified geologic map of the Clinton Creek asbestos mine area. Black stars indicate sample locations. Modified from Mortensen (1988).

106 4.2.3 Tummel fault zone, Glenlyon map area, central Yukon Metaclastics, mafic and intermediate igneous rocks, and tectonized harzburgite comprise Slide Mountain assemblage units in Glenlyon map area of central Yukon where they are included within the Tummel fault zone, a narrow structural belt that juxtaposes YTT with North American strata of the Cassiar terrane (Figures 4.1, 4.3, 4.6; Colpron et al., 2005). Igneous and sedimentary rocks of SMT in the Tummel fault zone are largely Pennsylvanian to Permian in age; an intermediate volcanic rock from this zone yielded a U-Pb zircon age of ca. 267 Ma (Colpron et al., 2005). A fault panel of Slide Mountain assemblage east of the Tummel fault zone, named the Ragged klippe, comprises gabbro, monzonite, and chert overlying Cassiar terrane. The gabbro unit was dated by U-Pb zircon at 260 Ma (Colpron et al., 2006b). Various plutonic, volcanic, and sedimentary rock assemblages comprise YTT west of the Tummel fault zone. Igneous suites yield U-Pb zircon ages from 339-356 Ma and have inherited Proterozoic and Archean components, possibly derived from adjacent exposures of the pre-Late Devonian basement to YTT, the Snowcap assemblage (Figure 4.6; Colpron et al., 2006b). Western YTT is juxtaposed with the Semenof block in western Glenlyon map area, a terrane of uncertain affinity (Figure 4.6). However, it may be correlative with late Paleozoic rocks of Quesnellia and Stikinia in British Columbia and (Colpron et al., 2006). The Semenof block is characterized by mid-Paleozoic mafic metavolcanic rocks and Pennsylvanian (ca. 300 Ma) intrusive rocks. Pennsylvanian-Permian chert of SMT is overlain by a succession of shale, muscovite-bearing sandstone, and limestone containing Middle Triassic conodonts north of Drury Lake (see Figure 4.6; Orchard, 2006). Regionally, coarse-grained siliciclastic rocks occur in fault slivers adjacent to the Tummel fault zone and are inferred to be lateral equivalents to these Middle Triassic strata (Colpron et al., 2006b). Conglomerate of the Tummel fault zone contains clasts of quartzite, phyllite, greenstone, chert, garnet amphibolite, and serpentinite; some lithic fragments are foliated, indicating deformation of their source rocks prior to recycling in the Triassic (Colpron et al., 2005). Colpron et al. (2005) reported 105 detrital zircon ages from polymictic conglomerate collected from the toe of the Bearfeed allochthon, a klippe overlying YTT immediately west of the Tummel fault zone. These workers concluded the presence of

107 ca. 252 Ma detrital zircon indicates an Early Triassic or younger depositional age. Furthermore, Colpron et al. (2005) interpreted coarse-grained strata of the Tummel fault zone region to be synorogenic in nature, reflecting convergence between YTT, SMT, and Semenof block, shortly after the Early Triassic. Four samples from this area were collected for detrital zircon analysis. Three of these samples comprised coarse-grained sandstone and conglomerate occurring as fault slivers within the Tummel fault zone (samples GL1- GL3). Micaceous sandstone overlying SMT, directly below limestone with Middle Triassic conodonts, was also selected (sample GL4). Detrital muscovite from sample GL3 was also dated.

Figure 4.6 – Geology of the Tummel fault zone, central Yukon. Black stars indicate sample locations. RCH- Robert Campbell Highway, RL – Ragged Lake. Modified from Colpron et al. (2006b)

108 4.2.4 Northern Finlayson Lake district, southeastern Yukon The YTT, SMT, and related Permo-Triassic strata are exposed in multiple fault- bounded successions between the Tintina fault and North American continental margin in the northern Finlayson Lake district of southeastern Yukon (Figures 4.1, 4.3, 4.7a). Murphy et al. (2002) defined YTT as Late Devonian to Permian igneous and metasedimentary rocks west of the Jules Creek fault, a major transcurrent structure forming the boundary between YTT and SMT (Figure 4.7a). Slide Mountain assemblage units east of the Jules Creek fault comprise Mississippian to Permian chert, metaclastic rocks, and mafic and ultramafic metaigneous rocks in the upper plate of the Inconnu thrust, the regional structure separating peri-Laurentian terranes from the North American margin (Figure 4.7a; Murphy et al., 2002). Slide Mountain assemblage rocks in the northern Finlayson Lake district consist of three units: the Fortin Creek group and Campbell Range and Gatehouse formations (all informal units; see Murphy et al., 2006). The Mississippian to Permian Fortin Creek group is the oldest recognized unit and comprises variably deformed, carbonaceous phyllite, variegated chert, and chert pebble conglomerate with subordinate metavolcanic rocks and carbonate. Fortin Creek group rocks are restricted to the east side of the Jules Creek fault; however, Murphy et al. (2006) suggested the assemblage may have stratigraphic correlation with, and partial provenance from, YTT rocks to the west. Fortin Creek group rocks are overlain by weakly deformed, Early to Middle Permian mafic igneous rocks and chert of the Campbell Range formation. Igneous rocks that cross-cut and are likely comagmatic with Campbell Range formation basalt yield U- Pb zircon ages at ca. 274 Ma (Mortensen, 1992; Murphy et al., 2006). Volcanic rocks of this formation are spatially associated with, and appear on either side of, the Jules Creek fault indicating a Permian stratigraphic linkage between SMT and YTT (Murphy et al., 2006). The Gatehouse formation comprises massive limestone, dolomite, and quartzite deposited around the Jules Creek fault during late Early to Middle Permian time (Murphy et al., 2006). This unit has not yielded any macrofaunal collections north of the Jules Creek fault; however, it is considered to be roughly correlative with SMT-related rocks in

109

Figure 4.7a – Geologic map of the northern Finlayson Lake district. NAM – North American miogeocline, YTT – Yukon-Tanana terrane. Black star indicates sampled stratigraphic succession. Modified from Murphy et al. (2006).

eastern Alaska and east-central Yukon containing large and giant fusulinids (Dusel- Bacon and Harris, 2003; Pigage, 2004). Coarse-grained siliciclastics and felsic metavolcanic rocks of the Simpson Lake group are deposited over all three units of the Slide Mountain assemblage (Murphy et al., 2006). Simpson Lake group strata comprise muscovite-bearing siltstone and sandstone and polymictic conglomerate with blueschist, eclogite, garnet amphibolite, basalt, foliated chert, limestone, carbonaceous phyllite, andesite, and dacite rock fragments; the presence of these lithics likely reflects recycling of YTT and SMT source rocks (Murphy et al., 2006). Metavolcanic rocks spatially associated with, but underlying the Simpson Lake group, yield U-Pb zircon ages of 254-259 Ma (Murphy et al., 2006). Therefore, Simpson Lake group deposition occurred contemporaneous with subduction along the inboard margin of YTT, evidence that the group records marine sedimentation in a forearc setting alongside its late Paleozoic arc (Mortensen et al., 1999). Conodont

110 collections from the group range from Early Permian to earliest Triassic in age (Orchard, 2006). Weakly deformed, muscovite-bearing Middle to Late Triassic siltstone and sandstone overlie YTT, Fortin Creek group strata, and Paleozoic rocks of the North American continental margin in the Finlayson Lake area. Murphy et al. (2006) suggested these lithologic and age similarites may require juxtaposition and amalgamation of all three tectonic elements by Late Triassic time. Paradoxically, in one location, late early Norian limestone overlying Fortin Creek group strata contains the conodonts Epigondolella aff. E. spatulata and Paragondolella? hallstattensis (Orchard, 2006). These species are uncommon to the North American margin; however, conodonts similar to these are typical of late early Norian strata in Eurasia and within the highly-displaced Wrangellia terrane. Four detrital zircon samples were collected along a single north-south transect in this region. These samples comprise conglomerate and sandstone overlying Fortin Creek group in the hanging wall of the Inconnu thrust and an overlying imbricate stack of Simpson Lake group(?) sandstone and conglomerate with foliated chert clasts (Figures 4.3, 4.7a, b).

Figure 4.7b – Schematic stratigraphic section in northern Finlayson Lake district. Black stars indicate relative locations of detrital zircon samples. NAM – North American miogeocline, SMT – Slide Mountain terrane.

111 4.2.5 McNeil Lake klippen, southeastern Yukon Cassiar terrane continental margin strata are intruded by a diorite plug and overlain by lithic sandstone, greywacke, crystal lithic tuff, rhyolite porphyry, and deformed ribbon chert and calc-silicate rocks in the southern Pelly Mountains of southeastern Yukon (Figures 4.1, 4.3, 4.8a, b). Gordey (1981) interpreted deformed rocks to be in low-angle, thrust faulted contact with underlying strata, forming several klippen in the region. These panels are referred to as the McNeil Lake klippen in this study, named for nearby McNeil Lake. Gordey (1981) considered the klippen to comprise Paleozoic rocks of what has now been named YTT; coarse clastics and volcaniclastics in the footwall were interpreted to be Jura-Cretaceous in age, in disconformable contact with underlying Cassiar terrane strata, possibly remnants of a clastic wedge succession derived from outboard terranes encroaching on the North American margin. The diorite plug was also interpreted to be Jura-Cretaceous. Chert, coarse-grained lithic sandstone (with serpentinite, quartzose metamorphic, chert, and volcanic rock fragments), and felsic volcanic rocks in the McNeil Lake klippen are lithologically similar to Slide Mountain assemblage and Simpson Lake group units in the Finlayson Lake map area and may be roughly correlative with them. Therefore, volcanic and volcaniclastic rocks directly below the klippen of Gordey (1981), although not penetratively deformed, may also be allochthonous, possibly as fault slivers caught up with overlying rocks. To evaluate the provenance of the volcaniclastic unit of Gordey (1981), one sample of coarse-grained feldspathic volcanic lithic sandstone was collected for detrital zircon analysis (sample MK; see Figure 4.8a).

4.2.6 Sylvester allochthon, northern British Columbia The Sylvester allochthon of northern British Columbia (Figure 4.1) comprises an imbricate stack of ophiolitic, island-arc, and pericratonic assemblages forming a large klippe that structurally overlies continental margin strata of the Cassiar terrane. Nelson (1993) separated rocks of the allochthon into three structural packages (Divisions I, II,

112

Figure 4.8a – Geologic map of the McNeil Lake region, southeastern Yukon. Black star indicates location of detrital zircon sample MK. White area represents undifferentiated Paleozoic Cassiar terrane strata. Modified from Gordey (1981).

Figure 4.8b – Schematic options for stratigraphic sections through the McNeil Lake klippen. Black stars indicate locations of sample MK. Pz – Paleozoic, SMT – Slide Mountain terrane, YTT – Yukon-Tanana terrane.

113 and III), themselves internally imbricated, which include units of SMT, YTT, and Quesnellia. Slide Mountain assemblage rocks in the Sylvester allochthon comprise deep- water marine strata, mafic igneous rocks, and ultramafite and gabbro-leucogabbro- amphibolite of probable lower oceanic crust and upper mantle affinity (Nelson, 1993; Colpron et al., 2006). A body of leucogabbro from an oceanic succession had a U-Pb zircon age ca. 269 Ma (Gabrielse et al., 1993). Other local igneous rocks of YTT have U-Pb zircon ages of 264-269, 334-349, 373, and 390 Ma (Nelson and Friedman, 2004). Late Triassic sooty slate, limestone, and muscovite-bearing siltstone and sandstone of the Sylvester allochthon are assigned to the Table Mountain formation (Figure 4.3). Table Mountain formation strata occur in disparate, structurally imbricated sections that are accessible along road cuts, such as Cusac Road, at the Cusac gold property near Cassiar, British Columbia (Figure 4.9). Table Mountain formation rocks occupy the highest structural level of Division II in the Sylvester allochthon and are observed to be in sheared contact with underlying Slide Mountain assemblage units (Figure 4.3). The sheared contact is considered to be an unconformity that was reactivated into a decollement (Nelson and Bradford, 1988). Nelson (1993) noted Table Mountain formation rocks have stratigraphic similarites with coeval North American strata of the Cassiar terrane and basal Takla and Slocan groups of Quesnellia. Table Mountain formation platy limestone has yielded Halobia imprints, beleminites, and an ichthyosaur jawbone; similar bivalve-bearing, platy, Triassic limestone is also observed along the adjacent North American margin. Muscovite-bearing North American Triassic strata in the neighboring form a southwest-thickening wedge with southwest-trending paleocurrent directions. Therefore, Nelson (1993) suggested that Table Mountain formation rocks form a loose overlap sequence linking SMT with North America. Late Paleozoic calc-alkaline igneous rocks of Division III structurally overlie Division II rocks along the Table Mountain fault. This assemblage, comprising the Pennsylvanian Huntergroup volcanics and Pennsylvanian to Permian Fourmile volcanics, has been assigned to the Harper Ranch arc of Quesnellia and is built on both YTT and SMT (Nelson, 1993; Nelson and Friedman, 2004). Division III rocks include fusulinid-

114

Figure 4.9 – Regional bedrock geology of the Cusac gold property, Cassiar area, northern British Columbia. Black stars indicate detrital zircon and muscovite samples. Modified from Colpron et al. (2007b).

bearing limestone of Middle Permian age and limestone, tuffaceous limestone, and limy volcanic sandstone with diverse brachiopod and coralline fauna of mixed North American-Uralian affinity. Fusulinid-bearing limestone in Division III contains the giant Parafusulina species P. macdamensis (Ross, 1969; Nelson, 1993). This species is well- known to allochthonous Permian rock units in the western United States, including the McCloud Limestone of the eastern Klamath Mountains (Miller, 1987). The appearance of these fauna in Word Formation strata of Texas may indicate a low latitude paleogeographic environment for Division III rocks; however, their relationship to the width of the Slide Mountain-Golconda Ocean, and proximity to the North American craton is unclear (Belasky and Stevens, 2002).

115 Paleomagnetic investigation of Slide Mountain assemblage rocks in northern British Columbia concluded ~20° of northward translation has occurred since the Early Permian, signifying a late Paleozoic paleo-position near northern California (Richards et al., 1991). The geodynamic linkage between the Harper Ranch arc, YTT, and SMT in the Sylvester allochthon constrains their relative late Paleozoic paleogeography and likely demonstrates that Paleozoic Quesnellia rocks were an available source for Triassic strata. Four samples of Table Mountain formation sandstone were selected for detrital zircon analysis (samples SA1-4; Figure 4.9). Detrital muscovite from sample SA4 was also dated.

4.3 DETRITAL MINERAL REFERENCE FRAMES FOR THE NORTHERN CORDILLERA U-Pb detrital zircon age data have been used to construct reference frames for both allochthonous terranes and continental margin strata in western and northern North America (e.g., Gehrels et al., 1995, 1996; Gehrels and Ross, 1998). Reference frames comprise terrane- and craton-defining detrital zircon signatures useful in reconstructing displacement and paleogeographic histories (see Mahoney et al., 1999; Berry et al., 2001).

4.3.1 Ancestral North American margin Two detrital zircon signatures have been observed in northern Cordilleran margin rocks: (1) pre-Late Devonian strata are rich in early Precambrian (1800-3000 Ma) detrital zircons with minor Middle to Late Proterozoic input; and (2) post-Late Devonian rocks have prominent early Paleozoic (370-450 Ma), Neoproterozoic (530-700; 1000-1300 Ma), and Mesoproterozoic (1400-1600 Ma) detrital zircon age peaks. Northerly derived units of Late Devonian to Late Triassic age in Alaska, Yukon, and Northwest Territories contain ca. 430, ca. 1000, and 1400-1600 Ma detrital zircon (Gehrels et al., 1999; Miller et al., 2006, Beranek, Chapter 2), consistent with data from northerly derived Ellesmerian clastic wedge deposits in the Canadian Arctic Islands (McNicoll et al., 1995). Therefore, the working hypothesis in the northern Cordillera

116 consists of early Paleozoic detrital zircons being ultimately sourced from volcanic rocks of the Innuitian orogenic belt, now submerged under the Arctic Ocean. Detrital zircon data collected from Neoproterozoic to Triassic strata in eastern Alaska and northwestern Canada have been compiled and processed through a Microsoft Excel macro that determines statistically reliable age peaks (Table 4.1). This macro was also used to determine statistical reliability for Triassic samples discussed by this study, allowing simple comparison between all datasets.

4.3.2 Yukon-Tanana terrane The YTT consists of four tectonic assemblages (Colpron et al., 2006). The lowest tectonostratigraphic level of YTT is the Snowcap assemblage, a pre-Late Devonian package of metasedimentary and mafic metavolcanic rocks with continental margin affinity. Detrital zircons from one sample of Snowcap assemblage quartzite contain Paleoproterozoic (1867, 1941, 2080, 2142 Ma) and Archean (2641, 2715, 2757, 2801 Ma) ages, likely indicating an ultimate source from the northwestern North American autochthon (see Table 4.1; Colpron and Piercey, unpublished). The Snowcap assemblage is overlain by three unconformity-bounded successions (Finlayson, Klinkit, and Klondike assemblages). The composite YTT comprises volcanic rocks and related intrusive bodies that record magmatic cycles from 253-269, 269-314, 314-342, 342-357, and 357-365 Ma (Colpron et al., 2006). The 269-314 Ma pulse is characterized by mafic and intermediate volcanic rocks that are not suitable for U-Pb zircon geochronology and their age has been mainly constrained with fossil collections. Direct dating of muscovite in Paleozoic metavolcanic rocks of YTT has not yet been conducted. Hypothesized ages will probably correlate with known deformational events ranging from 252-360 Ma (see Colpron and Nelson, 2006). White mica Ar-Ar dates from various subduction-related assemblages in southeastern Yukon, likely recording the timing of rock uplift below ca. 350°C, have yielded ages 236, 269, 345, and ca. 353 (Erdmer et al., 1998; Devine et al., 2006).

117 4.4 ANALYTICAL METHODS AND DATA PRESENTATION 4.4.1 U-Pb geochronology Detrital zircons were dated using laser ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS) at the Pacific Centre for Isotopic and Geochemical Research (PCIGR), University of British Columbia. Zircons were separated from 2-5 kg samples using conventional Wilfley table, heavy liquid, and magnetic methods. A random portion of each of the zircon concentrates was mounted in an epoxy puck along with several grains of the 337 Ma Plešovice (Sláma et al., 2008) and 1099 Ma FC-1 (Paces and Miller, 1993) standard zircons and brought to a very high polish to expose the interior of the grains. The surface of the mount was washed for 10 minutes with dilute nitric acid and rinsed in ultraclean water prior to analysis. Zircons were analyzed with a New Wave UP- 213 laser ablation system and Thermo-Finnigan Element2 single collector, double- focusing, magnetic sector ICP-MS, following similar operating parameters as those described by Chang et al. (2006). Line scans rather than spot analyses were employed to minimize elemental fractionation. Typically, 35% laser power and 25 micron laser diameter were used. Background levels were measured with the laser off for 25 seconds, followed by data collection with the laser on for approximately 47 seconds. The time-integrated signals were analyzed using the GLITTER software package described by Van Achterbergh et al. (2001) and Jackson et al. (2004), which automatically subtracts background measurements, propagates all analytical errors, and calculates isotopic ratios and ages. Corrections for mass and elemental fractionation were made by bracketing analyses of unknown grains with replicate analyses of the standard zircon. A typical analytical session consists of four analyses of the standard zircon, followed by five analyses of unknown zircons, one standard analysis, five unknown analyses, etc., and finally four standard analyses. Interpreted ages and isotopic ratios are presented in Appendix C. All errors reported are at the 1-sigma level. Interpreted ages for grains <1000 Ma are based from 206Pb/238U ages. For detrital zircons >1000 Ma, 207Pb/206Pb ages are used which underestimate the true age for discordant grains. However, Precambrian zircons with >10% discordance are not included in the results or age plots.

118 U-Pb zircon age data are presented in relative probability plots with stacked histograms, prepared using the Isoplot 3.0 Excel macro of Ludwig (2003). These plots contain both a relative probability curve corresponding to age peaks and a histogram to show the distribution of specific grain populations (e.g., Link et al., 2005). Each detrital zircon sample comprises two plots: one from 0 to 3000 Ma in 50 m.y. bins to show the entire age spectrum and one from 200 to 700 Ma in 5 m.y. bins to highlight young populations (Figures 4.10-4.13). This is the most straightforward way to display the quantity of zircon analyzed and the important Paleozoic age populations of each sample. Specific age peaks discussed in the text were determined by using the Detrital Zircon Age Pick macro created by G.E. Gehrels for Microsoft Excel; this macro processes given ages and errors at the 1-sigma level and produces age groupings and peaks at the 2-sigma level. A normalized probability plot containing samples from this study and previously published data is displayed in Figure 4.15; this plot was produced from macro developed by G.E. Gehrels.

4.4.2 Ar-Ar geochronology Detrital muscovite separates were hand-picked, washed in acetone, dried, wrapped in aluminum foil and stacked in an irradiation capsule with similar-aged samples and neutron flux monitors (Fish Canyon Tuff sanidine, 28.02 Ma; Renne et al. 1998). Samples were irradiated at the McMaster Nuclear Reactor in Hamilton, Ontario, for 90 MWH, with a neutron flux of approximately 6x1013 neutrons/cm2/s. Analyses (n = 48) of 16 neutron flux monitor positions produced errors of < 0.5% in the J value. The samples were analyzed at the Noble Gas Laboratory at PCIGR. Mineral separates were step-heated at incrementally higher powers in the defocused beam of a 10W CO2 laser (New Wave Research MIR10) until fused. The gas evolved from each step was analyzed by a VG5400 mass spectrometer equipped with an ion-counting electron multiplier. All measurements were corrected for total system blank, mass spectrometer sensitivity, mass discrimination, radioactive decay during and subsequent to irradiation, as well as interference from atmospheric Ar contamination and the irradiation 40 39 37 39 of Ca, Cl and K (isotope production ratios: ( Ar/ Ar)K = 0.0302 ± 0.00006, ( Ar/ Ar)Ca 36 39 37 39 = 1416.4 ± 0.5, ( Ar/ Ar)Ca = 0.3952 ± 0.0004, Ca/K = 1.83 ± 0.01( ArCa/ ArK)).

119 Ages were calculated and plotted (Figure 4.14) using the Isoplot 3.0 Excel macro of Ludwig (2003). Errors are quoted at the 2-sigma (95% confidence) level and are propagated from all sources except mass spectrometer sensitivity and age of the flux monitor. The best statistically-justified plateau and plateau age were picked based on the following criteria: (1) three or more contiguous steps comprising more than 50% of the 39Ar; (2) probability of fit of the weighted mean age greater than 5%; and (3) slope of the error-weighted line through the plateau ages equals zero at 5% confidence.

4.5 RESULTS Relative probability plots with histograms displaying detrital zircon and muscovite data are presented in Figures 4.10-4.14. Samples in this section are described north to south from eastern Alaska to northern British Columbia. Individual plots in the figures are ordered with increasing depositional age from top to bottom. In cases where the exact depositional age is unconstrained in faulted and deformed regions, samples are ordered according to highest to lowest structural level from top to bottom.

4.5.1 Taylor Highway locality, Eagle Quadrangle, eastern Alaska Sample AK (n = 67) Fine- to medium-grained, muscovite-bearing sandstone overlying SMT greenstone contained detrital zircon age peaks at 412, 428, 607, 979, 1001, 1049, 1480, 2089, and 2653 Ma (Figure 4.10). Single-grain ages were at 298, ca. 360, and 530-587 Ma.

4.5.2 Clinton Creek asbestos mine, western Yukon Sample CC1 (n = 60) Fine- to medium-grained, calcareous sandstone collected from the Clinton Creek drainage contained age peaks at 384, 411, 420, 532 614, 630, 1021, 1057, 1228, and 1309 Ma (Figure 4.10). Single-grain ages were from 353-363 and 381-391 Ma.

120

Figure 4.10 – Relative probability plots with histograms showing detrital zircon ages for samples from eastern Alaska and Clinton Creek mine, western Yukon.

Sample CC2 (n = 105) Medium-grained quartz sandstone structurally overlying serpentinite in the Porcupine Pit of the Clinton Creek asbestos mine had age peaks at 229, 255, 261, 302, 351, 371, 387, 401, 410, 427, ca. 600, 620, 1006, 1079, 1167, 1382, 1479, 1606, and 1664 Ma (Figure 4.10).

121 Sample CC3 (n = 44) Medium-grained, muscovite-bearing, feldspathic sandstone immediately overlying sample CC2 contained age peaks at 1054, 1186, 1366, 1436, 1591 and 1651 Ma (Figure 4.10). Single-grain ages were present at 228, 249-271, 310-313, 339-392, and 445-627 Ma.

Sample CC4 (n = 64) Medium-grained, micaceous, calcareous sandstone collected 20 m upsection of sample CC3 had age peaks at 368, 386, 398, 429, 455, 484, 552, 563, 593, 615, and 624 Ma (Figure 4.10). Other single-grain ages were at 292, 346, 1614, ca. 2100, 2254, 2580, and 2621 Ma.

4.5.3 Tummel fault zone, Glenlyon map area, central Yukon Sample GL1 (n = 73) Variably deformed, monomictic (phyllite) pebble conglomerate collected from a fault-bounded structural panel contained age peaks at 1812, 1832, 1905, 2033, 2305, 2338, and 2665 Ma (Figure 4.11). Other single-grain ages occurred at 709, 719, 752, ca. 1000, ca. 1545, and 1626 Ma.

Sample GL2 (n = 69) Sheared, chert pebble conglomerate from the same fault-bounded succession as sample GL1, along strike to the northeast, had age peaks at 654, 1759, 1864, 1968, 2084, 2109, 2342, 2452, 2499, 2580, 2640, and 2704 Ma (Figure 4.11).

Sample GL3 (n = 64) Coarse-grained, muscovite-bearing feldspathic sandstone collected from the toe of the Bearfeed allochthon contained age peaks at 273, 276, 305, 308, 315, 319, 323, 328, 334, 339, 363, 1867, 1908, 1941, and 1989 (Figure 4.11). Single-grain ages occurred at 258 and 266 Ma.

122 Single-crystal detrital muscovite ages (n = 16) from this sample yielded ages from 242-294 Ma with age peaks at 242, 268, 273, and 290 Ma (Figure 4.14). Other single- grain ages were ca. 258 and 264 Ma.

Figure 4.11 – Relative probability plots with histograms showing detrital zircon ages for samples from the Tummel fault zone, Glenlyon map area, central Yukon.

123 Sample GL4 (n = 77) Fine-grained, muscovite-bearing sandstone overlying Pennsylvanian to Permian chert of the Slide Mountain assemblage contained age peaks at 455, 509, 953, 1059, 1187, 1440, 1594, 1704, 1796, 1872, 1930, 1964 Ma (Figure 4.11). Single-grain ages were at 230, ca. 265, ca. 300, 323, 352-391, 403-468, 600-684, and ca. 700 Ma.

4.5.4 Northern Finlayson Lake district, southeastern Yukon Sample FL1 (n = 59) Coarse-grained, black and red chert lithic, feldspathic sandstone overlying Fortin Creek group strata of SMT contained age peaks at 253, 257, 262, 268, and 274 Ma (Figure 4.12). One 2474 Ma grain was analyzed.

Sample FL2 (n = 68) Fine- to medium-grained sandstone overlying sample FL1 and underlying late early Norian limestone contained age peaks at 258, 261, 265, 269, 275, 361, 371, and 1771 Ma (Figure 4.13). Single-grain ages also occurred at 616, 1112, 1415, 1502, 1593, 1610, 2394 and 2570 Ma.

Sample FL3 (n = 81) Fine-grained sandstone assigned to the Simpson Lake group, located within a thrust panel overlying samples FL1 and FL2, contained age peaks at 254, 258, 274, and 292 Ma (Figure 4.12). Single-grain ages occurred at 1488, 1889, 1973, and 2011 Ma.

Sample FL4 (n = 73) Simpson Lake group conglomerate, overlying sample FL3, with pale grey, foliated chert lithic fragments resembling Fortin Creek group, contained age peaks at 237, 255, and 265 Ma (Figure 4.12). Other single-grain ages occurred at ca. 292, 299, 311, 321, 350, 385, 1308, and 2391 Ma.

Table 4.1 – (Next page): 1Miller et al. (2006); 2L.Beranek, Chapter 2; 3Gehrels et al. (1999); 4Gehrels et al. (1996); 5Gehrels and Ross (1998); 6McNicoll et al. (1995); 7Rainbird et al. (1997); 8Furlanetto et al. (2009); 9Ross et al. (1997); 10M.Colpron and S.Piercey, unpublished.

124 TABLE 4.1 - STATISTICALLY RELIABLE DETRITAL ZIRCON AGE PEAKS IN ALASKA AND NW CANADA

Known U-Pb Age Peak Occurrences (Ma) 360 - 500 Ma Late Triassic Pat Bay Formation, Canadian Arctic Islands1: 433, 473 Early to Late Triassic Jones Lake Fm., Ogilvie Mtns2: 370, 393, 401, 416, 426, 452, 459, 470, 491 Early Triassic Bjorne Formation, Canadian Arctic Islands1: 454 Early Triassic Jones Lake Fm. type section, eastern Yukon2: 364, 374, 405, 414, 434, 450, 478, 492 Early Triassic Ivishak Formation, Ledge Member, northern Alaska1: 417, 465 Mississippian Keno Hill Quartzite and Tsichu formation, Yukon2: 382, 415, 431 Early Mississippian Tuttle Formation, northern Yukon2: 371, 381, 387, 398, 415, 436, 446, 462, 484, 495 Late Devonian Imperial Formation, Yukon and NWT2: 383, 393, 403, 428, 434, 442 Late Devonian Nation River Formation, eastern Alaska3: 432 Alexander terrane, Alaska4: 357, 368, 429, 460, 478, 483

500 - 700 Ma Late Triassic Pat Bay Formation, Canadian Arctic Islands: 569, 661 Early to Late Triassic Jones Lake Fm., Ogilvie Mtns: 518, 537, 563, 586, 624, 656 Early Triassic Jones Lake Fm. type section, eastern Yukon: 524, 552, 581, 600, 633, 669 Early Triassic Ivishak Formation, Ledge Member, northern Alaska: 530, 565, 680 Mississippian Keno Hill Quartzite and Tsichu formation, Yukon: 573 Late Devonian Imperial Formation, northern Yukon and NWT: 551, 648, 692 Alexander terrane, Alaska: 598

700 - 1000 Ma Late Triassic Pat Bay Formation, Canadian Arctic Islands: 921 Early to Late Triassic Jones Lake Fm., Ogilvie Mtns: 923, 945, 981 Early Triassic Jones Lake Fm. type section, eastern Yukon: 878, 934, 982 Early Triassic Ivishak Formation, Ledge Member, northern Alaska: 882 Mississippian Keno Hill Quartzite and Tsichu formation, Yukon: 907 Late Devonian Imperial Formation, northern Yukon and NWT: 920, 949

1000 - 1400 Ma Late Triassic Pat Bay Formation, Canadian Arctic Islands: 1072, 1133, 1256 Early to Late Triassic Jones Lake Fm., Ogilvie Mtns: 1062, 1361 Early Triassic Bjorne Formation, Canadian Arctic Islands: 1214, 1367 Early Triassic Jones Lake Fm. type section, eastern Yukon: 1101, 1197, 1256, 1315, 1384 Early Triassic Ivishak Formation, Ledge Member, northern Alaska: 1065, 1187 Pennsylvanian-Permian British Columbia and Alberta miogeocline5: 1023, 1040, 1110, 1148, 1236 Mississippian Keno Hill Quartzite and Tsichu formation, Yukon: 1046, 1121, 1263 Early Mississippian Tuttle Formation, northern Yukon: 1025, 1160, 1253 Late Devonian Imperial Formation, northern Yukon and NWT: 1076, 1171 Ellesmerian clastic wedge, Canadian Arctic Islands6: 1121, 1141, 1146 Ordovician-Lower Devonian British Columbia and Alberta miogeocline5: 1028 Lower Cambrian Adams Argillite, eastern Alaska4: 1081 Alexander terrane, Alaska: 1009, 1031, 1058, 1105, 1157 Early Neoproterozoic Pinguicula Group, northern Yukon7: 1066, 1134, 1166, 1238

1400 - 1700 Ma Late Triassic Pat Bay Formation, Canadian Arctic Islands: 1655 Early to Late Triassic Jones Lake Fm., Ogilvie Mtns: 1504, 1626 Early Triassic Bjorne Formation, Canadian Arctic Islands: 1661 Early Triassic Jones Lake Fm. type section, eastern Yukon: 1423, 1479, 1649 Mississippian Keno Hill Quartzite and Tsichu formation, Yukon: 1608, 1694 Early Mississippian Tuttle Formation, northern Yukon: 1502, 1622 Late Devonian Imperial Formation, northern Yukon and NWT: 1405, 1697 Alexander terrane, Alaska: 1477 Early Neoproterozoic Pinguicula Group, northern Yukon: 1438, 1448, 1453, 1636, 1651 Wernecke Supergroup, northern Yukon8: ca. 1600

1700 - 2000 Ma Late Triassic Pat Bay Formation, Canadian Arctic Islands: 1836 Early to Late Triassic Jones Lake Fm., Ogilvie Mtns: 1800, 1892, 1988 Middle to Late Triassic British Columbia and Alberta miogeocline9: 1745, 1823, 1823, 1838, 1856, 1886 Early Triassic Jones Lake Fm. type section, eastern Yukon: 1745, 1837, 1943, 1998 Early Triassic Bjorne Formation, Canadian Arctic Islands: 1769, 1849, 1934, 1989 Pennsylvanian-Permian British Columbia and Alberta miogeocline: 1799, 1841, 1889 Mississippian Keno Hill Quartzite and Tsichu formation, Yukon: 1785, 1827, 1938 Early Mississippian Tuttle Formation, northern Yukon: 1849, 1935 Late Devonian Imperial Formation, northern Yukon and NWT: 1828, 1965 Late Devonian Prevost Formation, eastern Yukon2: 1755, 1826, 1896 Late Devonian Nation River Formation, eastern Alaska: 1824, 1880, 1896, 1920 Pre-Late Devonian Snowcap assemblage, central Yukon10: 1867, 1941 Ordovician-Lower Devonian British Columbia and Alberta miogeocline: 1809, 1842, 1860, 1913, 1960 Lower Cambrian Adams Argillite, eastern Alaska: 1804, 1838, 1861 Neoproterozoic to Cambrian B.C. and Alta. miogeocline5: 1766, 1788, 1819, 1839, 1872, 1905, 1993 Alexander terrane, Alaska: 1737, 1756

2000 - 2500 Ma Early to Late Triassic Jones Lake Fm., Ogilvie Mtns: 2054, 2355, 2424, 2471 Early Triassic Bjorne Formation, Canadian Arctic Islands: 2435 Mississippian Keno Hill Quartzite and Tsichu formation, Yukon: 2269 Early Mississippian Tuttle Formation, northern Yukon: 2203, 2333, 2463 Late Devonian Imperial Formation, northern Yukon and NWT: 2043, 2238, 2316 Late Devonian Prevost Formation, eastern Yukon: 2000, 2066, 2098, 2485 Pre-Late Devonian Snowcap assemblage, central Yukon: 2080, 2142 Ordovician-Lower Devonian British Columbia and Alberta miogeocline: 2025, 2073, 2100 Neoproterozoic to Cambrian British Columbia and Alberta miogeocline: 2321, 2341, 2397, 2421

2500+ Ma Middle to Late Triassic British Columbia and Alberta miogeocline: 2713, 2736 Early to Late Triassic Jones Lake Fm., Ogilvie Mtns: 2541, 2599, 2727, 2879 Early Triassic Bjorne Formation, Canadian Arctic Islands: 2726 Early Triassic Jones Lake Fm. type section, eastern Yukon: 2640 Early Triassic Ivishak Formation, Ledge Member, northern Alaska: 2634 Mississippian Keno Hill Quartzite and Tsichu formation, Yukon: 2506, 2672, 2893 Early Mississippian Tuttle Formation, northern Yukon: 2534, 2595, 2683, 2777, 2850, 2951, 3076, 3119 Late Devonian Imperial Formation, northern Yukon and NWT: 2573, 2693, 2784, 2817 Late Devonian Prevost Formation, eastern Yukon: 2562, 2676, 2697 Pre-Late Devonian Snowcap assemblage, central Yukon: 2641, 2715, 2757, 2801 Neoproterozoic to Cambrian British Columbia and Alberta miogeocline: 2579, 2642, 2900

125 4.5.5 McNeil Lake klippen, southeastern Yukon Sample MK (n = 71) Coarse-grained, lithic feldspathic sandstone assigned to the Jura-Cretaceous unit of Gordey (1981), directly underneath ribbon chert assigned to a panel of McNeil Lake klippen, contained age peaks at 254 and 290 Ma (Figure 4.12). One 1069 Ma grain was analyzed.

Figure 4.12 – Relative probability plots with histograms showing detrital zircon ages for samples from northern Finlayson Lake district and McNeil Lake area, southeastern Yukon.

126 4.5.6 Sylvester allochthon, northern British Columbia Sample SA1 (n = 65) Fine-grained micaceous sandstone collected from the highest structural level of the Table Mountain formation contained age peaks at 365, 411, 416, 455, 543, 604, 613, 1003, 1043, 1140, 1444 Ma (Figure 4.13). Single-grain ages were at 236, 251-281, and 322-342 Ma.

Sample SA2 (n = 72) Fine- to medium-grained micaceous sandstone of the Table Mountain formation along Cusac Road yielded age peaks at 377, 408, 414, 418, 423, 542, 999, 1030, 1119, 1424, and 1512 Ma (Figure 4.13). Other single-grain ages occurred at ca. 236, 274, 280, 301-309, 349, ca. 620, 670, ca. 1630, 1796, 1906, 2000, and ca. 2600 Ma.

Sample SA3 (n = 83) Sandstone collected along Cusac Road, ~200 m east of sample SA2, had age peaks at 261, 275, 282, 309, 343, 386, 399, 422, 441, 602, 607, 695, 897, 945, 1044, 1130, 1199, 1340, 1419, and 1682 Ma (Figure 4.13). Single-grain ages were at 221, 242, 251, ca. 2000, 2182, 2513, and 2609 Ma.

Sample SA4 (n = 60) Medium-grained, muscovite-bearing sandstone from the Plaza Pit at the Cusac gold property contained age peaks at 468, 569, 985, 1004, 1069, 1118, 1321, and 1765 Ma (Figure 4.13). Single-grain detrital zircon ages were at 213, 222, 250, ca. 290, ca. 370, 384, ca. 610, ca. 640, 1951, 2084, and 2662 Ma. Single-crystal detrital muscovite ages from this sample (n = 16) were mainly 311- 360 Ma, with peaks at 321, 336, 346, and 360 Ma (Figure 4.14). Single-grain ages were at 227, 230, 269, and 450 Ma.

127

Figure 4.13 – Relative probability plots with histograms showing detrital zircon ages for samples from the Table Mountain Formation, Sylvester allochthon, Cassiar, British Columbia area.

4.6 PROVENANCE CORRELATIONS 4.6.1 Eastern Alaska-Western Yukon border region Late Triassic strata associated with SMT ocean crust along the Alaska-Yukon border region (samples AK, CC1-4) demonstrate shared provenance with repeatable early Paleozoic and Proterozoic detrital zircon ages in all samples. These data also show correlation with numerous post-Late Devonian sedimentary rocks in the northern Cordillera (Table 4.1; Figure 4.15). Middle to Early Proterozoic age peaks at 1436,1479, 1480, 1606, 1651, 1664, and 2089 Ma are consistent with occurrences in the Proterozoic

128 Pinguicula Group in the Ogilvie Mountains north of Dawson, Triassic Jones Lake Formation type section of eastern Yukon, Triassic Pat Bay and Bjorne formations of the Canadian Arctic Islands, pre-Late Devonian Snowcap assemblage of YTT, and Alexander terrane, a highly displaced northern Cordilleran tectonic element with Baltican-Caledonian affinity (Gehrels et al., 1996). Mesoproterozoic ages at 1001, 1006, 1021, 1049, 1054, 1057, 1079, 1167, 1186, and 1366 Ma compare well with peaks in the Pinguicula Group, Triassic strata in the Canadian Arctic Islands, Mississippian Tuttle Formation in northern Yukon, and Alexander terrane.

Figure 4.14 – Relative probability plots with histograms showing detrital muscovite ages from samples of the Table Mountain Formation and Bearfeed allochthon.

129 Neoproterozoic detrital zircon age peaks at 532, 552, 563, 593, 600, 620, 624, and 630 Ma are observed in the Late Devonian Imperial Formation of northern Yukon and Northwest Territories, Triassic Jones Lake and Ivishak formations, and Alexander terrane. Early Paleozoic age peaks are ubiquitous at 371, 384, 387, 401, 411, 412, 420, 427, 428, 429, 455, and 484 Ma, consistent with similar occurrences in Late Devonian to Mississippian strata in Yukon and eastern Alaska, Triassic Jones Lake, Ivishak, and Bjorne formations, and Alexander terrane. Age peaks at 229, 302, 255, 261, and 351 Ma have no corollaries in Cordilleran margin strata. Norian strata from the Clinton Creek mine site contain variable amounts of mid- Paleozoic and younger detrital zircon, commonly low in magnitude, thus not statistically robust. However, sample CC2 had repeatable age peaks at 255, 261, and 351 Ma. These peaks match U-Pb ages of YTT igneous rocks in the vicinity of the Clinton Creek mine site (Mortensen, 1992). Unique age peaks at 229 and 302 Ma occur in sample CC2. The latter age is not characteristic of YTT felsic magmatism but is similar to Semenof block igneous rocks in central Yukon (Colpron et al., 2005). The Middle Triassic peak (229 Ma; latest Ladinian), and one 228 Ma zircon in overlying sample CC3, have unknown provenance. Northeast of the Clinton Creek mine and the Tintina fault, North American continental margin rocks in the Ogilvie Mountains are intruded by Triassic tholeiitic gabbro and diorite sills; one diorite sill yielded a U-Pb zircon-baddeleyite age of ca. 232 Ma (Mortensen and Thompson, 1990). Similarly, gabbroic sills in eastern Alaska have been dated by U-Pb zircon at ca. 226 Ma (Dashevsky et al., 2003; Dusel-Bacon et al., 2006). Middle Triassic zircons in samples CC2 and CC3 may be sourced from these sills or undocumented volcanic equivalents; however, these rocks are mafic in character an unlikely to comprise significant amounts of zircon. Another possible origin for these zircons is from volcanic ash derived from the Late Triassic arc of Stikinia. Provenance signatures from the Clinton Creek and eastern Alaska areas demonstrate clear linkages with outboard sources, most likely the adjacent YTT. The abundance of age peak correlations with northerly-derived continental margin rocks suggests these Late Triassic strata reflect mixture of a Laurentian component with late Paleozoic arc-derived sediment from the Innuitian orogen (cf., Ross et al., 1997).

130 4.6.2 Tummel fault zone, Glenlyon map area, central Yukon Fault-bounded successions of sedimentary lithic conglomerate in the Tummel fault zone, represented by samples GL1 and GL2, have ubiquitous Paleoproterozoic and Archean age peaks at 1759, 1812, 1832, 1864, 1905, 2084, 2109, 2338, 2342, 2452, 2499, 2580, 2640, 2665, and 2704 Ma. These age peaks closely match detrital zircon populations observed in Neoproterozoic-Triassic continental margin strata of British Columbia and Alberta, pre-Late Devonian Snowcap assemblage, Late Devonian to mid- Mississippian strata of northern Yukon and eastern Alaska, Triassic Jones Lake and Pat Bay formations, and Alexander terrane (Table 4.1; Figure 4.15). A single Neoproterozoic peak at 654 Ma correlates with Late Devonian Imperial Formation rocks; however, this age is also known to some igneous rocks in Yukon (i.e., Pool Creek syenite of Pigage and Mortensen, 2004). The prevalence of Precambrian zircon in these rocks suggests derivation from the adjacent Snowcap assemblage (Figure 4.6). The absence of Paleozoic or younger detrital zircon in these samples, and lack of biostratigraphic control, precludes any direct age determination for these conglomeratic units. Feldspathic micaceous sandstone from the Bearfeed allochthon west of the Tummel fault zone contained Paleoproterozoic detrital zircon age peaks at 1867, 1908, 1941, and 1989 Ma that closely match populations observed in Neoproterozoic-Cambrian miogeoclinal rocks of British Columbia and Alberta, Snowcap assemblage, and Triassic Jones Lake Formation. However, this sample yields mainly Paleozoic age peaks, with the majority between 305 and 328 Ma. These ages are akin to results reported by Colpron et al. (2005) from the Bearfeed allochthon; they concluded ca. 300-320 Ma zircons were derived from Pennsylvanian igneous rocks of the adjacent Semenof block because felsic magmatism of this age is rare in YTT. Middle Paleozoic age peaks at 334, 339, and 363 Ma overlap with U-Pb zircon ages from YTT igneous rocks in the Glenlyon area and are likely sourced from these units. Subordinate Permian detrital zircon may be recycled from mafic to intermediate volcanic rocks of the Slide Mountain assemblage in the Tummel fault zone region.

131

Figure 4.15 – Normalized probability plot showing samples from this study and other locations in the Cordillera. KHQ – Keno Hill Quartzite, WCSB – Western Canada Sedimentary Basin, Z-C – Neoproterozoic to Cambrian. See Table 4.1 for references.

132 Detrital muscovite ages in sample GL3 cannot be directly tied to known source rocks because a suitable reference frame does not exist. In concert with detrital zircon data from this sample, 268-290 Ma grains are probably recycled from adjacent YTT or SMT rocks. These data either record punctuated phases of muscovite development in YTT-SMT rocks by regional metamorphic processes or define exhumation or rock uplift ages. Rocks that could contain ca. 242 Ma muscovite in the Tummel fault zone are not known. Erdmer et al. (1998) reported eclogite south of Glenlyon map area yielded an Ar- Ar white mica age of 236 ± 1 Ma; similar subduction-related rocks of SMT may have cooling or uplift ages of ca. 242 Ma. Combined detrital zircon and muscovite datasets from this unit broadly constrain it as post-Middle Triassic. Micaceous sandstone of sample GL4, underlain by Slide Mountain assemblage chert and overlain by Middle Triassic limestone, contained Precambrian age peaks at 953, 1059, 1187, 1440, 1591, 1796, 1872, 1930, and 1964 Ma also seen in the Proterozoic Wernecke and Pinguicula groups, Neoproterozoic to Permian Cordilleran miogeocline, Snowcap assemblage, Late Devonian to Mississippian strata in Yukon, Triassic Jones Lake and Ivishak formations, and Alexander terrane (Table 4.1). An early Paleozoic peak at 455 Ma is similar to populations in the Triassic Jones Lake Formation in west- central and eastern Yukon; the 509 Ma peak has no known corollary. Single-grain ages from 250-360 Ma are most likely recycled from mid- to late Paleozoic YTT rocks. The presence of one Middle Triassic (230 Ma; latest Ladinian) zircon is not statistically reliable but ca. 229 Ma grains are also observed in Triassic strata at the Clinton Creek mine in western Yukon. If Middle Triassic zircons do exist in these strata, then Anisian and Ladinian conodont elements in the overlying limestone (Orchard, 2006) must be reworked, or the fauna occupied the latest Ladinian-earliest Carnian boundary. In general, detrital mineral data from clastic successions in the Tummel fault zone record erosion of local YTT and SMT source rocks in Middle to Late Triassic time (cf., Colpron et al., 2005). Sample GL4 has unique provenance with early Paleozoic and Proterozoic detrital zircon age peaks that mimic those of mid-Paleozoic to Triassic marine strata of the adjacent Cordilleran margin (Table 4.1). These North American

133 populations are mixed with single-grain occurrences of middle to late Paleozoic grains that correlate well with U-Pb ages of YTT and SMT assemblages. Colpron et al. (2005) concluded that post-Early Triassic convergence between the YTT, SMT, and Semenof block generated synorogenic, coarse-grained sedimentary rocks in the Glenlyon map area. Using a strict interpretation of this framework, early Paleozoic zircons in sample GL4 must have been derived from unknown, or now eroded, rock packages of these three terranes because no source rocks therein are known to have appropriate U-Pb ages. This appears unlikely, and a preferred working hypothesis features a significant North American component within sample GL4. Coeval Triassic strata of the adjacent Cordilleran margin have similar early Paleozoic and Proterozoic detrital zircon profiles to that of sample GL4 (Table 4.1; Figure 4.15; Beranek, Chapter 3).

4.6.3 Northern Finlayson Lake district and McNeil Lake klippen, southeastern Yukon Coarse-grained siliciclastic rocks associated with SMT in southeastern Yukon uniformly share ca. 254-275 Ma age peaks also observed in mid- to Late Permian volcanic rocks of YTT, its adjacent forearc assemblage the Simpson Lake group, and igneous rocks of the Campbell Range formation (Murphy et al., 2006). These samples lack significant Precambrian input, or grains of that age are diluted by voluminous late Paleozoic to early Mesozoic zircon. Cherty grit and feldspathic sandstone of samples FL1 and FL2 overlay Fortin Creek group strata in the hanging wall of the Inconnu thrust (Figure 4.7b). Their depositional ages are constrained by earliest Triassic (ca. 250 Ma) detrital zircons. Samples FL1 and FL2 have comparable Paleozoic age signatures but the latter has more ca. 270 Ma zircon and contains ca. 365 Ma and scattered Proterozoic grains whereas the former is dominated by 250-262 Ma ages. Sample FL1 detrital zircons are therefore interpreted to be sourced from the latest Permian arc complex of YTT; subordinate ca. 270 Ma zircon and ubiquitous chert lithics may be derived from the Fortin Creek group and Campbell Range formation. Sample FL2 contains Late Devonian and Proterozoic detrital zircons that may be recycled through the structurally lower parts

134 of YTT, or reflect a North American-derived component as these ages are observed in Triassic continental margin strata (Table 4.1). Samples FL3 and FL4, collected from a thrust-imbricated package of coarse- grained siliciclastics mapped as Simpson Lake group (Figure 4.7b), yielded mainly 254- 290 Ma detrital zircons. These ages are identical to those of samples FL1 and FL2 and Permian arc and backarc rocks of YTT and SMT. Middle Triassic detrital zircons are present in both samples, including a 237 Ma age peak in sample FL4. Zircons of this age have no known source in the peri-Laurentian realm. The 237 Ma peak is statistically robust and not suggestive of a “false peak” created by Pb-loss of Permian zircon. Feldspathic volcanic lithic sandstone from the McNeil Lake area (sample MK), mainly contains Permian detrital zircons with an age peak at 254 Ma. As with the Finlayson Lake district, Permian ages from sample MK are similar to dated late Paleozoic igneous rocks of YTT. These data are consistent with sediment provenance from YTT with minor input from Paleozoic rocks of SMT. The stratigraphic age of sample MK is unconstrained. It contains detrital zircon as young as 237 Ma, identical to the youngest ages in samples FL3 and FL4, and is underlain by Middle to Late Triassic (Anisian to early Norian) Cassiar terrane strata (Orchard, 2006). Sample MK was collected from a unit Gordey (1981) interpreted to be Jura-Cretaceous, unconformably overlying Cassiar terrane. For his hypothesis to be valid, detritus in sample MK would have been eroded solely from Permo-Triassic arc rocks (or recycled equivalents) in mid- to late Mesozoic time, while not incorporating detrital zircon from Late Triassic-Early Jurassic or Cretaceous igneous complexes known to YTT and North America (Mortensen et al., 2000). Contrastingly, the detrital zircon profile of this unit may demonstrate rough correlation with Middle(?) Triassic strata of the Finlayson Lake district, requiring it to be allochthonous with respect to the Cassiar terrane. Overall, Triassic strata from the Finlayson Lake and McNeil Lake regions of southeastern Yukon exhibit clear provenance linkages to YTT. Only one sample, FL2, has significant amounts of Proterozoic and middle Paleozoic detrital zircon; these components may indicate a partial, eastern-derived, North American source.

135 4.6.4 Sylvester allochthon, northern British Columbia Middle to Late Triassic sandstone from the Sylvester allochthon have shared detrital zircon age peaks suggestive of similar provenance. As with Norian strata associated with SMT ocean crust near the Yukon-Alaska border, Table Mountain formation rocks are dominated by Paleozoic and Mesoproterozoic detrital zircon age populations. Table Mountain formation samples contained Early to Middle Proterozoic age peaks at 999, 1003, 1004, 1030, 1043, 1044, 1069, 1118, 1119, 1130, 1140, 1199, 1340, 1419, 1424, 1444, and 1765 Ma that are also observed in Proterozoic Pinguicula Group of northern Yukon, Neoproterozoic to Permian Cordilleran margin strata of British Columbia and Alberta, Ellesmerian clastic wedge of Canadian Arctic Islands, Late Devonian to Mississippian strata of Yukon, and Triassic strata the Canadian Arctic Islands and Alaska, and Alexander terrane (Table 4.1). Late Proterozoic to early Paleozoic age peaks at 365, 377, 386, 399, 408, 411, 414, 416, 418, 422, 423, 441, 468, 569, 602, 604, and 695 Ma are ubiquitous in Table Mountain Formation strata and also seen in the Late Devonian Imperial Formation, Mississippian Tuttle Formation and Keno Hill Quartzite, and Triassic Jones Lake, Bjorne, Pat Bay, and Ivishak formations. Middle to late Paleozoic age peaks at 261, 275, 282, 309, and 343 Ma have not been observed in Cordilleran margin strata. Middle Paleozoic and younger detrital zircons in Table Mountain formation samples usually occur as single grains. However, sample SA3 contains statistically robust age peaks at 261, 275, 282, 309, and 343 Ma, generally correlating with U-Pb zircon dates of igneous rocks from YTT and SMT (Colpron et al., 2006). The 309 Ma age peak may suggest derivation from the local Pennsylvanian-Permian Huntergroup and Fourmile volcanics of Paleozoic Quesnellia. All samples from the Table Mountain formation contain Early to Late Triassic detrital zircon of unknown provenance, including ages ca. 236 Ma, similar to sedimentary units from this study in the Finlayson Lake district and McNeil Lake areas. Mississippian detrital muscovite ages in sample SA4 correlate broadly with documented pulses of deformation within YTT (Murphy et al., 2006), exhumation ages from subduction zone complexes (Devine et al., 2006), and integrated ages from detrital

136 muscovite in the Early Triassic Jones Lake Formation type section (Beranek, Chapter 3). A possible origin for Middle Mississippian muscovites include Paleozoic metamorphic rocks of YTT located west of the Sylvester allochthon that were affected by a ca. 340 Ma deformational event (Mihalynuk et al., 2006). Single-grain analyses at 227, 230, and 269 Ma most likely represent exhumation ages of local rock units from Permian to Late Triassic time. Table Mountain formation strata have demonstrable provenance signatures corresponding to known source rocks of YTT and SMT. Strong detrital zircon age peak correlations between Table Mountain formation samples and Triassic continental margin strata are undeniable and imply a North American source component.

4.7 CONCLUSIONS 4.7.1 New detrital mineral reference frame for the northern Cordillera The 20-sample Triassic suite discussed in this study generated repeatable detrital mineral provenance signatures and contributed a new reference frame to the northern Cordillera. Over 1200 detrital zircon analyses effectively reproduce the geochronology of YTT, SMT, and North American rock assemblages and provide a valuable dataset for future terrane-related studies. Thirty-two detrital muscovite ages, although reconnaissance-level in scope, strengthen future interpretations on the timing of regional metamorphic and exhumation events within YTT and SMT. Detrital muscovite age data may also contribute to forthcoming studies on the source of ubiquitous mica in Triassic strata of the adjacent Cordilleran passive margin.

4.7.2 Triassic stratigraphic linkages in the peri-Laurentian realm The detrital mineral analyses from this study provide a robust test of the three working hypotheses regarding the source of SMT-related Triassic strata. These data define two distinct provenance signatures that vary in both stratigraphic age and geographic distribution. These signatures are summarized below, and a new speculative model for the sedimentary and tectonic evolution of the Slide Mountain-Golconda Ocean is presented.

137 The majority of Early(?) to Middle Triassic rocks in the Glenlyon, Finlayson Lake and McNeil Lake localities of central and southeastern Yukon have Permian detrital zircon ages similar to dated igneous rocks of SMT and YTT. Ubiquitous late Paleozoic ages in coarse-grained Triassic strata indicate these detrital zircons are first- or second- cycle grains. Prominent early to middle Paleozoic or Precambrian age populations are typically absent but undisputedly observed in one sample from Glenlyon map area (sample GL4). The detrital zircon pattern of sample GL4 is consistent with derivation from both YTT and North American source rocks. Late Triassic strata associated with SMT ocean crust in eastern Alaska, western Yukon, and northern British Columbia contain a mixture of detrital zircon age populations observed in many studies of YTT, SMT, and North American continental margin rocks. Although several Triassic successions are allochthonous, the repeatable nature of these signatures over great distances is compelling. These two provenance signatures support the presence of three Triassic sedimentary linkages in the northern Cordillera. Firstly, Permian detrital zircons in Early(?) to Middle Triassic rocks underlain by Slide Mountain terrane provide evidence for a stratigraphic tie between SMT and adjacent YTT in the Glenlyon and Finlayson Lake localities. These data are consistent with Permian geodynamic linkages between the terranes (Murphy et al., 2006). Secondly, early Paleozoic and Proterozoic detrital zircon age peaks in Middle to Late Triassic rocks along the length of SMT, also observed in northerly derived Cordilleran margin strata, argue for connections between the terrane and the adjacent North American margin, affirming previous hypotheses (e.g., Nelson, 1993). Thirdly, mixture of YTT, SMT, and Laurentian components in Middle to Late Triassic strata requires spatial proximity of all elements and stratigraphic continuity between them. The simplest model to explain this hypothesis is that much of the northern Slide Mountain-Golconda Ocean was partially or completely closed by the Late Triassic, to allow for blending of YTT, SMT, and North American detrital zircon populations (Figure 4.16). Single-sample results from Middle(?) Triassic rocks of the Glenlyon (GL4) and Finlayson Lake (FL2) localities also support a similar conclusion for a slightly earlier time.

138 4.7.3 Paleogeographic implications Detrital zircon data are consistent with paleogeographic models that suggest YTT and related elements developed alongside Laurentia and were encroaching on western North America by the latest Paleozoic (Nelson et al., 2006; Colpron et al., 2007; Colpron and Nelson, in press). These data are not in agreement with the recent hypothesis of Johnston (2008) who suggested terranes of the eastern Cordillera were significantly outboard in latest Paleozoic time. The proximity of pericratonic terranes to North America has immediate implications for the presence of the Triassic conodonts Epigondolella aff. E. spatulata and Paragondolella? hallstattensis in late early Norian sandy limestone overlying SMT in southeastern Yukon. Detrital zircon profiles from Triassic strata in the Finlayson Lake area of this study argue for derivation from northwestern Laurentia, suggesting pericratonic terrane accretion occurred north of 50° N latitude (present coordinates). If SMT was amalgamated with the northwestern North American plate by Late Triassic time, then the presence of these rare conodonts may fundamentally challenge the use of Mesozoic Tethyan fauna, in some cases, as a tool in terrane analysis (see Beranek, Chapter 5).

4.7.4 Correlations with Sonoman orogenesis Interpretations on the mid-Paleozoic to Triassic history of the northern Slide Mountain-Golconda Ocean may have direct basin correlations and implications for its southern extent in the western United States. For example, Riley et al. (2000) reported that mid- to late Paleozoic Havallah sequence rocks of Nevada contain a mixture of Mississippian and Precambrian detrital zircons. Riley et al. (2000) interpreted these grains to have origins from elements that flanked the basin, the Eastern Klamath-North Sierra terranes on its western side and the Roberts Mountain allochthon on the east. Detrital zircon and stratigraphic studes have also demonstrated Paleozoic linkages between marginal ocean basin rocks and flanking elements in the northern Cordillera (Roback et al., 1994; Murphy et al., 2006). The Late Permian-Early Triassic Sonoman orogeny in the western United States is characterized by the eastward emplacement of the Golconda allochthon onto the

139 Roberts Mountain allochthon (e.g., Gabrielse et al., 1983). The youngest recognized rocks of the Golconda allochthon are Early Triassic, and a Middle to Late Triassic overlap assemblage is documented to overlie the structural panel (Miller et al., 1992). Although the geodynamic setting behind Sonoman orogenesis is still uncertain, one option consists of a closing marginal ocean basin, located between outboard terranes on the west and North America on the east, undergoing back-arc compression (Dickinson, 2006). This model is entirely consistent with interpretations on marginal basin closure and encroachment of YTT and related terranes in the northern Cordillera. Amphibolite facies metamorphism and termination of arc magmatism within YTT, and widespread unconformities in the northern Cordillera, all occurred in Late Permian-Early Triassic time. The nature of these events in western Canada, in concert with coeval Sonoman orogenesis, is intriguing and argues for large-scale accretionary tectonism along the Cordilleran margin during final construction of the Pangean supercontinent. This hypothesis is shown with a ca. 250 Ma plate reconstruction in Figure 4.16, whereby YTT, Quesnellia, and the Eastern Klamath and Northern Sierra terranes are juxtaposed with the North American continental margin. Orogenic development along the margin, typically cryptic because of later Mesozoic deformation and magmatism, is depicted from northern Yukon to the southwestern United States. The sedimentary record of this geographically disperse accretion is limited (Miller et al., 1992; see Beranek, Chapter 6). This may be explained by isostatic rebound and erosion in foreland belt, covering of foreland basin deposits by later Mesozoic allochthons, or that the style of accretion did not produce a volumetrically significant clastic wedge. Following closure of the Slide Mountain-Golconda Ocean, arc polarity reversed, and an east-dipping subduction complex developed along the western margin of these terranes (Figure 4.16). The onset of Late Triassic magmatism provided another interterrane geodynamic link and established an elongate belt of west-facing continental arc complexes that persisted throughout the Mesozoic.

140

Figure 4.16 – Late Permian-Early Triassic plate reconstruction depicting encroachment of peri-Laurentian terranes against the western margin of North America. Pink colour indicates incipient or on-going orogenic development. AA – Arctic Alaska, AX – Alexander terrane, EK – Eastern Klamaths, FW – Farewell terrane, NS – Northern Sierra, OM- Omulevka ridge, QN – Quesnellia, ST – Stikinia, YT – Yukon-Tanana, WR – Wrangellia. After Colpron and Nelson (in press).

141 4.8 REFERENCES Abbott, G., 1983, Origin of the Clinton Creek asbestos deposit, in Yukon Exploration and Geology 1982: Exploration and Geological Services, Indian and Northern Affairs, Whitehorse, p. 18-25. Belasky, P., Stevens, C.H., and Hanger, R.A., 2002, Early Permian location of western North American terranes based on brachiopod, fusulinid and coral biogeography: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 179, p. 245-266. Berman, R.G., Ryan, J.J., Gordey, S.P., and Villeneuve, M., 2007, Permian to Cretaceous polymetamorphic evolution of the Stewart River region, Yukon-Tanana terrane, Yukon: P-TS evolution linked with in situ SHRIMP monazite geochronology: Journal of Metamorphic Geology, v. 25, p. 803-827. Berry, R.F., Jenner, G.A., Meffre, S., and Tubrett, M.N., 2001, A North American provenance for Neoproterozoic to Cambrian sandstones in Tasmania: Earth and Planetary Science Letters, v. 192, p. 207-222. Boghossian, N.D., Patchett, P.J., Ross, G.M., and Gehrels, G.E., 1996, Nd isotopes and the source of sediments in the miogeocline of the Canadian Cordillera: Journal of Geology, v. 104, p. 259-277. Carter, E.S., Orchard, M.J., Ross, C.A., Ross, J.R.P., Smith, P.L., and Tipper, H.W., 1991, Chapter 2, Part B, Paleontological signatures of terranes, in Gabrielse, H., and Yorath, C.J., eds., Geology of the Cordilleran orogen in Canada: Geology of Canada, v. 4, p. 28-38. Chang, S. Vervoort, J.D., McClelland, W.C., and Knaack, C., 2006, U-Pb dating of zircon by LA-ICP-MS: Geochemistry, Geophysics, Geosystems, v. 7, Q05009 doi:10.1029/2005GC001100. Colpron, M., 2006, Tectonic assemblage map of Yukon-Tanana and related terranes in Yukon and northern British Columbia: Yukon Geological Survey Open File 2006- 1, 1:1,000,000 scale. Colpron, M., and Nelson, J.L., eds., 2006, Paleozoic evolution and metallogeny of pericratonic terranes at the ancient Pacific margin of North America, Canadian and Alaskan Cordillera: Geological Association of Canada Special Paper 45, 523 p. Colpron, M., and Nelson, J.L., in press, The Northwest Passage: Incursion of Baltican and Siberan crustal fragments into eastern Panthalassa, and the mid-Paleozoic to early Mesozoic evolution of the Cordilleran margin of western North America, in Cawood, P., and Kröner, A., eds., Accretionary orogens: Geological Society of London Special Publication. Colpron, M., Gladwin, K., Johnston, S.T., Mortensen, J.K., and Gehrels, G.E., 2005, Geology and juxtaposition history of Yukon-Tanana, Slide Mountain and Cassiar terranes in the Glenlyon area of central Yukon: Canadian Journal of Earth Sciences, v. 42, p. 1431-1448. Colpron, M., Nelson, J.L., and Murphy, D.C., 2006, A tectonostratigraphic framework for the pericratonic terranes of the northern Canadian Cordillera, in Colpron, M., and Nelson, J.L., eds., Paleozoic evolution and metallogeny of pericratonic terranes at the ancient Pacific margin of North America, Canadian and Alaskan Cordillera: Geological Association of Canada Special Paper 45, p. 1-23.

142 Colpron, M., Mortensen, J.K., Gehrels, G.E., and Villeneuve, M., 2006b, Basement complex, Carboniferous magmatism and Paleozoic deformation in Yukon-Tanana terrane of central Yukon: Field, geochemical and geochronological constraints from Glenlyon map area, in Colpron, M., and Nelson, J.L., eds., Paleozoic evolution and metallogeny of pericratonic terranes at the ancient Pacific margin of North America, Canadian and Alaskan Cordillera: Geological Association of Canada Special Paper 45, p. 131-151. Colpron, M., Nelson, J.L., and Murphy, D.C., 2007, Northern Cordilleran terranes and their interactions through time: GSA Today, v. 17, p. 4-10. Dashevsky, S.S., Schaefer, C.F., and Hunter, E.N., 2003, Bedrock geologic map of the Delta mineral belt, Tok mining district, Alaska: Alaska Division of Geological and Geophysical Surveys Professional Report 122, 122 p., 1:63,360 scale. Devine, F., Carr, S.D., Murphy, D.C., Davis, W.J., Smith, S., and Villeneuve, M., 2006, Geochronological and geochemical constraints on the origin of the Klatsa metamorphic complex: Implications for early Mississippian high-pressure metamorphism within Yukon-Tanana terrane, in Colpron, M., and Nelson, J.L., eds., Paleozoic evolution and metallogeny of pericratonic terranes at the ancient Pacific margin of North America, Canadian and Alaskan Cordillera: Geological Association of Canada Special Paper 45, p. 107-130. Dickinson, W.R., 2006, Geotectonic evolution of the Great Basin: Geosphere, v. 2, p. 353-368. Dusel-Bacon, C. and Harris, A.G., 2003, New occurrences of late Paleozoic and Triassic fossils from the Seventymile and Yukon-Tanana terranes, east-central Alaska, with comments on previously published occurrences in the same area, in Galloway, J.P., ed., Studies in Alaska by the U.S. Geological Survey during 2001: U.S. Geological Survey Professional Paper 1678, p. 5-30. Dusel-Bacon, C., Hopkins, M.J., Mortensen, J.K., Dashevsky, S.S., Bressler, J.R., and Day, W.C., 2006, Paleozoic tectonic and metallogenic evolution of the pericratonic rocks of east-central Alaska and adjacent Yukon, in Colpron, M., and Nelson, J.L., eds., Paleozoic evolution and metallogeny of pericratonic terranes at the ancient Pacific margin of North America, Canadian and Alaskan Cordillera: Geological Association of Canada Special Paper 45, p. 25-74. Erdmer, P., Ghent, E.D., Archibald, D.A., and Stout, M.Z., 1998, Paleozoic and Mesozoic high-pressure metamorphism at the margin of ancestral North America in central Yukon: Geological Society of America Bulletin, v. 110, p. 615-629. Gabrielse, H., 1991, Late Paleozoic and Mesozoic terrane interactions in north-central British Columbia: Canadian Journal of Earth Sciences, v. 28, p. 947-957. Gabrielse, H., Snyder, W.S., and Stewart, J.H., 1983, Sonoma orogeny and Permian to Triassic tectonism in western North America: Geology, v. 11, 484-486. Gabrielse, H., Mortensen, J.K., Parrish, R.R., Harms, T.A., Nelson, J.L., and van der Heyden, P., 1993, Late Paleozoic plutons in the Sylvester allochthon, northern British Columbia, in Radiogenic Age and Isotopic Studies, Report 7: Geological Survey of Canada Paper 93-1, p. 107-118. Garzione, C.N., Patchett, P.J., Ross, G.M., Nelson, J.L., 1997, Provenance of Paleozoic sedimentary rocks in the Canadian Cordilleran miogeocline: a Nd isotopic study: Canadian Journal of Earth Sciences, v. 34, p. 1603-1618.

143 Gehrels, G.E., and Ross, G.M., 1998, Detrital zircon geochronology of Neoproterozoic to Permian miogeoclinal strata in British Columbia and Alberta: Canadian Journal of Earth Sciences, v. 35, p. 1380-1401. Gehrels, G.E., Dickinson, W.R., Ross, G.M., Stewart, J.H., and Howell, J.G., 1995, Detrital zircon reference for Cambrian to Triassic miogeoclinal strata of western North America: Geology, v. 23, p. 831-834. Gehrels, G.E., Butler, R.F., and Bazard, D.R., 1996, Detrital zircon geochronology of the Alexander terrane, southeastern Alaska: Geological Society of America Bulletin, v. 108, p. 722-734. Gehrels, G.E., Johnsson, M.J., and Howell, D.G., 1999, Detrital zircon geochronology of the Adams Argillite and Nation River Formation, East-Central Alaska, U.S.A.: Journal of Sedimentary Research, v. 69, p. 135-144. Gordey, S.P., 1981, Stratigraphy, structure and tectonic evolution of southern Pelly Mountains in the Indigo Lake area, Yukon Territory: Geological Survey of Canada Bulletin 318, 44 p. Foster, H.L., Keith, T.E.C., and Menzie, 1994, Geology of the Yukon-Tanana area of east-central Alaska, in Plafker, G., and Berg, H.C., eds., The geology of Alaska, v. G-1: The geology of North America, Geological Society of America, p. 205- 240. Furlanetto, F., Thorkelson, D.J., Davis, W.J., Gibson, H.D., Rainbird, R.H., and Marshall, D.D., 2009, Preliminary results of detrital zircon geochronology, Wernecke Supergroup, Yukon, in Weston, L.H., Blackburn, L.R., and Lewis, L.L., eds., Yukon Exploration and Geology 2008: Yukon Geological Survey, p. 125-135. Harms, T.A., Coney, P.J., and Jones, D.L., 1984, The Sylvester allochton, Slide Mountain terrane, British Columbia: A correlative of oceanic terranes of northern Alaska: Geological Society of America, Abstracts with Programs, v. 16, p. 288. Htoon, M., (1979), Geology of the Clinton Creek asbestos deposit, Yukon Territory: M.Sc. thesis, University of British Columbia, Vancouver. Jackson, S.E., Pearson, N.J., Griffin, W.L., and Belousova, E.A., 2004, The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology: Chemical Geology, v. 211, 47-69. Johnston, S.J., 2008, The Cordilleran ribbon continent of North America: Annual Review of Earth and Planetary Sciences, v. 36, p. 495-530. Link, P.K., Fanning, C.M., and Beranek, L.P., 2005, Reliability and longitudinal change of detrital zircon age spectra in the Snake River system, Idaho and Wyoming: An example of reproducing the bumpy barcode: Sedimentary Geology, v. 182, p. 101-142. Ludwig, K., 2003, Isoplot/Ex, version 3: A geochronological toolkit for Microsoft Excel: Berkeley, California, Geochronology Center Special Publication no. 4, 77 p. Mahoney, J.B., Mustard, P.S., Haggart, J.W., Friedman, R.M., Fanning, C.M., and McNicoll, V.J., 1999, Archean zircons in Cretaceous strata of the western Canadian Cordillera: The “Baja B.C.” hypothesis fails a “crucial test”: Geology, v. 27, p. 195-198. McNicoll, V.J., Harrison, J.C., Trettin, H.P., and Thorsteinsson, R., 1995, Provenance of the Devonian clastic wedge of Arctic Canada: Evidence provided by detrital

144 zircon ages, in Dorobek, S.L., and Ross, G.M., eds, Stratigraphic evolution of foreland basins: Society of Economic Paleontologists and Mineralogists Special Publication 52, pp. 77-93. Mihalynuk, M.G., Friedman, R.M., Devine, F., and Heaman, L.M., 2006, Protolith age and deformation history of the Big Salmon Complex, relicts of a Paleozoic continental arc in northern British Columbia, in Colpron, M. and Nelson, J.L., eds., Paleozoic evolution and metallogeny of pericratonic terranes at the ancient Pacific margin of North America, Canadian and Alaskan Cordillera: Geological Association of Canada Special Paper 45, p. 179-200. Miller, M.M., 1987, Dispersed remnants of a northeast Pacific fringing arc: upper Paleozoic terranes of Permian McCloud faunal affinity, western U.S.: Tectonics, v. 6, p. 807-830. Miller, E.L, Miller, M.M., Stevens, C.H., Wright, J.E., and Madrid, R., 1992, Late Paleozoic paleogeographic and tectonic evolution of the western U.S. Cordillera, in Burchfiel, B.C., Lipman, P.W., and Zoback, M.L., eds., The Cordilleran orogen: conterminous U.S.: Geological Society of America, Geology of North America,, v. G-3, p. 57-106. Miller, E.L., Toro, J., Gehrels, G.E., Amato, J.M., Prokopiev, A., Tuchkova, M.I., Akinin, V.V., Dumitru, T.A., Moore, T.E., and Cecile, M.P., 2006, New insights into Arctic paleogeography and tectonics from U-Pb detrital zircon geochronology: Tectonics, v. 25, p. 1-19. Monger, J.W.H., Wheeler, J.O., Tipper, H.W., Gabrielse, H., Harms, T., Struik, L.C., Campbell, R. B., Dodds, C. J., Gehrels, G. E., and O'Brien, J., 1991, Chapter 8, Part B. Cordilleran terranes, Upper Devonian to Middle Jurassic assemblages, in Gabrielse, H., and Yorath, C.J., eds., Geology of the Cordilleran orogen in Canada: Geology of Canada, v. 4, 281-327. Mortensen, J.K., 1988, Geology of southwestern Dawson map area, Yukon Territory (NTS 116 B, C): Geological Survey of Canada Open File 1927, 1:250,000 scale. Mortensen, J.K., 1990, Geology and U-Pb geochronology of the Klondike District, west- central Yukon Territory: Canadian Journal of Earth Sciences, v. 27, p. 903-914. Mortensen, J.K., 1992, Pre-mid-Mesozoic evolution of the Yukon-Tanana terrane, Yukon and Alaska: Tectonics, v. 11, p. 836-853. Mortensen, J.K., and Thompson, R.I., 1990, A U-Pb zircon-baddeleyite age for a differentiated mafic sill in the Ogilvie Mountains, west-central Yukon Territory, in Radiogenic and isotopic studies, Report 3: Geological Survey of Canada Paper 89-2, p. 23-28. Mortensen, J.K., Erdmer, P., Piercey, S.J., and Ghent, E.D., 1999, Evidence for Late Triassic terrane accretion in the northern Canadian Cordillera in southeastern Yukon, in Evenchick, C.A., Woodsworth, G.J. and Jongens, R., eds., Terrane Paths 99, Circum-Pacific Terrane Conference Abstract Volume, Geological Survey of Canada/Geological Association of Canada, p. 55. Mortensen, J.K., Dusel-Bacon, C., Hunt, J.A., and Gabites, J., 2006, Lead isotopic constraints on the metallogeny of middle and late Paleozoic syngenetic base- metal occurrences in the Yukon-Tanana and Slide Mountain/Seventymile terranes and adjacent portions of the North American miogeocline area, in Colpron, M., and Nelson, J.L., eds., Paleozoic evolution and metallogeny of pericratonic

145 terranes at the ancient Pacific margin of North America, Canadian and Alaskan Cordillera: Geological Association of Canada Special Paper 45, p. 261-279. Mortensen, J.K., Beranek, L.P., Murphy, D.C., 2007, Permo-Triassic orogeny in the northern Cordillera?: Sonoma north: Geological Society of America, Abstracts with Programs, 103rd Annual Meeting, Bellingham, Washington. Murphy, D.C., Colpron, M., Roots, C.F., Gordey, S.P., and Abbott, J.G., 2002, Finlayson Lake Targeted Geoscience Initiative (southeastern Yukon), Part 1: Bedrock geology, in Emond, D.S., Weston, L.H. and Lewis, L.L., eds., Yukon Exploration and Geology 2001: Exploration and Geological Services Division, Yukon Region, Indian and Northern Affairs Canada, p. 189-207. Murphy, D.C., Mortensen, J.K., Piercey, S.J., Orchard, M.J., and Gehrels, G.E., 2006, Mid-Paleozoic to early Mesozoic tectonostratigraphic evolution of Yukon-Tanana and Slide Mountain terranes and affiliated overlap assemblages, Finlayson Lake massive sulphide district, southeastern Yukon, in Colpron, M., and Nelson, J.L., eds., Paleozoic evolution and metallogeny of pericratonic terranes at the ancient Pacific margin of North America, Canadian and Alaskan Cordillera: Geological Association of Canada Special Paper 45, p. 75-105. Nelson, J.L., 1993, The Sylvester allochthon: Upper Paleozoic marginal-basin and island- arc terranes in northern British Columbia: Canadian Journal of Earth Sciences, v. 30, 631-643. Nelson, J.L., and Friedman, R., 2004, Superimposed Quesnel (late Paleozoic- Jurassic) and Yukon-Tanana (Devonian-Mississippian) arc assemblages, Cassiar Mountains, northern British Columbia: field, U-Pb and igneous petrochemical evidence: Canadian Journal of Earth Sciences, v. 41, p. 1201-1235. Nelson, J.L, Colpron, M., Piercey, S.J., Dusel-Bacon, C., Murphy, D.C., Roots, C.F., 2006, Paleozoic tectonic and metallogenic evolution of the pericratonic terranes in Yukon, northern British Columbia and eastern Alaska, in Colpron, M., and Nelson, J.L., eds., Paleozoic evolution and metallogeny of pericratonic terranes at the ancient Pacific margin of North America, Canadian and Alaskan Cordillera: Geological Association of Canada Special Paper 45, p. 323-360. Ogg, J.G., Ogg, G., and Gradstein, F.M., 2008, The concise geologic time scale: Cambridge University Press. Orchard, M.J., 2006, Late Paleozoic and Triassic conodont faunas of Yukon and northern British Columbia and implications for the evolution of the Yukon-Tanana terrane, in Colpron, M., and Nelson, J.L., eds., Paleozoic evolution and metallogeny of pericratonic terranes at the ancient Pacific margin of North America, Canadian and Alaskan Cordillera: Geological Association of Canada Special Paper 45, p. 229-260. Paces, J.B., and Miller, J.D., 1993, Precise U-Pb ages of Duluth Complex and related mafic intrusions, northeastern Minnesota: Geochronological insights to physical petrogenetic, paleomagnetic, and tectonomagmatic process associated with the 1.1 Ga Midcontinent Rift System: Journal of Geophysical Research, v. 98, p. 13997-14013. Patchett, P.J., Roth, M.A., Canale, B.S., de Freitas, T.A., Harrison, J.C., Embry, A.F., and Ross, G.M., 1999, Nd isotopes, geochemistry, and constraints on sources of sediments in the Franklinian mobile belt, Arctic Canada: Geological Society of

146 America Bulletin, v. 111, p. 578-589. Pigage L.C., and Mortensen J.K., 2004, Superimposed Neoproterozoic and Early Tertiary alkaline magmatism in the La Biche River area, southeast Yukon Territory: Bulletin of the Canadian Society of Petroleum Geology, v. 52, p. 325-342. Piercey, S.J., Murphy, D.C., Mortensen, J.K., and Creaser, R., 2004, Mid-Paleozoic initiation of the northern Cordilleran marginal back-arc basin: geologic, geochemical, and neodymium isotope evidence from the oldest mafic magmatic rocks in Yukon-Tanana terrane, Finlayson Lake district, southeast Yukon, Canada: Geological Society of America Bulletin, v. 116, p. 1087-1106. Piercey, S.J., Nelson, J.L., Colpron, M., Dusel-Bacon, C., Roots, C.F., and Simard, R.-L., 2006, Paleozoic magmatism and crustal recycling along the ancient Pacific margin of North America, northern Cordillera, in Colpron, M., and Nelson, J.L., eds., Paleozoic evolution and metallogeny of pericratonic terranes at the ancient Pacific margin of North America, Canadian and Alaskan Cordillera: Geological Association of Canada Special Paper 45, p. 281-322. Pigage, L.C., 2004, Bedrock geology compilation of the Anvil District (parts of 105K/2, 3, 5, 6, 7 and 11), central Yukon: Yukon Geological Survey, Bulletin 15, 103 p. Pigage L.C., and Mortensen J.K., 2004, Superimposed Neoproterozoic and Early Tertiary alkaline magmatism in the La Biche River area, southeast Yukon Territory: Bulletin of the Canadian Society of Petroleum Geology, v. 52, p. 325-342. Rainbird, R.H., McNicoll, V.J., Theriault, R.J., Heaman, L.M., Abbot, J.G., Long, D.G.F., and Thorkelson, D.J., 1997, Pan-continental river system draining Grenville orogen recorded by U-Pb and Nd-Sr geochronology of Neoproterozoic quartzarenites and mudrocks, northwestern Canada: Journal of Geology, v. 105, p. 1-17. Richards, D.R., Butler, R.F., and Harms, T.A., 1993, Paleomagnetism of the late Paleozoic Slide Mountain terrane, northern and central British Columbia: Canadian Journal of Earth Sciences, v. 30, p. 1898-1913. Read, P.B., and Okulitch, A.V., 1977, The Triassic unconformity of south-central British Columbia: Canadian Journal of Earth Sciences, v. 14, p. 606-638. Renne, P.R., Swisher, C.C., III, Deino, A.L., Karner, D.B., Owens, T. and DePaolo, D.J., 1998, Intercalibration of standards, absolute ages and uncertainties in 39Ar/40Ar dating: Chemical Geology, v. 145, p. 117-152. Roback, R.C., Sevigny, J.H., and Walker, N.W., 1994, Tectonic setting of the Slide Mountain terrane, southern British Columbia: Tectonics, v. 13, p. 1242-1258. Ross, C.A., 1969, Upper Paleozoic fusulinacea: Eowaeringella and Wedekindelellina from Yukon Territory and giant Parafusulina from British Columbia, in Contributions to Canadian Paleontology: Geological Survey of Canada Bulletin 182, p. 129-134. Ross, G.M., Gehrels, G.E., and Patchett, P.J., 1997, Provenance of Triassic strata in the Cordilleran miogeocline, western Canada: Bulletin of Canadian Petroleum Geology, v. 45, p. 461-473. Sláma, J. Košler, J., Condon, D.J., Crowley, J.L., Gerdes, A., Hanchar, J.M., Horstwood, M.S.A., Morris, G.A., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, B., Tubrett, M.N., and Whitehouse, M.J., 2008, Plešovice zircon – A new natural

147 reference material for U-Pb and Hf isotopic microanalysis: Chemical Geology, v. 249, p. 1-35. Van Achterbergh, E., Ryan, C.G., Jackson, S.E., and Griffin, W.L., 2001, Data reduction software for LA-ICP-MS, in Sylvester, P.J., ed., Laser Ablation-ICP-Mass Spectrometry in the Earth Sciences: Principles and Applications: Mineralogical Association of Canada Short Course Series 42, p. 239-243. Villeneuve, M.E., Ryan, J.J., Gordey, S.P., and Piercey, S.J., 2003, Detailed thermal and provenance history of the Stewart River area (Yukon-Tanana terrane, western Yukon) through application of SHRIMP, Ar-Ar and TIMS: Geological Association of Canada–Mineralogical Association of Canada Abstracts, v. 28, p. 344.

148

Chapter 5:

Late Triassic ‘Tethyan’ conodonts in the peri-Laurentian realm: North American detrital zircons de-bug the Bug Island limestone?1

1A version of this chapter will be submitted for publication. Beranek, L.P., Murphy, D.C., Orchard, M.J., and Mortensen, J.K., Late Triassic ‘Tethyan’ conodonts in the peri-Laurentian realm: North American detrital zircons de-bug the Bug Island limestone?

149 5.1 INTRODUCTION The North American Cordillera represents a long-lived accretionary orogen that formed in part by tectonic addition of terranes against the western margin of Laurentia. Coney et al. (1980) described the term ‘terrane’ in the Cordillera as a fault-bounded element whose geologic and paleogeographic history differed from adjacent bodies and the North American craton. For the past thirty years, a multitude of tools have been used to constrain the origin and transport of these lithotectonic fragments, including geologic, paleontologic, and paleomagnetic analysis (Haggart et al., 2006). Paleontologic studies encapsulated the disparity between terranes by recognizing that some similar-aged Permian and Triassic rocks in the Cordillera contained faunal groups of different paleobiogeographic affinities (Monger and Ross, 1971). Some faunas were endemic to eastern Panthalassa, or proto-Pacific Ocean; however, others were also recognized in western Europe and southeast Asia, contributing to the hypothesis that a number of terranes are ‘exotic’ and have origins far from North America (Gabrielse and Yorath, 1991).

5.1.1 Review of terrane and paleobiogeographic analysis in the Canadian Cordillera Back-arc extension led to the separation of west-facing continental margin and arc fragments from the northwestern Laurentian margin in latest Devonian time and these rifted assemblages were the foundation for the northern Cordilleran elements Yukon- Tanana, Quesnellia, and Stikinia (YT, QN, and ST in Figure 5.1; Nelson et al., 2006). Latest Devonian extension also generated a marginal ocean basin, referred to as the Slide Mountain-Golconda Ocean, in the back-arc region of these terranes alongside the Ancestral North American margin (Figure 5.2a,b). The Slide Mountain-Golconda Ocean began to close by the Middle Permian, initiating eastward transport of terranes towards western North America (Figure 5.2c). Recent terrane analysis and detrital zircon studies concluded that the northern extent of the Slide Mountain-Golconda Ocean was fully closed by Late Permian-Early Triassic time (Mortensen et al., 2007; Beranek, Chapter 4; Figure 5.2c). Remnants of the marginal ocean basin, typically in thrust faulted contact with North American strata, are called the Slide Mountain terrane in the Canadian Cordillera (e.g., Nelson, 1993). In

150 total, the North American origin of these terranes lends the name peri-Laurentian, or pericratonic, to their affinity. Furthermore, their Paleozoic development occurred in the peri-Laurentian realm, alongside western North America (Nelson et al., 2006). In western United States and Canada, some peri-Laurentian terranes contain Permian rocks with schwagerinid fusulinids, such as the giant species of Parafusulina (e.g., Carter et al., 1991). These foraminifers are also observed within cratonal rocks in the southwestern United States and may indicate a low paleolatitude environment for some eastern Cordilleran elements during the Permian.

Figure 5.1 - Terranes of the Alaskan and Canadian Cordilleras. Black star and Finlayson Lake text indicates study area; close up map in Figure 5.4. AB – Alberta, AK – Alaska, B.C. – British Columbia, N.W.T. – Northwest Territories, U.S.A. – United States of America. Modified from Colpron et al. (2007).

151 Schwagerinid fusulinids are best known from the McCloud Limestone, a Permian unit included in the Eastern Klamath terrane of northern California. Consequently, tectonic elements with these fauna have been assigned to the ‘McCloud belt’ (Miller, 1987; Stevens et al., 1990). McCloud belt foraminifers characterize a specific biogeographic province referred to as the Boreal or Cordillera-Arctic-Uralian realm (Belasky and Stevens, 2006). To the west of McCloud belt terranes, Permian accretionary complex rocks of Cache Creek terrane in western Canada (CC in Figure 5.1), and disparate limestone blocks in the western United States, yield verbeekinid fusulinids and waagenophyllid corals also recognized in Eurasian continental margin strata (Belasky and Stevens, 2006). These faunas distinguish the ‘Tethyan’ biogeographic province, or Tethys Ocean region, and are rare in McCloud belt terranes (Miller, 1987) and the North American craton (Skinner and Wilde, 1955).

5.1.2. Exotic conodonts in the peri-Laurentian realm? Western Cordilleran elements such as Cache Creek terrane and Wrangellia (WR in Figure 5.1) have well-documented occurrences of Permian and Triassic Tethyan faunas (Carter et al., 1991; Orchard, 1991). Although uncommon, some conodonts observed in the western Cordilleran and McCloud terranes are undoubtedly cosmopolitan, and also recognized in the North American miogeocline. For example, Early Triassic strata in eastern Yukon contain Neospathodus dieneri Sweet, a conodont that is documented within Cache Creek terrane rocks in British Columbia (Orchard, 1991; Beranek, Chapter 3). Notably, these Triassic strata in eastern Yukon overlie Permian rocks that yield Sweetognathus inornatus Ritter and Mesogondolella bisselli, two conodonts observed in McCloud-related rock packages of Quesnellia in southern British Columbia (Orchard, 1991; Beranek, Chapter 3). Lower Norian strata overlying Slide Mountain terrane in northern British Columbia contain Epigondolella aff. E. spatulata, a conodont similar to species recognized in low paleolatitude Eurasian collections but rare to the Cordilleran miogeocline (Orchard, 2006). This conodont also occurs within a sandy, bioclastic carbonate unit in southeastern Yukon, informally named the Bug Island limestone, and is

152 Figure 5.2 – Paleozoic paleogeographic evolution of northwestern Laurentia and adjacent pericratonic terranes. Gold discs indicate McCloud faunal occurrences.

YTT – Yukon-Tanana terrane

Modified from Colpron et al. (2007).

associated therein with Paragondolella? hallstattensis, a widespread indicator of late early Norian strata in western Europe (Orchard, 2006).

5.1.3 Testing models for Tethyan faunal occurrences in the Canadian Cordillera The significance of Tethyan fossils in the Cordillera has been widely debated (e.g., Monger and Ross, 1971; Newton, 1988; Smith et al., 1990). The major point of contention has focused on the tectonic or faunal mechanism(s) allowing Tethyan fossil occurrences over a vast geographic area from western Europe to western North America. Three main hypotheses have been put forth to explain these occurrences (see Figure 5.3): (1) some fauna were pantropic species that extended eastward from Tethys, with decreasing diversity, across to North America (Newton, 1988); (2) fauna migrated westward from western Tethys through marine corridors into eastern Panthalassa (e.g.,

153 Newton, 1988); or (3) fauna were transported eastward on tectonic blocks from Tethys across the proto-Pacific Ocean and accreted to western North America (e.g., Monger and Price, 2002). To test these hypotheses, this study evaluated the provenance of sandy material in the Bug Island limestone. The current working model for Slide Mountain terrane, which underlies the Bug Island limestone, argues for its tectonic juxtaposition with the North American continent by Late Permian-Early Triassic time (Beranek, Chapter 4). If this supposition is valid, it requires the Bug Island limestone to contain detrital zircons recording a northwestern Laurentian provenance, resembling that of Late Triassic rocks along the North American margin and overlying the SMT. Similarly, if the unit developed on top of a highly displaced terrane, within the Tethys Ocean or western Panthalassa, it should comprise a provenance signature different to that of Cordilleran margin rocks.

Figure 5.3 – Late Triassic global paleogeography. Black star indicates present location of the Bug Island limestone. Modified from Dilek (1994) and Golonka (2007).

154 5.2 REGIONAL GEOLOGY OF THE FINLAYSON LAKE MAP AREA 5.2.1 Yukon-Tanana and Slide Mountain terranes The Yukon-Tanana (YTT) and Slide Mountain (SMT) terranes comprise multiple fault-bounded successions between the Tintina fault and North American continental margin in the Finlayson Lake map area of southeastern Yukon (Murphy et al., 2006). Murphy et al. (2002) defined YTT as Late Devonian to Permian igneous and metasedimentary rocks west of the Jules Creek fault, a major transcurrent structure forming the boundary between the YTT and SMT (Figure 5.4). East of the Jules Creek fault, SMT units mainly comprise Mississippian to Permian chert, metaclastic rocks, and mafic and ultramafic metaigneous rocks in the upper plate of the Inconnu thrust, the regional structure separating peri-Laurentian terranes from the North American autochthon (NAM in Figure 5.4).

Figure 5.4 – Simplified geology of the northern Finlayson Lake district, southeastern Yukon. Black star indicates Bug Island limestone sample location. NAM – North American miogeocline, YTT – Yukon- Tanana terrane. Modified from Murphy et al. (2006).

155 5.2.2 Triassic strata – The Bug Island limestone Weakly deformed Middle to Late Triassic siltstone and sandstone overlie YTT, SMT, and Paleozoic rocks of the North American continental margin in the Finlayson Lake map area. In one region, this Triassic package contains a sandy, bioclastic carbonate unit, informally named the Bug Island limestone (Figure 5.5), which has an exposed strike length of over 10 km. Nine conodont collections from the Bug Island limestone have included Epigondolella triangularis, E. quadrata, E. aff. quadrata, E. n. sp. aff. matthewi, and E. transita, suggesting a late early Norian age for the unit (Orchard, 2006). These fauna are known to be in North American strata of western Canada; however, the Bug Island limestone also yields Epigondolella aff. spatulata and Paragondolella? hallstattensis, conodonts that are similar to species in typical Tethyan collections along the Eurasian margin (Orchard, 2006).

Figure 5.5 – Schematic stratigraphic section through Triassic sedimentary package in Figure 5.4. Black star indicates Bug Island limestone detrital zircon sample. Grey stars represent detrital zircon samples from Beranek (Chapter 4). NAM – North American miogeocline, SMT – Slide Mountain terrane.

156 5.3 DETRITAL ZIRCON REFERENCE FRAMES U-Pb detrital zircon age data have been used to construct reference frames for both allochthonous terranes and continental margin strata in western North America (e.g., Gehrels et al., 1995, 1996; Gehrels and Ross, 1998). Reference frames comprise terrane- and craton-defining detrital zircon signatures useful in reconstructing displacement and paleogeographic histories (see Mahoney et al., 1999; Gehrels, 2000; Berry et al., 2001).

5.3.1 Ancestral North American margin Two detrital zircon signatures have been observed in continental margin rocks of northern and western Canada: (1) pre-Late Devonian strata are rich in early Precambrian (1800-3000 Ma) detrital zircons with minor Middle to Late Proterozoic input; and (2) post-Late Devonian rocks have prominent early Paleozoic (370-450 Ma), Neoproterozoic (530-700; 1000-1300 Ma), and Mesoproterozoic (1400-1600 Ma) detrital zircon age peaks. Late Devonian to Late Triassic strata in Alaska, Yukon, and Northwest Territories contain ca. 370-450 Ma detrital zircon (Gehrels et al., 1999; Miller et al., 2006, Beranek, Chapters 2,3,4), consistent with data from northerly derived Devonian clastic wedge deposits in the Canadian Arctic Islands (McNicoll et al., 1995). The working hypothesis in the northern Cordillera argues for early Paleozoic detrital zircons originating from volcanic rocks of the Innuitian orogenic belt in the Canadian Arctic Islands (Ross et al., 1997; Beranek, Chapters 2,3,4). Therefore, continental margin rocks were successively recycled into the Cordilleran miogeocline from mid-Paleozoic through Late Triassic time and the occurrence of ca. 370-450 Ma zircons defines a northwestern Laurentian provenance (Boghossian et al., 1996; Beranek, Chapter 4).

5.3.2 Yukon-Tanana terrane The pericratonic YTT comprises four tectonic assemblages (Colpron et al., 2006). The Snowcap assemblage, a pre-Late Devonian package of metasedimentary and mafic metavolcanic rocks with continental margin affinity, comprises the lowest structural level of YTT. Detrital zircons from Snowcap assemblage quartzite mainly contain 1867-2801 Ma age peaks, likely indicating an ultimate source from the northwestern North

157 American autochthon (Colpron and Piercey, unpublished). The Snowcap assemblage is overlain by three unconformity-bounded successions (Finlayson, Klinkit, and Klondike assemblages). Volcanic rocks and related intrusive bodies in YTT record six magmatic cycles at 253-269, 269-314, 314-342, 342-357, 357-365, and 365-390 Ma (Colpron et al., 2006).

5.3.3 Finlayson Lake area Detrital zircon provenance analysis of coarse-grained Triassic siliciclastic strata overlying SMT in the Finlayson Lake area yielded ca. 254-265 Ma age peaks, which are consistent with an origin from YTT arc rocks (Beranek, Chapter 4). These coarse clastic rocks were collected along a succession that contains the Bug Island limestone (see Figure 5.5.). In addition to Permian zircons, one sandstone unit directly beneath the Bug Island limestone also contains age peaks at 361 and 371 Ma and single-grain occurrences at 616, 1112-1610, 2394, and 2570 Ma. These early Paleozoic and Precambrian ages most likely indicate a North American provenance (Beranek, Chapter 4).

5.3.4 Late Triassic strata associated with Slide Mountain terrane Late Triassic siliciclastic rocks associated with SMT in the northern Cordillera contain detrital zircon age populations that are interpreted to reflect mixing of YTT and North American sources (Beranek, Chapter 4). These data are most simply explained by Triassic strata comprising a sedimentary overlap assemblage that forms a geodynamic linkage between YTT, SMT, and the adjacent North American margin. Specifically, Late Triassic strata associated with SMT in western Yukon and northern British Columbia contain numerous detrital zircon age peaks from ca. 250-650 Ma.

5.3.5 Tethyan sequences in Himalaya Paleozoic to Cenozoic siliciclastic rocks of the Himalayan thrust belt include Tethyan strata deposited along the northern margin of Indian Gondwanaland and Eocene and younger foreland deposits whose detrital mineral components comprise recycled Tethyan sediment (DeCelles et al., 1998). Detrital zircon analyses of these deposits (>

158 2000 grains) indicate significant U-Pb ages at 470-520, 900-1300, 1850, and 2500 Ma (DeCelles et al., 2004).

5.3.6 Detrital zircon statistics Detrital zircon data collected from Neoproterozoic to Triassic strata in Canada that are pertinent to this study have been compiled and processed through a Microsoft Excel macro that determines statistically reliable age peaks (Table 5.1). This macro was also used to determine statistical reliability for the Bug Island limestone, allowing simple comparison between all datasets. Results in Table 5.1 form the foundation for provenance correlations between the Bug Island limestone and other Cordilleran strata and are basis for paleo-tectonic interpretations.

5.4 ANALYTICAL METHODS AND DATA PRESENTATION Detrital zircons were dated using laser ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS) at the Pacific Centre for Isotopic and Geochemical Research (PCIGR), University of British Columbia. Zircons were separated using conventional Wilfley table, heavy liquid, and magnetic methods. A random portion of each of the zircon concentrates was mounted in an epoxy puck along with several grains of the 337 Ma Plešovice (Sláma et al., 2008) and 1099 Ma FC-1 (Paces and Miller, 1993) standard zircons and brought to a very high polish to expose the interior of the grains. The surface of the mount was washed for 10 minutes with dilute nitric acid and rinsed in ultraclean water prior to analysis. Zircons were analyzed with a New Wave UP-213 laser ablation system and Thermo-Finnigan Element2 single collector, double-focusing, magnetic sector ICP-MS, following similar operating parameters as those described by Chang et al. (2006). Line scans rather than spot analyses were employed to minimize elemental fractionation. Typically, 35% laser power and 25 micron laser diameter were used. Background levels were measured with the laser off for 25 seconds, followed by data collection with the laser on for approximately 47 seconds. The time-integrated signals were analyzed using the GLITTER software package described by Van Achterbergh et al. (2001) and Jackson et al. (2004), which automatically subtracts background

159 measurements, propagates all analytical errors, and calculates isotopic ratios and ages. Corrections for mass and elemental fractionation were made by bracketing analyses of unknown grains with replicate analyses of the standard zircon. A typical analytical session consists of four analyses of the standard zircon, followed by five analyses of unknown zircons, one standard analysis, five unknown analyses, etc., and finally four standard analyses. Interpreted ages and isotopic ratios are presented in the appendix. All errors reported are at the 1-sigma level. Interpreted ages for grains <1000 Ma are based from 206Pb/238U ages. For detrital zircons >1000 Ma, 207Pb/206Pb ages are used, which underestimate the true age for discordant grains. However, Precambrian zircons with >10% discordance are not included in the results or age plots. U-Pb zircon age data are presented in relative probability plots (Figure 5.6) with stacked histograms, prepared using the Isoplot 3.0 Excel macro of Ludwig (2003). These plots contain both a relative probability curve corresponding to age peaks and a histogram (e.g., Link et al., 2005). Figure 5.6 comprises two plots: one from 0 to 3000 Ma in 50 m.y. bins to show the entire age spectrum and one from 200 to 700 Ma in 5 m.y. bins to highlight young populations. This is a straightforward way to display the quantity of zircon analyzed and the important Paleozoic age populations. Figure 5.7 shows a normalized probability plot displaying data from the Bug Island limestone against other samples in the Cordillera. This plot was generated from a Microsoft Excel macro by G.E. Gehrels.

5.5 RESULTS Detrital zircon age peaks in the Bug Island limestone, corresponding to 113 single-grain analyses (Figure 5.6), were at 341, 373, 387, 398, 402, 426, 481, 548, 588, 626, 645, 922, 988, 1041, 1235, 1391, 1595, and 1816 Ma. Other single-grain ages occurred at 312, 330, 2080, 2612, 2851, 2675, 2861, and 2984 Ma.

160

Figure 5.6 – Relative probability plots with histograms showing detrital zircon ages from the Bug Island limestone, Finlayson Lake area, southeastern Yukon.

5.6 PROVENANCE CORRELATIONS Detrital zircon populations within the Bug Island limestone correlate with several age peaks observed in Neoproterozoic to Late Triassic strata overlying the Cordilleran miogeocline and Slide Mountain terrane in northwestern Canada (Table 5.1, Figure 5.7). Mesoproterozoic and Paleoproterozoic peaks at 1040, 1046, 1235, 1595, and 1816 Ma, compare well with detrital zircon ages in the Proterozoic Pinguicula Group, Neoproterozoic-Triassic miogeoclinal strata in British Columbia and Alberta, Mississippian strata of west-central and eastern Yukon, Middle(?) Triassic strata in the Tummel fault zone of central Yukon, Late Triassic Jones Lake Formation in the Sheldon Lake area of eastern Yukon, and Late Triassic Table Mountain formation overlying SMT in northern British Columbia (Table 5.1). Neoproterozoic peaks at 588, 626, 645, 922, and 988 Ma are also observed in the Late Devonian Imperial Formation in northern Yukon, Early to Late Triassic Jones Lake Formation in west-central and eastern Yukon, Middle(?) Triassic strata in the Tummel fault zone, Late Triassic Pat Bay Formation in the Canadian Arctic Islands, Late Triassic strata at the Clinton Creek mine imbricated with SMT in western Yukon, and Late Triassic Table Mountain formation. Paleozoic age peaks occurring at 341, 373, 387, 398, 402, 426, and 481 Ma are consistent with populations observed in the Devono-Mississippian Imperial and Tuttle formations in northern Yukon, Early to Late Triassic Jones Lake Formation across west- central to eastern Yukon, Middle(?) to Late Triassic strata in central Yukon and in the Finlayson Lake area, Late Triassic strata at Clinton Creek, and Late Triassic Table

161 Mountain formation. The age peak at 341 Ma, and single-grains at 312 and 330 Ma, also correlate with igneous rocks on YTT (Colpron et al., 2006).

5.7 DISCUSSION 5.7.1 Detrital zircon provenance The Bug Island limestone contains numerous Paleozoic and Precambrian detrital zircon age populations that define provenance from northwestern Laurentia (Figure 5.7). These age peaks are typical of Paleozoic to Late Triassic strata of the Cordilleran miogeocline and rocks overlying SMT in eastern Alaska, Yukon, and British Columbia. Specifically, the Bug Island limestone has age peaks at 373, 387, 398, 426, 402, 481, 548, 626, and 645 Ma that are identical to populations in Late Triassic (Carnian and Norian) strata associated with SMT in the northern Canadian Cordillera (see Table 5.1). Several of these age peaks have also been identified in Devono-Mississippian strata of the Ellesmerian clastic wedge and Early to Late Triassic miogeoclinal strata in Yukon. Notably, the early to mid-Paleozoic age peaks do not correspond to detrital zircon results from Tethyan successions in the Himalaya (DeCelles et al., 2004). Age populations in the Bug Island limestone are interpreted to reflect recycling of zircon whose origins are from the Innuitian orogenic belt and related tectonic elements of northernmost North America (i.e., Arctic Alaska terrane, Crocker Land; see Beranek, Chapter 2). Proterozoic and Archean zircon in the Bug Island limestone are recognized in several Neoproterozoic to Late Triassic sandstone units in western Canada are recycled components from the North American craton (cf., Gehrels and Ross, 1998). The detrital zircon peak at 341 Ma, and single-grain ages at 312 and 330 Ma, do not correlate with source rocks located in the Cordilleran miogeocline or Innuitian orogenic system; however, they are consistent with derivation from intrusive and volcanic rocks of the YTT in Yukon (Colpron et al., 2006). For example, the 341 Ma peak is representative of several igneous units in YTT, including the Simpson Lake plutonic suite in the Finlayson Lake area (Murphy et al., 2006), Little Salmon and Tatlmain plutonic suites in central Yukon (Colpron et al., 2006b), and Ram Creek and Big Salmon complexes of southern Yukon (Roots et al., 2006).

162 The mixture of detrital zircon originating from both YTT and the Laurentian margin rocks is most compatible with the Bug Island limestone comprising part of a regional overlap assemblage (cf., Beranek, Chapter 4). The presence of this sedimentary linkage documents juxtaposition of YTT with North America in the Finlayson Lake area by closure of the Slide Mountain-Golconda Ocean. Thus, these peri-Laurentian terranes were amalgamated with the North American plate by Late Triassic time.

5.7.2 Evaluation of Tethyan fossils in the Cordillera Detrital zircon analysis of the Bug Island limestone effectively tests the three working hypothesis regarding the occurrence of Tethyan fossils in the Cordillera. The mixture of detrital zircon components in the Bug Island limestone from Laurentia and YTT provide evidence for a Triassic overlap assemblage that links pericratonic terranes in present day eastern Yukon with the North American margin. Thus, if the Bug Island limestone is underlain by remnants of the closed Cordilleran marginal basin, the carbonate unit is required to be of northwestern Laurentian paleogeographic affinity. The accretion of peri-Laurentian elements such as YTT and Quesnellia against the North American margin occurred at an unknown paleolatitude; however, the majority of paleomagnetic studies suggest terranes of the southern Canadian Cordillera docked with the continent around the latitude of northern California (e.g., Richards et al., 1993). The magnitude of early Paleozoic to late Neoproterozoic age peaks in the Bug Island limestone are most compatible with North American strata presently at, or north of, 60° N (see data from Gehrels and Ross, 1998; Gehrels, 2000; Beranek, Chapter 4) which corresponds to a Late Triassic latitude around 35° N. Therefore, this study argues for Bug Island limestone data providing evidence for minimal margin-parallel displacement following accretion. Nonetheless, this study considers that pre-Late Triassic strike-slip movement along the Inconnu thrust, presently unknown, is possible, but no regional geologic evidence suggests the Bug Island limestone has undergone any large-magnitude movement (100’s of kms) along the Laurentian margin that would significantly change is paleolatitude. Table 5.1 (next page) – 1Beranek, Chapter 4; 2Miller et al. (2006); 3Beranek, Chapter 2; 4Beranek, Chapter 2; 5Gehrels and Ross (1998); 6Rainbird et al. (1997); 7Furlanetto et al. (2009); 8Ross et al. (1997); 9M. Colpron and S. Piercey, unpublished.

163 TABLE 5.1 - STATISTICALLY RELIABLE DETRITAL ZIRCON AGE PEAKS IN NW CANADA

Known U-Pb Age Peak Occurrences (Ma) 200 - 360 Ma Late Triassic strata, Clinton Creek, western Yukon1: 228, 256, 261, 278, 302, 312, 341, 351 ,357 Late Triassic Table Mtn. Fm., northern B.C1.: 222, 237, 251, 255, 261, 274, 281, 288, 309, 335, 342, 349 Middle? to Late Triassic, Finlayson Lake area, SE Yukon1: 238, 257, 265, 274, 290 Middle? Triassic, Bearfeed allochthon, central Yukon1: 273, 276, 305, 308, 315, 319, 323, 328, 334, 339

360 - 500 Ma Late Triassic strata, Clinton Creek, western Yukon: 363, 371, 375, 384, 387, 392, 401, 411, 420, 448, 465, 483 Late Triassic Table Mtn. Fm., northern B.C.: 366, 377, 384, 399, 414, 423, 427, 434, 443, 457, 467, 478 Middle? to Late Triassic, Finlayson Lake area, SE Yukon: 361, 371 Late Triassic Pat Bay Formation, Canadian Arctic Islands2: 433, 473 Late Triassic Jones Lk. Fm., Sheldon Lake area, eastern Yukon3: 414, 427 Middle? Triassic, Bearfeed allochthon, central Yukon: 363 Middle? Triassic, Tummel fault zone, central Yukon1: 455 Early to Late Triassic Jones Lake Fm., western Yukon3: 370, 393, 401, 416, 426, 452, 459, 470, 491 Early Triassic Jones Lake Fm. type section, eastern Yukon3: 364, 374, 405, 414, 434, 450, 478, 492 Mississippian Keno Hill Quartzite and Tsichu formation, Yukon4: 382, 415, 431 Early Mississippian Tuttle Formation, northern Yukon4: 371, 381, 387, 398, 415, 436, 446, 462, 484, 495 Late Devonian Imperial Formation, Yukon and NWT4: 383, 393, 403, 428, 434, 442

500 - 700 Ma Late Triassic strata, Clinton Creek, western Yukon: 518, 532, 546, 551, 564, 593, 602, 614, 621 Late Triassic Table Mtn. Fm., northern B.C.: 543, 552, 569, 579, 604, 613, 625, 646, 670, 689 Late Triassic Jones Lk. Fm., Sheldon Lake area, eastern Yukon: 594 Late Triassic Pat Bay Formation, Canadian Arctic Islands: 569, 661 Early to Late Triassic Jones Lake Fm., western Yukon: 518, 537, 563, 586, 624, 656 Middle? Triassic, Tummel fault zone, central Yukon: 509 Early Triassic Jones Lake Fm. type section, eastern Yukon: 524, 552, 581, 600, 633, 669 Mississippian Keno Hill Quartzite and Tsichu formation, Yukon: 573 Late Devonian Imperial Formation, northern Yukon and NWT: 551, 648, 692

700 - 1000 Ma Late Triassic strata, Clinton Creek, western Yukon: 915, 979 Late Triassic Table Mtn. Fm., northern B.C.: 717, 885, 945, 958, 986 Late Triassic Jones Lk. Fm., Sheldon Lake area, eastern Yukon: 941 Late Triassic Pat Bay Formation, Canadian Arctic Islands: 921 Early to Late Triassic Jones Lake Fm., western Yukon: 923, 945, 981 Middle? Triassic, Tummel fault zone, central Yukon: 924, 953 Early Triassic Jones Lake Fm. type section, eastern Yukon: 878, 934, 982 Late Devonian Imperial Formation, northern Yukon and NWT: 920, 949

1000 - 1400 Ma Late Triassic strata, Clinton Creek, western Yukon: 1002, 1025, 1065, 1169, 1306, 1373 Late Triassic Table Mtn. Fm., northern B.C.: 1000, 1036, 1120, 1321 Late Triassic Jones Lk. Fm., Sheldon Lake area, eastern Yukon: 1035, 1312 Late Triassic Hoole Fm., Cassiar terrane, southeastern Yukon3: 1210 Early Triassic Jones Lake Fm. type section, eastern Yukon: 1101, 1197, 1256, 1315, 1384 Pennsylvanian-Permian British Columbia and Alberta miogeocline5: 1023, 1040, 1110, 1148, 1236 Mississippian Keno Hill Quartzite and Tsichu formation, Yukon: 1046, 1121, 1263 Early Mississippian Tuttle Formation, northern Yukon: 1025, 1160, 1253 Late Devonian Imperial Formation, northern Yukon and NWT: 1076, 1171 Early Neoproterozoic Pinguicula Group, northern Yukon6: 1066, 1134, 1166, 1238

1400 - 1700 Ma Late Triassic strata, Clinton Creek, western Yukon: 1427, 1609, 1659 Late Triassic Table Mtn. Fm., northern B.C.: 1437, 1510, 1579, 1629 Late Triassic Jones Lk. Fm., Sheldon Lake area, eastern Yukon: 1432, 1572, 1661 Late Triassic Hoole Fm., Cassiar terrane, southeastern Yukon: 1543 Late Triassic Pat Bay Formation, Canadian Arctic Islands: 1655 Early to Late Triassic Jones Lake Fm., western Yukon: 1504, 1626 Middle? Triassic, Tummel fault zone, central Yukon: 1440, 1594 Early Triassic Jones Lake Fm. type section, eastern Yukon: 1423, 1479, 1649 Mississippian Keno Hill Quartzite and Tsichu formation, Yukon: 1608, 1694 Early Mississippian Tuttle Formation, northern Yukon: 1502, 1622 Late Devonian Imperial Formation, northern Yukon and NWT: 1405, 1697 Early Neoproterozoic Pinguicula Group, northern Yukon: 1438, 1448, 1453, 1636, 1651 Wernecke Supergroup, northern Yukon7: ca. 1600

1700 - 2000 Ma Late Triassic strata, Clinton Creek, western Yukon: 1780, 1865 Late Triassic Table Mtn. Fm., northern B.C.: 1783, 1807, 1898 Late Triassic Hoole Fm., Cassiar terrane, southeastern Yukon: 1705, 1836 Late Triassic Pat Bay Formation, Canadian Arctic Islands: 1836 Early to Late Triassic Jones Lake Fm., western Yukon: 1800, 1892, 1988 Middle to Late Triassic British Columbia and Alberta miogeocline8: 1745, 1823, 1823, 1838, 1856, 1886 Middle? Triassic, Tummel fault zone, central Yukon: 1704, 1796, 1872, 1930, 1964 Middle? Triassic, Bearfeed allochthon, central Yukon: 1867, 1908, 1941, 1989 Early Triassic Jones Lake Fm. type section, eastern Yukon: 1745, 1837, 1943, 1998 Pennsylvanian-Permian British Columbia and Alberta miogeocline: 1799, 1841, 1889 Mississippian Keno Hill Quartzite and Tsichu formation, Yukon: 1785, 1827, 1938 Early Mississippian Tuttle Formation, northern Yukon: 1849, 1935 Late Devonian Imperial Formation, northern Yukon and NWT: 1828, 1965 Pre-Late Devonian Snowcap assemblage, central Yukon9: 1867, 1941 Neoproterozoic to Cambrian B.C. and Alta. miogeocline5: 1766, 1788, 1819, 1839, 1872, 1905, 1993

164

Figure 5.7 – Normalized probability plot comparing detrital zircon age spectra from the Bug Island limestone and other units in the northern Canadian Cordillera. BC- British Columbia, Fm. – Formation, KHQ – Keno Hill Quartzite, Miss. – Mississippian.

165 Hypothesis 1 – Pantropic Tethyan fauna Detrital zircon data from this study, and subsequent inferences on Triassic geodynamic linkages in the northern Cordillera, are compatible with the pantropic hypothesis of Newton (1988). She suggested that a decrease in diversity from western Europe to western North America provided a line of evidence supporting trans- Panthalassic migration of Tethyan fauna. A comprehensive examination of paleobiologic and paleoceanographic controls on faunal distribution is beyond the scope of this study. However, an obvious dispersion mechanism that may have accommodated pantropic migration may have been that global climate and tectonic factors altered the Late Triassic marine environment. Numerical climate modeling studies such as Poulsen and Huynh (2006) document that the rifting of Pangea greatly impacted marine environments, for example, affecting ocean heat

transport, salinity, circulation, and global CO2 concentrations. Poulsen and Huynh (2006) suggest break-up, and related change in basin geometry, may have created a more heterogenous distribution for such characteristics within the worlds oceans. It is possible that such environmental changes drove marine organisms to migrate, and such dispersion may have been necessary for survival.

Hypothesis 2 – Migration from western Tethys Detrital zircon data from the Bug Island limestone are in agreement with the migration of fauna from western Tethys to eastern Panthalassa via a marine seaway. Akin to the pantropic hypothesis, detrital zircon data are compatible with faunal migration because of inferred juxtaposition of SMT with northwestern Laurentia by Late Triassic time. The Hispanic Corridor, a Mesozoic seaway linking Tethys with Panthalassa near modern day Central America, has been offered as a possible conduit for migrating Tethyan fauna; however, this option appears untenable for late early Norian conodonts because there is no evidence of this corridor being open until earliest Jurassic time (Smith et al., 1990; Longridge et al., 2008).

166 Hypothesis 3 – Tectonic translation of fauna from Tethys Detrital zircon age populations in the Bug Island limestone are not compatible with Tethyan sequences in southern Asia (DeCelles et al., 2004) or the unit having undergone large-scale tectonic translation from the Tethys Ocean region. Rather, these data are consistent with the unit having North American affinity. In total, the origin of the Bug Island limestone in northwestern Canada directly contests the assumption that occurrences of Tethyan fossils in Cordilleran terranes require an origin from Tethys or western Panthalassa.

5.8. SYNTHESIS North American detrital zircons in the Bug Island limestone provide one line of evidence supporting the hypothesis that some Eurasian fauna migrated from Tethys to eastern Panthalassa. However, this work does not prohibit the possibility of tectonic translation of Eurasian fauna from Tethys; rather, future terrane and paleontologic studies should examine fossil occurrences on a case-by-case basis. Although this study provides an innovative method for determining the origin of Tethyan fossils in the Cordillera, it only focused on one locality with rare faunal elements. Mutual agreement between paleontologists and other geoscientists must be accomplished for this scientific argument to have resolution. Fortunately, the North American Cordillera provides an ideal laboratory for future interdisciplinary study of tectonics, paleontology, and paleoceanography.

167 5.9 REFERENCES Belasky, P., and Stevens, C.H., 2006, Permian faunas of westernmost North America: Paleobiogeographic constraints on the Permian positions of Cordilleran terranes, in Haggart, J.W., Enkin, R.J., and Monger, J.W.H., eds., Paleogeography of the North American Cordillera: Evidence for and against large-scale displacements: Geological Association of Canada Special Paper 46, p. 71-80. Berry, R.F., Jenner, G.A., Meffre, S., and Tubrett, M.N., 2001, A North American provenance for Neoproterozoic to Cambrian sandstones in Tasmania: Earth and Planetary Science Letters, v. 192, p. 207-222. Carter, E.S., Orchard, M.J., Ross, C.A., Ross, J.R.P., Smith, P.L., and Tipper, H.W., 1991, Chapter 2, Part B, Paleontological signatures of terranes, in Gabrielse, H., and Yorath, C.J., eds., Geology of the Cordilleran orogen in Canada: Geology of Canada, v. 4, p. 28-38. Chang, S. Vervoort, J.D., McClelland, W.C., and Knaack, C., 2006, U-Pb dating of zircon by LA-ICP-MS: Geochemistry, Geophysics, Geosystems, v. 7, Q05009 doi:10.1029/2005GC001100. Colpron, M., Nelson, J.L., and Murphy, D.C., 2006, A tectonostratigraphic framework for the pericratonic terranes of the northern Canadian Cordillera, in Colpron, M., and Nelson, J.L., eds., Paleozoic evolution and metallogeny of pericratonic terranes at the ancient Pacific margin of North America, Canadian and Alaskan Cordillera: Geological Association of Canada Special Paper 45, p. 1-23. Colpron, M., Mortensen, J.K., Gehrels, G.E., and Villeneuve, M., 2006b, Basement complex, Carboniferous magmatism and Paleozoic deformation in Yukon-Tanana terrane of central Yukon: Field, geochemical and geochronological constraints from Glenlyon map area, in Colpron, M., and Nelson, J.L., eds., Paleozoic evolution and metallogeny of pericratonic terranes at the ancient Pacific margin of North America, Canadian and Alaskan Cordillera: Geological Association of Canada Special Paper 45, p. 131-151. Colpron, M., Nelson, J.L., and Murphy, D.C., 2007, Northern Cordilleran terranes and their interactions through time: GSA Today, v. 17, p. 4-10. Coney, P.J., Jones, D.L., and Monger, J.W.H., 1980, Cordilleran suspect terranes: Nature, v. 288, p. 329-333. DeCelles, P.G., Gehrels, G.E., Quade, J., Kapp, P.A., Ojha, T.P., and Upreti, B.N., 1998, Neogene foreland basin deposits, erosional unroofing, and the kinematic history of the Himalayan thrust belt, western Nepal: Geological Society of America Bulletin, v. 110, p. 2-21. DeCelles, P.G., Gehrels, G.E., Najman, Y., Martin, A.J., Carter, A., and Garzanti, E., 2004, Detrital geochronology and geochemistry of Cretaceous-Early Miocene strata of Nepal: implications for timing and diachroneity of initial Himalayan orogenesis: Earth and Planetary Science Letters, v. 227, p. 313-330. Dilek, Y., The mode and nature of continental rifting along the northwest-periphery of Gondwanaland during break-up of Pangea, in Embry, A.F., and Beauchamp, B., eds., Pangea: Global environments and resources: Canadian Society of Petroleum Geologists Memoir 17, p. 113-121.

168 Furlanetto, F., Thorkelson, D.J., Davis, W.J., Gibson, H.D., Rainbird, R.H., and Marshall, D.D., 2009, Preliminary results of detrital zircon geochronology, Wernecke Supergroup, Yukon, in Weston, L.H., Blackburn, L.R., and Lewis, L.L., eds., Yukon Exploration and Geology 2008: Yukon Geological Survey, p. 125-135. Gabrielse, H., and Yorath, C.J., eds., 1991, Geology of the Cordilleran Orogen in Canada: Geological Survey of Canada, The Geology of North America, v. G-2, 844 p. Gehrels, G.E., 2000, Introduction to detrital zircon studies of Paleozoic and Triassic strata in western Nevada and northern California, in Soreghan, M.J., and Gehrels, G.E., eds., Paleozoic and Triassic paleogeography and tectonics of western Nevada and northern California: Geological Society of America Special Paper 347, p. 1-17. Gehrels, G.E., and Ross, G.M., 1998, Detrital zircon geochronology of Neoproterozoic to Permian miogeoclinal strata in British Columbia and Alberta: Canadian Journal of Earth Sciences, v. 35, p. 1380-1401. Gehrels, G.E., Johnsson, M.J., and Howell, D.G., 1999, Detrital zircon geochronology of the Adams Argillite and Nation River Formation, East-Central Alaska, U.S.A.: Journal of Sedimentary Research, v. 69, p. 135-144. Golonka, J., 2007, Late Triassic and Early Jurassic palaeogeography of the world: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 244, p. 297-307. Haggart, J.W., Enkin, R.J., and Monger, J.W.H., eds., Paleogeography of the North American Cordillera: Evidence for and against large-scale displacements: Geological Association of Canada Special Paper 46, 429 p. Jackson, S.E., Pearson, N.J., Griffin, W.L., and Belousova, E.A., 2004, The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology: Chemical Geology, v. 211, 47-69. Link, P.K., Fanning, C.M., and Beranek, L.P., 2005, Reliability and longitudinal change of detrital zircon age spectra in the Snake River system, Idaho and Wyoming: An example of reproducing the bumpy barcode: Sedimentary Geology, v. 182, p. 101-142. Longridge, L.M., Smith, P.L., Pálfy, J., and Tipper, H.W., 2008, Three new species of the Hettangian (Early Jurassic) ammonite Sunrisites from British Columbia, Canada: Journal of Paleontology, v. 82, p. 128-139. Ludwig, K., 2003, Isoplot/Ex, version 3: A geochronological toolkit for Microsoft Excel: Berkeley, California, Geochronology Center Special Publication no. 4, 77 p. Mahoney, J.B., Mustard, P.S., Haggart, J.W., Friedman, R.M., Fanning, C.M., and McNicoll, V.J., 1999, Archean zircons in Cretaceous strata of the western Canadian Cordillera: The “Baja B.C.” hypothesis fails a “crucial test”: Geology, v. 27, p. 195-198. McNicoll, V.J., Harrison, J.C., Trettin, H.P., and Thorsteinsson, R., 1995, Provenance of the Devonian clastic wedge of Arctic Canada: Evidence provided by detrital zircon ages, in Dorobek, S.L., and Ross, G.M., eds, Stratigraphic evolution of foreland basins: Society of Economic Paleontologists and Mineralogists Special Publication 52, pp. 77-93. Miller, M.M., 1987, Dispersed remnants of a northeast Pacific fringing arc: upper Paleozoic terranes of Permian McCloud faunal affinity, western U.S.: Tectonics,

169 v. 6, p. 807-830. Miller, E.L., Toro, J., Gehrels, G.E., Amato, J.M., Prokopiev, A., Tuchkova, M.I., Akinin, V.V., Dumitru, T.A., Moore, T.E., and Cecile, M.P., 2006, New insights into Arctic paleogeography and tectonics from U-Pb detrital zircon geochronology: Tectonics, v. 25, p. 1-19. Monger, J.W.H., and Ross, C.A., 1971, Distribution of fusulinaceans in the western Canadian Cordillera: Canadian Journal of Earth Sciences, v. 8, p. 259-278. Monger, J.W.H., and Price, R.A., 2002, The Canadian Cordillera: geology and tectonic evolution: Canadian Society of Exploration Geophysicists Recorder, February, p. 17-36. Mortensen, J.K., Beranek, L.P., Murphy, D.C., 2007, Permo-Triassic orogeny in the northern Cordillera?: Sonoma north: Geological Society of America, Abstracts with Programs, 103rd Annual Meeting, Bellingham, Washington. Murphy, D.C., Colpron, M., Roots, C.F., Gordey, S.P., and Abbott, J.G., 2002, Finlayson Lake Targeted Geoscience Initiative (southeastern Yukon), Part 1: Bedrock geology, in Emond, D.S., Weston, L.H. and Lewis, L.L., eds., Yukon Exploration and Geology 2001: Exploration and Geological Services Division, Yukon Region, Indian and Northern Affairs Canada, p. 189-207. Murphy, D.C., Mortensen, J.K., Piercey, S.J., Orchard, M.J., and Gehrels, G.E., 2006, Mid-Paleozoic to early Mesozoic tectonostratigraphic evolution of Yukon-Tanana and Slide Mountain terranes and affiliated overlap assemblages, Finlayson Lake massive sulphide district, southeastern Yukon, in Colpron, M., and Nelson, J.L., eds., Paleozoic evolution and metallogeny of pericratonic terranes at the ancient Pacific margin of North America, Canadian and Alaskan Cordillera: Geological Association of Canada Special Paper 45, p. 75-105. Nelson, J.L., 1993, The Sylvester allochthon: Upper Paleozoic marginal-basin and island- arc terranes in northern British Columbia: Canadian Journal of Earth Sciences, v. 30, 631-643. Nelson, J.L, Colpron, M., Piercey, S.J., Dusel-Bacon, C., Murphy, D.C., Roots, C.F., 2006, Paleozoic tectonic and metallogenic evolution of the pericratonic terranes in Yukon, northern British Columbia and eastern Alaska, in Colpron, M., and Nelson, J.L., eds., Paleozoic evolution and metallogeny of pericratonic terranes at the ancient Pacific margin of North America, Canadian and Alaskan Cordillera: Geological Association of Canada Special Paper 45, p. 323-360. Newton, C.R., 1988, Significance of “Tethyan” fossils in the American Cordillera: Science, v. 242, p. 385-391. Orchard, M.J., 1991, Conodonts, time and terranes: an overview of the biostratigraphic record in the western Canadian Cordillera, in Orchard, M.J., and McCracken, A.D., Ordovician to Triassic Conodont Paleontology of the Canadian Cordillera: Geological Survey of Canada Bulletin 417, p. 299-335. Orchard, M.J., 2006, Late Paleozoic and Triassic conodont faunas of Yukon and northern British Columbia and implications for the evolution of the Yukon-Tanana terrane. in Colpron, M., and Nelson, J.L., eds., Paleozoic evolution and metallogeny of pericratonic terranes at the ancient Pacific margin of North America, Canadian and Alaskan Cordillera: Geological Association of Canada Special Paper 45, p. 229-260.

170 Paces, J.B., and Miller, J.D., 1993, Precise U-Pb ages of Duluth Complex and related mafic intrusions, northeastern Minnesota: Geochronological insights to physical petrogenetic, paleomagnetic, and tectonomagmatic process associated with the 1.1 Ga Midcontinent Rift System: Journal of Geophysical Research, v. 98, p. 13997-14013. Poulsen, C.J., and Huynh, T.T., 2006, Paleoceanography of the Mesozoic Pacific: A perspective from climate model simulations, in Haggart, J.W., Enkin, R.J., and Monger, J.W.H., eds., Paleogeography of the North American Cordillera: Evidence for and against large-scale displacements: Geological Association of Canada Special Paper 46, p. 13-28. Rainbird, R.H., McNicoll, V.J., Theriault, R.J., Heaman, L.M., Abbot, J.G., Long, D.G.F., and Thorkelson, D.J., 1997, Pan-continental river system draining Grenville orogen recorded by U-Pb and Nd-Sr geochronology of Neoproterozoic quartzarenites and mudrocks, northwestern Canada: Journal of Geology, v. 105, p. 1-17. Richards, D.R., Butler, R.F., and Harms, T.A., 1993, Paleomagnetism of the late Paleozoic Slide Mountain terrane, northern and central British Columbia: Canadian Journal of Earth Sciences, v. 30, p. 1898-1913. Roots, C.F., Nelson, J.L., Simard, R.-L., and Harms, T.A., 2006, Continental fragments, mid-Paleozoic arcs and overlapping late Paleozoic arc and Triassic sedimentary strata in the Yukon-Tanana terrane of northern British Columbia and southern Yukon, in Colpron, M., and Nelson, J.L., eds., Paleozoic evolution and metallogeny of pericratonic terranes at the ancient Pacific margin of North America, Canadian and Alaskan Cordillera: Geological Association of Canada Special Paper 45, p. 153-177. Ross, G.M., Gehrels, G.E., and Patchett, P.J., 1997, Provenance of Triassic strata in the Cordilleran miogeocline, western Canada: Bulletin of Canadian Petroleum Geology, v. 45, p. 461-473. Skinner, J.W., and Wilde, G.L., 1955, New fusulinids from the Permian of west Texas: Journal of Paleontology, v. 29, p. 927-940. Sláma, J. Košler, J., Condon, D.J., Crowley, J.L., Gerdes, A., Hanchar, J.M., Horstwood, M.S.A., Morris, G.A., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, B., Tubrett, M.N., and Whitehouse, M.J., 2008, Plešovice zircon – A new natural reference material for U-Pb and Hf isotopic microanalysis: Chemical Geology, v. 249, p. 1-35. Smith, P.L., Westermann, G.E.G., Stanley, G.D., Jr., Yancey, T.E., and Newton, C.R., 1990, Paleobiogeography of the ancient Pacific; discussion and reply: Science, v. 249, p. 680-683. Stevens, C.H., Yancey, T.E., and Hanger, R.A., 1990, Significance of the provincial signature of Early Permian faunas of the Eastern Klamath terrane: Geological Society of America Special Paper 255, p. 201-217. Van Achterbergh, E., Ryan, C.G., Jackson, S.E., and Griffin, W.L., 2001, Data reduction software for LA-ICP-MS, in Sylvester, P.J., ed., Laser Ablation-ICP-Mass Spectrometry in the Earth Sciences: Principles and Applications: Mineralogical Association of Canada Short Course Series 42, p. 239-243.

171

Chapter 6:

Triassic peripheral foreland basin development and overlap assemblages in the northern North American Cordillera: New insights on the accretion of Yukon-Tanana and related terranes1

1A version of this chapter will be submitted for publication. Beranek, L.P., Mortensen, J.K., and Ullrich, T., Triassic peripheral foreland basin development and overlap assemblages in the northern North American Cordillera: New insights on the accretion of Yukon-Tanana and related terranes.

172 6.1 INTRODUCTION The pericratonic Yukon-Tanana terrane (YTT) is one of the largest tectonic elements of the North American Cordillera, underlying western and southern Yukon and portions of easternmost Alaska, and British Columbia (YT in Figure 6.1; Mortensen, 1992; Colpron and Nelson, 2006). Dextral transcurrent faulting affected the configuration of YTT (Gabrielse et al., 2006), dissecting it into two main components, an arcuate body on the west and a semicircular outlier on the east. Counterclockwise oroclinal rotation of Stikinia (ST in Figure 6.1) and western YTT is the preferred mechanism to explain the arcuate nature of the terrane (see Mihalynuk et al., 1994). The eastern outlier of YTT in southeastern Yukon occupies a fundamental tectonic boundary in northern Canada, comprising part of a structural zone that records eastward emplacement of Cordilleran terranes over North American continental margin rocks. This zone also contains remnants of a marginal back-arc basin, referred to as the Slide Mountain-Golconda Ocean, whose closure accommodated juxtaposition of YTT with the western Laurentian margin. Vestiges of this marginal ocean, the Slide Mountain (SMT) terrane (SM in Figure 6.1), comprise deep-water siliciclastic strata, igneous rocks of oceanic affinity, and slivers of oceanic lithosphere that now rest structurally on top of Cordilleran margin strata. As such, this is a critical location for understanding the nature of terrane collision against a continental margin, sedimentary and tectonic responses in the foreland, and growth of northwestern North America.

6.1.1 A new model for Permo-Triassic tectonism in the northern Cordillera Accretion of the pericratonic terranes against the western edge of North America is widely interpreted to have commenced in Early to Middle Jurassic time because intense deformation and stitching plutons of that age occur in the southern Canadian Cordillera (e.g., Murphy et al., 1995; Monger and Price, 2002). However, field and analytical studies in western Canada have reported compelling evidence for Late Permian-Early Triassic (ca. 250 Ma) collision (e.g., Read and Okulitch, 1977; Mortensen et al., 2007).

173

Figure 6.1 – Terranes of the Alaskan and Canadian Cordilleras. Italtic text indicate sample areas described in the text. Abbreviations: AB – Alberta, AK – Alaska, B.C. – British Columbia, N.W.T. – Northwest Territories, U.S.A. – United States of America. Modified from Colpron et al. (2007).

Mid-Paleozoic metasedimentary rocks of YTT in western Yukon underwent amphibolite-facies metamorphism (~9 kbar and 600°C) at ca. 250 Ma (Berman et al., 2007) and metavolcanic rocks of its Late Permian arc were ductily deformed twice by 250 Ma (Mortensen et al., 2007). The latter workers argued that these Late Permian structural fabrics, which are cross-cut by ca. 250 Ma intrusions, formed in the hinterland of a collision between YTT against the western edge of North America. This inference compares favorably with widespread Permo-Triassic unconformities and cryptic deformational events observed in several northern Cordilleran tectonic elements (e.g.,

174 Read and Okulitch, 1977). The timing of collision also broadly correlates with Late Permian-Early Triassic Sonoman orogenesis in the western United States (Dickinson, 2006). Robust detrital zircon and detrital muscovite provenance analyses of Triassic siliciclastic strata in the northern Cordillera also support incipient accretion of YTT against North America in Late Permian-Early Triassic time (Beranek, chapters 3,4). Early to Late Triassic sandy miogeoclinal rocks that crop out in eastern Yukon are muscovite-bearing and contain trace amounts of Early Mississippian detrital zircon. These characteristics are most compatible with erosion of a nearby metamorphic source terrain that also includes mid-Paleozoic igneous rocks; both of these requirements are found in the adjacent YTT of southeastern Yukon (Colpron and Nelson, 2006). Farther west, Middle to Late Triassic siliciclastic strata in faulted or depositional contact with SMT in eastern Alaska, Yukon, and northern British Columbia have detrital zircon signatures that are most simply explained by mixture of sediment derived from YTT, SMT, and North American sources. Beranek (Chapter 4) concluded these profiles demonstrate the presence of a sedimentary overlap assemblage which records a geodynamic linkage between the three tectonic elements. Slide Mountain-Golconda Ocean closure and emplacement of pericratonic terranes over Cordilleran strata would form a peripheral foreland basin along the ancestral North American margin, as per Dickinson (1974). Collision-related basin formation in this case is restricted to the lower plate, or foreland block, represented by the Cordilleran margin. The upper plate, or hinterland block, in this scenario would comprise the YTT. Tectonic subsidence in the foreland ceases with the end of convergence between the two elements; subsequently, sedimentary rocks that cover the suture zone are referred to as an overlap assemblage.

6.1.2 Testing for collision-related and overlap assemblages in southeastern Yukon The sedimentary record of pericratonic terrane collision in northwestern Canada has not previously been documented; however, no obvious clastic wedge or peripheral foreland basin deposits are exposed near the eastern margins of YTT and SMT or overlie adjacent North American continental margin strata. Early Mesozoic strata of the eastern

175 Cordillera in Yukon generally comprise Middle to Late Triassic (Ladinian to Norian) fine-grained siliciclastic rocks and argillaceous limestone that are recessive weathering and not well-exposed. Mid-Mesozoic rocks overlying the North American craton in this region are also exceedingly rare, and consist of meager outcrops of Middle to Late Jurassic (Bathonian to Kimmeridgian) strata in west-central Yukon. Sparse exposure of Mesozoic strata may be explained by several factors, including: (1) post-collisional isostatic rebound and erosion in foreland belt removed these strata; (2) foreland basin deposits were subsequently covered by east-vergent structural panels in Jura-Cretaceous time; and/or (3) the style of terrane accretion was of moderate magnitude and did not produce a volumetrically significant clastic wedge. Nonetheless, the lithologic character and detrital mineral components of Triassic strata of Yukon imply development of a regional overlap assemblage in the early Mesozoic. This study reports new detrital zircon and muscovite dates and whole-rock Nd isotope and trace element geochemical data that constrain the source, composition, and paleotectonic setting of North American Triassic and Jurassic siliciclastic strata of Yukon. Furthermore, these data form a robust detrital mineral and whole-rock database that contributes to pre-existing reference frames in the North American Cordillera. Middle to Late Triassic strata of this study have detrital mineral age and whole- rock signatures that are consistent with a western source from YTT. These new samples broadly define the areal extent of a peripheral foreland basin superposed on the Cordilleran margin; however, the majority of this depocentre is interpreted to largely buried under younger Mesozoic allochthons. Jurassic strata have detrital zircon profiles confirming that a mid-Mesozoic exhumation event affected Late Triassic-Early Jurassic arc assemblages of central and southern Yukon. These data delineate several early to mid-Mesozoic overlap assemblages between outboard terranes and the North American continent from Middle Triassic to Late Jurassic time. Based on these data, this study provides a new tectonic model for crustal growth along the western North American plate in northwestern Canada. This model has direct implications for the paleogeographic and geodynamic histories of other Cordilleran terranes in western Canada as is analogous to Sonoman orogenesis in southwestern United States.

176 6.2 YUKON-TANANA TERRANE 6.2.1 Overview Several northern Cordilleran terranes comprise, or are interpreted to represent, fragments of continental margin affinity that formed the nucleus upon which mid- to late Paleozoic arcs developed outboard of North America (Nelson et al., 2006). The continental margin affinity for these elements has led them to being referred to as pericratonic, or peri-Laurentian, terranes (e.g., Colpron and Nelson, 2006). The interpreted history of YTT as a separate tectonic element began with latest Devonian rifting of continental arc and margin assemblages from the western Laurentian margin (Figure 6.2a). This separation generated the Slide Mountain-Golconda Ocean, which was a marginal basin located along the eastern side of YTT, adjacent to North America (Piercey et al., 2004; Nelson et al., 2006). The mid- to late Paleozoic geometry and width of the basin is not clear. However, many terranes related to YTT, such as Quesnellia and Stikinia, have occurrences of Permian McCloud fauna, also observed on the North American craton in Texas (see Figure 6.2b; Miller, 1987; Colpron et al., 2007). This may suggest that the pericratonic terranes did not travel more than a few thousand kilometres from the Laurentian continent (Belasky et al., 2002). By Middle Permian time, subduction commenced along the inner margin of YTT, accommodating closure of the Slide Mountain-Golconda Ocean and cratonward transport of volcanic arcs toward North America (Figure 6.2c). Remnants of the marginal basin, presently exposed from Alaska to southern British Columbia, comprise the Slide Mountain terrane (SMT). Rocks of the Havallah sequence and Golconda allochthon probably represent Slide Mountain equivalents in the southwestern United States (Dickinson, 2004).

6.2.2 Tectonic assemblages of Yukon-Tanana terrane The pericratonic YTT comprises four tectonic assemblages (Colpron et al., 2006). The lowest structural level of the terrane consists of the pre-Late Devonian Snowcap assemblage, a succession of metasedimentary and mafic metavolcanic rocks with continental margin affinity. Detrital zircons from Snowcap assemblage quartzite mainly contain 1867-2801 Ma age peaks, likely indicating an ultimate source from the

177 Figure 6.2 – Paleozoic paleogeographic evolution of northwestern Laurentia and adjacent pericratonic terranes. Gold discs indicate McCloud faunal occurrences.

YTT – Yukon-Tanana terrane

Modified from Colpron et al. (2007).

northwestern Laurentian craton (Colpron and Piercey, unpublished). Lead isotope studies also suggest that YTT and related pericratonic terranes are closely related to North America (Mortensen et al., 2006). The Snowcap assemblage is overlain by three unconformity-bounded successions, the Late Devonian to Early Mississippian Finlayson, Middle Mississippian to Early Permian Klinkit, and Middle to Late Permian Klondike assemblages, which all comprise variably deformed arc and back-arc rock packages. Late Devonian to latest Permian igneous complexes are the hallmark of YTT and give the terrane a unique signature with respect to the western margin of North America. High-precision U-Pb zircon geochronology and trace element geochemical studies have delineated six magmatic cycles for YTT that range from 253-269, 269-314, 314-342, 342-357, 357-365, and 365-390 Ma (Mortensen, 1992; Colpron et al., 2006; Piercey et al., 2006).

178 6.2.3 Linkages between Yukon-Tanana and other terranes Coupled field and analytical studies have documented several interterrane linkages between northern Cordilleran elements in Yukon and British Columbia. These geodynamic ties indicate that although terranes are presently fault-bounded, they share similar Paleozoic histories outboard of North America (Nelson et al., 2006). For example, Mississippian to Permian Klinkit assemblage rocks in southern Yukon are interpreted to be correlative with both the Harper Ranch and Lay Range assemblages of Quesnellia in central and southern British Columbia and the Stikine assemblage of Stikinia in northwestern British Columbia (see dark green polygons labeled HR in Figure 6.1; Simard et al., 2003; Gunning et al., 2006). As a consequence, YTT may form the basement to Mesozoic Quesnellia and Stikinia (Mortensen, 1992; Colpron et al., 2006). Stratigraphic ties between the YTT and SMT are observed in southeastern Yukon. Therein, Early to Middle Permian volcanic rocks of the Campbell Range formation are spatially associated with, and appear on either side of, the Jules Creek fault, the major transcurrent structure forming the boundary between the two elements (Murphy et al., 2006). This overlap assemblage links the two terranes by Early Permian time, prior to the initiation of subduction under the eastern margin of YTT.

6.3 SAMPLE LOCATIONS AND GEOLOGIC SETTING 6.3.1 Middle Triassic strata, Frances Lake map area, southeastern Yukon North American Triassic strata in the Frances Lake map area (NTS 105H) of southeastern Yukon crop out within a narrow belt along the Robert Campbell Highway (Figures 6.3, 6.4). Triassic rocks are located in the immediate footwall of the Inconnu thrust, a regional fault that emplaced SMT rocks eastward over North American continental margin strata (Figure 6.4; Mortensen and Jilson, 1985; Murphy et al., 2006). The SMT in this region comprises argillite, chert, and mafic volcanic rocks bounded on their western side by the Jules Creek fault. Murphy et al. (2002) defined YTT as Late Devonian to Permian igneous and metasedimentary rocks exposed in multiple fault- bounded successions between the Tintina and Jules Creek faults (Figure 6.4). Felsic igneous rocks of YTT in the Frances Lake map area, and adjacent Finlayson Lake map area (NTS 105G), show evidence of crustal contamination with the

179

Figure 6.3 - Distribution of North American Triassic strata shown in red. Boxed regions indicate sample locations presented in this work. Solid black squares indicate Late Triassic-Jurassic rocks. Map base from Gordey and Makepeace (2001).

presence of inherited Precambrian zircon and radiogenic Sr and Pb signatures (Mortensen, 1992). However, mafic metavolcanic rocks in the Finlayson Lake area have variable Nd isotopic compositions, including signatures consistent with juvenile, mantle-

derived magmas (εNd(t) of > 0; Piercey et al., 2004). For example, Piercey et al. (2001) recognized the Fire Lake formation of YTT is comprised of primitive-arc boninites, indicating that at least a portion of the terrane is underlain by juvenile basement.

180 Triassic strata south of Frances Lake comprise grey, fine- to medium-grained micaceous, feldspathic sandstone, shale, and subordinate argillaceous limestone yielding late Ladinian (late Middle Triassic; ca. 230 Ma of Ogg et al., 2008) conodonts (Orchard, 2006; unpublished). This study collected two samples of muscovite-bearing sandstone from this area for detrital zircon analysis. Locations for these samples, FRL1 and FRL2, are displayed in Figure 6.4 and listed in Appendix E. Detrital muscovite from sample FRL1 was also dated. Two samples of shale collected with FLR1 sandstone were analyzed for whole-rock Nd isotope and trace element geochemistry.

Figure 6.4 – Simplfied geologic map of the Finlayson Lake and Frances Lake map area, southeastern Yukon. Red line is trace of Robert Campbell Highway. Black stars and italtic text indicate detrital zircon and muscovite sample locations. Undiff. – undifferentiated. Modified from Murphy et al. (2006).

6.3.2 Middle Triassic strata, Watson Lake map area, southeastern Yukon Triassic Jones Lake Formation strata in Watson Lake map area (NTS 105A), located ~15 km south of sample FLR2, also comprise a narrow belt adjacent to the Inconnu thrust (Mortensen and Murphy, 2005). Igneous and sedimentary rocks of the SMT are juxtaposed on their western side with YTT along the Simpson Lake fault, which is not exposed but may represent the southern equivalent of the Jules Creek fault.

181 Triassic rocks crop out as ridge exposures east of the Campbell Highway and in roadcuts along the Sa Dena Hes mine access road (Figure 6.5). Abbott (1977) described Triassic strata as brown and dark grey, thinly laminated, thickly bedded, calcareous shale, siltstone, and cross-bedded silty limestone. He used paleocurrent indicators in one location to determine east-directed paleoflow. Petrographic analysis of silty limestone showed angular quartz and plagioclase grains, monocrystalline muscovite of detrital origin, and trains of angular magnetite along bedding planes (Abbott, 1977). Fine-grained, muscovite-bearing sandstone exposed along the Sa Dena Hes mine road was selected for detrital zircon analysis (sample SDH, Figure 6.5). Shale associated with this outcrop was analyzed for Nd isotope and trace element geochemistry. Conodonts in argillaceous limestone adjacent to these samples suggest a Ladinian age for the unit (M. Orchard, unpublished).

6.3.3. Middle to Late Triassic strata, Cassiar terrane, Quiet Lake map area Triassic Hoole Formation strata are exposed within a northwest-trending belt in Quiet Lake map area (NTS 105F), ~25 km south of Ross River (Figures 6.1. 6.3, 6.6). Hoole Formation rocks occur south of the Tintina fault and are assigned to the Cassiar terrane (see location on Figure 6.1), a parautochthonous fragment of the Cordilleran miogeocline that was displaced by dextral strike-slip movement in post-Cretaceous time (Gabrielse et al., 2006). In this region, Hoole Formation strata comprise tan to buff weathering, light to medium grey, thin to medium bedded, parallel- to wavy-laminated, calcareous, micaceous, siltstone and sandstone with subordinate limestone. Northeast of Mount Green, these rocks occur in several structural panels and contain late Ladinian to early Carnian (Middle to Late Triassic; ca. 229 Ma) conodonts (Tempelman-Kluit, 1977; Tempelman-Kluit, unpublished Ram Creek 1:50,000 map; Orchard, 2006). Fine- to medium-grained calcareous sandstone to sandy limestone from the Hoole Formation was collected for detrital zircon analysis. This sample, MG, was collected from a structural panel above the St. Cyr thrust adjacent to Mount Green (Figure 6.6).

182

Figure 6.5 – Simplified geologic map of a porton of the northern Watson Lake map area, southeastern Yukon. Black star indicates location of detrital zircon sample SDH. Fm. – Formation (formal), fm. – formation (informal), Miss. – Mississippian, Undiff. – undifferentiated. Modified from Mortensen and Murphy (2005).

Figure 6.6 – Simplified geologic map along the South Canol Road, ~25 km southwest of Ross River, highlighting the Triassic Hoole Formation. Black star indicates location of detrital zircon sample MG. After Tempelman-Kluit (unpublished).

183 6.3.4 Middle to Late Triassic strata, Cassiar terrane, Finlayson Lake map area Unnamed Triassic strata exposed in the Pelly Mountains of southwestern Finlayson Lake map area comprise up to 750 m of shale and siltstone with subordinate sandstone and argillaceous limestone (Gordey, 1981). Conodont collections broadly constrain these strata as Anisian to Carnian (Middle to Late Triassic). As with Hoole Formation strata, these rocks occur south of the Tintina fault and are included within the Cassiar terrane (Figures 6.1, 6.3, 6.7). Triassic strata are overlain by a package of relatively undeformed volcanic lithic sandstone, greywacke, crystal lithic tuff, and rhyolite porphyry and highly deformed ribbon chert and calc-silicate rocks. These units have no isotopic or fossil age constraints. Gordey (1981) interpreted the volcaniclastic section to be Jura-Cretaceous in age and in depositional contact with underlying Triassic Cassiar terrane strata. Deformed metasedimentary rocks were hypothesized to be klippen of Paleozoic rocks from what is now referred to as YTT (Gordey, 1981); however, the lithologic character of these units may be most compatible with an origin from SMT (Beranek, Chapter 4). Furthermore, volcanic lithic sandstone from the “Jura-Cretaceous unit” of Gordey (1981) contains Late

Figure 6.7 – Geologic map of the McNeil Lake region, southeastern Yukon. Black star indicates location of detrital zircon sample ML. White area represents undifferentiated Paleozoic Cassiar terrane strata. Modified from Gordey (1981).

184 Permian detrital zircons whose ages are diagnostic of the Klondike assemblage in YTT (Beranek, Chapter 4). Therefore, if it is not mid- to late Mesozoic in age, the entire succession above Cassiar terrane strata may be an allochthonous package of SMT fore- arc and basinal rocks. Grey to pink, coarse-grained, micaceous Triassic sandstone immediately overlain by the “Jura-Cretaceous” unit of Gordey (1981) was collected for detrital zircon and detrital muscovite analysis (sample ML, Figure 6.7). Six collections of shale, spanning the entire thickness of the Triassic section near sample ML, were analyzed for whole- rock trace element geochemistry.

6.3.5 Late Triassic(?) Faro Peak formation, Yukon-Tanana terrane, central Yukon Massive, pebble to cobble conglomerate intercalated with mafic greywacke, sandstone, argillaceous limestone, and basalt comprise the >560 m-thick Faro Peak formation, exposed near the town of Faro, immediately north of the Tintina fault in central Yukon (Figures 6.1, 6.3; Pigage, 2004). This unit is underlain by YTT metaclastic rocks and occupies the upper plate of the Vangorda fault, a regional structure that juxtaposes YTT with siliciclastic and mafic igneous rocks of SMT (Figures 6.8, 6.9). Immediately northeast of the Vangorda fault, SMT rocks are in faulted contact with North American strata. Tempelman-Kluit (1972) interpreted that the massive nature of Faro Peak formation conglomerate reflects deposition within a proximal, submarine fan fault scarp complex. The Faro Peak formation is well-exposed along mountain ridges immediately north of the Faro (Figure 6.8) and along the Blind Creek Road ~8 km southeast of the townsite. In this area, the unit mainly comprises conglomerate with metaclastic, chert, and volcanic lithic fragments that resemble local bedrock units of SMT and YTT. Clasts of granitic gneiss and serpentinite have also been observed (Tempelman-Kluit, 1979). Detrital muscovite is present in the sandy matrix. Conodonts collected from limestone clasts in Faro Peak conglomerate typically contain late Carnian (ca. 217 Ma) fauna; however, interbedded carbonate layers yield early Norian (ca. 212 Ma) taxa (Orchard, 2006). Therefore, Pigage (2004) tentatively assigned a Late Triassic age for the unit.

185 One sample of polymictic, matrix-supported, pebble to cobble conglomerate, located in ridge exposures ~2 km northeast of the Faro townsite, was collected for detrital zircon analysis (sample FP1, Figure 6.8). Massive, coarse-grained sandstone to pebble conglomerate of the Faro Peak formation, exposed in low bluffs along the Blind Creek Road, ~8 km southeast of the Faro townsite (Figure 6.9), was also sampled for detrital zircon analysis (sample FP2; Figure 6.9).

Figure 6.8 – Simplified geologic map near Faro, central Yukon. Black star indicates location of detrital zircon sample FP1. Modified from Pigage (2004).

6.3.6 Middle to Late Jurassic strata, Dawson map area, west-central Yukon Jurassic strata of the ‘Lower Schist division’ comprise undeformed graphitic shale and subordinate feldspathic grit in the Ogilvie Mountains, ~65 km north of Dawson, alongside Mount Robert Service (Figure 6.10). Tempelman-Kluit (1970) and Green (1972) assigned the name ‘Lower Schist’ or ‘Lower Schist division’ to these strata, following previous terminology for metamorphosed Jurassic rocks east of the Ogilvie Mountains.

186

Figure 6.9 – Simplified geologic map of the Blind Creek area, ~8 km southeast of Faro, central Yukon. Black star indicates location of detrital zircon sample FP2. Modified from Pigage (2004).

Frebold et al. (1967) located the ammonites Cadoceras? sp. and Cardioceras sp. in black shale ~100 metres above the base of the Lower Schist division in the Mount Robert Service region, suggesting a Middle to earliest Late Jurassic (middle Bathonian to early Oxfordian) age for the unit. Poulton and Tempelman-Kluit (1982) extended the age of the Lower Schist division by reporting early to middle Late Jurassic (Oxfordian to Kimmeridgian) ammonites from other locations in west-central Yukon. Feldspathic grit from the Lower Schist division was sampled for detrital zircon analysis. This feldspathic layer is located in the uppermost portion of the unit, in the immediate footwall of the Robert Service thrust (sample LS; Figure 6.10). Three samples of shale, collected from the lower, middle, and upper portions of the unit, were also selected for trace element geochemical analysis. Beranek (Chapter 3) used detrital zircon and whole-rock geochemistry to determine the provenance of the underlying Jones Lake Formation in the Mount Robert Service region.

187

Figure 6.10 – Geologic map of the Mount Robert Service region, Ogilvie Mountains, Dawson Map Area. Black star indicates the location of detrital zircon sample LS. Modified from Thompson et al. (1994).

6.4 NORTH AMERICAN CONTINENTAL MARGIN REFERENCE FRAMES Detrital mineral geochronology and whole-rock geochemical analyses have been used extensively to characterize the composition and source of fine- and coarse-grained Cordilleran margin strata in Alaska and northern and western Canada. As a result, these studies have created robust whole-rock Nd isotope, trace element geochemical, and detrital zircon reference frames that are useful for provenance correlations (e.g., Garzione et al., 1997, Gehrels and Ross, 1998; Miller et al., 2006; Beranek, Chapter 3)

6.4.1 Ancestral North American margin Two distinct signatures have been observed for Neoproterozoic-Triassic continental margin rocks in western Canada and eastern Alaska: (1) pre-Late Devonian strata have evolved whole-rock Nd signatures (i.e., εNd (t) = -20) and are rich in early Precambrian (1800-3000 Ma) detrital zircons with minor Middle to Late Proterozoic input; and (2) post-Late Devonian rocks have prominent early Paleozoic (370-450 Ma), Neoproterozoic (530-700; 1000-1300 Ma), and Mesoproterozoic (1400-1600 Ma) detrital

188 zircon age peaks and whole-rock Nd signatures that are interpreted to reflect mixing of isotopically juvenile and evolved source rocks (i.e., εNd (t) = -8). The ca. 370-450 Ma detrital zircon age peaks in Late Devonian to Late Triassic Cordilleran margin strata are comparable with data from northerly derived clastic wedge and continental margin deposits in the Canadian Arctic Islands (McNicoll et al., 1995; Miller et al., 2006). The current working hypothesis in the northern Cordillera argues for these early Paleozoic detrital zircons originating from volcanic rocks of the Innuitian orogenic belt in Arctic Canada (Ross et al., 1997; Beranek, Chapters 2,3,4). Therefore, continental margin rocks were successively recycled into the Cordilleran miogeocline from mid-Paleozoic through Late Triassic time and the occurrence of ca. 370-450 Ma zircons defines a northwestern Laurentian provenance (Boghossian et al., 1996; Beranek, Chapters 3,4).

6.4.2 Detrital zircon statistics Detrital zircon data collected from Neoproterozoic to Triassic strata in Canada and Alaska that are pertinent to this study have been compiled and processed through a Microsoft Excel macro that determines statistically reliable age peaks (Table 6.2). This macro was also used to determine statistical reliability for samples of this study allowing simple comparison between all datasets. Results in Table 6.2 form the foundation for provenance correlations between the Triassic and Jurassic units analyzed in this study.

6.5 ANALYTICAL METHODS AND DATA PRESENTATION 6.5.1 U-Pb geochronology Detrital zircons were dated using laser ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS) at the Pacific Centre for Isotopic and Geochemical Research (PCIGR), University of British Columbia. Zircons were separated from 2-5 kg samples using conventional Wilfley table, heavy liquid, and magnetic methods. A random portion of each of the zircon concentrates was mounted in an epoxy puck along with several grains of the 337 Ma Plešovice (Sláma et al., 2008) and 1099 Ma FC-1 (Paces and Miller, 1993) standard zircons and brought to a very high polish to expose the interior of the grains. The surface of the mount was washed for 10 minutes with dilute nitric acid and

189 rinsed in ultraclean water prior to analysis. Zircons were analyzed with a New Wave UP- 213 laser ablation system and Thermo-Finnigan Element2 single collector, double- focusing, magnetic sector ICP-MS, following similar operating parameters as those described by Chang et al. (2006). Line scans rather than spot analyses were employed to minimize elemental fractionation. Typically, 35% laser power and 25 micron laser diameter were used. Background levels were measured with the laser off for 25 seconds, followed by data collection with the laser on for approximately 47 seconds. The time-integrated signals were analyzed using the GLITTER software package described by Van Achterbergh et al. (2001) and Jackson et al. (2004), which automatically subtracts background measurements, propagates all analytical errors, and calculates isotopic ratios and ages. Corrections for mass and elemental fractionation were made by bracketing analyses of unknown grains with replicate analyses of the standard zircon. A typical analytical session consists of four analyses of the standard zircon, followed by five analyses of unknown zircons, one standard analysis, five unknown analyses, etc., and finally four standard analyses. Interpreted ages and isotopic ratios are presented in Appendix E. All errors reported are at the 1-sigma level. Interpreted ages for grains <1000 Ma are based from 206Pb/238U ages. For detrital zircons >1000 Ma, 207Pb/206Pb ages are used, which underestimate the true age for discordant grains. However, Precambrian zircons with >10% discordance are not included in the results or age plots. U-Pb zircon age data are presented in relative probability plots with stacked histograms, prepared using the Isoplot 3.0 Excel macro of Ludwig (2003). These plots contain both a relative probability curve corresponding to age peaks and a histogram (e.g., Link et al., 2005). Each detrital zircon sample comprises two plots: one from 0 to 3000 Ma in 50 m.y. bins to show the entire age spectrum and one from 200-700, 150-700, or 150-400 Ma in 5 m.y. bins to highlight young populations (Figures 6.12- 6.15). This is the most straightforward way to display the quantity of zircon analyzed and the important Mesozoic and late Paleozoic age populations of each sample. Age peaks were determined by using the Detrital Zircon Age Pick macro created by G.E. Gehrels for

190 Microsoft Excel; this macro processes given ages and errors at the 1-sigma level and produces age groupings and peaks at the 2-sigma level.

6.5.2 Ar-Ar geochronology Detrital muscovite separates were hand-picked, washed in acetone, dried, wrapped in aluminum foil and stacked in an irradiation capsule with similar-aged samples and neutron flux monitors (Fish Canyon Tuff sanidine, 28.02 Ma; Renne et al. 1998). Samples were irradiated at the McMaster Nuclear Reactor in Hamilton, Ontario, for 90 MWH, with a neutron flux of approximately 6x1013 neutrons/cm2/s. Analyses (n = 48) of 16 neutron flux monitor positions produced errors of < 0.5% in the J value. The samples were analyzed at the Noble Gas Laboratory at the PCIGR. Mineral separates were step-heated at incrementally higher powers in the defocused beam of a 10W CO2 laser (New Wave Research MIR10) until fused. The gas evolved from each step was analyzed by a VG5400 mass spectrometer equipped with an ion-counting electron multiplier. All measurements were corrected for total system blank, mass spectrometer sensitivity, mass discrimination, radioactive decay during and subsequent to irradiation, as well as interference from atmospheric Ar contamination and the irradiation 40 39 37 39 of Ca, Cl and K (isotope production ratios: ( Ar/ Ar)K = 0.0302 ± 0.00006, ( Ar/ Ar)Ca 36 39 37 39 = 1416.4 ± 0.5, ( Ar/ Ar)Ca = 0.3952 ± 0.0004, Ca/K = 1.83 ± 0.01( ArCa/ ArK)). Detrital muscovite grains in one sample from the Frances Lake map area were too fine-grained to analyze individually, therefore this study reports two ages, plateau and integrated, for each multigrain sample. The plateau age is the error-weighted mean of the heating steps comprising the plateau, whereas the integrated age is the volume-weighted mean of all the steps, calculated by recombining the isotopic measurements of all the heating steps. The plateau and correlation ages were calculated using Isoplot 3.0 (Ludwig, 2003) and are plotted and listed in Figure 6.16 and Appendix E. Errors are quoted at the 2- sigma (95% confidence) level and are propagated from all sources except mass spectrometer sensitivity and age of the flux monitor. The best statistically-justified plateau and plateau age were picked based on the following criteria: (1) three or more contiguous steps comprising more than 50% of the 39Ar; (2) probability of fit of the

191 weighted mean age greater than 5%; and (3) slope of the error-weighted line through the plateau ages equals zero at 5% confidence.

6.5.3 Whole-rock trace element and Nd isotope geochemistry Thirteen samples were analyzed for trace and rare earth element geochemistry at the ALS Chemex laboratories in North Vancouver, British Columbia (Table 6.1; see Appendix E). Geochemical data were collected by inductively coupled plasma atomic emission (ICP-AES) and inductively coupled plasma mass spectrometry (ICP-MS). Two samples, one each from the Frances Lake and Watson Lake map areas, were analyzed for whole-rock Nd isotope geochemistry (Table 6.1; Appendix E) at the PCIGR using thermal ionization mass spectrometry (TIMS). These analyses followed the analytical and dissolution methods of Pretorius et al. (2006) and Weis et al. (2006). Neodymium isotope data are listed in Appendix E and presented relative to the La Jolla standard, with an analytical uncertainty of 0.511855 ± .000009 (2σ). Conversion of initial 143Nd/144Nd ratios into εNd values, adjusted to the time of sedimentation, and depleted mantle model ages (TDM) were calculated by equations defined in DePaolo (1981).

6.6 WHOLE-ROCK TRACE ELEMENT GEOCHEMISTRY 6.6.1 Middle Triassic strata, Frances and Watson Lake map areas Four samples of shale, two each from the Frances Lake and Watson Lake map areas, had enriched light rare earth element (REE) values ([La/YbN] = 7.39-8.83), negative Eu anomalies (Eu/Eu* = 0.583-0.663; europium anomaly of ~60%), and nearly flat heavy REE patterns (Table 6.1; Figure 6.11a). All four samples had similar values for Th/Sc, La/Sc, Th/Cr, and Th/Co trace element ratios (Table 6.1; Appendix E).

6.6.2 Middle to Late Triassic strata, Cassiar terrane, Finlayson Lake map area Six samples of shale from southwestern Finlayson Lake map area had enriched light REE values ([La/YbN] = 7.61-9.34), negative Eu anomalies (Eu/Eu* = 0.532-0.807) and nearly flat heavy REE profiles (Table 6.1; Figure 6.11b). Three of six samples, collected along a single stratigraphic succession, showed a decreasing trend of Cr/V,

192 Th/Sc, La/Sc, Th/Cr, Th/Co, and La/Co values upsection. Three other samples, from unconstrained stratigraphic positions, have similar values but do not form a recognizable trend.

6.6.3 Middle to Late Jurassic strata, Dawson map area, west-central Yukon Shale from the Lower Schist division near Mount Robert Service contained enriched light REE values ([La/YbN] = 6.18-9.72), negative Eu anomalies (Eu/Eu* = 0.639-0.703) and nearly flat heavy REE profiles (Table 6.1; Figure 6.11c). Trace element ratios show no clear trends; however, [La/YbN] and Eu/Eu* increase and decrease upsection, respectively.

Figure 6.11 - Plots of chondrite-normalized (Sun and McDonough, 1989) REE data from Middle Triassic to Late Jurassic North American strata of this study. Shaded grey region indicates envelope of values observed in previously analyzed Early to Late Triassic miogeoclinal rocks in Yukon (Beranek, Chapter 3).

193 TABLE 6.1 - SELECTED WHOLE-ROCK TRACE ELEMENT AND ND ISOTOPE GEOCHEMICAL RESULTS FROM THIS AND PREVIOUS STUDIES

147 144 143 144 This study Sm (ppm) Nd (ppm) Sm/ Nd Nd/ Nd εNd(t) T DM (Ga) [La/Yb]N Eu/Eu* Cr/V Th/Sc La/Sc Th/Cr Middle Triassic, Frances Lake area 7.2 35.3 0.128 0.512102 ± 7 -7.99 1.9 7.39 0.663 0.64 0.807 2.36 0.1 Middle Triassic, Frances Lake area 4.7 29.2 0.101 * * * 8.43 0.571 0.685 0.807 2.23 0.108 Middle Triassic, Watson Lake area 5.8 30.5 0.119 * * * 8.44 0.583 0.386 0.746 1.9 0.128 Middle Triassic, Watson Lake area 7.3 38.6 0.1187 0.512110 ± 6 -7.56 1.72 8.83 0.588 0.827 0.816 2.38 0.133 Middle-Late Triassic, McNeil Lk. area 6.2 31.7 0.123 * * * 8.28 0.677 0.727 0.807 2.27 0.162 Middle-Late Triassic, McNeil Lk. area 6.6 33.2 0.1247 * * * 7.61 0.672 0.647 0.684 2 0.118 Middle-Late Triassic, McNeil Lk. area 6.4 31.5 0.1275 * * * 8.17 0.532 0.642 0.689 1.93 0.133 Middle-Late Triassic, McNeil Lk. area 7.6 38.1 0.1251 * * * 8.89 0.637 0.584 0.751 2.57 0.144 Middle-Late Triassic, McNeil Lk. area 4.8 27 0.1115 * * * 8.28 0.622 0.699 0.707 1.84 0.14 Middle-Late Triassic, McNeil Lk. area 8.4 42.3 0.1246 * * * 9.34 0.628 0.701 0.797 2.7 0.187 Jurassic Lower Schist division 3.8 17.1 0.139 * * * 6.18 0.703 0.786 0.315 1.41 0.05 Jurassic Lower Schist division 6.3 32 0.123 * * * 8.71 0.661 0.571 0.333 2.61 0.2 Jurassic Lower Schist division 6.3 34.4 0.114 * * * 9.72 0.639 0.753 0.281 2.6 0.118

Beranek (Chapter 3) Permian Mount Christie Fm. (type) 5.5 29 0.1189 0.512063 ± 8 -8.2 1.74 7.97 0.657 0.888 * * 0.125 Permian Mount Christie Fm. (Ogilvie) 3.3 15.2 0.1377 * * * 6.75 0.656 0.731 0.319 1.69 0.1 Permian Mount Christie Fm. (Ogilvie) 2.6 12.7 0.1298 * * * 6.7 0.69 0.697 0.312 1.23 0.066 Early Triassic Jones Lake Fm. (type) 6.44 39.6 0.1019 0.512009 ± 6 -9.3 1.55 8.35 0.677 0.187 * * 0.1 Early Triassic Jones Lake Fm. (type) 5.1 30.6 0.1046 0.511960 ± 6 -10.3 1.65 9.99 0.624 0.833 * * 0.12 Early Triassic Jones Lake Fm. (type) 5.46 26.7 0.1281 0.512062 ± 6 -9.1 1.93 6.41 0.635 0.855 * * 0.16 Early Triassic Jones Lake Fm. (type) 8.01 43.4 0.1157 0.511986 ± 6 -10.1 1.8 9.61 0.639 0.833 * * 0.127 Early Triassic Jones Lk. Fm. (Ogilvie) 6.7 34.1 0.1246 * * * 8.09 0.618 0.552 0.314 2.83 0.12 Early Triassic Jones Lk. Fm. (Ogilvie) 4.5 23.4 0.122 * * * 6.54 0.655 1.06 0.259 3.05 0.16 Middle? Triassic Jones Lk. Fm. (Ogilvie) 7.7 41.1 0.1188 * * * 9.87 0.621 0.748 0.324 2.93 0.127 Late Triassic Jones Lk. Fm. (Ogilvie) 4.6 25 0.1167 * * * 7.16 0.577 1.05 0.258 2.77 0.062 Late Triassic Jones Lk. Fm. (Ogilvie) 5.3 25 0.1345 * * * 6.37 0.714 0.792 0.31 1.14 0.046

Yukon / Northwest Territories Cambrian Slats Creek Fm.1 4.69 21.2 0.1138 0.511908 ± 8 -10 2.17 8.79 0.73 1 0.35 1.987 0.05 Cambrian Slats Creek Fm. 4.67 28.1 0.1004 0.511595 ± 5 -13.8 1.95 8.74 0.75 0.28 0.88 2.699 0.169 Ordovician Road River Group1 1.66 8.33 0.1207 0.512130 ± 7 -5 1.49 9.94 0.86 0.29 0.205 1.768 0.086 Ordovician Road River Group 1.99 10.3 0.1171 0.512006 ± 7 -7.3 1.63 5.28 0.8 0.43 0.35 1.667 0.157 Late Devonian Imperial Fm.1 7.34 37.6 0.1181 0.512099 ± 7 -6.8 1.61 6.64 0.79 0.49 0.461 1.51 0.082 Late Devonian Imperial Fm. 1.86 9.57 0.1173 0.511863 ± 7 -11.4 1.86 9.61 0.79 1.09 0.761 2.629 0.049 Early Mississippian Tuttle Fm.1 1.65 8.43 0.1181 0.511998 ± 8 -8.8 1.66 * * * * * * Early Mississippian Tuttle Fm. 1.01 6.09 0.1007 0.511976 ± 7 -8.4 1.43 * * * * * * Mississippian Keno Hill Quartzite1 1.76 9.65 0.1102 0.511888 ± 6 -10.9 1.7 * * * * * * Permian Jungle Creek Fm.1 4.79 27.8 0.1041 0.511966 ± 8 -9.8 1.49 * * * * * * Permian Mount Christie Fm.1 3.34 18.1 0.1116 0.512210 ± 6 -5.4 1.24 * * * * * *

British Columbia / Alberta Ordovician Road River Group 0.84 6.32 0.895 0.511755 ± 7 -7.2 1.31 8.3 0.93 0.03 0.379 2.15 0.023 Late Devonian Earn Group1 2.64 17.6 0.0909 0.511895 ± 6 -9.3 1.42 13 1.1 0.06 0.675 3.581 0.047 Permian Johnston Canyon Fm.2 4.99 29.67 0.1016 0.512141 ± 7 -6.4 1.23 * * * * * * Permian Johnston Canyon Fm. 1.65 9.34 0.1068 0.512093 ± 8 -7.5 1.35 * * * * * * Early-Middle Triassic Sulphur Mt. Fm.2 4.06 21.37 0.1149 0.512136 ± 6 -7.3 1.39 * * * * * * Early-Middle Triassic Sulphur Mt. Fm.3 ** * *-7.5******* Early-Middle Triassic Toad Fm.3 ** * *-6.5******* Early-Middle Triassic Toad Fm.4 ** * *-10******* Middle Triassic Liard Formation3 ** * *-9.3******* Middle Triassic Liard Formation * * * * -8.8 * * * * * * * Late Triassic Whitehorse Formation2 0.31 1.76 0.1162 0.512161 ± 6 -6.8 1.25 * * * * * * Late Triassic Whitehorse Formation3 ** * *-7*******

Table 6.1 – Selected whole-rock Nd isotope and trace element geochemical data from this and previous studies. 1Garzione et al. (1997); 2Boghossian et al. (1996); 3Ross et al. (1997).

194 6.7 WHOLE-ROCK ND ISOTOPE GEOCHEMISTRY 6.7.1 Middle Triassic strata, Frances Lake map area Ladinian shale collected south of Frances Lake yielded an 143Nd/144Nd ratio of 0.512107 ± 7 (Table 6.1; Appendix E). Converted to epsilon notation at the approximate time of deposition indicates an εNd(230 Ma) of -7.99.

6.7.2 Middle Triassic strata, Watson Lake map area Ladinian shale exposed along the Sa Dena Hes mine road in Watson Lake map 143 144 area yielded an Nd/ Nd ratio of 0.512110 ± 6 and an εNd(230 Ma) of -7.56 (Table 6.1; Appendix E).

6.8 DETRITAL ZIRCON GEOCHRONOLOGY 6.8.1 Middle Triassic strata, Frances and Watson Lake map areas Sample FLR1 (n = 93) Feldspathic, micaceous, fine-grained sandstone collected along the Robert Campbell Highway, adjacent to the southwestern arm of Frances Lake, contained detrital zircon age peaks at 238, 260, 305, 326, 334, 357, 422, 507, 524, 539, 558, 624, 637, 944, 955, 1007, 1106, 1202, 1536, and 2005 Ma (Figure 6.12).

Sample FLR2 (n = 43) Micaceous, fine-grained sandstone collected from the southernmost Frances Lake map area had age peaks at 346, 373, 445, 551, 587, 646, 674, 962, and 1490 Ma (Figure 6.12). Other single-grain analyses were at 243, 271, and 290 Ma.

Sample SDH (n = 112) Micaceous, fine-grained sandstone that crops out along the Sa Dena Hes mine road in northern Watson Lake map area yields detrital zircon age peaks at 337, 354, 364, 402, 431, 445, 455, 529, 560, 601, 649, 969, 1096, 1140, 1437, 1486, 1645, 1780, and 1942 Ma (Figure 6.12). Single-grain ages were observed at 236, 277, 280, 317, and 320 Ma.

195

Figure 6.12 – Relative probability plots with histograms showing detrital zircon ages from Middle Triassic strata in Frances Lake and Watson Lake map areas, southeastern Yukon.

6.8.2 Middle to Late Triassic strata, Cassiar terrane, southeastern Yukon Sample MG (n = 73) Calcareous fine-grained sandstone collected immediately north of Mount Green contained age peaks at 314, 346, 402, 422, 994, 1189, 1766, and 2735 Ma (Figure 6.13). Other single-grain analyses occurred at 294 and 370 Ma.

Sample ML (n = 73) Coarse-grained sandstone from the southwestern Finlayson Lake map are had age peaks at 245, 261, 360, 382, 415, 435, 494, 520, 638, 683, 1033, 1088, 1154, 1454, 1611, and 1761 Ma (Figure 6.13). Single-grain ages were at 222 and 313 Ma.

196

Figure 6.13 – Relative probability plots with histograms showing detrital zircon ages from Middle to Late Triassic strata in Quiet Lake and Finlayson Lake map areas, southeastern Yukon.

6.8.3 Faro Peak formation, Yukon-Tanana terrane, central Yukon Sample FP1 (n = 32) Massive, polymictic pebble to cobble conglomerate exposed ~2 km northwest of the Faro townsite contains detrital zircon age peaks at 197 and 1840 Ma (Figure 6.14)

Sample FP2 (n = 70) Coarse-grained sandstone to pebble conglomerate collected near Blind Creek contained age peaks at 199 and 1867 Ma. Single-grain ages also occurred at 226, 230, 231, 254, 322, 325, and 350 Ma (Figure 6.14).

6.8.4 Jurassic Lower Schist division, Dawson map area, west-central Yukon Sample LS (n = 75) Lower Schist division grit contains age peaks at 182, 1204, 1307, 1403, 1613, 1720, 1822, 2581, and 2710 Ma (Figure 6.15). Single-grain analyses occurred at 168, 273, 303, 340, 359, 367, 423, 658, and 761 Ma.

197

Figure 6.14 – Relative probability plots with histograms showing detrital zircon ages from the Faro Peak formation, central Yukon.

Figure 6.15 – Relative probability plots with histograms showing detrital zircon ages from the Lower Schist division, west-central Yukon.

6.9 DETRITAL MUSCOVITE GEOCHRONOLOGY 6.9.1 Middle Triassic strata, Frances Lake map area Single muscovite grains separated from Ladinian sandstone were too fine-grained to analyze individually (see section 6.4.2). These crystals yielded very little gas during incremental heating, typically with the bulk of the argon evolved in one or two steps. Three single-step heating analyses on all muscovite grains yielded a plateau age of 307 ± 30 Ma and an integrated age of 295 ± 68 Ma (Appendix E).

198 6.9.2 Middle to Late Triassic strata, Cassiar terrane, Finlayson Lake map area Single-crystal detrital muscovite analyses (n = 15) from coarse-grained sandstone (sample ML) contained no statistically reliable age peaks. Single-grain ages mainly ranged from 255-375 Ma (Figure 6.16; see Appendix E).

Figure 6.16 – Relative probability plot with histogram showing detrital muscovite ages from Middle to Late Triassic sandstone, southwestern Finlayson Lake map area.

6.10 WHOLE-ROCK PROVENANCE CORRELATIONS 6.10.1 Middle Triassic strata, Frances and Watson Lake map areas Rare earth element geochemical signatures from Ladinian strata in Frances Lake

and Watson Lake map areas display enriched [La/Yb]N and Eu/Eu* profiles that require a partial source from granitic igneous rocks (Figure 6.11a; McLennan et al., 2003). These profiles have been used in other Cordilleran margin strata to indicate recycling of Precambrian crystalline rocks ultimately derived from the adjacent craton (Boghossian et al., 1996). Various trace element ratios suggest the relative amount of incompatible (Th, La) and relatively compatible, ferromagnesian (Cr, Sc, V, Co) components are nearly identical between samples. These trace element data correlate well with Early to Late miogeoclinal strata in Yukon (Table 6.1). Beranek (Chapter 3) suggested the

199 geochemical character of those Triassic rocks indicate minor addition of mafic sources relative to underlying Paleozoic strata. Whole-rock Nd isotope geochemical results from two Ladinian shale samples,

yielding εNd(230 Ma) values of -7.99 and -7.56, are consistent with compositions of post- Late Devonian continental margin strata in the northern Cordillera. Relative to other Triassic compositions, these data show a weak trend towards a mafic source component, or primitive arc signature (Table 6.1; Figure 6.17). Epsilon neodymium values around -8 in the Canadian Cordillera are interpreted to indicate the mixing of isotopically juvenile (young mantle extraction age) and evolved (cratonal) rocks (e.g., Boghossian et al., 1996). The correlation of Ladinian strata with other Triassic continental margin rocks is interesting but there is no clear evidence of a sediment source from YTT or SMT. However, Sm-Nd isotopic compositions of these strata are consistent with mixing of sediment derived from evolved, felsic igneous rocks and juvenile, mafic metavolcanics from YTT to the west of the Frances Lake map area.

6.10.2 Middle to Late Triassic strata, Cassiar terrane, southeastern Yukon Fine-grained sedimentary rocks from the southwestern Finlayson Lake map area show enriched REE signatures consistent with a dominantly upper crustal source (McLennan et al., 2003). These profiles are also observed in most Cambrian to Triassic miogeoclinal strata in Canada (Table 6.1; Figure 6.11b). Three samples collected along one stratigraphic succession show minor but systematic additions of V, Sc, Cr, Co, and 147Sm/144Nd values upsection. This suggests an upsection increase in sediment ultimately derived from a ferromagnesian or mafic source in Middle to Late Triassic time. Similar trace element ratio values and trends have been observed in other Triassic continental margin strata (Beranek, Chapter 3). Three other samples from this area contain trace and rare earth element values that correlate with Triassic and older strata along the Cordilleran margin. The 147Sm/144Nd values for this entire suite averaged ~ 0.1230. This value is higher than most Cambrian-Triassic continental margin rocks in Canada (Table 6.1).

200

147 144 Figure 6.17 - Plot of εNd (t) vs. Sm/ Nd for Ladinian samples of Frances and Watson Lake map area. Grey area indicates general spread of values from the early to mid-Paleozoic Road River Group and Imperial and Tuttle formations of Garzione et al. (1997). Data from Jones Lake Formation stratotype in eastern Yukon from Beranek (Chapter 3). Middle to Late Triassic strata of British Columbia (B.C.) from Boghossian et al. (1996).

6.10.3 Middle to Late Jurassic strata, west-central Yukon Rare earth and trace element geochemical signatures from Jurassic shales in the Ogilvie Mountains are similar to those of other mid-Paleozoic to early Mesozoic units in the northern Cordillera (Table 6.1). In particular, these signatures are analagous to those of Permian and Triassic strata that underlie the Lower Schist division near Mount Robert Service (Table 6.1; Figure 6.11c; Beranek, Chapter 3). This correlation suggests that the fine-grained component of the Lower Schist division in the Ogilvie Mountains is comprised mainly of recycled or cannibalized components from older continental margin strata (cf., Boghossian et al., 1996).

201 6.11 DETRITAL MINERAL PROVENANCE CORRELATIONS 6.11.1 Middle Triassic strata, Frances and Watson Lake map areas Ladinian strata from southeastern Yukon contain detrital zircon age peaks that are identical to most other Triassic units in the northern Cordillera (Table 6.2). Paradoxically, the majority of age peaks in the three samples from Frances Lake and Watson Lake map areas do not overlap with each other. The reason for this occurrence may be that the number of analyses for FLR1 and SDH were much higher than that of sample FLR2; however, the lithologic and whole-rock geochemical character of these strata suggest they are well-mixed. Middle Triassic strata contain detrital zircon age peaks at 1096, 1106, 1140, 1207, 1437, 1486, 1539, 1650, 1780, 1942, and 2005 Ma that are also observed in other units in northwestern Canada, including the Proterozoic Pinguicula Group in northern Yukon, Neoproterozoic to Permian miogeocline in British Columbia and Alberta, Late Devonian Prevost Formation of eastern Yukon, Early to Late Triassic strata in eastern Yukon, and Middle to Late Triassic strata associated with SMT from western Yukon to northern British Columbia (Table 6.2). Neoproterozoic age peaks at 551, 560, 587, 601, 624, 637, 646, 649, 674, 680, 944, 955, and 962 Ma are ubiquitous in the Middle Devonian Ellesmerian clastic wedge in the Canadian Arctic Islands, Late Devonian Imperial Formation of northern Yukon and Northwest Territories, Early to Late Triassic Jones Lake Formation from west-central to eastern Yukon, Early Triassic Ivishak Formation in northern Alaska, and SMT-related Triassic rocks at Clinton Creek in western Yukon and the Table Mountain formation in northern British Columbia. Early Paleozoic to early Middle Triassic detrital zircon age populations are also prominent in Ladinian strata, occurring at 238, 260, 305, 326, 334, 337, 346, 354, 357, 364, 373, 431, 445, 455, 529, and 539 Ma. Provenance correlations for the 364-539 Ma age peaks can be made with Late Devonian to Mississippian Imperial and Tuttle formations of northern Yukon and Northwest Territories, Early to Late Triassic Jones Lake Formation from west-central to eastern Yukon, Early to Late Triassic Bjorne and Pat Bay formations in the Canadian Arctic Islands, and Middle to Late Triassic strata associated with SMT in central and southeastern Yukon (Table 6.2). Detrital zircon age peaks from 238-357 Ma are previously unknown to North American Triassic strata but

202 are witnessed in Middle to Late Triassic strata overlying or structurally imbricated with SMT in northern British Columbia and west-central, central, and southeastern Yukon. The youngest peaks at 238-357 Ma, in combination with single-grain ages at 236, 243, 270-290, and ca. 320 Ma, have no known origin along the western North American margin in Canada; rather, these ages are consistent with an outboard source. Specifically, 260 and 334-357 Ma age peaks represent U-Pb zircon ages from igneous rocks of YTT in western, central, and southeastern Yukon (Mortensen, 1992; Colpron et al., 2006; Piercey et al., 2006). Age occurrences from 270-320 Ma do not directly correlate with YTT because zircon-poor mafic and intermediate volcanic rocks (Klinkit assemblage) characterize the terrane at that time; these units are also observed on Quesnellia and Stikinia (Harper Ranch and Stikine assemblages). However, 270-320 Ma zircons may be derived from those arc complexes. Some SMT igneous rocks have yielded U-Pb zircon ages ca. 274 (e.g., Gabrielse et al., 1993; Murphy et al., 2006). The source of ca. 238 Ma detrital zircons is not known. Single-grain occurrences and age peaks at 236 and 237 Ma have also been documented in Triassic sedimentary units associated with SMT in southeastern Yukon (Beranek, Chapter 4). These Ladinian age (Ogg et al., 2008) grains indicate syn-depositional igneous activity in the northern Cordillera. No magmatism of this age has been documented on YTT. One potential source for these grains may be from Lewes River Group rocks of Mesozoic Stikinia in south-central Yukon; however these rocks are typically mafic in composition (Wheeler, 1961). Ar-Ar geochronology conducted on fine-grained mica separated from sandstone related to sample FLR1 did not provide robust age determinations. The fine grain size produced analytical challenges, resulting in a low-precision, bulk Ar-Ar age of ca. 300 Ma. However, the plateau and integrated ages do provide useful information, and suggest that at least some of the muscovite grains are mid- to late Paleozoic in age. Single-crystal Ar-Ar ages for detrital muscovites from ca. 290-320 Ma are known in Triassic strata associated with SMT in central Yukon and northern British Columbia (Beranek, Chapter 4) and also North American Triassic rocks in southwestern Finlayson Lake map area (see Table 6.2 (next page) – Detrital zircon age peaks from Cordilleran margin strata pertinent to this study. 1Beranek (Chapter 4); 2Miller et al. (2006); 3Beranek (Chapter 3); 4Beranek (Chapter 2); 5Gehrels and Ross (1998); 6McNicoll et al. (1995); 7Gehrels et al. (1999); 8Rainbird et al. (1997); 9Furlanetto et al. (2009); 10Ross et al. (1997); 11(M. Colpron and S. Piercey, unpublished).

203 TABLE 6.2 - STATISTICALLY RELIABLE DETRITAL ZIRCON AGE PEAKS IN NW CANADA

Known U-Pb Age Peak Occurrences (Ma) 200 - 360 Ma Late Triassic strata, Clinton Creek, western Yukon1: 228, 256, 261, 278, 302, 312, 341, 351 ,357 Late Triassic Table Mtn. Fm., northern B.C1.: 222, 237, 251, 255, 261, 274, 281, 288, 309, 335, 342, 349 Middle? to Late Triassic, Finlayson Lake area, SE Yukon1: 238, 257, 265, 274, 290 Middle? Triassic, Bearfeed allochthon, central Yukon1: 273, 276, 305, 308, 315, 319, 323, 328, 334, 339

360 - 500 Ma Late Triassic strata, Clinton Creek, western Yukon: 363, 371, 375, 384, 387, 392, 401, 411, 420, 448, 465, 483 Late Triassic Table Mtn. Fm., northern B.C.: 366, 377, 384, 399, 414, 423, 427, 434, 443, 457, 467, 478 Middle? to Late Triassic, Finlayson Lake area, SE Yukon: 361, 371 Late Triassic Pat Bay Formation, Canadian Arctic Islands2: 433, 473 Late Triassic Jones Lk. Fm., Sheldon Lake area, eastern Yukon3: 414, 427 Early Triassic Bjorne Formation, Canadian Arctic Islands2: 454 Middle? Triassic, Bearfeed allochthon, central Yukon: 363 Middle? Triassic, Tummel fault zone, central Yukon1: 455 Early to Late Triassic Jones Lake Fm., western Yukon3: 370, 393, 401, 416, 426, 452, 459, 470, 491 Early Triassic Jones Lake Fm. type section, eastern Yukon3: 364, 374, 405, 414, 434, 450, 478, 492 Mississippian Keno Hill Quartzite and Tsichu formation, Yukon4: 382, 415, 431 Early Mississippian Tuttle Formation, northern Yukon4: 371, 381, 387, 398, 415, 436, 446, 462, 484, 495 Late Devonian Imperial Formation, Yukon and NWT4: 383, 393, 403, 428, 434, 442

500 - 700 Ma Late Triassic strata, Clinton Creek, western Yukon: 518, 532, 546, 551, 564, 593, 602, 614, 621 Late Triassic Table Mtn. Fm., northern B.C.: 543, 552, 569, 579, 604, 613, 625, 646, 670, 689 Late Triassic Jones Lk. Fm., Sheldon Lake area, eastern Yukon: 594 Late Triassic Pat Bay Formation, Canadian Arctic Islands: 569, 661 Early Triassic Ivishak Formation, Ledge Member, northern Alaska2: 530, 565, 680 Early to Late Triassic Jones Lake Fm., western Yukon: 518, 537, 563, 586, 624, 656 Middle? Triassic, Tummel fault zone, central Yukon: 509 Early Triassic Jones Lake Fm. type section, eastern Yukon: 524, 552, 581, 600, 633, 669 Mississippian Keno Hill Quartzite and Tsichu formation, Yukon: 573 Late Devonian Imperial Formation, northern Yukon and NWT: 551, 648, 692

700 - 1000 Ma Late Triassic strata, Clinton Creek, western Yukon: 915, 979 Late Triassic Table Mtn. Fm., northern B.C.: 717, 885, 945, 958, 986 Late Triassic Jones Lk. Fm., Sheldon Lake area, eastern Yukon: 941 Late Triassic Pat Bay Formation, Canadian Arctic Islands: 921 Early to Late Triassic Jones Lake Fm., western Yukon: 923, 945, 981 Middle? Triassic, Tummel fault zone, central Yukon: 924, 953 Early Triassic Jones Lake Fm. type section, eastern Yukon: 878, 934, 982 Late Devonian Imperial Formation, northern Yukon and NWT: 920, 949

1000 - 1400 Ma Late Triassic strata, Clinton Creek, western Yukon: 1002, 1025, 1065, 1169, 1306, 1373 Late Triassic Table Mtn. Fm., northern B.C.: 1000, 1036, 1120, 1321 Late Triassic Jones Lk. Fm., Sheldon Lake area, eastern Yukon: 1035, 1312 Late Triassic Hoole Fm., Cassiar terrane, southeastern Yukon3: 1210 Early Triassic Jones Lake Fm. type section, eastern Yukon: 1101, 1197, 1256, 1315, 1384 Pennsylvanian-Permian British Columbia and Alberta miogeocline5: 1023, 1040, 1110, 1148, 1236 Mississippian Keno Hill Quartzite and Tsichu formation, Yukon: 1046, 1121, 1263 Early Mississippian Tuttle Formation, northern Yukon: 1025, 1160, 1253 Late Devonian Imperial Formation, northern Yukon and NWT: 1076, 1171 Ellesmerian clastic wedge, Canadian Arctic Islands6: 1121, 1141, 1146 Lower Cambrian Adams Argillite, eastern Alaska7: 1081 Early Neoproterozoic Pinguicula Group, northern Yukon8: 1066, 1134, 1166, 1238

1400 - 1700 Ma Late Triassic strata, Clinton Creek, western Yukon: 1427, 1609, 1659 Late Triassic Table Mtn. Fm., northern B.C.: 1437, 1510, 1579, 1629 Late Triassic Jones Lk. Fm., Sheldon Lake area, eastern Yukon: 1432, 1572, 1661 Late Triassic Hoole Fm., Cassiar terrane, southeastern Yukon: 1543 Late Triassic Pat Bay Formation, Canadian Arctic Islands: 1655 Early to Late Triassic Jones Lake Fm., western Yukon: 1504, 1626 Middle? Triassic, Tummel fault zone, central Yukon: 1440, 1594 Early Triassic Jones Lake Fm. type section, eastern Yukon: 1423, 1479, 1649 Mississippian Keno Hill Quartzite and Tsichu formation, Yukon: 1608, 1694 Early Mississippian Tuttle Formation, northern Yukon: 1502, 1622 Late Devonian Imperial Formation, northern Yukon and NWT: 1405, 1697 Early Neoproterozoic Pinguicula Group, northern Yukon: 1438, 1448, 1453, 1636, 1651 Wernecke Supergroup, northern Yukon9: ca. 1600

1700 - 2000 Ma Late Triassic strata, Clinton Creek, western Yukon: 1780, 1865 Late Triassic Table Mtn. Fm., northern B.C.: 1783, 1807, 1898 Late Triassic Hoole Fm., Cassiar terrane, southeastern Yukon: 1705, 1836 Early Triassic Bjorne Formation, Canadian Arctic Islands: 1769, 1849, 1934, 1989 Late Triassic Pat Bay Formation, Canadian Arctic Islands: 1836 Early to Late Triassic Jones Lake Fm., western Yukon: 1800, 1892, 1988 Middle to Late Triassic British Columbia and Alberta miogeocline10: 1745, 1823, 1823, 1838, 1856, 1886 Middle? Triassic, Tummel fault zone, central Yukon: 1704, 1796, 1872, 1930, 1964 Middle? Triassic, Bearfeed allochthon, central Yukon: 1867, 1908, 1941, 1989 Early Triassic Jones Lake Fm. type section, eastern Yukon: 1745, 1837, 1943, 1998 Pennsylvanian-Permian British Columbia and Alberta miogeocline: 1799, 1841, 1889 Mississippian Keno Hill Quartzite and Tsichu formation, Yukon: 1785, 1827, 1938 Early Mississippian Tuttle Formation, northern Yukon: 1849, 1935 Late Devonian Imperial Formation, northern Yukon and NWT: 1828, 1965 Pre-Late Devonian Snowcap assemblage, central Yukon11: 1867, 1941 Neoproterozoic to Cambrian B.C. and Alta. miogeocline5: 1766, 1788, 1819, 1839, 1872, 1905, 1993

204 section 6.10.3), suggesting a broad correlation. Late Pennsylvanian to Permian detrital muscovite ages have no feasible source along the northwestern Laurentian margin; however, these ages can be correlated with YTT metamorphic rocks exposed in southeastern Yukon that were exhumed in Early Permian (ca. 290 Ma) time (Murphy et al., 2006).

6.11.1.1 Interpretation Detrital mineral age data from Ladinian strata in the Frances and Watson Lake map areas demonstrate provenance linkages with both YTT and the composite Proterozoic to Triassic Cordilleran miogeocline in northwestern Canada. In particular, the abundance of 370-450 Ma detrital zircons signifies a northwestern Laurentian provenance (Beranek, Chapter 4,5). These data indicate that Triassic strata in the Frances and Watson Lake map areas have a partial source from YTT and North American rocks. The presence of mid- to late Paleozoic zircon and muscovite grains deposited on the North American continental margin requires juxtaposition and accretion of YTT with Laurentia by late Ladinian time. These data are compatible with west to east paleoflow indicators observed by Abbott (1977). Detrital mineral ages are consistent with whole-rock compositions from fine- grained clastic rocks in the region. However, these compositions may be strongly overprinted by geochemical signatures derived from early Paleozoic (Innuitian) and Precambrian igneous rocks of Arctic Canada and Canadian Shield, respectively, or from mixture of isotopically evolved and juvenile YTT units.

6.11.2 Middle to Late Triassic strata, Hoole Formation, Cassiar terrane Calcareous sandstone of the Hoole Formation near Mount Green display several detrital zircon age peaks that are also observed in Paleozoic to Triassic units of Yukon. Interestingly, sample MG shared no provenance correlation with Hoole Formation sandstone ~30 km to the northwest that was analyzed by Beranek (Chapter 3). However, that sample is situated in a different structural panel, below that of sample MG. Paleoproterozoic and Archean detrital zircon age peaks at 1766 and 2735 Ma in the Hoole Formation are compatible with similar populations in the Neoproterozoic to

205 Cambrian and Triassic miogeocline in British Columbia and Alberta and Triassic Bjorne Formation in the Canadian Arctic Islands (Table 6.2). Paleozoic age peaks were observed at 314, 346, 402, and 422 Ma. The latter two populations are seen in the Late Devonian to Early Mississippian Imperial and Tuttle formations of northern Yukon and Northwest Territories, Early to Late Triassic Jones Lake Formation in west-central and eastern Yukon, Late Triassic strata associated with SMT in western Yukon and northern British Columbia, and sample SDH from Watson Lake map area. Peaks at 314 and 346 Ma have also been recognized in Middle to Late Triassic rocks in the Tummel fault zone of central Yukon, Late Triassic strata imbricated with SMT in western Yukon and northern British Columbia, and in sample FLR2 of Frances Lake map area. These age peaks are not consistent with North American derivation but are most simply explained by having origins from mid-Paleozoic igneous rocks known to YTT.

6.11.2.1 Interpretation Data from this sample are compatible with mixing of YTT- and Laurentian- derived detrital zircon populations, similar to that of Ladinian strata of the autochthon. These data argue for YTT juxtaposition with the northern Cassiar terrane, previously located ~450 km to the south of its present position, by Middle to Late Triassic time.

6.11.3 Middle to Late Triassic strata, Cassiar terrane, Finlayson Lake map area Detrital zircon and muscovite dates from southwestern Finlayson Lake map area correlate with those of other Triassic strata deposited on North America and SMT. In particular, Mesoproterozoic to Paleoproterozoic detrital zircon age peaks at 1033, 1088, 1454, 1611, and 1761 Ma are recorded in the Proterozoic Pinguicula Group of northern Yukon, Neoproterozoic to Permian miogeoclinal strata in the southern Canadian Cordillera, Cambrian Adams Argillite in eastern Alaska, Mississippian strata of central and eastern Yukon, Late Triassic strata of eastern Yukon, and Late Triassic rocks associated with SMT in western Yukon and northern British Columbia (Table 6.2). Paleozoic to Neoproterozoic detrital zircon populations at 360, 382, 415, 435, 494, 520, and 638 Ma occur in Late Devonian to Late Triassic sedimentary units along

206 the Ancestral North American margin and on SMT. Age peaks at 245 and 261 Ma are not known to North American strata; however the latter population corresponds with the Klondike magmatic cycle of YTT (Mortensen, 1992; Colpron et al., 2006) and detrital zircons of that age are observed in Late Triassic strata overlying SMT in Yukon and British Columbia. The 245 Ma peak has no corollary in YTT. Detrital muscovites from sample ML display an age spread from Permo-Triassic to Neoproterozoic. The youngest grouping ranges in age from 249-258 Ma and most likely reflects a source from latest Permian metavolcanic rocks comprising the Klondike assemblage of YTT, consistent with ca. 261 Ma detrital zircons in sample ML. Similar Permo-Triassic Ar-Ar muscovite ages are known from Middle to Late Triassic conglomerate in the Tummel fault zone of central Yukon (Beranek, Chapter 4). Late Paleozoic ages from 277-322 Ma correlate with single-crystal dates from the Tummel fault zone and Late Triassic strata of the Sylvester allochthon in northern British Columbia. Devonian (357-375 Ma) ages from this sample are consistent with ca. 360 Ma detrital muscovite in the Early Triassic Jones Lake Formation type section in eastern Yukon. In total, mid- to late Paleozoic detrital muscovite ages are consistent with known or inferred deformational or exhumation events of YTT (e.g., Devine et al., 2006; Murphy et al., 2006). The occurrence of Precambrian ages at 564-584, 992, and 1379 Ma are compelling and seem to require recycling of early Paleozoic or older rocks into the Triassic clastic shelf system of the Cassiar terrane.

6.11.3.1 Interpretation Detrital mineral data from southwestern Finlayson Lake map area are consistent with other Triassic samples adjacent to the Inconnu thrust and farther north in the Cassiar terrane. As with those collections, the mid- to late Paleozoic zircon and muscovite components are most readily explained by mixing of YTT and northwestern Laurentian sources.

6.11.4 Faro Peak formation, Yukon-Tanana terrane, central Yukon Two samples of Faro Peak formation strata contained similar detrital zircon age peaks at 197, 199, 1840, and 1867 Ma, suggesting shared provenance. Demonstrable

207 mid-Mesozoic detrital zircons in both samples redefine the depositional age for the unit, indicating it must be Early Jurassic or younger. The Faro Peak formation has Paleoproterozoic age peaks at 1840 and 1867 Ma that are abundant in strata of the North American autochthon, including the Cambrian Adams Argillite of eastern Alaska, Ordovician to Triassic miogeocline in British Columbia and Alberta, pre-Late Devonian Snowcap assemblage of YTT, Early Triassic Jones Lake Formation type section in eastern Yukon, and Late Triassic Pat Bay Formation in northern Canada. Early Jurassic peaks at 197 and 199 Ma, corresponding to ages that range from 190-212 Ma, correlate with well-documented Late Triassic-Early Jurassic intrusive complexes of YTT and Stikinia in central and southern Yukon (Figure 6.18; Mortensen, 1992; Mortensen et al., 2000). Scattered single-grain occurrences are consistent with derivation from both YTT (254, 350 Ma) and Stikinia (ca. 230, 320 Ma).

6.11.4.1 Interpretation The coarse nature and clast composition of Faro Peak formation conglomerate was interpreted to indicate proximal sedimentation along the Vangorda fault (Tempelman-Kluit, 1972; Pigage, 2004), most likely indicating a northeasterly source from YTT, SMT, and North America rocks because the fault has down-to-the-southwest displacement. The detrital zircon signature of Faro Peak formation rocks suggests derivation from two main sources. The first is Paleozoic (pre-Late Devonian?) metaclastic rocks of YTT presently underlying the Faro Peak formation and/or North American strata inboard of the Vangorda fault. The evidence for this hypothesis comes from the presence of 1840 and 1867 Ma detrital zircon age peaks that are recognized in pre-Late Devonian cratonal rocks and YTT basement (Snowcap assemblage). The second main source is Late Triassic-Early Jurassic igneous rocks currently exposed in central and southern Yukon (Figure 6.18). Detrital zircons of this age form the strongest provenance component in the Faro Peak formation. Late Triassic to Early Jurassic intrusions in Yukon are demonstrated to have undergone rapid exhumation following their crystallization (Johnston et al., 1996; Tafti and Mortensen, 2004). After restoration of ~430 km of dextral movement along the Tintina fault, the occurrence of

208 Late Triassic-Early Jurassic detrital zircons in the Faro Peak formation rocks may document north-northwest-directed sediment dispersal from uplifted intrusions towards Faro. Another feasible option is that volcanic or volcaniclastic material, originally north of Faro, was reworked by erosion and dispersed to the south; this would be most compatible with the fault scarp depositional environment of Pigage (2004).

6.11.5 Middle to Late Jurassic strata, Dawson map area, west-central Yukon Lower Schist division grit contains Precambrian detrital zircon peaks at 1307, 1613, 1822, 2581, and 2710 Ma that agree with similar populations in Neoproterozoic to Triassic miogeoclinal strata in British Columbia and Alberta, Late Devonian Nation

Figure 6.18 – Distribution of Late Triassic-Early Jurassic and mid-Jurassic intrusive complexes in Yukon. Modified from Mortensen et al. (2000).

209 River and Imperial formations in Alaska, Yukon, and Northwest Territories, Keno Hill Quartzite in the Ogilvie Mountains, and Early to Late Triassic strata of Yukon. The Lower Schist division near Mount Robert Service also has a minor 182 Ma peak, in addition to single-grain occurrences from 273-761 Ma.

6.11.5.1 Interpretation Detrital zircon data from the Lower Schist division grit are consistent with derivation from three sources in Yukon: Early Jurassic intrusions of YTT and/or Stikinia, mid- to late Paleozoic rocks of YTT, and Triassic and older continental margin strata. Detrital zircons ranging in age from 182-200 Ma represent the first documented occurrence of Jurassic detritus on North American strata in Yukon. The mixture of Jurassic, YTT-derived (273-359 Ma), and Precambrian (1822-2710 Ma) zircons suggests uplifted Mesozoic intrusions shed sediment to the north-northeast (with respect to Tintina fault restoration) and mixed with North American strata.

6.12 TRIASSIC PERIPHERAL FORELAND BASIN DEVELOPMENT Triassic sedimentary rocks analyzed in this study have demonstrable provenance ties with YTT. The most simple explanation for these data is that Triassic units were sourced from the west and represent collision-related sedimentation following Late Permian-Early Triassic amalgamation of pericratonic terranes with the North American plate. North American Triassic strata deposited along the eastern margin of YTT define the extent of a pre-late Ladinian peripheral foreland basin (Figure 6.19). The accommodation space for this basin was probably regulated by both the tectonic load of the upper plate (YTT) and the pre-existing rheology of the lower plate. For example, several episodes of extension in northwestern Canada created a highly attenuated continental margin in Yukon, comprising a broad basin that probably is a lower plate margin established by asymmetric rifting of Rodinia (Cecile et al., 1997). In this case, attenuated crust under the Cordilleran miogeocline would most likely be relatively weak and flexible, creating a wide, shallow foreland basin adjacent to YTT.

210 Although the provenance data from Triassic rocks is compelling, the diffuse nature of detrital zircon and muscovite peaks and overall fine grain size of the strata is puzzling. Proximal, first-cycle sediments shed eastward from YTT onto North America would most likely be very coarse grained. These sediments should not contain ubiquitous 370-450 Ma zircons that characterize the northwestern Laurentian margin. However, they may contain some grains because latest Devonian rifting of the pericratonic elements commenced during, or slightly after, initial southward dispersal of Innutian-derived sediment along the Cordilleran miogeocline (Beranek, Chapter 2).

Two options are put forth to explain the data reported in this study:

Option 1 – Proximal facies covered by Jura-Cretaceous allochthons The absence of coarse-grained, pre-Ladinian sedimentary rocks representing proximal foreland basin assemblages along the North American margin is conspicuous. These proximal deposits may have been tectonically overridden subsequent to their deposition; this may have occurred shortly after initial accretion in Triassic time or during protracted Jura-Cretaceous crustal shortening that affected most of western Canada. This model is permissive and explains the grain size and provenance character of the presently exposed rocks. For example, medial and distal deposits of this peripheral foreland basin, located farther inboard (cratonward) of the proximal facies, probably

Figure 6.19 – Schematic oblique view from east to west (present coordinates) across the YTT-North America collisional zone and generation of a peripheral foreland basin. For clarity, thrust slivers of SMT are not included in the suture zone. YTT promontory used only for schematic purposes. NAM – North American margin.

211 mixed with North American sediment. This hypothesis is consistent with the occurrences of both YTT (ca. 250-360 Ma) and northwestern Laurentian (ca. 360-450, 1800 Ma, etc.) detrital zircon ages in Early to Late Triassic rocks in southeastern and easternmost Yukon (Beranek, Chapter 3).

Option 2 - ‘Docking’ versus ‘accretion’ for Yukon-Tanana The nature of geodynamic juxtaposition between YTT and North America may explain the dataset presented in the study. Rather than a tectonically active collisional environment, YTT may have amalgamated with North America by a more passive docking process. Highly-oblique interaction of YTT with the continental margin may be one possible example of this sort of docking. A related option features incomplete closure of the Slide Mountain-Golconda Ocean, whereby a considerable distance between the ‘docked’ YTT and the North American margin existed. Coarse-grained Triassic sedimentary rocks with Late Permian-Early Triassic detrital zircons are known to be in structural and depositional contact with SMT; however, late Mesozoic and Cenozoic faulting has dissected these successions and their origins with respect to YTT or SMT are unclear (Beranek, Chapter 4). This option, although plausible, is not consistent with documented amphibolite- facies metamorphism and ductile fabrics in Paleozoic metamorphic rocks of YTT exposed in western Yukon (Berman et al., 2007; Mortensen et al., 2007). These data likely indicate that the hinterland underwent significant deformation during collision.

6.12.1 Interpretation This study favors the explanation given in option 1 for the composition, provenance, and lithologic character of Triassic rocks in southeastern Yukon. To resolve the detrital mineral signatures and grain size of these units, estimates on the aerial extent of the medial and distal facies of the peripheral foreland basin were constructed and displayed in Figure 6.20. This figure restores movement on the Tintina fault and includes sample localities from this and prior studies on Triassic continental margin strata (Beranek, Chapters 3, 4, 5). Middle to Late Triassic strata from this study, including the Cassiar terrane, are included within the medial facies belt. Farther inboard, Early to Late

212 Triassic rocks with only trace evidence of YTT or SMT detritus are included within the distal facies belt.

Figure 6.20– Map of northern Cordilleran elements with ~430 km of dextral slip restored along the Tintina fault. Dotted line on North America to the immediate east of Yukon-Tanana terrane represents eastern limit of the main collision-related sedimentation, or the medial basin. Area between dotted line and dashed line farther inboard indicates the estimate of distal collision-related facies. AK – Alaska, B.C. – British Columbia, Wh – Whitehorse, WL – Watson Lake, YT – Yukon Territory. Data from Beranek, Chapters 2- 6. Modified from Nelson et al. (2006).

6.13 TRIASSIC OVERLAP ASSEMBLAGE DEVELOPMENT Broadly similar strata are known to be deposited across the SMT, YTT, and North American margin in Middle to Late Triassic time (Murphy et al., 2006; Beranek, Chapter 4). These strata contain identical detrital zircon signatures that reflect mixing of YTT,

213 SMT, and northwestern Laurentian sources. Coupled with data from this study, these signatures suggest that after Late Permian-Early Triassic juxtaposition of YTT with North America and pre-late Ladinian peripheral foreland basin sedimentation, a Middle(?) to Late Triassic overlap assemblage that blanketed all of the regional tectonic elements was constructed. This stratigraphic linkage provided the first ‘hard pin’ between the YTT, SMT, and North America.

6.14 SYNTHESIS Provenance data collected from Triassic strata in Yukon document the first known occurrences of sediment derived from allochthonous terranes to the west deposited on North America. These strata broadly define the areal extent of a collision-related basin and the relative timing of earliest Mesozoic crustal growth in the northern North American Cordillera. Sparse exposures of Early(?) to Late Jurassic strata in west-central and central Yukon contain prominent Late Triassic-Early Jurassic detrital zircons; the occurrence of these grains in the Lower Schist division defines a Jurassic overlap assemblage between YTT and/or Stikinia with the North American continent. These data compare favorably with hypotheses featuring Late Permian-Early Triassic collision of YTT and related terranes with North America (e.g., Mortensen et al., 2007), up to 50 million years prior to the accepted working model in western Canada (Monger and Price, 2002). Late Permian-Early Triassic collision in the northern Cordillera is analogous to that of the Sonoman orogeny and eastward emplacement of the Golconda allochthon over Cordilleran margin strata in the southwestern United States (Dickinson, 2006). Furthermore, the youngest recognized rocks of the Golconda allochthon are Early Triassic, and a Middle to Late Triassic overlap assemblage is documented to overlie the structural panel (Miller et al., 1992). The YTT and related elements of Stikinia and Quesnellia all share Late Triassic to Early Jurassic intrusive suites (Nelson et al., 2006); therefore, these arc assemblages were built on the North American plate. As a result, this constrains the relative paleogeography of Quesnellia and Stikinia during the mid-Mesozoic, providing new implications and testable hypotheses for terrane development and accretionary histories in the southern Canadian Cordillera and western United States.

214 6.15 REFERENCES Abbott, J.G., 1977, Structure and stratigraphy of the Mt. Hundere area, southeastern Yukon: M.Sc. thesis, Queens University, Kingston, Ontario, Canada. Belasky, P., Stevens, C.H., and Hanger, R.A., 2002, Early Permian location of western North American terranes based on brachiopod, fusulinid, and coral biogeography: Palaeoceanography, Palaeoclimatology, Palaeoecology, v. 179, p. 245-266. Berman, R.G., Ryan, J.J., Gordey, S.P., and Villeneuve, M., 2007, Permian to Cretaceous polymetamorphic evolution of the Stewart River region, Yukon-Tanana terrane, Yukon, Canada: P-T evolution linked with in situ SHRIMP monazite geochronology: Journal of Metamorphic Geology, v. 25, p. 803-827. Boghossian, N.D., Patchett, P.J., Ross, G.M., and Gehrels, G.E., 1996, Nd isotopes and the source of sediments in the miogeocline of the Canadian Cordillera: Journal of Geology, v. 104, p. 259-277. Cecile, M.P., Morrow, D.W., and Williams, G.K., 1997, Early Paleozoic (Cambrian to Early Devonian) tectonic framework, Canadian Cordillera: Bulletin of Canadian Petroleum Geology, v. 45, p. 54-74. Chang, S. Vervoort, J.D., McClelland, W.C., and Knaack, C., 2006, U-Pb dating of zircon by LA-ICP-MS: Geochemistry, Geophysics, Geosystems, v. 7, Q05009 doi:10.1029/2005GC001100. Colpron, M., and Nelson, J.L., eds., 2006, Paleozoic evolution and metallogeny of pericratonic terranes at the ancient Pacific margin of North America, Canadian and Alaskan Cordillera: Geological Association of Canada Special Paper 45, 523 p. Colpron, M., and Nelson, J.L., in press, The Northwest Passage: Incursion of Baltican and Siberan crustal fragments into eastern Panthalassa, and the mid-Paleozoic to early Mesozoic evolution of the Cordilleran margin of western North America, in Cawood, P., and Kröner, A., eds., Accretionary orogens: Geological Society of London Special Publication. Colpron, M., Nelson, J.L., and Murphy, D.C., 2006, A tectonostratigraphic framework for the pericratonic terranes of the northern Canadian Cordillera, in Colpron M., and Nelson, J.L., eds., Paleozoic evolution and metallogeny of pericratonic terranes at the ancient Pacific margin of North America, Canadian and Alaskan Cordillera: Geological Association of Canada Special Paper 45, p. 1-23. Colpron, M., Nelson, J.L., and Murphy, D.C., 2007, Northern Cordilleran terranes and their interactions through time: GSA Today, v. 17, p. 4-10. DePaolo, D.J., 1981, Neodymium isotopes in the Colorado Front Ranges and crust- mantle evolution in the Proterozoic: Nature, v. 291, p. 93-196. Devine, F., Carr, S.D., Murphy, D.C., Davis, W.J., Smith, S., and Villeneuve, M., 2006, Geochronological and geochemical constraints on the origin of the Klatsa metamorphic complex: Implications for early Mississippian high-pressure metamorphism within Yukon-Tanana terrane, in Colpron, M., and Nelson, J.L., eds., Paleozoic evolution and metallogeny of pericratonic terranes at the ancient Pacific margin of North America, Canadian and Alaskan Cordillera: Geological Association of Canada Special Paper 45, p. 107-130. Dickinson, W.R., 1974, Plate tectonics and sedimentation: Society of Economic Paleontologists and Mineralogists Special Publication 22.

215 Dickinson, W.R., 2004, Evolution of the North American Cordillera: Annual Reviews of in Earth and Planetary Sciences, v. 32, p. 13-45. Dickinson, W.R., 2006, Geotectonic evolution of the Great Basin: Geosphere, v. 2, p. 353-368. Frebold, H., Mountjoy, E.W., and Templeman-Kluit, D.J., 1967, New occurrences of Jurassic rocks and fossils in central and northern Yukon. Geological Survey of Canada Paper 67-12, p. 1-35. Furlanetto, F., Thorkelson, D.J., Davis, W.J., Gibson, H.D., Rainbird, R.H., and Marshall, D.D., 2009, Preliminary results of detrital zircon geochronology, Wernecke Supergroup, Yukon, in Weston, L.H., Blackburn, L.R., and Lewis, L.L., eds., Yukon Exploration and Geology 2008: Yukon Geological Survey, p. 125-135. Gabrielse, H., Mortensen, J.K., Parrish, R.R., Harms, T.A., Nelson, J.L., and van der Heyden, P., 1993, Late Paleozoic plutons in the Sylvester allochthon, northern British Columbia, in Radiogenic Age and Isotopic Studies, Report 7: Geological Survey of Canada Paper 93-1, p. 107-118. Gabrielse, H., Murphy, D.C., and Mortensen, J.K., 2006, Cretaceous and Cenozoic dextral orogen-parallel displacements, magmatism, and paleogeography, north- central Canadian Cordillera, in Haggart, J.W., Enkin, R.J., and Monger, J.W.H., eds., Paleogeography of the North American Cordillera: Evidence for and against large-scale displacements: Geological Association of Canada, Special Paper 46, p. 255-276. Garzione, C.N., Patchett, P.J., Ross, G.M., and Nelson, J.L., 1997, Provenance of Paleozoic sedimentary rocks in the Canadian Cordilleran miogeocline: a Nd isotopic study: Canadian Journal of Earth Sciences, v. 34, p. 1603-1618. Gehrels, G.E., and Ross, G.M., 1998, Detrital zircon geochronology of Neoproterozoic to Permian miogeoclinal strata in British Columbia and Alberta: Canadian Journal of Earth Sciences, v. 35, 1380-1401. Gehrels, G.E., Johnsson, M.J., and Howell, D.G., 1999, Detrital zircon geochronology of the Adams Argillite and Nation River Formation, East-Central Alaska, U.S.A.: Journal of Sedimentary Research, v. 69, p. 135-144. Gordey, S.P., 1981, Stratigraphy, structure and tectonic evolution of southern Pelly Mountains in the Indigo Lake area, Yukon Territory: Geological Survey of Canada Bulletin 318, 44 p. Gordey, S.P., and Makepeace, A.J., 2001, Bedrock geology, Yukon Territory: Geological Survey of Canada Open File 3754, 1:1,000,000 scale. Green, L.H., 1972, Geology of Nash Creek, Larson Creek, and Dawson map areas, Yukon Territory: Geological Survey of Canada Memoir 364, 157 p. Gunning, M.H., Hodder, R.W., and Nelson, J.L., 2006, Contrasting styles and their tectonic implications for the Paleozoic Stikine assemblage, western Stikine terrane, northwestern British Columbia, in Colpron M., and Nelson, J.L., eds., Paleozoic evolution and metallogeny of pericratonic terranes at the ancient Pacific margin of North America, Canadian and Alaskan Cordillera: Geological Association of Canada Special Paper 45, p. 210-227. Jackson, S.E., Pearson, N.J., Griffin, W.L., and Belousova, E.A., 2004, The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology: Chemical Geology, v. 211, p. 47-69.

216 Johnston, S.T., Mortensen, J.K., and Erdmer, P., 1996, Igneous and meta-igneous age constraints on the Aishihik metamorphic suite, SW Yukon: Canadian Journal of Sciences, v. 33, p. 1543-1555. Link, P.K., Fanning, C.M., and Beranek, L.P., 2005, Reliability and longitudinal change of detrital zircon age spectra in the Snake River system, Idaho and Wyoming: An example of reproducing the bumpy barcode: Sedimentary Geology, v. 182, p. 101-142. Ludwig, K.R., 2003, User’s manual for Isoplot 3.0: A geochronologcal toolkit for Microsoft Excel: Berkeley Geochronology Center Special Publication 4, 71 p. McLennan, S.M., Bock, B., Hemming, S.R., Hurowitz, J.A., Lev, S.M., and McDaniel, D.K., 2003, The roles of provenance and sedimentary processes in the geochemistry of sedimentary rocks, in Lentz, D.R., ed., Geochemistry of sediments and sedimentary rocks: Evolutionary considerations to mineral deposit- forming environments: Geological Association of Canada Geotext 4, p. 7-38. McNicoll, V.J., Harrison, J.C., Trettin, H.P., and Thorsteinsson, R., 1995, Provenance of the Devonian clastic wedge of Arctic Canada: Evidence provided by detrital zircon ages, in Dorobek, S.L. and Ross, G.M., eds., Stratigraphic evolution of foreland basins: Society of Economic Paleontologists and Mineralogists, Special Publication 52, p. 77-93. Mihalynuk, M.G., Nelson, J., and Diakow, L.J., 1994, Cache Creek terrane entrapment: Oroclinal paradox within the Canadian Cordillera: Tectonics, v. 13, 575-595. Miller, E.L., Toro, J., Gehrels, G.E., Amato, J.M., Prokopiev, A., Tuchkova, M.I., Akinin, V.V., Dumitru, T.A., Moore, T.E., and Cecile, M.P., 2006, New insights into Arctic paleogeography and tectonics from U-Pb detrital zircon geochronology: Tectonics, v. 25, p. 1-19. Miller, M.M., 1987, Dispersed remnants of a northeast Pacific fringing arc: upper Paleozoic terranes of Permian McCloud faunal affinity, western U.S.: Tectonics, v. 6, p. 807-830. Monger, J.W.H., and Price, R.A., 2002, The Canadian Cordillera: geology and tectonic evolution: Canadian Society of Exploration Geophysicists Recorder, February, p. 17-36. Mortensen, J.K., 1992, Pre-mid-Mesozoic evolution of the Yukon-Tanana terrane, Yukon and Alaska: Tectonics, v. 11, p. 836-853. Mortensen, J.K., and Jilson, G.A., 1985, Evolution of the Yukon-Tanana terrane, Yukon and Alaska: Geology, v. 13, p. 806-810. Mortensen, J.K., and Murphy, D.C. (compilers), 2005, Bedrock geological map of part of Watson Lake area (all or part of NTS 105A/2, 3, 5, 6, 7, 10, 11, 12, 13, 14), southeastern Yukon: Yukon Geological Survey Open File 2005-10, 1:150,000 scale. Mortensen, J.K., Emon, K., Johnston, S.T., and Hart, C.J.R., 2000, Age, geochemistry, paleotectonic setting and metallogeny of Late Triassic-Early Jurassic intrusions in the Yukon and eastern Alaska: A preliminary report, in Emond, D.S., and Weston, L.H., eds., Yukon Exploration and Geology 1999: Exploration and Geological Services Division, Yukon, Indian and Northern Affairs Canada, p. 139-144. Mortensen, J.K., Dusel-Bacon, C., Hunt, J.A., and Gabites, J., 2006, Lead isotopic constraints on the metallogeny of middle and late Paleozoic syngenetic base-

217 metal occurrences in the Yukon-Tanana and Slide Mountain/Seventymile terranes and adjacent portions of the North American miogeocline area, in Colpron, M., and Nelson, J.L., eds., Paleozoic evolution and metallogeny of pericratonic terranes at the ancient Pacific margin of North America, Canadian and Alaskan Cordillera: Geological Association of Canada Special Paper 45, p. 261-279. Mortensen, J.K., Beranek, L.P., Murphy, D.C., 2007, Permo-Triassic orogeny in the northern Cordillera?: Sonoma north: Geological Society of America, Abstracts with Programs, 103rd Annual Meeting, Bellingham, Washington. Murphy, D.C., van der Heyden, P., Parrish, R.R., Klepacki, D.W., McMillian, W., Struik, L.C., and Gabites, J., 1995, New geochronological constraints on Jurassic deformation of the western edge of North America, southeastern Canadian Cordillera, in Miller, D.M., and Busby, C., eds., Jurassic magmatism and tectonics of the North American Cordillera: Geological Society of America Special Paper 299, p. 159-171. Murphy, D.C., Colpron, M., Roots, C.F., Gordey, S.P., and Abbott, J.G., 2002, Finlayson Lake Targeted Geoscience Initiative (southeastern Yukon), Part 1: Bedrock geology, in Emond, D.S., Weston, L.H. and Lewis, L.L., eds., Yukon Exploration and Geology 2001: Exploration and Geological Services Division, Yukon Region, Indian and Northern Affairs Canada, p. 189-207. Murphy, D.C., Mortensen, J.K., Piercey, S.J., Orchard, M.J., and Gehrels, G.E., 2006, Mid-Paleozoic to early Mesozoic tectonostratigraphic evolution of Yukon-Tanana and Slide Mountain terranes and affiliated overlap assemblages, Finlayson Lake massive sulphide district, southeastern Yukon in Colpron, M., and Nelson, J.L., eds., Paleozoic evolution and metallogeny of pericratonic terranes at the ancient Pacific margin of North America, Canadian and Alaskan Cordillera: Geological Association of Canada Special Paper 45, p. 75-105. Nelson, J.L, Colpron, M., Piercey, S.J., Dusel-Bacon, C., Murphy, D.C., and Roots, C.F., 2006, Paleozoic tectonic and metallogenic evolution of the pericratonic terranes in Yukon, northern British Columbia and eastern Alaska, in Colpron, M., and Nelson, J.L., eds., Paleozoic evolution and metallogeny of pericratonic terranes at the ancient Pacific margin of North America, Canadian and Alaskan Cordillera: Geological Association of Canada Special Paper 45, p. 323-360. Ogg, J.G., Ogg, G., and Gradstein, F.M., 2008, The concise geologic time scale: Cambridge University Press. Orchard, M.J., 2006, Late Paleozoic and Triassic conodont faunas of Yukon and northern British Columbia and implications for the evolution of the Yukon-Tanana terrane, in Colpron, M., and Nelson, J.L., eds., Paleozoic evolution and metallogeny of pericratonic terranes at the ancient Pacific margin of North America, Canadian and Alaskan Cordillera: Geological Association of Canada Special Paper 45, p. 229-260. Paces, J.B., and Miller, J.D., 1993, Precise U-Pb ages of Duluth Complex and related mafic intrusions, northeastern Minnesota: Geochronological insights to physical petrogenetic, paleomagnetic, and tectonomagmatic process associated with the 1.1 Ga Midcontinent Rift System: Journal of Geophysical Research, v. 98, p. 13997-14013. Piercey, S.J., Murphy, D.C., Mortensen, J.K., and Paradis, S., 2001, Boninitic

218 magmatism in a continental margin setting: Yukon-Tanana terrane, southeastern Yukon, Canada: Geology, v. 29, p. 731-734. Piercey, S.J., Murphy, D.C., Mortensen, J.K., and Creaser, R., 2004, Mid-Paleozoic initiation of the northern Cordilleran marginal back-arc basin: geologic, geochemical, and neodymium isotope evidence from the oldest mafic magmatic rocks in Yukon-Tanana terrane, Finlayson Lake district, southeast Yukon, Canada: Geological Society of America Bulletin, v. 116, p. 1087-1106. Piercey, S.J., Nelson, J.L., Colpron, M., Dusel-Bacon, C., Simard, R-L, and Roots, C.F., 2006, Paleozoic magmatism and crustal recycling along the ancient Pacific margin of North America, northern Cordillera, in Colpron M., and Nelson, J.L., eds., Paleozoic evolution and metallogeny of pericratonic terranes at the ancient Pacific margin of North America, Canadian and Alaskan Cordillera: Geological Association of Canada Special Paper 45, p. 281-322. Pigage, L.C., 2004, Bedrock geology compilation of the Anvil District (parts of 105K/2, 3, 5, 6, 7 and 11), central Yukon: Yukon Geological Survey, Bulletin 15, 103 p. Poulton, T.P., and Tempelman-Kluit, D.J., 1982, Recent discoveries of Jurassic fossils in the Lower Schist division of central Yukon, in Current research, Part C: Geological Survey of Canada Paper 82-1C, p. 91-94. Pretorius, W., Weis, D., Williams, G., Hanano, D., Kieffer, B., and Scoates, J.S., 2006, Complete trace elemental characterization of granitoid (USGS G-2, GSP-2) reference materials by high resolution inductively coupled plasma-mass spectrometry: Geostandards and Geoanalytical Research, v. 30, p. 39-54. Rainbird, R.H., McNicoll, V.J., Theriault, R.J., Heaman, L.M., Abbot, J.G., Long, D.G.F., and Thorkelson, D.J., 1997, Pan-continental river system draining Grenville orogen recorded by U-Pb and Nd-Sr geochronology of Neoproterozoic quartzarenites and mudrocks, northwestern Canada: Journal of Geology, v. 105, p. 1-17. Read, P.B., and Okulitch, A.V., 1977, The Triassic unconformity of south-central British Columbia: Canadian Journal of Earth Sciences, v. 14, p. 606-638. Renne, P.R., Swisher, C.C., III, Deino, A.L., Karner, D.B., Owens, T. and DePaolo, D.J., 1998, Intercalibration of standards, absolute ages and uncertainties in 39Ar/40Ar dating: Chemical Geology, v. 145, p. 117-152. Ross, G.M., Gehrels, G.E., and Patchett, P.J., 1997, Provenance of Triassic strata in the Cordilleran miogeocline, western Canada: Bulletin of Canadian Petroleum Geology, v. 45, p. 461-473. Simard, R-L, Dostal, J., and Roots, C.F., 2003, Development of late Paleozoic volcanic arcs in the Canadian Cordillera: an example from the Klinkit Group, northern British Columbia and southern Yukon: Canadian Journal of Earth Sciences, v. 40, p. 907-924. Sláma, J. Košler, J., Condon, D.J., Crowley, J.L., Gerdes, A., Hanchar, J.M., Horstwood, M.S.A., Morris, G.A., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, B., Tubrett, M.N., and Whitehouse, M.J., 2008, Plešovice zircon – A new natural reference material for U-Pb and Hf isotopic microanalysis: Chemical Geology, v. 249, p. 1-35. Sun, S.S., and McDonough, W.F., 1989, Chemical and isotopic systematics of oceanic

219 basalts: Implications for mantle composition and processes in Saunders, A., and Norry, M., Magmatism in ocean basins: Geological Society of London Special Publication 42, p. 313-345. Tafti, R., and Mortensen, J.K., 2004, Early Jurassic porphyry(?) copper(-gold) deposits at Minto and Williams Creek, Carmacks copper belt, western Yukon, in Emond, D.S. and Lewis, L.L., eds., Yukon Exploration and Geology 2003: Yukon Geological Survey, p. 289-303. Tempelman-Kluit, D.J., 1970, Stratigraphy and structure of the “Keno Hill Quartzite” in Tombstone River – upper Klondike River map areas, Yukon Territory (116B/7, B/8): Geological Survey of Canada Bulletin 180, 102 p. Tempelman-Kluit, D.J., 1972, Geology and origin of the Faro, Vangorda, and Swim concordant zinc-lead deposits, central Yukon Territory: Geological Survey of Canada Bulletin 208, 73 p. Tempelman-Kluit, D.J., 1977, Geology of Quiet Lake (105F) and Finlayson Lake (105G) map areas: Geological Survey of Canada Open File 486, 1:250,000 scale. Tempelman-Kluit, D.J., 1979, Transported cataclasite, ophiolite and granodiorite in Yukon, and evidence of arc-continent collision: Geological Survey of Canada Paper 79-14. Van Achterbergh, E., Ryan, C.G., Jackson, S.E., and Griffin, W.L., 2001, Data reduction software for LA-ICP-MS, in Sylvester, P.J., ed., Laser Ablation-ICP-Mass Spectrometry in the Earth Sciences: Principles and Applications: Mineralogical Association of Canada (MAC) Short Course Series, Ottawa, Canada 42, p. 239- 243. Weis, D., Kieffer, B., Maerchalk, C., Barling, J., de Jong, J., Williams, G.A., Hanano, D., Pretorius, W., Mattielli, N., Scoates, J.S., Goolaerts, A., Friedman, R.M., and Mahoney, J.B. ,2006, High-precision isotopic characterization of USGS reference materials by TIMS and MC-ICP-MS: Geochemistry Geophysics Geosystems, v. 7, Q08006, doi:10.1029/2006GC001283. Wheeler, J.O., 1961, Whitehorse map area, Yukon-Territory: Geological Survey of Canada Memoir 312.

220

Chapter 7:

Conclusions and directions for future research

221 7.1 CONTRIBUTIONS TO THE CORDILLERAN KNOWLEDGE BASE This investigation contributed significantly to the knowledge base in the northern Cordillera by testing the source, composition, paleotectonic setting, and depositional framework for North American strata in Yukon. Prior to this research, the provenance and genesis of these units were poorly constrained and represented a considerable gap in our understanding of early Mesozoic tectonics and sedimentation in northwestern Canada (Nelson et al., 2006). Three summers of field work and extensive analytical studies generated the following products: (1) three reports published by the Yukon Geological Survey documenting field activities and preliminary results (Beranek and Mortensen, 2006; 2007; 2008); (2) >3400 single-grain U-Pb detrital zircon analyses; (3) >25 whole-rock trace element geochemical analyses; (4) seven Sm-Nd isotope geochemical analyses; (4) establishment of a Phanerozoic detrital muscovite age reference frame for the northern Cordillera; (5) five oral and multiple poster presentations at professional and field conferences in Canada and the United States; and (6) five manuscripts to be submitted to peer-reviewed journal publications. The substantial detrital zircon dataset created by this project is the largest of its kind in the northern North American Cordillera and represents the most significant product from this dissertation. U-Pb ages generated by this investigation are consistent with those of prior studies in western Canada (e.g., Ross et al., 2007). Furthermore, geochronological data collected from Triassic rocks in Yukon and surrounding areas established a robust detrital zircon reference frame that will be a valuable resource for future research projects addressing the evolution of the Cordilleran margin. Contributions from this research have provided immediate insights for the scientific community. Several syntheses on Yukon geology, Cordilleran geodynamics, and terrane analysis have cited the conclusions of this dissertation (e.g., Ruks et al., 2006; Nelson and Colpron, 2007; Colpron et al., 2007; Mortensen et al., 2007; Colpron and Nelson, in press).

222 7.2 KEY RESULTS Results from this investigation have provided the following salient conclusions: • Northerly derived Late Devonian to Early Mississippian siliciclastic strata in northern Yukon and Northwest Territories comprise clastic wedge deposits of the Ellesmerian- Innuitian orogenic belt. Detrital zircon age populations in these strata characterize at least a portion of the submerged “Crocker Land”, the presumed source of these grains and hinterland of the Innuitian orogen. • Detrital zircon analyses and whole-rock geochemical compositions of miogeoclinal strata in northwestern Canada indicate that sediment derived from the Innuitian orogen was consistently recycled into Mississippian to Triassic Cordilleran margin units (cf., Garzione et al., 1997). • Early Triassic Jones Lake Formation type section strata in eastern Yukon have detrital zircon and whole-rock compositions that are similar to other Early to Late Triassic miogeoclinal units in Yukon. These provenance signatures are analogous to those in coeval deposits of the Cassiar terrane and Western Canada Sedimentary Basin. • Coarse-grained, synorogenic(?) Early to Middle Triassic strata associated with Slide Mountain terrane in central and southeastern Yukon have detrital zircon populations that define an early Mesozoic sedimentary linkage with Yukon-Tanana terrane. Middle to Late Triassic units related to Slide Mountain-Golconda Ocean lithosphere in the northern Cordillera are recognized as an overlap assemblage that covered Yukon-Tanana and Slide Mountain terranes and the ancestral North American margin. • Late Triassic sandy limestone in southeastern Yukon, which yields conodonts typically associated with late early Norian strata of ‘Tethyan’ affinity in Eurasia, contains detrital zircon populations that define a northwestern Laurentian provenance. These data constrain the late Paleozoic to early Mesozoic paleogeography of the unit and that of the underlying Slide Mountain terrane. As a result, faunal groups originating from the Tethys Ocean region may have migrated to eastern Panthalassa, thus, their occurrences in Cordilleran terranes do not always indicate translation of tectonic blocks across the proto-Pacific Ocean.

223 • Middle Triassic strata in southeastern Yukon document the first known occurrence of sediments that were derived from allochthonous terranes to the west deposited on North America. These units are interpreted to comprise the medial facies belt of a peripheral foreland basin that formed along the Cordilleran margin as a result of collision between Yukon-Tanana terrane and the western edge of North America. The majority of synorogenic, coarse-grained deposits of this depocentre are now buried under younger Mesozoic allochthons. • Detrital mineral and whole-rock data from Triassic strata in the northern Cordillera uniformly suggest that the northern extent of the Slide Mountain-Golconda Ocean was fully closed by in Late Permian-Early Triassic. Marginal basin closure allowed juxtaposition of the pericratonic Yukon-Tanana terrane with North America. This conclusion is consistent with Sonoman orogenesis and eastward emplacement of the Golconda allochthon in the southwestern United States. • Mid-Mesozoic strata of Yukon-Tanana terrane and North America contain Late Triassic to Early Jurassic detrital zircon populations. The occurrence of these grains in Jurassic strata of the Ogilvie Mountains in west-central Yukon defines a pre- middle Bathonian overlap assemblage between Yukon-Tanana terrane and/or Stikinia with the North American continent. These detrital zircons were probably dispersed from allochthonous terranes to the north and west during a regional exhumation event (cf., Tafti and Mortensen, 2004).

7.3 FUTURE RESEARCH Systematic field and isotopic analysis of Triassic strata has led to considerable advances in our understanding of late Paleozoic to early Mesozoic tectonics and sedimentation in the northern Canadian Cordillera. From this framework, several new testable hypotheses and avenues for future research are possible.

Ellesmerian clastic wedge in northern Yukon and Northwest Territories: Detrital muscovite is an accessory mineral in Imperial and Tuttle formation siltstone and sandstone comprising the Ellesmerian clastic wedge in northern Yukon and

224 Northwest Territories. The origin and age for detrital muscovite in these strata is unconstrained. Low-precision Ar-Ar muscovite ages from the Late Mississippian to Permian Mount Christie Formation type section in eastern Yukon are ca. 430 Ma. Detrital zircon peaks of similar age, at ca. 430 Ma, are the hallmark of Innuitian-derived sedimentary rocks. If the Mount Christie Formation Ar-Ar data are valid, then one hypothesis is that the muscovite was derived from the Innuitian orogenic belt in the Canadian Arctic Islands. Proterozoic strata in northeastern Alaska and northern Yukon contain muscovite yielding Ar-Ar ages ca. 1000-2500 Ma (Thorkelson et al., 2005; Lane, 2006), which characterizes a cratonal signature, the only other feasible source for mica in the Mount Christie Formation.

Early Triassic Jones Lake Formation type section The Dienerian to mid-Smithian(?) Jones Lake Formation stratotype location in eastern Yukon represents the best exposed Triassic stratigraphic succession in Yukon. Samples collected from the upper member for conodont biochronology in this investigation were barren; therefore, the age of the upper portion of the type section (>400 m) is unconstrained. Most Triassic strata from west-central to southeastern Yukon are assigned to the Jones Lake Formation, regardless of lithologic or age correlations with the type section (e.g., Gordey, 2008). Further paleontologic advances on the stratotype location would significantly add to the regional stratigraphic framework.

Faro Peak formation Detrital zircon analysis of Faro Peak formation conglomerate near Faro, central Yukon, yielded Jurassic grains which negated the prior Late Triassic estimate of its depositional age. The unit also comprises greywacke and basalt (Pigage, 2004). Detailed bedrock mapping and isotopic studies are called for to better constrain the age and geochemical character of the Faro Peak formation. A systematic research program focusing on this unit, perhaps as part of a masters-level investigation, would contribute significant advances to our knowledge of mid-Mesozoic tectonics, sedimentation, and magmatism in the northern Cordillera.

225 Southern extent of the Triassic peripheral foreland basin There is great potential for a research project focusing on the composition and isotopic character of coarse-grained Triassic siliciclastic strata in the Western Canada Sedimentary Basin of northeastern British Columbia and Alberta. In particular, the thickest accumulation of Triassic strata (>1200 m) in the Canadian Cordillera occurs in northeastern British Columbia (e.g., Gibson and Barclay, 1989), perhaps outlining the architecture of the peripheral foreland basin. Ross et al. (1997) provided a preliminary test of these units in British Columbia; however, with the advent of LA-ICP-MS techniques, a much larger detrital zircon dataset could be utilized. The combination of coarse-grain size and pre-exisiting paleontologic control should make detrital zircon data collection and provenance correlations relatively straightforward. South of Yukon, however, the outboard realm is comprised of Quesnellia. Paleozoic detrital zircon (and muscovite) that is typical of Yukon-Tanana terrane may not be shared by terranes farther south which may cause complications for future studies.

Eastern extent of the Triassic peripheral foreland basin The eastern extent of the distal facies belt comprising the easternmost peripheral foreland basin associated with Yukon-Tanana/North America collision is unconstrained. Detrital zircon analyses in the Ogilvie Mountains in west-central Yukon and Jones Lake Formation stratotype locality in eastern Yukon are the only control points in this belt. A reconnaissance-level study, perhaps in concert with investigations on Triassic strata in British Columbia, could easily add temporal and spatial constraints to the eastern extent of the peripheral foreland basin.

Isotopic composition of hafnium in detrital zircon An innovative approach to detrital mineral provenance studies in the northern Cordillera would be coupled U-Pb age and Hf in zircon isotopic analyses. For example, ca. 1000 Ma detrital zircons in Cordilleran margin strata have at least three possible reservoirs: the Grenville orogen, the hinterland of the Innuitian orogen, or crystalline rocks covered by miogeoclinal strata in western Canada. Although this tool could not be directly applied to the primary research goal of this dissertation, comprehensive U-Pb and

226 Hf study of zircon would be an immense contribution to Cordilleran geology and undoubtly spawn several avenues of research and working hypotheses concerning the geodynamic evolution of western Laurentia.

Metamorphic and exhumation history of Yukon-Tanana terrane Recent studies into the metamorphic history of Yukon-Tanana terrane in western Yukon have analyzed the U-Pb isotopic compositions of monazite in garnet and metamorphic rims on detrital zircon grains (Villeneuve et al., 2003; Berman et al., 2007). These investigations delineated a ca. 250 Ma metamorphic event that affected Yukon- Tanana terrane (cf., Mortensen et al., 2007). Future studies on the metamorphic and exhumation history of Yukon-Tanana terrane can incorporate monazite in garnet P-T-t evolution and low Th/U rims on zircon; areas of the terrane that were not severely affected by Jura-Cretaceous metamorphism or magmatism can also be addressed using Ar-Ar methods on muscovite to constrain the timing or rates of uplift.

227 7.4 REFERENCES Beranek, L.P., and Mortensen, 2006, Triassic overlap assemblages in the northern Cordillera: Preliminary results from the type section of the Jones Lake Formation, Yukon and Northwest Territories (NTS 105I/13), in Emond, D.S., Bradshaw, G.D., Lewis, L.L., and Weston, L.H., eds., Yukon Exploration and Geology 2005: Yukon Geological Survey, p. 79-91. Beranek, L.P., and Mortensen, 2007, Investigating a Triassic overlap assemblage in Yukon: On-going field studies and preliminary detrital zircon age data, in Emond, D.S., Lewis, L.L., and Weston, L.H., eds., Yukon Exploration and Geology 2006: Yukon Geological Survey, p. 83-92. Beranek, L.P., and Mortensen, 2008, New stratigraphic and provenance studies of Triassic sedimentary rocks in Yukon and northern British Columbia, in Emond, D.S., Blackburn, L.R., Hill, R.P., and Weston, L.H., eds., Yukon Exploration and Geology 2007: Yukon Geological Survey, p. 115-124. Berman, R.G., Ryan, J.J., Gordey, S.P., and Villeneuve, M., 2007, Permian to Cretaceous polymetamorphic evolution of the Stewart River region, Yukon-Tanana terrane, Yukon, Canada: P-T evolution linked with in situ SHRIMP monazite geochronology: Journal of Metamorphic Geology, v. 25, p. 803-827. Colpron, M., and Nelson, J.L., in press, The Northwest Passage: Incursion of Baltican and Siberan crustal fragments into eastern Panthalassa, and the mid-Paleozoic to early Mesozoic evolution of the Cordilleran margin of western North America, in Cawood, P., and Kröner, A., eds., Accretionary orogens: Geological Society of London Special Publication. Colpron, M., Nelson, J.L., and Murphy, D.C., 2007, Northern Cordilleran terranes and their interactions through time: GSA Today, v. 17, p. 4-10. Garzione, C.N., Patchett, P.J., Ross, G.M., and Nelson, J.L., 1997, Provenance of Paleozoic sedimentary rocks in the Canadian Cordilleran miogeocline: a Nd isotopic study: Canadian Journal of Earth Sciences, v. 34, p. 1603-1618. Gordey, S.P., 2008, Geology, Selwyn Basin (105J and 105K), Yukon: Geological Survey of Canada Open File 5438, 1:250,000 scale. Lane, L.S., 2006, Age and provenance of the Neruokpuk Formation, northeastern Brooks Range, based on Ar-Ar and U-Pb geochronology: Geological Society of America, Abstracts with Programs, v. 38, p. 34. Mortensen, J.K., Beranek, L.P., Murphy, D.C., 2007, Permo-Triassic orogeny in the northern Cordillera?: Sonoma north: Geological Society of America, Abstracts with Programs, 103rd Annual Meeting, Bellingham, Washington. Nelson, J.L., and Colpron, M., 2007, Tectonics and metallogeny of the Canadian and Alaskan Cordillera, 1.8 Ga to present, in Goodfellow, W., ed., Mineral deposits of Canada: A synthesis of major deposit types, district metallogeny, the evolution of geological provinces, and exploration methods: Geological Association of Canada, Mineral Deposit Division, Special Publication 5, p. 755- 792. Pigage, L.C., 2004, Bedrock geology compilation of the Anvil District (parts of 105K/2, 3, 5, 6, 7 and 11), central Yukon: Yukon Geological Survey, Bulletin 15, 103 p. Ross, G.M., Gehrels, G.E., and Patchett, P.J., 1997, Provenance of Triassic strata in the

228 Cordilleran miogeocline, western Canada: Bulletin of Canadian Petroleum Geology, v. 45, p. 461-473. Ruks, T.W., Piercey, S.J., Ryan, J.J., Villeneuve, M.E., and Creaser, R.A., 2006, Mid- to late Paleozoic K-feldspar augen granitoids of the Yukon-Tanana terrane, Yukon, Canada: Implications for crustal growth and tectonic evolution of the northern Cordillera: Geological Society of America Bulletin, v. 118, p. 1212-1231. Tafti, R., and Mortensen, J.K., 2004, Early Jurassic porphyry(?) copper(-gold) deposits at Minto and Williams Creek, Carmacks copper belt, western Yukon, in Emond, D.S. and Lewis, L.L., eds., Yukon Exploration and Geology 2003: Yukon Geological Survey, p. 289-303. Thorkelson, D.J., Abbott, J.G., Mortensen, J.K., Creaser, R.A., Villeneuve, M.E., McNicoll, V.J., and Layer, P.W., 2005, Early and Middle Proterozoic evolution of Yukon, Canada: Canadian Journal of Earth Sciences, v. 42, p. 1045-1071. Villeneuve, M.E., Ryan, J.J., Gordey, S.P., and Piercey, S.J., 2003, Detailed thermal and provenance history of the Stewart River area (Yukon-Tanana terrane, western Yukon) through application of SHRIMP, Ar-Ar and TIMS: Geological Association of Canada–Mineralogical Association of Canada Abstracts, v. 28, p. 344.

229

Appendices

230 APPENDIX A

U-Pb isotopic data collected from samples described in Chapter 2 are presented here. Interpreted ages with ~ <10% discordance are indicated in bold type.

Table A1 – Sample location data for detrital zircon samples presented in Chapter 2.

231

e± 443 3.47 657 7.28 384 6.68 688 17.12 Ag 1612 53.23 716.8443.5 14.38 10.22 610.7 12.26 673.5536.7 10.42 434.6 11.29 428.5640.8 2.38 578.1 4.54 919.6 7.2 483.5 7.58 374.2 7.44 693.3 4.51 640.7 3.73 404.5951.3 6.62 556.8 10.19 3.85 431.9 6.96 533.5 7.64 900.8462.4 6.61 9.88 27.11 8.87 551.4437.5445.4 7.58 5.38 684.3 5.54 15.18 648.4 3.64 585.3538.6 3.8 12.3 1017.31393.11457.31402.5 30.53 22.93 16.11 20.26 1183.32685.81032.5 56.12 24.62 44.1 1252.4 44.95 1570.11608.5 21.25 1397.9 21.4 42.26 1463.41512.9 31.81 34.42 1176.9 52.29 1334.1 60.94 1402.31968.4 29.82 1666.2 21.13 1095.1 36.58 112.94 es Ag Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Disc % Ratios le I1 - WGZ-029-06 I1 le 123 0.061294 0.073125 0.088496 0.091527 0.00088 0.088938 0.00111 0.059259 0.00107 0.05801 0.00078 0.07982 0.10581 0.00095 0.07361 0.16017 0.00099 0.23863 0.00349 0.24996 0.00062 0.00101 0.23959 0.00101 0.0011 0.09505 0.00144 0.08713 0.00105 0.86937 0.17419 0.00127 0.12553 1.56915 0.00065 2.72115 0.00208 3.0686 0.01558 0.00103 2.80358 0.00077 0.03432 0.80998 0.05462 0.73703 0.04274 1.91576 649.5 0.04935 1.20376 0.01677 1017.3 1393.1 0.05399 0.03622 1457.3 1402.5 0.02194 30.54 576.3 30.53 22.93 529.9 1192.5 16.11 20.26 1030.7 648.4 36.02 957.7 1379.6 127.09 24.82 1438.3 1384.6 27.24 3.64 585.3 6.12 7.5 538.6 1035.2 5.42 6.6 762.3 635.2 958.1 3.8 1334.2 12.3 5.68 1424.9 1356.5 4.42 8.46 13.56 14.9 602.4 560.7 1086.6 10.67 13.17 802.3 0.2 31.56 12.61 9.41 6.3 1.1 1.5 10.11 1.4 -1.7 14.3 -1.6 27.6 1192.5 1030.7 24.82 27.24 p 565859 0.1012460 0.0628361 0.055862 0.0794563 0.0016 0.1836264 0.00324 0.0736765 0.08519 0.0039 0.0023 0.06004 0.18085 0.00276 0.12155 0.11762 0.00163 0.00165 0.07122 0.19403 0.00322 0.00139 0.5114 0.00249 0.01219 0.15513 0.20159 0.0017 0.09937 0.0026 2.54148 0.93604 0.00473 0.31561 0.00152 0.00183 0.51212 0.00209 0.05879 2.1199 0.05967 12.9859 0.0195 1.61875 2.38177 0.03908 0.77047 1646.9 0.45389 0.0918 702.4 0.04918 4.61518 0.06857 0.04898 444.2 28.95 2685.8 0.90314 1183.3 1032.5 105.98 1319.8 605 148.92 1071.6 24.62 1979.1 56.12 716.8 44.1 37.08 443.5 111.81 7.57 2662.6 168.62 1143.1 14.38 929.6 1183.9 10.22 610.7 1768.3 20.15 1284 14.05 670.8 8.49 9.82 419.9 95.57 2678.6 12.26 1155.3 16.86 31.3 1237.1 977.5 26.24 32.95 1752 29.88 580 20.59 37.9 19.07 -2.2 163.31 28.09 0.2 1.1 3.7 11.3 10.7 12.2 1646.9 -1 28.95 1319.8 1979.1 37.08 168.62 111213 0.0558814 0.0619915 0.0582316 0.0971517 0.00118 0.0991718 0.00244 0.0615519 0.00354 0.0555320 0.00111 0.05541 0.0711321 0.00115 0.08871 0.1101322 0.00173 0.07495 0.0868223 0.00081 0.06104 0.2570624 0.00058 0.00158 0.05916 0.2819525 0.00179 0.00199 0.06874 0.1072926 0.00108 0.0019 0.09181 0.0697427 0.00151 0.00177 0.54829 0.09424 0.0687328 0.0017 0.96605 0.0021 0.05674 0.2298129 0.00125 0.00137 0.05413 0.15054 0.7619730 0.00155 0.0004 3.26059 0.11897 0.01326 0.1045131 0.00075 0.00174 0.07919 0.04891 4.0450432 0.00259 0.09382 0.00141 0.89161 0.06247 0.1533333 0.00099 0.05495 0.00154 0.06127 0.06381 0.26601 0.5304934 0.00123 0.00129 0.52566 0.05473 447.2 0.2641335 0.08658 0.00213 2.72243 0.00129 0.07049 673.9 0.03164 0.0778836 0.00133 0.00151 1.53323 0.05977 0.072637 0.00229 537.9 0.00879 0.00254 0.85102 1570.1 0.05855 0.01705 0.2633538 0.00252 0.00144 0.07425 0.10282 0.20161 0.77059 45.98 1608.539 0.00075 0.00128 1.47637 0.05546 658.7 0.11354 81.9440 0.00061 0.031 3.43305 0.05811 0.03063 0.0025341 0.1045 0.00151 433.5 0.00223 3.22806 128.2 21.25 0.08582 428.7 0.0647642 0.00257 0.03282 0.00148 1397.9 0.5977 0.06907 0.04106 0.1590143 0.00114 21.4 443 0.43264 0.0023 0.05606 0.10308 59.22 673.544 0.13886 0.00285 1067.2 4.2167 0.00175 0.09094 640.6 0.10439 0.0902245 0.00064 1474.8 0.00276 31.62 536.7 2.3399 0.08891 0.19997 61.8246 0.00125 0.01717 0.00092 42.26 573 0.9564 0.05424 890.8 0.0134647 1601.2 0.00286 1463.4 0.0693 0.00216 0.09274 3.47 0.08629 10.42 0.8856648 0.00129 0.07908 0.00195 657 0.49712 28.83 1512.9 0.12082 0.22738 61.3249 7.74 0.00184 0.10063 11.29 1.56829 434.6 0.0014 0.05898 0.15497 428.550 480.7 0.02933 1333.5 0.00262 376.5 0.07436 0.102351 8.56 1.3648 75.21 0.00167 0.04547 40.5 0.0011 0.00154 0.74016 31.81 686.4 0.05575 0.01467 443.9 1940.852 0.2227 0.00362 0.00144 2.16961 34.42 0.03945 7.28 904 1471.7 1176.9 640.853 575.1 0.076 0.00089 0.24986 0.00221 2.38 0.05576 0.06137 13.5954 4.54 0.00148 690.4 0.73199 54.08 0.06527 0.10461 0.20596 0.00205 0.50156 1643.3 0.033255 578.1 648.8 62.6 1520.5 0.00182 2.79669 919.6 0.00237 25.26 0.06219 401.1 0.06688 0.34645 19.33 8.69 1510.9 1.47732 0.00192 0.06246 15.21 942.6 647.2 52.29 0.0893 31.67 5.52 0.00445 7.2 0.00184 0.0011 0.54686 1334.6 432.1 0.09935 0.04301 428.9 0.02335 0.00167 0.29411 0.00623 50.86 1002.9 483.5 17.43 0.07023 11.68 2.61405 0.1518 0.00214 550.3 7.58 0.00405 86.74 374.2 1048.3 7.44 0.02605 1506.9 12.86 3.11593 57.71 0.00367 0.00128 0.1 0.03178 0.18236 16.98 0.07154 0.43989 36.64 1184 28.05 943.8 0.00289 2.49084 625.2 0.00311 1 533.2 6.8 0.34049 5.83 11.35 430.4 0.2 0.00089 0.08923 5.70424 69.24 693.3 4.51 0.11264 1512 1334.1 0.08075 580.1 80.88 1463.9 640.7 39.78 3.73 7.72 920.7 0.5 900.8 0.11199 0.70565 404.5 0.00092 0.02333 0.0049 454.5 0.06306 0.26463 4.37778 951.3 13.78 12.43 0.0116 0.52973 0.12085 104.53 0.3 16.8 1445.2 0.00295 5.1 89.82 838.2 6.62 475.8 23.61 -0.3 60.94 1402.3 0.00262 0.03082 25.07 1175.2 18.82 10.19 1677.3 0.51651 556.8 0 16.84 1.87853 27.11 365 3.85 0.00405 380.7 0.16383 1482.5 1224.5 0.01963 109.58 6.96 5.4248 0.87189 1968.4 533.5 40.26 16.4 12.25 0.96952 431.9 10.91 681.4 0.01926 1320.8 29.82 9.86 0.16228 15.39 566.5 3.36834 0 644 7.64 -4.4 1666.2 928.8 409.7 -0.9 104.51 0.1 30.59 -3.5 31.34 462.4 9.54 0.68355 442.2 0.06975 957.8 21.13 9.88 0.07067 1296.1 873.9 19.03 6.61 15.22 442.5 0.17065 1437.7 1095.1 1171.4 79.42 -0.6 562.5 24.48 36.58 4.95 1207.3 384 25 9.95 1707.4 8.87 680.6 71.16 1917.6 -0.7 12.47 15.6 557.7 1067.2 690.1 0.6 1354.7 28.03 412.8 9.92 112.94 21.42 1612 71.87 -0.4 551.4 19.37 8.95 1662 921.1 105.83 442.9 6.68 133.42 1.3 28.83 10.27 1304.6 437.5 -0.9 25.22 120.46 40.6 1079.9 1436.6 15.79 -1 17.5 445.4 53.23 -13.2 7.58 1269.4 1889 10.68 15.5 1940.8 -1.2 20.86 25.07 370.2 1932 688 5.38 684.3 26.71 19.92 -0.1 1513.5 5.54 1.1 -0.4 19.33 542.2 18.34 1708.2 55.8 16.45 -3.3 17.12 431.6 18.3 15.18 1073.5 -1.8 11.4 1002.9 20.65 1048.3 -2.8 422.8 18.35 30.93 1888.8 20.3 636.6 13.03 57.24 688.2 -0.9 69.24 39.78 1497.1 3 12.89 108.03 2.8 37.83 0.3 1445.2 36.43 39.67 1.1 1.5 -0.7 -12.3 1482.5 40.26 -1.1 0.9 6.9 31.34 1707.4 105.83 10 0.08229 0.00192 0.1997 0.00224 2.19982 0.08151 1252.4 44.95 1173.7 12.03 1181 25.87 6.9

Sam

232

e± 441 12.38 Ag 1041 48.33 358.8459.3381.7 4.1 9.12 431.1 3.98 388.1 7.2 5.13 426.1 3.17 1696.31796.82542.6 33.52 30.71 29.94 2360.7 36.81 1544.31938.6 104.56 1203.9 80.35 2243.42036.82575.6 40.24 2778.1 25.83 37.51 1291.4 117.38 1743.4 44.28 1906.7 173.19 1662.5 24.03 1887.7 33.7 1399.51378.5 37.11 1729.4 42.96 2127.3 36.34 2140.1 73.68 1885.2 46.75 114.84 51.47 1105.8 48.89 1328.92511.9 41.97 2915.9 40.48 1174.8 34.66 1790.3 63.8 2575.51710.1 94.8 2700.9 36.6 1907.1 17.4 2638.4 35.91 27.09 1860.5 19.26 1700.9 19.55 1249.4 22.16 1821.5 20.77 1671.5 53.53 1487.1 28.29 24.56 33.8 ) % ( es Ag A Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Disc Ratios le I2 - I2 le 87LHA39-4 123 0.116494 0.053745 0.111786 0.075297 0.00235 0.056258 0.00167 0.054249 0.00372 0.1513 0.00418 0.14139 0.19437 0.00302 0.05543 0.05723 0.00152 0.38332 0.20118 0.0033 0.00211 0.00276 0.07384 0.00067 0.00256 0.00754 0.061 0.00523 3.40108 0.43902 0.24889 0.00152 0.41485 0.06917 4.85996 0.00066 2.2282 0.11507 0.00615 0.00281 0.56741 0.01409 0.00119 0.32506 0.42754 0.19762 9.38072 4.27612 0.03474 1903 0.54237 359.9 1828.6 0.0132 0.14594 0.5002 1076.4 0.02825 461.5 35.88 68.37 59.21 381 2244.2 107.65 2360.7 429.5 115.51 1145 358.8 2091.8 1181.6 33.32 36.81 61.79 459.3 99.49 11.38 35.13 4.1 28.09 1432.7 2346.2 381.7 9.12 1504.6 431.1 1795.3 352.4 1190 14.5 27.54 3.98 26.55 456.3 56.32 7.2 10.11 2375.9 62.16 1688.8 361.4 22.51 43.4 -16.9 440 48.93 28.09 -10.7 0.3 9.39 0.5 18.6 40.2 0.7 1828.6 1903 -0.2 1076.4 -0.4 59.21 35.88 107.65 2244.2 33.32 p 6768 0.10985 0.16848 0.00187 0.00304 0.31794 0.48164 0.00276 0.00538 4.74746 11.10225 0.13885 0.45879 1796.8 2542.6 30.71 29.94 1779.6 2534.4 13.52 23.4 1775.7 2531.7 24.53 38.49 1.1 0.4 66 0.10398 0.00191 0.29737 0.00285 4.30592 0.14082 1696.3 33.52 1678.2 14.16 1694.5 26.95 1.2 101112 0.0541514 0.218816 0.0958217 0.1556418 0.00196 0.1715619 0.11882 0.0160520 0.00552 0.1721121 0.00272 0.05578 0.0620522 0.00228 0.0802823 0.79088 0.00549 0.14132 0.2653825 0.01292 0.12557 0.2486627 0.00085 0.00425 0.17183 0.3464128 0.00166 0.19421 0.05924 0.3633729 0.00816 0.00213 0.13253 0.6856730 0.00252 0.0027 0.46145 0.08395 0.070831 0.00255 0.01258 0.10668 0.22632 16.4031532 0.01006 0.00533 3.07063 0.11673 0.4177333 0.04349 0.00507 5.19723 0.11632 0.0185134 0.36885 0.00792 8.06615 0.10209 0.00206 0.48673 3.9367135 0.00221 0.00142 0.52146 5.4275 0.1155 0.3078336 0.00345 0.00222 15.63758 0.08879 0.26854 0.1635237 0.00285 0.08782 0.00457 0.21276 0.19439 377.2 0.5088738 0.02826 0.00207 2.51248 0.10586 0.30256 2971.939 0.01025 0.52582 3.82102 8.34963 0.13219 0.34432 1544.3 0.002840 0.00608 0.00171 0.13316 0.40142 2408.9 6.0912242 0.00973 0.00345 0.04347 9.15892 0.11534 0.29341 0.0797343 2573 0.00274 12.78713 0.0018 79.29 0.10444 113.544 0.00346 0.2447 1938.6 0.00902 2578.3 4.76173 0.11449 0.32664 104.56 0.2402345 0.00557 0.00399 0.26231 2.05753 0.07641 0.21098 1.75204 29.3746 0.00301 0.00318 443.4 0.95124 0.08559 0.31709 1203.9 4.3160647 0.00278 388.1 0.15584 22.03 0.39012 5.3952 3756.4 0.3530549 0.00432 0.00217 2243.4 120.21 1517.3 80.35 0.0019 5.80548 0.16542 0.39313 0.2908950 0.00403 2036.8 0.00163 3.96481 0.21134 0.32583 2575.6 1431.651 0.00431 0.00181 2778.1 0.07576 0.07398 161.28 0.26524 40.2452 0.01739 0.00338 213.22 0.18518 5.62089 1917.4 2.99608 5.13 2131.7 0.0791 3366.1 0.28395 41.5653 0.00709 0.27992 0.00345 1998.1 25.83 2.89326 0.10945 0.18749 1291.4 0.1330254 0.00495 0.00852 37.51 4.72412 0.17183 117.38 0.2082955 0.00365 13 1743.4 44.28 0.0018 5.36172 0.10476 2900.6 0.15104 1315.2 0.26756 441 0.0863556 12.21 1906.7 166.31 6.51913 0.18531 0.00212 1425.4 0.00391 385.3 0.50931 1900.4 0.18814 65.45 47.5557 0.00176 0.00222 2250.2 4.74435 0.11676 173.19 0.54955 1662.5 0.2271158 0.00202 2556.5 0.0018 4.13911 0.17844 2024 0.7647159 0.00172 229.69 0.19234 1852.2 0.00207 2705.4 24.03 11.62 0.17242 2854.9 1887.7 1399.5 2238.5 0.42453 4.3961360 0.00612 12.38 0.19451 0.00307 76.79 1.89322 1889.2 0.11377 33.7 12.86 0.32487 1378.5 1533.4 0.24128 43.47 15.7161 0.01702 0.00126 1243.5 2.53396 0.10424 1729.4 122.55 0.19445 37.1162 0.49552 0.00211 3.56005 0.08216 0.00206 21.51 0.28315 2127.3 26.79 43.4263 1275.6 0.00219 11.25344 0.10114 233.2 21.77 0.14872 0.00449 1704 2140.1 42.96 -35 0.05376 36.34 0.4923 417.764 0.00396 0.00141 83.07 12.11031 30.91 2269.7 0.11135 1907.4 0.33731 1885.2 2175.6 0.07619 73.6865 0.00118 51.7 2354 0.10259 0.00297 0.49701 2 1704.5 1658.5 0.11501 46.75 -3 1.97227 0.00321 0.00229 0.09296 1989 2664.1 0.4972 114.84 0.42807 23.05 1.8645 1871.8 0.00298 1.28483 5.15414 0.05651 0.00603 1822.1 45.1 1105.8 1387.9 29.26 8.89 51.47 0.3368 -39.4 1778.2 0.00179 0.00175 26.57 29.4 25.64 16.6 12.61228 1328.9 1234.1 48.89 0.3109 1134.8 0.00354 -3.6 0.00137 175.12 0.06599 14.98 4.18358 0.19261 2411.1 1775.5 0.00327 48.2 0.00168 2123.4 70.06 37.56 0.35336 13.23338 2511.9 2971.9 0.13021 0.23291 0.00108 2915.9 29.67 21.01 11.28 5.66461 10.2 0.00212 1696.4 0.33422 62.22 2137.3 0.28426 41.97 1947.2 12.32914 1884.1 21.48 0.00162 0.28091 1818.1 0.16766 40.48 0.6 96.6 -0.4 10.07825 0.0027 1627 21.11 1041 0.26623 36.35 0.64362 80.64 113.5 0.00457 0.9 1516.6 2408.9 2578.3 1174.8 0.06834 1790.3 0.10219 34.66 5.35746 1919.3 1406.6 1590.9 0.0028 3.2 14.47 0.32634 32.81 -0.7 63.8 2575.5 2573 1107.7 42.37 4.45183 1380.2 0.00174 0.27805 29.4 24.07 31.5 1710.1 1219.7 1771.5 0.00244 2.1541 120.21 27.21 1878.8 29.37 2700.9 18.59 6.715 906.8 48.33 0.00052 4.1 0.11529 41.03 1907.1 21.94 2653.7 10.68 22.03 2048.5 94.8 36.6 5.2444 2638.4 0.07503 4.08623 9.54 49.07 2823.3 1775.1 17.4 2581.3 -17.1 2.6 10.75 3.47121 40.29 0.09932 35.91 122.05 0.54429 1662.1 0.30235 27.09 0 9.62 1860.5 1134 26.16 1711.6 0.3 57.33 0.15377 0.08157 19.26 1145.7 1700.9 1813.4 2131.7 19.55 70.81 1078.7 42.65 0.9 0.10782 1281.8 4 2594.5 21.02 11.5 1249.4 1607.2 0.01223 38.42 -3.1 2331.2 2580.6 0.2 1540.7 2544.4 19.03 11.12 22.16 65.45 1821.5 1671.5 1873.7 24.21 19.26 1900.4 18.87 2600.9 20.77 2613 1487.1 21.89 0.2 12.8 16.11 2297 53.53 4.1 471.6 26.04 25.61 33.92 1106.1 12.4 41.2 1871.3 43.47 1068.6 1845.1 8.63 28.29 24.56 15.25 16.9 1745.1 99.51 2651.1 1670.8 -0.2 33.8 14.77 1135.5 2696.4 9 42.07 22.54 1950.6 10.21 46.15 38.43 66.7 2629.8 1858.8 1926 -6.9 1596 7.97 32.84 21.2 1521.6 14.62 3.9 2442 45.91 1704.5 21.76 1878.1 426.1 1871.8 24.86 13.54 -9.7 15.57 -1.5 2.7 1722 8.75 1166.4 12.4 48.2 25.48 6.8 2074.6 29.67 -0.9 18.41 2411.1 3.17 5.4 1859.9 1651.6 1.7 13.97 31.97 1520.7 2 36.35 39.79 13.1 441.2 -0.7 25 16.28 24.49 -3 9.9 18.9 8.04 -2.4 5.1 2581.3 -2.6 10 21.02 2331.2 33.92

Sam

233

e± 937 7.88 401 4.96 Ag 10032536 36.27 1859 52.02 1348 49.02 10861074 35.39 46.35 29.11 2173 39.51 3340 43.84 1854 43.2 426.4 14.4 389.8425.4 4.67 21.12 436.6434.2 6.04 13.59 1904.62825.61817.1 30.35 22.94 1835.2 27.46 1831.3 44.21 57.34 1130.81897.52857.11725.1 41.97 2105.8 30.96 1286.6 33.79 1861.1 54.26 1775.7 30.75 44.49 1906.1 29.41 35.72 2529.31972.1 33.49 1853.22800.8 27.28 103.28 1975.7 36.12 66.13 93.45 1891.32603.41179.5 39.06 2002.7 27.9 128.35 1989.2 65.19 43.9 2378.92012.72695.72558.3 47.99 1085.3 41.84 2286.1 30.14 1930.1 31.46 92.4 2078.1 90.74 1148.1 54.86 82.47 160.04 2785.51697.21831.3 42.68 2137.2 48.6 1070.8 46.58 2317.3 44.8 2346.22029.7 48.88 1830.7 90.63 1951.4 52 2000.2 39.43 55.16 52.16 43.47 ) % ( es Ag Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Disc Ratios 123 0.116596 0.199937 0.072618 0.111089 0.00199 0.16782 0.00283 0.11219 0.00131 0.11368 0.0017 0.34285 0.0053 0.56541 0.00278 0.16668 0.00314 0.00307 0.32723 0.00468 0.51529 0.32914 0.00133 0.32699 0.00247 5.76147 15.31821 0.01145 0.00449 1.6777 0.00505 0.17996 5.23533 0.46026 13.14127 5.0686 0.04084 5.14153 0.13279 1904.6 1.19286 2825.6 0.24355 0.28209 1003 1817.1 30.35 22.94 2536 1835.2 1859 36.27 27.46 1900.4 2888.9 52.02 44.21 49.02 993.8 1824.9 14.74 19.26 2679.2 1834.2 1823.8 11.99 1940.6 7.35 2835.2 48.72 21.79 24.52 1858.4 27.03 1000.1 28.64 2689.8 1830.9 1843 21.62 0.3 -2.8 15.49 85.65 40.75 -0.5 46.64 1 -6.9 0.1 2.2 le I3 - I3 le 2006LHA1-4B 101112 0.1119513 0.0864414 0.1206616 0.0756617 0.00361 0.075218 0.0016 0.14819 0.00553 0.0773720 0.00178 0.11613 0.3384421 0.20383 0.001122 0.23956 0.10562 0.3156623 0.00808 0.00165 0.13058 0.1786824 0.00618 0.00202 0.0837525 0.00428 0.11381 0.00209 0.1757426 0.00843 0.00318 0.10858 0.36761 0.1916827 0.00188 0.00231 0.13569 5.29473 0.3506528 0.00194 0.11669 0.5814529 0.00187 2.7648 0.0011 0.05531 0.31097 4.566730 0.01315 0.00185 0.00215 0.16715 1.87315 0.35087 0.4006831 0.00312 0.00312 0.12108 0.2201232 0.00886 0.0022 0.11331 0.07727 0.32425 1.7894833 0.00508 0.00573 0.19692 6.23045 0.402 2.09656 0.062434 0.00374 1831.3 0.00274 0.33 0.05453 5.57449 0.3665335 0.00238 0.00727 13.51282 0.1213236 0.00255 0.33987 0.00229 0.0329 1348 0.05517 0.75496 4.41826 0.06458 0.0683937 0.00815 0.08076 0.16959 0.49081 6.9577 57.34 1966 108638 0.00484 0.71794 0.00179 0.07071 0.00331 2.53262 0.343439 0.00657 0.11573 0.00323 5.19021 0.25498 0.3211640 0.00239 2322.9 1130.8 1074 0.0089 0.17472 35.39 0.5897442 0.22738 0.00418 1897.5 0.00593 1879.2 7.01086 0.08883 2857.1 0.06233 0.0793 5.0246443 79.49 46.35 0.00152 0.05407 0.13484 0.32114 0.012444 5.48521 0.00327 1725.1 0.00255 0.12317 0.50456 90.72 41.9745 0.01836 1384.4 0.06822 0.00295 11.90346 0.12224 29.11 0.33115 2105.8 0.18173 30.96 29.7546 0.17534 0.00077 1286.6 33.79 0.05515 1768.5 1059.8 0.00537 0.1564447 0.17914 0.01045 1861.1 0.00182 0.07529 5.34727 4.64691 0.05724 0.31349 54.2648 0.36643 0.00462 17.68722 2018.2 1130.5 10.86 0.50214 0.0547 0.003549 1043.7 0.00614 0.00306 30.75 1937.7 0.15292 2173 1775.7 0.48952 1868 44.49 2954.650 41.31 0.00141 10.27 0.19281 0.00207 0.12387 4.89941 0.15728 1906.1 0.06419 0.6807 29.4151 0.00348 2.39373 0.00442 424.6 1745.5 0.18472 2529.3 0.36798 10.0152 0.00404 1346.1 0.17007 0.49935 62 1.81007 0.01799 0.32719 6.02 0.0047 2172.1 14.8853 0.00438 35.72 1282.5 0.07563 36.13 0.00598 1.51436 0.52968 39.51 1743.2 0.07007 1071.654 0.00082 56.6 1853.2 0.00296 33.49 1810.4 0.14486 1972.1 4.81966 2800.8 0.2184 24.9755 0.00804 216.02 0.00341 12.27737 27.28 0.11826 1147.7 0.08773 0.19024 20.8456 0.00323 0.0043 17.19 0.27592 1912.2 1041.6 0.04173 0.06967 2008.7 0.45773 393 1838.4 12.55 2716.2 1.76301 1975.7 2013.1 0.00359 73.33 22.05 0.12854 0.001 0.48838 0.17934 0.37196 36.12 1886.1 12.42 103.28 0.34104 0.00788 -3 66.13 0.07805 1715.8 6.86866 0.53759 426.4 0.0059 2574.2 1215.6 0.00369 21.18 419 0.48959 -3 0.00225 5.27161 0.17184 0.00809 106.02 0.00786 26.19 11.97 949.1 2106 16.04 1281.5 0.01839 22.83 0.18585 50.23 11.5 93.45 2.6 0.00461 71.28 1891.3 0.00619 15.54 1795.4 0.53593 0.57665 2603.4 0.31685 1903 1851 2988.3 0.00451 0.00663 47.78 18.06 2.20223 137.92 14.4 0.3611 0.23705 0.00429 0 15.3 0.47612 7.98864 1179.5 0.66585 -2.5 324.98 1823.5 3.1 0.00393 2112.8 25.53 -4.3 373.6 43.42 29.01 1795.3 0.02275 5.98838 0.38934 389.8 39.06 15.96 1898.3 0.01133 2002.7 13.79928 74.44 0.20218 59.49 27.9 0.19878 -1.3 22.12 1076.4 2596.8 11.70143 0.00625 0.47866 1989.2 1966 414.8 0.0458 128.35 0.0143 425.4 1.88273 0.25411 29.55 0.4 -3.7 41.97 50.99 0.01211 0.39428 73.82 2322.9 1757.8 1757.7 4.70077 937 418 28.05 4.67 65.19 2972.9 0.00738 1076.2 0.35207 1876.5 33.52 79.49 3.1 28.83 2623 5.15942 2378.9 1136.6 43.9 0.12984 38.63 400.1 25.26437 21.12 -4.1 2012.7 90.72 1802.2 7.24977 8.6 2695.7 0.4785 17.07 28.28 1.2 2019.9 130.06 1.58963 401 113.47 108.89 2558.3 404.6 7.88 1049.1 0.30326 81.2 -2.2 2.19889 17.33 47.99 32.33 -0.4 1085.3 1824.7 181.59 0.83366 411.3 41.84 91.17 30.14 1788.3 0.18292 2286.1 -8.4 3.6 1273.4 37.9 4 31.46 1930.1 68.74 12.27 936.2 4.96 2625.8 436.6 2429.5 3340 1032 20.88 92.4 434.2 2078.1 2038.6 10.5 59.41 2773.4 1148.1 31.29 90.74 31.22 2094.6 2568.9 12.4 54.86 0.8 16.85 403.8 26.08 35.75 6.04 1864.3 43.84 13.59 82.47 63.15 1098.8 21.64 -1.6 18.91 160.04 8.1 1774.3 1181.8 18.57 74.41 1987.4 -0.9 1.4 2229.7 12.55 3289.8 38.38 435.7 1215.6 21.37 2119.8 1974.2 395.4 4 1168.8 2736 55.45 64.11 2580.8 29.61 -1 137.92 54.07 -7.6 55.34 9.5 56.19 36.92 15.04 1075 31.51 39.7 -20.2 1767.4 27.05 28.15 1845.9 -2.6 3318.5 2142.6 -1.5 -4.6 -8.8 45.73 85.23 966.2 -3.5 -0.5 49.99 1076.2 85.01 102.61 -1.4 25.6 113.47 71.72 -3.5 -2.4 1.9 -2 57 0.19508 0.00516 0.52806 0.0086 13.31228 0.81082 2785.5 42.68 2733.3 36.29 2702.1 57.52 2.3 585960 0.1079161 0.1040362 0.1119563 0.1329564 0.00554 0.1133766 0.00279 0.0750867 0.00292 0.1475268 0.00346 0.15003 0.3814669 0.00275 0.12507 0.2862970 0.00186 0.11191 0.34358 0.00804 0.11968 0.36563 0.01112 0.00464 0.3575 0.123 0.00365 0.00282 0.18943 0.00347 0.0044 0.38657 0.00477 0.00356 5.41948 0.45023 0.00401 3.97295 0.32931 0.00192 0.00306 0.34378 4.75735 0.01374 6.77241 0.57661 0.38688 0.00793 0.16742 0.00311 5.7219 2.02537 0.35373 0.00538 0.2014 6.98018 0.3101 0.00587 1764.4 9.51827 1697.2 0.21928 5.87181 0.0638 0.00393 4.98905 0.82272 1831.3 6.25458 0.63968 2137.2 90.94 0.1763 48.6 1854 5.90265 0.26784 1070.8 2317.3 0.34281 46.58 2346.2 2083.1 44.8 0.21705 2029.7 1830.7 1623 48.88 43.2 90.63 1951.4 1903.9 51.9 2008.8 52 2000.2 39.43 55.16 1118.3 18.29 2106.9 1970.3 21.11 52.16 22.53 1887.9 2396.3 43.47 1835 10.38 1904.8 1628.7 63.87 19.02 1777.4 2108.3 2082.1 91.2 35.23 1952.4 25.79 1124.1 15.09 34.18 2108.9 1934.7 27.31 35.52 40.51 -21.2 2389.3 18.73 1817.5 1957.1 21.41 104.68 4.9 33.12 2012.1 -4.6 7 61.75 1961.6 -4.8 10.6 45.41 26.05 1764.4 -7.3 47.98 -2.6 31.93 90.94 -4.7 11 -9.4 2.8 p

Sam

234 e± Ag 1688 31.75 19372484 22.7 16.39 1862 30.88 1777 29.88 417.2 6.25 395.7 3.35 1789.92313.81969.61436.6 30.59 1737.8 16.59 1407.6 12.97 1992.9 45.35 1977.9 15.16 1838.5 21.37 1180.9 14.06 1149.6 39.24 2700.6 15.6 1813.3 20.62 1779.7 21.37 13.99 2679.9 18.15 24.34 2105.9 15.63 1791.4 22.03 22.76 1955.62593.52047.9 18.95 23.22 1927.6 34.1 2061.11872.6 19.47 21.92 1817.4 33.47 1833.91874.21911.6 19.69 1432.8 33.73 1841.6 24 1793.8 21.23 1484.3 20.19 2776.1 34.67 1399.1 22.63 24.54 1828.4 21.6 1219.8 50.68 2562.9 34.82 1484.8 33.92 37.6 71.92 ) % ( es Ag Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Disc Ratios leI4 - 2003LHA9-1A p 1234 0.103515 0.109436 0.1472178 0.1209 0.0018 0.090539 0.00185 0.10635 0.00143 0.08916 0.00089 0.1225 0.30308 0.00219 0.31084 0.12147 0.00088 0.41854 0.001 0.33078 0.00331 0.23602 0.00335 0.00097 0.00271 0.28354 0.00278 0.00129 4.36691 0.00325 4.55978 0.2277 0.33772 0.38184 0.00127 8.19481 5.60359 0.18132 2.85494 0.18483 0.00137 0.00149 0.00602 4.14195 0.20895 0.07874 0.14002 2.79509 5.76048 1688 1789.9 6.51103 0.06734 2313.8 1969.6 0.05966 0.09288 1436.6 30.59 0.40345 31.75 1737.8 16.59 12.97 45.35 1407.6 1992.9 1744.8 1706.6 1977.9 15.16 2253.9 1842.2 21.37 14.06 16.48 1366 16.39 39.24 1609.2 12.63 6.27 1322.5 1875.7 1741.9 1706.1 2084.9 16.94 2252.8 6.4 1916.7 33.76 7.2 7.2 28.08 1370.1 34.3 23.07 1662.6 12.11 2.9 2047.4 36.88 -1.3 1354.2 1940.5 3.1 13.3 7.4 5.5 54.54 15.96 13.95 8.4 -6.3 6.7 6.8 10111213 0.112414 0.0793515 0.0781116 0.1852717 0.11084 0.0009718 0.00083 0.1088219 0.00085 0.1146420 0.00158 0.1829621 0.32844 0.00111 0.18722 0.1187222 0.00146 0.18478 0.1305923 0.00215 0.48302 0.162724 0.00159 0.00174 0.31047 0.00096 0.1095225 0.00152 0.31827 0.00098 0.0900426 0.00165 0.29442 0.00277 0.0548727 5.13756 0.46095 0.00179 2.03547 0.07947 0.0015928 0.00138 0.31502 0.00263 2.02482 0.1199629 0.00114 11.98606 0.35091 0.17368 0.003530 0.00212 0.09207 0.00303 4.73876 0.12636 0.0352131 0.44711 0.00175 0.31019 0.00249 4.45759 0.11387 0.0371232 0.00128 0.26475 0.21388 0.11632 0.002933 4.42611 0.00244 11.83649 0.06686 0.11809 0.10002 1838.534 0.00289 0.00247 1180.9 0.17469 0.00231 5.17415 0.13479 0.127335 0.00197 1149.6 0.31933 0.00141 0.11454 2700.636 5.99507 0.00353 0.18817 0.30862 0.46034 0.00103 0.0730237 9.68751 0.00129 1813.3 15.6 0.33587 0.00196 4.57679 0.07976 20.62 0.1501138 1779.7 0.29964 0.00196 2.66788 0.11109 0.00159 21.3739 0.00215 0.18322 13.99 0.30543 0.00484 0.47187 0.11211 1874.3 2679.940 0.00077 0.24001 0.32168 0.00437 1.79209 0.11464 18.15 0.12294 1830.8 1106.341 0.00181 0.00319 5.09303 0.11704 1937 24.34 0.0608842 0.35815 0.00121 1093 11.13034 2540.4 0.31061 0.00595 0.09035 0.02203 2105.943 0.00211 15.63 33.4 0.15049 0.00198 5.85725 0.11259 0.0662944 0.00154 2484 1743 1791.4 7.71 5.21 0.17425 4.64932 0.10966 0.11077 1781.345 0.00274 0.00139 0.46358 1426.4 0.30911 0.00363 4.81009 0.09283 22.7 12.0546 0.00096 5.34 22.03 2443.7 0.30498 406.7 0.00072 5.29253 0.19397 0.27975 1663.647 0.00218 1183.9 0.30832 0.00199 0.08877 22.76 0.17785 16.3948 1842.3 1127.4 6.42649 0.00137 8.82 12.85 1955.6 0.32311 0.00179 4.57558 0.10866 23.98 2593.549 0.3424 1765.4 2603.3 0.00121 1938.9 0.23616 1.50162 0.11177 1123.9 0.11656 13.39 0.003550 0.00257 17.44 83.58 2047.9 0.30958 0.00237 1.93798 0.08093 42.98 1741.6 2382.4 0.00239 0.18239 15.23 0.29036 11.78 0.00213 1723.1 4.85285 0.17054 1862 18.95 1774.1 0.18644 1249.5 0.00179 23.22 12.18 0.24284 0.05476 13.85 0.02258 20.7 1900.4 0.0012 4.58803 2591.6 0.00217 12.46 1927.6 0.51733 1717.2 0.00366 4.78317 0.09286 417.2 0.07337 1037.9 34.1 0.00141 11.37 12.89 0.00196 5.13678 0.5 0.09843 6.9 2061.1 1786.5 0.227 25.08 0.00388 1872.6 30.88 17.7 7.49 0.32105 0.00161 1848.4 2441 1975.1 2.99856 0.00118 53.55 0.18809 7.2 1014.4 5.4 0.33557 0.00481 24.41 4.58847 19.47 0.12976 35.21 10.78 1191.1 1866.8 0.0036 6.25 0.20911 1745.1 4.28685 2405.5 0.11774 -0.1 21.92 1817.4 0.45961 0.00333 0.00309 3.09989 1689.5 9.6 33.47 4.4 1319.6 0.05011 24.69 13.48468 1718.2 21.38 0.06331 10.6 0.00393 21.18 26.6 0.19193 1833.9 1797.9 12.7 1874.2 1042.6 0.00181 21.09 44.27 0.09847 0.24344 22.38 392.5 1911.6 1973.4 22.8 2.69222 0.00799 4.81311 19.69 0.06907 1743.7 15.84 10.1 0.47818 1834.9 16.85 0.00055 5.17525 29.41 2534.1 1432.8 903.7 33.73 9.2 1841.6 1874.3 9.65 2.23762 1035.5 1954.9 0.00515 24.11 3.2 24 10.04895 1793.8 0.13413 12.99 21.23 0.16644 1736.3 4.9 15.19 17.84 1758.2 1484.3 13.6 0.47835 0.21801 2776.1 18.46 1786.7 20.19 38.8 34.67 1716 0.06456 33.4 4.01 13.3 1867.7 3.04363 10.93 0.64931 41.42 22.63 1804.9 -2.7 2035.9 1732.4 1399.1 8.83 1744.8 1777 24.54 0.01259 31.97 1426.4 9.9 1828.4 1366.7 21.6 59.84 1738.7 7.1 0.22027 1219.8 17.28 1183.9 10.2 18.81 1094.3 2562.9 1643.3 931 10.36 11.69 24.94 50.68 10.5 1401.5 1794.1 33.95 23.98 29.88 10.9 402.6 34.82 2687.8 6.28 18.01 42.98 33.92 1747.1 7.7 1484.8 25.36 37.6 9.79 1842.2 1781.9 4.9 1318.8 7.9 9.16 8.34 17.08 1794.9 1865.3 1900.4 47.36 20.42 1407.3 1747.2 1224.1 14.1 71.92 34.18 2437.8 1690.8 19.48 17.52 22.78 11.7 5.1 15.06 1432.7 53.55 18.98 2714.2 395.7 12.72 34.87 1404.6 7.3 1191.1 9.65 35.29 6.4 8.6 1326.3 18.91 1014.4 1787.2 17.11 1848.6 33.52 5.1 6.4 3.35 44.27 26.72 1192.9 2439.3 9.5 36.89 21.18 29.07 6.2 35.85 3.9 1418.6 396.9 20.25 59.67 6.3 -1.2 -2.3 55.31 -0.4 8.65 5.9 6 1.8

Sam

235 5 5 5 5 24.7 36.34 25.32 5 5 5 e± Ag 1975 49.27 2701 25.7 19801599 71.78 31.97 2085 64.51 397.6463.1431.4 3.6 6.68 472.7 9.39 9.78 395.7400.3 6.97 4.96 2666.92526.42379.31336.6 25.37 26.9 26.21 30.58 1841.11535.81151.6 34.57 48.11 1856.3 66.94 1795. 31.08 1958.62809.72743. 30.72 29.19 1938.41849.9 53.26 29.99 2086.11199.4 23.12 50.44 2186.72659.92373.12478.2 23.42 1962.3 34.61 29.64 1908.4 23.06 2626.4 52.22 1199.4 32.37 1396.7 41.91 36.67 1769.1 99.09 34.01 2985.41181.61305.7 28.72 1115.7 41.19 66.27 43.4 1873.11889.4 81.42 1961.9 58.06 30.5 1873.22523.91843. 26.16 20.61 ) % ( es Ag ) e1/2 g Pa ( Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Disc Ratios 78 0.17144 0.12912 0.00233 0.00171 0.38011 0.343 0.00453 0.00393 8.8087 6.07174 0.20942 0.12533 2571.7 2086.1 22.58 23.12 2076.8 1901.1 21.15 18.86 2318.4 1986.2 21.68 18 22.5 10.2 2571.7 22.58 9 0.11395 0.00203 0.23207 0.00304 3.68935 0.10418 1863.3 31.86 1345.3 15.93 1569.1 22.56 30.8 1863.3 31.86 234 0.07965 0.114586 0.07307 0.16662 0.00145 0.11271 0.00168 0.00115 0.00206 0.00155 0.23286 0.34944 0.19321 0.49708 0.33381 0.00294 0.00418 0.00226 0.00562 2.5477 5.28101 0.00386 1.83889 11.39876 0.06816 5.2176 0.12665 0.03816 0.23769 0.11254 1873.2 1187 1015.9 2523.9 1843.5 26.16 35.54 31.68 20.61 1931.9 24.75 1349.5 1138.7 2601.2 19.98 1856.8 15.4 12.23 24.21 18.68 1865.8 1059.5 1285.8 2556.3 1855.5 20.47 13.65 19.51 19.47 18.38 -3.6 -13.2 -15.2 -3.7 -0.8 1015.9 1187 31.68 35.54 le T1 -le TNT-RR-020P 13 0.18153 0.0028 0.55452 0.0074 13.77652 0.4902 2666.9 25.37 2844 30.6951 2734.5 0.12016 33.68 0.00209 -8.2 0.3508464 0.00452 0.11881 5.53394 0.0036 0.16556 0.38089 1958.6 0.00758 30.72 5.01647 1938.6 0.28665 21.55 1938.4 1905.9 53.26 25.73 2080.4 1.2 35.41 1822.1 48.38 -8.6 141516 0.1668617 0.1529618 0.0859319 0.0545720 0.0027 0.1119621 0.00237 0.0561822 0.00137 0.1125623 0.00135 0.055324 0.00182 0.47661 0.09539 0.4648525 0.00226 0.07819 0.2343826 0.00217 0.12127 0.0636227 0.00296 0.27508 0.00647 0.0568 0.00248 0.00599 0.11351 0.07448 0.00269 0.0028 0.10976 0.29759 0.00341 0.00059 10.80716 9.75283 0.00342 0.0692 0.00343 0.24686 0.00197 0.00111 0.19008 2.76813 0.00222 0.47231 0.00414 0.38006 0.35287 4.1851 0.30912 0.07608 0.00156 0.56338 0.00397 0.35661 0.06335 4.10807 0.0035 0.33683 0.0128 0.00671 2526.4 0.10919 0.52867 3.00219 2379.3 0.02524 0.00163 0.00465 0.13303 2.01929 1336.6 5.39146 0.0048 394.6 0.03187 0.12486 26.9 0.59229 1831.5 5.15077 26.21 458.6 0.10244 1841.1 5.40356 0.2994 30.58 2512.5 0.03961 54.25 2460.9 1535.8 0.15618 424.3 29.18 87.58 1357.4 1151.6 0.20709 34.57 1975 28.23 397.6 26.34 1566.5 483.3 48.11 1856.3 114.6 463.1 14.61 1679.4 66.94 1795.552 17.31 2506.7 1422.3 49.27 3.6 2411.753 128.85 431.4 31.08 20.54 1121.854 6.68 0.19799 1347 36.34 0.12825 1948.3 20.51 32.68 472.7 1671.1 1966.1 29.19 0.19016 9.39 18.96 392.8 1655.9 1871.4 0.00357 453.7 17.07 31.98 0.0042 0.7 22.08 1408.2 0.00295 21.38 9.78 -4.1 23.13 430.9 26.44 8.83 0.52343 1122 -1.7 16.39 1883.5 0.49649 16.3 31.68 0.51042 1844.566 472.367 0.00763 21.17 10 1885.4 -0.8 34.4568 -1 0.11371 0.01232 47.56 0.00647 8.2 25.78 0.11002 13.95401 25.26 0.11311 -1.7 32.84 2.8 5.93869 12.72912 0.00312 1831.5 1.6 0.00222 0.58865 -6.9 0.00189 2.3 -4.9 0.39622 0.39165 29.18 0.4265 0.15179 2809.7 0.3364 2074.1 2743.5 0.00784 0.00202 29.19 0.0041 4.66769 56.52 25.32 2.26893 2713.7 5.23044 2598.7 0.23447 2658.4 0.06234 32.3 0.13755 53.06 27.61 1859.5 1799.8 2746.6 1849.9 1966.9 2659.8 48.75 36.2 39.97 29.99 2289.9 57.98 28.97 911 4.2 1869.3 -30.8 35.43 3.8 11.33 19.76 1761.5 1202.7 1857.6 2074.1 42.01 56.52 19.36 22.42 -27.6 52.9 -1.2 1859.5 1799.8 48.75 36.2 12 0.18532 0.00292 0.55982 0.00768 12.77612 0.44952 2701 25.75 2865.9 31.73 2663.3 33.13 -7.6 1011 0.10892 0.0801 0.00272 0.00208 0.35669 0.18773 0.00613 0.00288 4.74037 1.95555 0.21852 0.07297 1781.4 1199.4 44.93 50.44 1966.5 1109.1 29.11 15.65 1774.4 1100.4 38.65 25.07 -12.1 8.2 1781.4 44.93 282930 0.1251131 0.1367732 0.1807733 0.152434 0.00284 0.1621535 0.00186 0.1204136 0.00382 0.1104737 0.00268 0.11684 0.2930638 0.00223 0.17716 0.3907939 0.00359 0.11471 0.5186640 0.0023 0.080141 0.00213 0.46016 0.00463 0.08866 0.462442 0.00453 0.00448 0.36729 0.225543 0.00227 0.00888 0.1216144 0.37801 5.86622 0.00151 0.10819 0.32225 0.006445 0.00473 6.86151 0.09866 0.51859 0.0054346 12.56409 0.00723 0.00382 0.09501 0.298947 0.00502 0.26086 0.05457 0.0055448 0.00203 0.22456 9.87008 0.00431 0.14672 0.22064 0.22281 9.8801649 0.00171 0.65889 5.32633 0.01066 0.0793850 0.00262 0.36275 0.05472 0.39035 5.08741 0.00417 0.00276 4.84559 0.37458 2030.4 0.08457 0.33775 0.00284 0.23744 12.39055 0.00398 0.00619 2186.7 0.31595 0.07679 0.29062 0.00168 2659.9 0.22364 4.21841 0.00505 0.19432 0.00189 0.0107 0.06331 2.42785 0.151956 0.00295 0.84001 2.48113 0.00453 2373.1 39.66 0.59507 2478.257 0.00363 0.0017 23.42 10.54511 1962.3 0.18135 34.6158 0.14243 0.00373 0.18056 0.06406 5.9031359 1807.2 0.06565 4.77966 0.00115 1656.8 0.20256 0.12904 0.23497 1908.460 2626.4 3.75814 0.00926 29.64 2126.5 0.35856 0.11006 23.0661 2693.5 0.20251 2.80061 0.00241 52.22 0.11457 1875.362 0.52186 0.00426 0.50041 0.00082 0.06998 0.1567 23.09 37.39 1199.463 17.49729 0.00484 0.00452 2440.3 1396.7 0.10107 0.12955 20.78 32.37 2450.1 41.91 0.00227 1.88866 37.69 2016.6 3020.4 0.12394 0.11561 0.00275 0.00532 0.02743 0.12038 0.58105 0.495 35.23 0.00397 2.50376 0.8513 2067 1980 0.38263 28.25 36.67 1956.3 1800.7 1769.1 2693.2 0.00358 23.94 99.09 0.05473 0.25213 2.03616 1599 34.08 2093.7 0.0038 26.91 2647.5 1528.2 0.33473 1685.9 0.00208 0.01096 0.01867 0.13647 0.20116 394.6 1305.9 25.91 0.01024 21.02 45.23 1296.7 2985.4 38.58 71.78 0.47439 2422.7 34.01 0.06359 0.00352 2423.7 1995.2 1181.6 18.95 1873.1 12.20153 49.32 0.32747 31.97 0.00962 20.72 51.09 0.35776 6.43276 0.00529 14.93 1305.7 2124.5 108.97 400.1 32.61 1875.9 20.8 3.76181 0.00917 1792.8 28.72 2634.5 1834 34.99 23.89 1115.7 22.16 0.72404 1644.6 3.60722 3.2 41.19 1301.1 50.71 -1.5 0.00688 1.69764 0.00454 1677.6 0.50257 395.7 8.12753 49.6 21.84 1250.9 66.27 3009.9 0.12461 75.78 1266.5 26.39 -3.4 63.7 32.41 1074.3 0.28876 18.13 5.01475 1.4 19.65 43.45 2483.9 -3.2 5.57626 2658 0.13463 27.71 1360.5 0.51772 6.97 2030.4 2085 37.41 19.45 400.3 1781.3 1800.3 59.08 1961.7 -16.8 6.5 13.15 1188.8 0.32208 -3.1 1873.1 0.16135 31.54 1583.9 1355.7 11.5 38.61 39.66 927.6 23.62 2091.8 -9.8 2962.5 4.96 27.53 64.51 76.76 7.9 14.74 36.99 412 1077.1 1889.4 39.3 21.57 81.42 1961.9 33.11 2953 112.48 1273.1 2088.6 1807.2 47.81 1449.4 46.73 -8.6 -7 1127.7 1861.3 408.3 19.24 18.56 -3.2 58.06 16.4 1875.3 30.55 1181.5 44.68 37.39 2502.8 39.55 47.73 18.12 -1 3020.4 46.48 1826.1 21.27 35.23 -0.3 9.9 12.68 1971.6 28.38 40.07 -4.7 2620 2036.8 26.91 1584.6 33.42 -7.2 1528.2 21.54 1551.1 -0.1 1007.6 2245.3 55.69 68.66 26.57 51.09 1821.8 63.64 1912.4 50.67 -13.9 57.59 0.2 21.7 54.37 0.7 24.91 -30 -23.8 3.8 -0.6 1800.3 2658 2091.8 927.6 36.99 38.61 112.48 47.81 p

Sam

236 e± Ag 2190 18.89 18652594 24.73 24.3 2034 24.98 511.3580.2 10.28 15.32 382.2 4.83 1945.91892.51632.1 21.99 24.66 2410.92462.9 23.76 1786.8 17.78 2572.4 24.55 2684.3 32.09 2339.5 22.69 18.93 2586.3 19.33 1212.51850.51907.4 20.65 2001.7 31.21 2368.3 31.4 24.54 2062.3 26.28 1288.5 30.79 27.94 39.98 ) % ( es Ag ) e 2/2 g Pa ( Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Disc Ratios le T1 -le TNT-RR-020P 697071 0.1097972 0.1568273 0.1370374 0.0575675 0.00363 0.1193176 0.01003 0.1158177 0.0015 0.0595178 0.00344 0.10043 0.3597679 0.00148 0.11406 0.7997580 0.0016 0.1558381 0.00404 0.37087 0.16069 0.0825482 0.00129 0.00769 0.10925 0.3300583 0.00158 0.04746 0.1737484 0.00164 0.32246 0.17151 0.09418 0.0023185 0.00235 5.60891 0.00173 0.18345 0.2636286 0.00194 10.29704 0.00232 0.14944 0.3253487 0.00255 0.05417 0.42498 6.95892 0.0025988 0.00235 0.65258 0.0026 0.40319 0.12537 0.4382989 0.00211 5.55654 0.00177 1.8161 0.17294 0.3224590 0.00257 0.0017 0.08063 0.47966 4.9510291 0.00179 0.16065 0.00245 0.04726 0.11314 0.47943 0.7712492 0.00178 3.62661 0.00435 0.14558 1795.9 0.11677 0.4956893 0.00216 5.14929 0.00339 2421.6 0.123194 0.00129 0.14432 0.42245 9.18931 0.00491 0.15198 0.0610995 0.00199 0.06862 9.56909 0.00435 2190 0.08628 0.08866 0.34936 512.5 0.00161 5.16341 0.00332 59.06 0.14906 1945.9 0.12739 0.46565 11.54763 104.64 0.00184 0.19446 0.08383 0.2058 0.0025 0.00277 11.32306 1892.5 0.00079 0.36737 0.33643 0.00162 12.27461 0.00276 585.8 0.20964 1632.1 0.33476 18.89 126.62 1981 0.00204 0.46739 3788.2 0.00323 21.99 1865 0.00174 0.40065 0.35786 8.92555 0.46997 2410.9 0.42802 0.00156 24.66 0.30562 5.94552 0.00337 2462.9 0.21407 2033.5 511.3 10.85162 140.99 0.00235 170.01 23.76 1838.6 1786.8 0.37015 36.47 2594 0.19135 0.01853 0.20666 2.28627 0.00279 1801.7 2572.4 24.73 5.32496 0.00494 17.78 0.16919 0.27349 2684.3 10.88 5.41998 580.2 10.28 0.0019 24.55 1508.3 11.26 2461.8 0.00316 32.09 6.06039 1917.5 0.05796 8.58869 0.00209 1815.7 12.63 2339.5 0.19535 2283.1 24.3 22.69 378 0.13254 2.71996 15.32 2343 2034 18.93 2586.3 9.03 2106.2 6.86374 163.23 1801.7 510.1 0.16571 1909.4 2.31314 61.95 0.36549 12.48 11.08 1212.5 2524.8 2525.8 19.33 1850.5 1811 0.08127 2595.2 0.21215 -75.4 1907.4 72.59 19.5 16.51 20.65 20.5 580.5 24.98 1555.4 0.07747 29.04 22.55 -12 2001.7 2271.6 18.96 2368.3 21.41 1844.3 31.21 2357 14.29 31.4 24.62 382.2 1396.7 2464.4 1931.5 24.54 2062.3 1846.6 8.3 39.33 18.94 2394.2 0.2 6.3 1288.5 11.34 26.28 1206.4 24.61 30.79 2550.1 2568.4 1869.5 2421.6 19.38 14.19 2625.6 1861.4 5.5 4.83 13.2 34.46 27.94 34.54 35.29 8.5 1795.9 1 1972 39.98 2296.8 8.35 104.64 2330.4 33.01 37.82 16.24 3 11.33 1250.5 6.3 23.38 2030.1 2510.5 59.06 1967.9 391.2 5.8 -1 1211 22.31 13.23 19.58 2.2 1208.1 3.2 10.11 1872.9 14.85 23.43 4 1888 24.73 12.8 11.16 2295.4 1984.6 3.4 17.91 31.36 1333.9 5.7 20.96 2094 5.8 -1.1 1216.3 23.83 38.7 0.6 -1.2 22.18 2.8 27.39 23.74 1.7 3.6 11.5 1.8 6.6 1396.7 34.46 p

Sam

237 e± Ag 1340 30.15 1412 25.77 1217 58.31 11041932 22.99 19.3 2064 26.76 380.3 3.96 371.4432.8 2.41 4.33 445.4 3.94 387.6 3.07 2374.22711.61666.31863.8 16.42 1910.8 12.43 20.26 2456.1 21.54 18.01 1975.81810.8 21.48 1927.11849.5 22.3 21.78 1891.9 30.93 1855.3 24.38 32.21 1937.91291.3 21.67 1898.3 19.97 1949.3 21.09 2680.6 18.38 1776.2 16.21 1260.11173.9 22.7 16.56 1828.9 25.84 20.35 2353.5 32.14 1837.91902.8 24.11 1826.1 22.51 1475.6 20.76 2665.3 22.26 1785.3 26.82 2602.61252.6 25.01 32.44 1954.3 22.87 1932.71761.6 33.3 1842.3 20.23 30.44 2672.5 41.22 2320.6 22.88 1630.12307.9 23.2 29.06 27.21 20.09 ) % ( es Ag ) e 1/2 g Pa ( acent to T1 j Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Disc Ratios le T2 -le TNT-RR Ad p 123 0.15254 0.186515 0.10236 0.113987 0.001488 0.117 0.00141 0.076349 0.16004 0.00113 0.00137 0.11838 0.43692 0.12132 0.49326 0.00118 0.00088 0.28144 0.00205 0.33847 0.00128 0.00271 0.00217 0.00153 0.33976 0.18445 0.00169 0.4674 0.0024 0.33907 9.10284 12.55615 0.35787 0.00196 0.00101 4.06223 0.00428 5.42888 0.00215 0.21381 0.20563 0.00278 5.40692 1.95043 0.08703 10.79817 5.64247 0.143 2374.2 2711.6 6.13047 0.11269 0.03527 0.39599 1666.3 0.13109 0.17822 1863.8 16.42 12.43 1910.8 1104 2456.1 20.26 1932 1975.8 2336.8 21.54 2584.8 18.01 22.99 21.48 1598.6 19.3 12.16 22.3 1879.3 9.37 1885.5 1091.2 2472.1 8.51 2348.4 11.56 1882.2 2646.9 1972.1 9.43 5.47 18.81 1646.8 21.49 1889.4 10.33 13.2 15.4 1886 2505.9 1098.6 17.46 1922.6 22.59 1.9 1994.6 5.7 34.08 17.86 12.14 4.6 20.04 -1 25.38 -0.8 1.5 1.3 3 0.2 101112 0.1106913 0.0540214 0.1180615 0.1130816 0.00134 0.1157717 0.00148 0.1148918 0.00206 0.1134419 0.00154 0.05422 0.3207720 0.00209 0.11878 0.0607621 0.00129 0.08395 0.3224122 0.00137 0.11618 0.32148 0.0022423 0.00093 0.05491 0.31245 0.0006524 0.00133 0.11953 0.2778125 0.0035 0.00092 0.18304 0.31874 0.0025926 4.85798 0.0012 0.10861 0.05931 0.0034927 0.45671 0.00144 0.09151 0.33631 0.0017428 0.00109 0.08262 0.2089 5.0005 0.0022229 4.88301 0.00253 0.07907 0.1230530 0.34183 0.0004 4.96904 0.00099 0.01462 0.06945 0.1118 0.0021731 4.50558 0.00111 0.05602 0.316432 0.00111 4.8205 0.19499 0.07871 0.14187 0.0011 0.5015933 0.00082 0.00194 0.15067 0.20173 1810.8 0.44129 0.2981 0.0007234 5.45636 0.11236 0.09883 0.2312735 371.8 0.002 0.00147 0.0013 0.08608 0.21811 0.0051936 0.11925 2.46649 0.00077 0.11648 0.19429 1927.1 1849.5 5.5521737 0.00876 0.53178 0.00214 0.00133 0.11163 0.12698 1891.9 0.0014238 21.78 0.00141 0.09241 1878.2 0.0014439 12.17481 0.31831 0.07154 5.233 0.00135 60.37 0.04312 0.05445 0.13892 0.0009140 0.11376 1855.3 0.00136 0.18135 0.01673 0.43637 4.638241 30.93 24.38 2.85991 0.00138 0.10915 0.32659 1937.9 38042 1793.5 32.21 2.52712 0.00131 0.4869 0.00066 0.0034 0.17464 0.24183 0.0005943 0.08383 20.06 2.12856 0.00114 0.34504 1291.3 380.3 0.0823 0.0041644 1898.3 0.00276 21.67 0.07086 0.08937 0.05886 0.3296 0.00227 1801.545 408.5 1796.9 0.00196 0.11987 0.05658 0.25556 0.54862 10.95 0.0019546 1752.8 19.97 4.77323 0.00242 1.5567 0.11843 0.03229 0.06198 2680.6 38.08 0.0021947 1580.3 1949.3 8.84688 0.10774 0.51986 0.00142 3.9648 21.09 0.00122 0.00222 5.0809 1783.6 18.38 0.11263 0.32637 1776.2 17.07 12.65 0.0018750 1457 0.01525 2.88571 0.00137 0.18305 0.08082 0.47956 1260.1 17.15 56.8 1795 0.0005151 1868.9 0.02028 5.55611 0.00203 0.18214 0.31861 1173.9 371.4 0.00584 8.7652 0.20956 0.00246 22.7 16.21 0.25695 5.16588 0.1478 0.0034253 1222.9 0.12595 10.84 3.32257 0.00143 1819.4 1799.3 382 1895.5 0.10033 0.08021 0.33518 0.00454 16.56 0.46737 0.00245 452.6 1814.1 0.14671 1828.9 0.12592 0.34966 10.49 22.99 13.78291 21.33 25.84 1164.8 432.8 0.00257 0.00179 0.12751 0.32682 2353.5 0.00174 2.41 20.35 0.12565 4.95855 1732 1772.1 2620.6 0.08414 0.32647 0.00253 5.84 1788.5 0.00195 11.22013 1837.9 0.00148 24.49 9.34 0.01142 0.19385 33 10.19 1681.9 1340 0.62752 0.0036 0.00173 34.32 1893.8 0.49824 1341.2 1902.8 2.3355 0.00447 32.14 1271.9 50.66 1.1 3.29022 0.00195 4.33 19.34 0.18964 0.00217 1144.6 24.11 0.40703 0.40177 1826.1 371.2 7.22 22.3 5.5739 18.23 0.28027 1475.6 1262.3 0.00287 20.8 3.3 1908.7 22.51 0.41323 5.67319 -2.4 6.61 0.00472 389.5 2665.3 5.35454 19.97 8.4 7.5 0.06637 0.07668 0.37697 7.44 30.15 1781.4 20.76 445.4 7.6 5.20632 0.00454 1785.3 838.5 0.00213 433 4.92 2334.4 0.11175 2602.6 17.9 2.1341 22.26 6.17 12.63 1858 2618 12.29463 26.82 0.21253 0.0025 17.63 4.4 1821.8 0.27705 1756.2 0.00334 4.1 46.12 25.01 0.12161 16.62 1371.4 1252.6 1396.2 8.04499 1910.9 1412 3.97238 3.94 1279.9 18.69 3.34 1158.1 32.44 0.10633 0.44208 1954.3 11.09 1836.4 22.87 8.52239 5.8 2.3 13.66 37.53 1467.1 1932.7 11.03 6.80189 0.2 1761.6 12.76 0.32875 1780.2 10.11 15.48 2698.6 1842.3 10.52 387.6 0.1044 16.29 33.3 2322.3 1878.2 444.1 25.77 10.48 1820.8 0.18089 953.2 10.79 2672.5 -6.2 2525.4 20.23 1217 0.22077 10.4 1832.9 9.61 2.7 30.44 41.22 6 1378.2 2320.6 32.19 20.06 24.77 1909.3 8.8 3.07 22.88 1630.1 32.85 1226.5 -1 1474.2 16.62 2.7 2307.9 19.77 10 1847 8.05 1863.4 21.03 23.2 1486.4 2064 58.31 1933 2734.9 20.96 1823 29.06 19.5 3 1821.2 389.4 9.52 1812.3 27.21 8.91 1 2541.6 9.42 29.9 20.69 20.09 19.76 1.6 2606.2 1142.2 1 26.76 -4.7 17.21 43.1 2201.3 21.7 -0.5 1457 10.55 32.32 1223.2 1592.7 1478.7 7.9 33.38 -0.6 1912.1 2229.7 20.33 0.6 15.48 22.99 1927.3 2062.1 -1.5 20.78 1853.7 1877.6 -2.3 10.75 20.2 18.15 1164.8 3.6 0.5 11.41 17.26 2627.2 1159.9 15.66 32.34 2236.1 19.34 44.27 19.9 1628.6 -4.9 2.3 2288.3 5.4 33.76 34.45 2086 36.91 0 -4 21.32 1.3 19.29 6.7 3 28.73 6.1 2.6 4 0.1

Sam

238 e± Ag 662.3 7.41 2232.91801.41818.4 23.79 2359.11866.1 24.29 1921.5 29.27 1813.6 31.75 1931.4 33.27 1841.9 23.21 1814.9 23.71 1159.6 30.71 1765.9 43.04 2294.9 27.37 2309.9 40.95 1825.3 28.46 1856.2 24.78 24.86 26.33 25.65 ) % ( es Ag ) e 2/2 g Pa ( acent to T1 j Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Disc Ratios le T2 -le TNT-RR Ad p 545556 0.1404657 0.061658 0.1101259 0.1111660 0.00195 0.1511661 0.11412 0.0017162 0.00148 0.117763 0.00181 0.39746 0.1108664 0.00284 0.11835 0.1082165 0.00213 0.33273 0.1126166 0.32292 0.11095 0.00154 0.0031467 0.00146 0.42571 0.078568 0.00205 0.00127 0.32456 0.0022669 0.108 0.00272 0.00288 0.1456 0.3407370 7.53495 0.00169 0.32794 0.14688 0.00529 0.95892 0.35141 0.11158 0.00164 0.00346 4.96777 0.33456 0.1135 4.92541 0.00218 0.21214 0.0017 0.31139 0.00212 0.00207 9.36983 0.00215 0.00345 0.03564 4.95508 0.2029 0.00163 0.1153 0.00482 0.15323 0.00162 5.5234 0.00243 0.30982 0.41234 5.05111 0.44667 2232.9 0.42301 5.49305 0.18529 0.00204 0.3313 660.3 5.2127 1801.4 0.30784 4.91272 0.00248 0.00322 0.11918 1818.4 0.1066 0.00333 0.18933 2359.1 23.79 2.29951 0.00238 1866.1 0.27123 0.13229 4.96979 0.0021 8.41862 58.57 24.29 1921.5 29.27 8.84 1813.6 0.07776 1931.4 2157.3 31.75 5.1951 33.27 0.13908 0.23318 1841.9 5.06569 1814.9 662.3 1851.6 23.21 0.24848 1804 23.71 14.47 0.12651 1159.6 2286.3 30.71 0.1158 1765.9 2294.9 1812 43.04 27.37 10.93 7.41 1890.2 2309.9 2177.2 14.01 1828.4 23.94 1825.3 1941.3 40.95 1856.2 16.85 1860.4 28.46 24.78 1813.9 1747.5 682.7 10.46 1806.6 25.24 10.03 2374.9 24.86 16.48 1190.9 26.33 1811.7 23.27 1739.8 2225.6 25.65 19.62 11.96 1904.2 18.47 26.26 1827.9 43.74 1899.5 2274.2 4 10.94 1844.7 31.59 1854.7 12.21 14.71 1804.4 1730.1 -3.2 18.55 -0.3 17.89 0.9 15.09 3.7 29.61 1212.1 11.52 44.33 1814.2 3.3 2277.2 10.37 22.72 1.9 -0.9 2321.6 -0.6 23.93 1851.8 -1.2 23.66 25.14 1830.4 4.2 25.64 20.74 -3 1.7 19.38 3.6 1.8 -1.2 7.7

Sam

239 5 5 4.14 5 e± 417 4.7 433 3.52 Ag 19321840 26.05 16.64 1834 26.14 2348 22.7 1620 17.25 436. 446.4 3.36 437.6438.4 2.58 5.87 450.3 3.58 465.8414.8 3.3 3.79 1847.4 18.12 1897.3 42.51 2293.41421.41935.9 12.93 1885.7 27.08 1489.91137.5 15.62 39.15 51.52 1767.8 29.2 2715.6 17.94 1874.31256.21944.5 18.18 1787.2 36.44 15.02 1755.4 22.72 1845.5 35.88 1318.51719.1 17.49 1147.5 18.37 1274.6 31.31 20.02 33.25 1881.7 51.64 2532.61929.82317.8 21.89 19.36 30.13 16.25 1866.91578.8 21.52 30.92 1821.5 22.69 2595.51879.2 16.1 28. ) % ( ±±± es Ag ) ±±± e 1/2 g Pa ( Pb207/Pb206 Pb206/U238 Pb207/U235 Pb207/Pb206 Pb206/U238 Pb207/U235 Disc Ratios le T3 - T3 TNT-TR-029Ble 123 0.055764 0.118395 0.145486 0.089817 0.00112 0.112498 0.00174 0.118649 0.0011 0.11537 0.00129 0.0717 0.0931 0.00104 0.07763 0.31798 0.00104 0.43639 0.00254 0.24871 0.00056 0.33099 0.00258 0.00275 0.00115 0.34799 0.00204 0.31952 0.00184 0.52909 0.00174 0.23924 4.97843 0.19507 0.00177 8.86186 0.00478 3.1653 0.012 0.00346 5.1232 0.14492 0.00137 5.66046 0.14121 4.6882 0.07709 2.94268 0.08897 2.02416 0.09559 442.4 1932 2293.4 0.18084 1421.4 0.13885 0.04454 1840 1935.9 43.66 26.05 1885.7 12.93 1489.9 27.08 1137.5 15.62 16.64 446.4 1779.8 2334.5 39.15 1431.8 51.52 29.2 1843.2 1925 13.43 3.36 9.14 1787.4 9.48 1382.7 1148.8 1815.7 8.45 8.48 431.2 2323.9 23.35 1448.7 18 24.61 7.4 1840 1925.4 14.54 7.97 1765.1 18.79 1393 1123.7 14.57 9 14.75 32.28 -2.1 -0.9 -0.8 35.76 14.95 -0.2 0.7 6 -1.1 8 p 3839 0.11295 0.05585 0.00114 0.00146 0.33446 0.07005 0.0018852 0.000695354 0.11612 5.2433 0.07009 0.5359 0.12936 0.00278 0.09743 0.00551 0.01566 0.00388 0.33915 1847.4 0.22535 0.43998 446 0.00489 0.00757 18.12 0.00905 5.07797 57.09 1.67814 1859.9 7.01378 0.24706 436.5 0.14253 0.47926 9.1 1897.3 4.14 931 2089.3 1859.7 42.51 435.7 15.85 153.61 51.78 1882.6 10.35 1310.1 -0.8 2350.6 23.53 2.2 39.83 40.5 1832.4 1000.3 2113.2 41.27 54.04 60.72 0.9 -45 -14.9 2089.3 931 51.78 153.61 101113 0.1202414 0.0559115 0.1081116 0.1121218 0.00238 0.055619 0.00084 0.1869620 0.00107 0.1146421 0.00163 0.08245 0.3114522 0.07024 0.11922 0.0020123 0.00207 0.10927 0.3037625 0.00235 0.05546 0.3544126 0.00364 0.00064 0.10738 0.0004327 0.07037 0.00153 0.11283 0.485728 0.00167 0.00218 0.08513 0.372829 0.00305 0.00118 4.80066 0.10528 0.2034630 0.54225 0.00104 0.00097 0.07803 0.3586531 0.00115 4.37117 0.00383 0.08324 0.3415332 0.00139 4.91117 0.00459 0.23509 0.07234 0.1866133 0.00079 0.00115 0.00921 0.23425 0.3364135 0.00275 0.5231 0.00132 0.11511 0.32445 11.60207 0.0777536 0.00396 0.00224 0.16748 0.22666 0.14121 5.4137137 0.00495 0.0006 2.35755 0.11824 0.28591 1959.7 0.00182 0.0024 5.69216 0.14756 0.21217 448.4 0.02128 0.32754 0.00187 0.00141 4.70494 0.05433 0.21339 1767.8 0.00185 0.00195 0.23175 0.31719 0.02581 0.55957 0.00172 1834 0.00201 5.1384 0.15013 34.89 0.00173 0.23256 0.00141 5.21375 0.35005 2715.6 0.18592 32.65 0.00283 0.00174 436 2.62503 0.43768 17.94 1874.3 0.0049 0.01355 4.04361 0.32812 1256.2 0.09289 2.15056 0.00159 26.14 0.43709 1747.8 1944.5 0.10085 0.00248 0.06682 2.15943 1787.2 0.06887 18.18 437.6 0.00335 1709.9 0.07787 8.58821 78.35 0.00272 36.44 430.4 0.05545 15.02 7.32624 0.00259 1755.4 17.88 1955.6 5.16773 1845.5 0.00079 0.08751 22.72 10.21163 2552.1 1318.5 35.88 2.58 0.41063 5.05132 8.28 1719.1 438.4 2042.5 0.14463 8.61826 1193.9 1147.5 0.12211 46.47 14.53 0.50641 1785 0.28358 17.49 1975.8 1274.6 18.37 16.61 31.31 439.9 0.1491 1894 1706.9 3087 0.17527 20.02 21.53 5.87 3081.3 0.01803 1804.2 4.25 1881.7 33.25 32.66 450.3 1869.4 2532.6 13.04 1811.4 51.64 2572.8 6.07 14.7 1317 19.03 1929.8 1621.1 1887 2317.8 24.26 33.23 427.2 16.29 1229.8 384.5 1240.4 12.3 21.89 1930.2 3.58 8.77 26.39 19.36 9.12 1246.9 1768.1 2.5 3.7 9.72 30.13 36.69 8.63 14.19 -7.7 16.25 7.81 1347.9 22.78 1776 9.21 1934.8 1842.5 70.14 451.2 2340.2 7.3 1854.9 15.04 33.09 1959.7 1307.7 -10.5 1829.3 -0.6 2337.6 1643 8.29 15.37 -1.9 5.4 23.96 1165.2 11.84 16.48 8.82 1168.1 15.02 417 34.89 -6.9 19.29 13.21 15.68 11.62 17.87 2295.3 1847.3 -7.5 2152 28.12 2454.1 2.1 -4.8 4.75 0.1 1828 2298.5 43.48 20.1 6.4 -8.9 25.68 17.64 2.4 416 25.02 18.5 48.4 -3.3 62.1 9.1 12.15 6 -1 3087 3081.3 -8.7 33.23 16.29 404142 0.1643343 0.1141844 0.097645 0.1501846 0.0016 0.0556147 0.00137 0.0557848 0.11135 0.0016349 0.00201 0.1443150 0.40111 0.0012 0.34012 0.055151 0.00103 0.09978 0.26971 0.0014 0.17389 0.44302 0.00325 0.00245 0.11496 0.00232 0.06948 0.07493 0.00135 0.00093 0.00241 0.00572 0.34624 0.00169 0.56895 8.1549 0.00184 5.36565 0.00058 0.00055 0.06645 0.29796 3.61185 0.00246 0.47618 8.7995 0.00922 0.31773 0.16262 0.12492 0.58361 0.514 0.00063 0.00145 0.10708 5.28183 0.00291 0.23537 10.1926 0.0029 0.01235 2500.8 1866.9 0.50374 0.01246 4.09671 11.59315 1578.8 0.12862 0.62227 2348 4.84859 0.01381 443.3 0.06166 16.28 21.52 0.25396 436.5 1821.5 30.92 2279.5 0.14813 22.7 416.2 2174.1 1887.2 40.35 1620 2595.5 46.86 1539.3 22.69 38.33 1879.2 2364.2 11.25 11.17 53.08 465.8 17.25 16.1 12.25 1916.6 433 2903.5 28.5 2248.4 1879.4 25.54 414.8 3.3 1552.1 1681.2 2510.6 11.8 37.89 3.52 18.04 19.93 2317.4 1778.6 23.58 3.79 7.19 466.8 12.7 1865.9 2452.4 421.1 24.39 15.4 -1.3 14.2 2.8 414.2 1653.6 20.79 7.92 56.45 2572.1 8.36 -0.8 1793.4 12.28 20.48 9.32 -34.1 2500.8 -5.3 -6 25.72 0.8 16.28 -4.3 3.9 0.3 6.1 2279.5 38.33

Sam

240 15.25 e± 5 47 Ag 1763 20.85 456.6431.8 7.81 7.42 1767.31244.91626.2 41.27 36.47 27.11 1843.51134.1 25.68 1152.42948.91194.5 40.6 23.14 17 44.95 1934.42149.21782.9 26.92 1314.72397.2 19.7 1872.1 28.07 36.64 16.61 27.25 ) % ( ±±± es Ag ) ±±± e 2/2 g Pa ( Pb207/Pb206 Pb206/U238 Pb207/U235 Pb207/Pb206 Pb206/U238 Pb207/U235 Disc Ratios le T3 - T3 TNT-TR-029Ble p 646566 0.1036867 0.1009868 0.1080869 0.1028770 0.00291 0.0819771 0.00164 0.1001172 0.00247 0.0561373 0.00212 0.33906 0.1078274 0.00155 0.34696 0.0553476 0.00147 0.30631 0.1127177 0.00263 0.35462 0.07938 0.0054178 0.00124 0.22257 0.16815 0.0030879 0.00277 0.29759 0.0775 0.0039780 0.00161 0.07341 0.07822 0.00412 0.00362 4.92813 0.33507 0.2157 0.00205 0.00601 5.06962 0.06927 0.0799 0.00234 3.96869 0.32545 0.0016 0.0013 0.00092 4.67565 0.28016 0.1694 0.00205 2.42241 0.59836 0.16026 0.00229 0.00123 3.84328 0.16496 0.00185 0.0026 0.17381 0.17535 0.18833 0.52948 4.95213 0.00367 0.07105 1691 0.57122 0.0163 0.50272 1642.1 0.09693 0.20695 1767.3 4.99135 0.00168 0.00096 0.02783 1676.6 0.09854 1.87416 0.00382 1244.9 0.02773 15.9928 50.97 1626.2 29.77 0.0023 0.13184 1.90299 1.89565 41.27 0.12651 457.2 16.47347 37.52 1763 1.84784 36.47 425.6 1882.2 2.33093 1920.1 0.05711 27.11 0.02975 1843.5 1722.5 0.39018 1181.7 1956.6 101 2539.4 20.85 1295.4 0.08479 26.05 107.53 14.72 1679.3 1134.1 1152.4 25.68 19.6 2948.9 87.56 19.6 58.71 10.83 1862.9 1807.1 456.6 1194.5 431.8 1831 11.61 23.14 40.6 1816.3 1627.8 1008.8 1762.9 17 47.99 1249.3 3023.2 9.89 7.81 26.81 1601.9 44.95 7.42 33.71 1041.5 12.63 1033.1 33.69 20.21 21.08 -13 65.73 2912.8 1811.2 20.32 -19.6 431.5 1212.5 413.5 1817.9 5.26 2.9 9.25 -19.4 1072 -4.5 16.81 2876.4 15.69 -3.7 18.47 12.29 18.74 22.34 1079.6 1082.1 44.69 1642.1 110.42 1691 2904.7 -6.5 1221.8 1676.6 0.1 -1.5 10.43 1.7 29.77 19.98 50.97 -23.9 15.8 22.67 37.52 25.85 10.4 9.6 1.5 -1.7 2539.4 1181.7 58.71 87.56 555657 0.1185558 0.1056659 0.1338660 0.1090161 0.0018 0.0849762 0.00186 0.1545863 0.00152 0.11451 0.00169 0.16274 0.37433 0.00162 0.35351 0.05623 0.00152 0.36708 0.00175 0.35188 0.00333 0.0037 0.25294 0.00354 0.00483 0.44896 0.00245 0.31539 0.00311 0.00243 5.9719 0.55202 4.63919 0.07647 0.00262 6.29961 0.00271 5.08762 2.84456 0.00972 0.18934 0.1554 0.00255 9.56319 0.13744 5.34739 0.15388 0.08922 9.201 0.57108 1934.4 0.19121 1725.8 2149.2 0.16019 1782.9 1314.7 0.52318 0.056 2397.2 26.92 31.95 1872.1 19.7 28.07 36.64 2484.3 2049.7 16.61 460.7 1951.3 27.25 2015.6 1943.6 1453.6 37.84 15.62 2390.6 16.86 180.74 1767.2 11.55 14.84 12.52 1971.8 2833.6 1756.3 11.64 2018.4 475 13.29 1834 1367.4 27.58 27.98 40.36 2393.6 19.12 1876.5 15.25 25.67 23.56 18.38 -15.2 2358.2 -7 25.63 7.2 458.7 -10.4 -11.8 52.08 0.3 6.4 36.19 1725.8 -17.4 31.95 -3.2 2484.3 37.84

Sam

241 5 5 4.6 e± 5 67 Ag 23361947 19.82 13.46 12771949 35.68 15.41 1934 21.55 379.5 3.33 497.7444.4 6.44 5.24 459.2 3.14 1883.32211.92850.3 16.38 13.94 1821.5 6.86 1847.91216.72053.8 25.13 19.3 1990.1 23.06 2181.7 35.43 2710.5 28.35 21.51 24.16 1861.41964.31542.8 21.7 1916.71797.2 16.65 1629.3 28.82 2700.4 30.26 2460.6 41.37 1825.5 77.11 12.26 3075.3 18.06 1352.1 21.52 1613.5 8.6 27.78 2558.72629.1 19.69 1872.73094.4 31.22 11.36 1106.6 21.65 1104.9 25.19 1906.1 57.11 1845.6 71.72 1942.2 22.36 2671.8 12.7 1957.9 16.76 1229.91923.5 17.04 1012.9 22.69 1146.9 30.53 40.58 1178.9 19.35 1922.9 21.13 27.58 14.96 ) % ( es Ag ) e 1/2 g Pa ( Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Disc Ratios le T4 - T4 TNT-TR-027Ble 123 0.115224 0.138775 0.202986 0.149147 0.00105 0.119398 0.00112 0.111359 0.00086 0.11298 0.00174 0.08081 0.33306 0.0009 0.12678 0.36736 0.00156 0.58745 0.00121 0.43995 0.00184 0.00095 0.38138 0.00193 0.00258 0.34182 0.00189 0.32645 0.0035 5.43135 0.21039 6.91772 0.40693 0.00181 0.00278 16.16634 0.00208 0.10141 8.21238 0.00126 0.12163 6.34388 0.00514 0.15833 5.07341 5.04324 0.22707 2.35335 1883.3 0.10198 6.98137 2211.9 0.14283 2850.3 0.10869 0.04396 2336 16.38 0.3298 1947 13.94 1821.5 6.86 1847.9 1216.7 1853.2 19.82 2016.9 2053.8 25.13 13.46 2979.1 19.3 23.06 8.9 2350.4 9.08 35.43 1895.4 2082.7 7.66 1821.1 1230.9 15.67 1889.8 2100.9 13.36 2200.9 8.45 2886.7 10.09 2254.7 6.7 16.01 1831.7 15.6 23.55 2024.5 9.37 1826.6 25.03 1228.6 1.8 2109.1 23.88 10.3 14.1 -5.6 18.26 -0.7 13.31 -4.7 41.96 -8.2 1.7 -1.3 -8.5 p 101112 0.0542313 0.122314 0.13638 0.18638 0.00128 0.06077 0.00197 0.0017 0.00275 0.06063 0.00104 0.35881 0.37581 0.54345 0.00055 0.1104 0.00352 0.00298 0.00608 0.4714 0.0008 5.51117 7.72444 13.19892 0.01233 0.94548 0.1859 0.22821 0.5649 380.6 0.02034 1990.1 2181.7 2710.5 52.06 631.2 28.35 21.51 24.16 379.5 1976.5 36.5 2056.7 2797.9 3.33 16.7 13.97 25.39 675 392.2 1902.3 2199.4 2694 4.65 28.99 26.56 8.51 40.4 675.7 0.8 6.7 0.3 -4 10.62 -7.3 161718 0.1138319 0.0558120 0.1205421 0.0957422 0.00138 0.1173823 0.00179 0.1098724 0.00113 0.1002825 0.00148 0.18525 0.3140826 0.16047 0.07138 0.00227 0.00253 0.11159 0.35532 0.00427 0.07629 0.2596429 0.00224 0.00138 0.2333730 0.00087 0.00173 0.38301 0.3214931 0.00206 0.00133 0.08334 0.2979332 0.00215 0.00107 5.01972 0.09943 0.5107733 0.00127 0.54907 0.11951 0.461434 0.00395 0.00424 5.85884 0.17011 0.3346935 0.00686 0.00154 3.35311 0.17744 0.20807 0.1231836 0.00282 0.00106 0.11455 0.5954 0.0198638 0.00104 5.87829 4.71842 0.23617 0.00343 0.1155739 0.00236 0.00321 3.76033 0.11852 0.2142 0.0917240 0.00142 0.00122 12.38171 0.07644 0.28319 1861.441 0.00139 0.07637 0.35321 0.00255 0.21668 0.21816 444.542 9.97919 0.00376 4.90153 0.11669 0.52435 1964.343 0.2944 0.00144 2.10782 0.05735 0.55692 0.00195 0.2437 1542.844 0.00169 0.00223 0.11284 0.34769 18.99089 21.745 0.00189 0.27535 0.0028 0.11907 0.67811 1916.7 1797.2 0.1173646 69.88 0.00146 0.0071 0.15063 16.65 0.3515 0.0452747 2.46005 0.00282 0.00101 1629.3 3.80249 0.18206 0.20309 28.82 2700.448 0.2919 0.0025 0.0008 5.95716 0.12011 1760.749 0.00917 0.00112 2460.6 0.1907 0.08135 0.33378 30.26 41.37 12.11713 1825.5 444.450 1959.9 13.20856 0.07229 0.0014 0.11783 0.07384 0.00257 1102.8 0.0737951 0.00278 77.11 0.00189 1488 0.07296 12.26 0.10846 10.9752 5.27023 0.34787 0.00154 3075.3 20.10992 0.3423153 0.078 0.00324 0.6503 0.00251 18.06 2090.3 0.00128 0.24506 1797 0.07882 21.52 5.24 9.78 5.94791 0.38974 0.00052 0.0027 2.10859 0.07927 0.53331 1277 27.71 1613.5 1681 2659.9 11.03 1822.7 0.13116 1.08424 0.0007 0.11779 0.35214 0.00151 0.00197 1949 8.65 2.06433 5.37327 0.19354 2445.7 18.4 0.00084 1861.1 20.69 0.00096 1955.2 2558.7 0.15577 2629.1 444.4 0.00241 0.5723 0.09489 0.36013 1218.5 0.00112 0.0041 1493.5 12.04 19.69 34.07 20.78 35.68 5.22454 0.16453 0.00274 0.00099 1872.7 3094.4 5.83015 0.11578 15.14 0.1394 3011.3 15.41 0.0015 1770.5 11.38 1958 0.1981 17.11 0.1739 7.68706 31.22 13.02 11.36 0.01145 0.20013 0.00494 1934 13.54353 2633.8 1106.6 7.56 1584.3 21.39 1607.4 0.07194 6.2 1251.2 5.80818 0.35593 0.00078 0.11579 21.65 25.19 2432.9 10.31 1104.9 1802.5 1949.9 38.74 2.10863 1906.1 0.16321 0.3 31.99 0.00107 0.00105 2717.6 2853.9 0.40267 5.50592 0 0.00138 1151.4 18.49 504.4 57.11 62.8 10.33 8.48 0.15956 21.55 4 1.68492 0.00184 1845.6 1923.6 3041.4 3337.1 25.47 1942.2 0.05068 20.19 8.99 71.72 -10.6 0 30.01 1.92661 11.67 22.36 2.1084 2353.1 0.26952 2.12682 14.79 2671.8 1.8 1260.4 1191.9 1593.3 0.02302 -3.6 1941.8 5.41428 38.71 1957.9 11.97 35.21 14.83 0.7 12.7 16.76 -2.2 1969.6 1125.1 2613.5 1229.9 2694.7 1856.7 0.03435 0.035 0.04577 -11.5 15.79 1923.5 21.21 14.91 17.04 12.25 0.09168 15.6 1864.1 1012.9 3096.7 459.2 22.69 2.6 1924.4 1897.8 17.55 15.83 50.34 17.51 12.11 30.53 1146.9 2121.6 1151.6 1178.9 1968.3 2.2 40.58 1167.5 2755.4 -0.4 21.24 1922.9 52.15 19.35 3.14 1944.8 1102.8 1137.1 7.24 9.45 -0.1 -10.6 -7.6 1880.6 1140.5 11.16 22.76 17.22 21.13 27.58 1982.8 31 -10.1 24.03 -3.1 13.04 27.71 14.96 459.5 981.9 1856.6 38.36 1950.9 22.21 8.08 2195.1 2718.3 -0.5 23.43 1165.1 1176 1033.6 1947.6 -8.4 1962.8 11.73 4.31 17.21 7.39 -2 3 1151.6 19.08 1901.5 28.11 5.73 5.75 7.43 23.8 8.75 -4.9 1002.8 2.6 9.3 11.5 16.55 -3.8 42.06 1151.6 1090.4 1157.6 1887.1 0.8 8.71 7.9 -3.6 11.22 12.14 14.86 2353.1 14.51 3.3 -1.7 12.4 15.79 0.3 -2.4 1167.5 24.03 15 0.05719 0.00197 0.0802728 0.00108 0.08662 0.63984 0.00126 0.02554 0.23335 498.4 0.00172 74.7 2.69085 497.7 0.06406 6.44 1352.1 502.2 27.78 15.82 1352 0.1 9 1325.9 17.62 0

Sam

242 e± Ag 1869 15.14 381.8387.2 2.43 2.51 372.5 2.97 1880.42576.51788.61846.5 13.86 1942.9 15.34 2604.6 24.57 1966.7 9.86 1639.1 15.6 1928.5 14.91 3421.2 9.76 21.89 1987.8 15.99 12.01 2765.6 14.36 3287.7 18.79 1988.72679.11500.8 7.99 1933.5 17.93 1924.9 11.43 16.28 1989.7 17.24 1876.2 13.29 2779.4 11.79 22.53 9.43 ) % ( es Ag ) e 2/2 g Pa ( Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Disc Ratios le T4 -le TNT-TR-027B p 545556 0.1150357 0.1719258 0.1093559 0.112960 0.00089 0.1191161 0.00159 0.1748562 0.00148 0.1207163 0.32352 0.10081 0.0006264 0.00104 0.48167 0.1181565 0.00157 0.29067 0.310866 0.00066 0.0540667 0.34006 0.00153 0.0012 0.12215 0.361468 0.00317 0.00106 0.47867 0.0536669 0.00225 0.00242 0.34386 0.1927370 0.00088 5.33611 0.00119 0.1307571 0.29149 0.00099 11.39729 0.00195 0.34339 0.1838772 0.00091 0.0031 0.69783 0.26687 4.7646273 0.00122 0.00222 0.06102 0.12221 0.08195 5.3195674 0.00152 0.27879 0.00194 0.35941 0.18287 6.0280275 0.00188 0.00119 0.09364 0.0619 11.456776 0.00479 0.00136 0.12846 5.54361 0.53328 0.1184877 0.00124 0.05402 0.0004 0.27815 0.11792 1880.4 3.9237378 0.00182 0.00127 2576.5 0.11191 0.29939 0.11431 5.482579 0.00081 0.27202 24.60428 0.00041 0.66304 0.12228 0.0571280 1788.6 0.00115 0.0046 0.34273 0.11477 0.45616 0.00197 1846.5 0.00088 0.08589 5.88788 0.53682 0.05357 13.86 0.00134 15.34 1942.9 0.00096 0.10023 0.63782 0.26194 0.19435 0.46657 0.00277 2604.6 0.00081 0.37434 1966.7 13.2211 24.57 0.00213 0.00145 0.00826 5.02383 0.34774 0.09873 0.00275 1806.9 1639.1 0.00115 9.86 7.83125 0.33987 2534.5 0.00126 1928.5 0.00112 0.00876 3421.2 24.30026 15.6 0.34164 14.91 0.00223 0.43305 5.89511 1744.7 0.11572 0.3361 9.76 0.00161 13.24633 373.5 0.05949 7.43 1987.8 0.10671 21.89 0.00174 13.8 0.37088 1887 3.31782 0.53711 1988.8 15.99 0.00144 12.01 356.6 6.04129 2521.5 0.12647 11.91 2765.6 0.24821 1905.2 5.7459 0.0025 2108 0.00049 1874.7 5.21868 36.51 14.36 2556.2 2688.1 0.04943 1649 0.00233 3287.7 5.72 5.68344 1902.9 9.25 3412.4 0.12521 13.49 1778.7 37.86 1988.7 18.79 5.87 2679.1 0.08723 5.30372 0.44386 13.13 0.08789 1979.4 22.83 14.08767 20.24 381.8 10.62 1500.8 0.07488 9.68 18.18 1979.9 2561.1 1872 9.02 7.99 22.63 1933.5 387.2 2755.3 17.93 1907.4 0.01047 0.1375 11.43 1924.9 4.5 0.21266 8.61 1869 2.43 1688.3 2 1582 3292.6 1618.6 16.28 16.17 1897.9 22.17 1989.7 8.68 2.8 3279 17.24 19.36 2.51 1899.8 8.86 2770.1 352.8 13.29 1876.2 1959.4 2779.4 6.65 25.29 381.6 17.71 -2.7 9.92 1499.7 3.9 15.14 15.7 11.79 -2.5 2049.8 10.73 2695.6 10.22 388.8 11.52 3.6 1923.8 14.55 22.53 47.28 2211.8 -0.7 0.3 9.43 1823.3 6.45 5.76 1894.6 1886 1.5 3280.5 10.44 30.92 1960.5 2697.4 6.07 7.69 0.5 1867.9 12.27 372.5 19.51 2771.3 1485.3 -2.3 1981.8 6.92 14.88 8.37 18.62 0.5 17.69 -8.8 1938.3 12.08 42.1 28.1 2.97 11.62 9.77 1928.9 18.06 0.3 1855.7 5.2 -4.2 1869.5 13.13 2755.6 0.1 11.38 373 -7 14.35 2688.1 2108 22.15 0.1 14.31 5.5 10.62 -1 7.36 20.24 0.5 0.4 -5.7

Sam

243 5 5 6.24 5 e± 557.4 23.16 485.6 7. 365.5 3.57 369.1 3.79 Ag 19261876 43 24.76 10451953 43.38 1850 24.42 36.11 427. 372.9 4.39 1501.51013.4 21.36 26.18 2046.51167.41083.1 30.66 1771.11509.6 42.46 2611.4 51.03 22.63 1820.8 22.72 2013.5 21.34 1541.9 53.97 36.41 32.5 1895.51600.2 16.09 28.44 3121.73356.6 13.36 1220.8 13.6 1065.6 91.83 1381.5 56.37 1072.5 21.19 32.72 1972.71445.3 22.37 31.56 1861.61455.5 19.86 1395.4 35.82 1289.2 48.7 47.2 ) % ( es Ag ) e 1/2 g Pa ( Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Disc le T5 - T5 le 2006LHA4-7 Ratios p 1234 0.116 0.098735 0.078416 0.077727 0.079078 0.00152 0.00104 0.115439 0.00076 0.24026 0.00122 0.05384 0.27886 0.0011 0.25386 0.31713 0.00123 0.17344 0.00203 0.15925 0.00171 0.00202 0.00136 0.17353 0.00244 0.3022 0.00072 0.59703 0.00113 0.05956 3.43565 5.19376 0.0011 0.66304 1.9014 0.00164 0.0028 1.76605 0.00072 0.08971 0.07283 0.00352 1.87143 5.09048 0.02386 19.71496 0.03897 0.44283 24.51017 1600.2 0.0367 1895.5 0.09336 0.33498 1157.3 0.01561 1139.8 0.48626 28.44 16.09 1173.9 1886.6 3121.7 19.02 364.3 3356.6 30.8 1458.3 1775.7 27.32 19.08 13.36 1031 70.1 13.6 952.6 10.37 1031.5 1702.2 6.66 3017.9 3.96 372.9 3279 1512.6 6.31 6.06 1851.6 8.11 11.29 1081.6 20.54 4.39 13.66 1033.1 11.94 1834.5 3077.5 1071 8.35 9.9 3288.9 14.3 372.2 7.2 15.56 16.42 12.98 11.8 19.35 17.7 10.99 11.1 4.2 13.1 1157.3 2.9 -2.4 1139.8 1886.6 1173.9 19.02 19.08 30.8 27.32 2728 0.07298 0.05472 0.00095 0.00224 0.15236 0.06857 0.00085 0.00103 1.5929944 0.522284546 0.1207447 0.02715 0.02397 0.0788148 0.0755549 0.1083150 0.00158 0.09407 1013.451 0.00171 400.1 0.1755652 0.00195 0.1213453 0.00135 0.1113 0.29703 0.00114 0.12393 26.18 0.19778 0.00227 89.44 0.0957 0.18469 0.00205 0.28943 0.0019 0.24475 0.00337 0.00197 0.00257 914.2 0.48613 0.00218 427.5 0.30496 0.00167 0.00166 5.38194 0.00129 0.32651 1.96133 0.35716 0.00344 1.95752 4.76 0.00274 4.38806 0.25809 6.24 3.25527 0.11554 0.00567 0.06088 11.84717 0.00427 0.07434 4.87954 0.08092 0.00219 967.5 0.05356 4.42358 426.7 1967.1 0.30065 5.82208 1167.4 0.1443 1083.1 3.21927 1771.1 0.24759 10.63 1509.6 0.23761 15.99 23.07 2611.4 42.46 0.08751 51.03 1976 22.63 10.5 1820.8 22.72 -7.1 2013.5 1676.6 21.34 1163.4 1541.9 1092.6 1638.7 29.78 53.97 1411.3 36.41 2553.9 9.46 10.62 11.87 32.5 8.29 1715.9 1821.4 6.67 1968.7 14.91 1102.3 1882 1101 1480.1 1710.1 13.55 27.56 1470.4 20.28 2592.4 20.87 18.38 11.23 25.52 15.25 1798.7 1716.8 12.78 1949.7 23.76 0.4 16.8 1461.8 8.5 24.92 -1 46.35 7.2 35.37 2.7 1967.1 21.06 15 0 2.6 23.07 4.5 1976 29.78 26 0.09367 0.00107 0.24295 0.00127 3.0640843 0.05044 0.12626 1501.5 0.00221 0.34363 21.36 0.00338 1402 5.89426 6.57 0.20097 1423.8 2046.5 12.6 30.66 7.4 1904.1 16.23 1960.4 29.6 8 101112 0.1155413 0.0919514 0.0809715 0.0834816 0.00113 0.0748917 0.00106 0.0587518 0.11799 0.003919 0.00196 0.0879520 0.28259 0.00214 0.0995421 0.19616 0.00701 0.0890722 0.00287 0.18878 0.0751523 0.18992 0.00134 0.00098 0.1147524 0.16663 0.00105 0.01799 0.07571 0.09031 0.00215 0.00435 0.33728 0.078 4.60249 0.00215 0.00124 0.05686 0.24184 0.00218 2.48186 0.00159 0.20652 0.00392 0.00301 0.21292 2.0468 0.00492 0.07023 2.07105 0.16642 1.69415 0.00124 0.00183 0.04109 0.00241 0.32384 0.73997 0.0205 0.21715 0.00256 5.42564 0.15012 0.07264 0.00123 1888.3 0.06943 2.97584 0.17318 0.07823 0.00242 1466.3 0.10251 2.37331 2.64332 0.00407 0.26919 1.73068 1220.8 1280.4 0.0491 5.04162 0.00186 17.43 0.00125 1065.6 21.79 0.60217 0.10369 1.8867 558 0.0399 1926 1.68743 0.12647 0.62469 91.83 45.15 1604.4 1381.5 56.37 1154.6 1615.5 1405.6 0.1087 240.76 0.05518 0.0305 1072.5 1114.8 1876 1121 6.72 43 21.19 993.5 5.68 303.51 45.54 1087.3 557.4 1146.9 32.72 23.61 485.6 1749.7 1396.2 11.63 24.76 12.04 1873.6 1210.3 1266.8 1244.4 77.8 23.16 45.88 1131.2 992.3 12.73 1808.5 91.48 1139.3 1006.3 6.44 109.54 23.72 11.98 13.63 1266.8 1029.6 562.4 50.03 17 24.02 11.77 26.17 1234.6 485.6 6.8 1888.9 1401.5 23.2 1312.8 21.56 10.21 59.82 9.5 13.6 181.26 1826.3 7.3 42.54 12.54 1888.3 7.5 1020 28.9 1466.3 1076.4 1003.8 0.1 27.5 17.43 21.25 21.79 -1.2 3.1 1280.4 12.6 14.84 492.8 38.23 20.85 45.15 4.1 1615.5 8.1 1405.6 -18.2 19.06 303.51 11.1 45.54 0 1087.3 1146.9 77.8 45.88 293031 0.0741332 0.0539833 0.1197834 0.1211135 0.00162 0.0909436 0.00146 0.1131137 0.00165 0.0962538 0.00153 0.0933239 0.17859 0.00152 0.1138440 0.05834 0.00229 0.0914341 0.3372 0.00142 0.0540542 0.33036 0.00175 0.00171 0.08711 0.24185 0.00059 0.00126 0.08859 0.31026 0.00174 0.08386 0.00246 0.23652 0.00216 0.00152 1.77363 0.22979 0.00198 0.00713 0.4389 0.32911 0.00229 0.0035 5.54513 0.25366 0.00168 5.30094 0.00206 0.05517 0.05893 0.00209 2.86311 0.30785 0.00168 0.01302 0.22823 4.72434 0.00239 3.20178 0.1386 0.11466 0.21426 0.00062 2.90955 0.07452 1045 5.08863 0.01457 0.00294 0.18098 2.99391 0.07381 370 0.45998 0.00252 1972.7 0.08512 1953 0.08434 1.77361 1445.3 2.64394 43.38 0.09115 0.01436 2.57603 1850 1552.7 59.54 22.37 1494.5 0.19219 1861.6 24.42 0.10924 31.56 1059.3 1455.5 0.10003 36.11 373 27.4 365.5 1840.1 34.33 1873.2 1363 19.86 1395.4 1396.3 9.57 35.82 1289.2 1368.6 1742 10.45 62.09 1333.4 3.57 11.87 1834.1 150.09 10.25 48.7 1035.8 1457.3 47.25 8.78 17.22 10.94 1869 369.1 1907.6 1730.1 369.5 8.16 1372.3 1325.2 20.2 12.27 1251.5 1771.6 1457.6 1384.4 18.48 21.5 3.79 19.59 71.8 1834.2 9.19 15.44 -1.5 1406.1 13.37 17.84 22.11 32.1 7.7 3.8 14.06 4.7 1035.8 384.2 1.3 1313 23.17 1293.9 13.2 11.9 6.7 1.7 70.36 9.98 30.44 -0.1 28.4 1552.7 1494.5 -30.7 1.1 5.6 3.2 34.33 27.4 1363 150.09

Sam

244 4 28.37 28.13 32.33 27.88 4 4 4 4 e± 361.6 3.4 Ag 1263 45.01 14992233 27.85 25.29 2860.21864.21189.62171. 69.68 1913.7 33.11 1933.3 49.22 1998.51968.8 30.75 2707.8 41.67 1951.51261.2 30.7 32.21 49.83 1383. 28.7 35.77 3137.91098.81111.6 54.82 1945.6 37.51 39.78 1196.8 35.47 97.54 1161.31910. 56.17 1425.71548.71635. 73.82 30.63 ) % ( es Ag ) e 2/2 g Pa ( Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Disc le T5 -le 2006LHA4-7 Ratios p 585960 0.204226162 0.114 0.079763 0.1355864 0.00896 0.1171865 0.1184766 0.00211 0.1228867 0.00202 0.00221 0.1208568 0.50157 0.00203 0.1860769 0.11968 0.002870 0.33271 0.19444 0.00215 0.0826671 0.36551 0.01832 0.00221 0.0884772 0.33598 0.00572 0.08804 0.00326 0.00194 0.07539 0.3212 0.00225 0.34612 12.07821 0.00318 0.00153 0.05387 0.34895 0.00301 0.0086 0.50891 5.18681 0.001577 2.14366 0.00429 1.43755 0.3479 0.00317 6.65394 0.0023378 0.19745 5.26811 0.0034 0.0014179 0.01159 0.17358 0.24273 0.280980 4.93497 5.56708 0.0794 0.21821 0.07614 0.19625 0.0027981 2860.2 0.2221 0.00163 0.07663 0.1588382 5.63762 0.05769 12.84549 0.0827483 0.01448 0.00854 1864.2 0.21566 0.11929 0.17231 0.00165 5.70695 2.27896 0.00144 1189.6 2171.4 0.09595 0.00318 69.68 0.18305 0.00056 1.0723 0.00155 1913.7 0.07999 1.84408 0.00194 2.61437 0.65432 0.1543 33.11 1933.3 1998.5 0.05906 0.0024 2.32572 0.19389 49.22 0.00249 28.13 0.4448 2620.5 0.19398 1968.8 0.00409 30.75 2707.8 0.24651 0.19592 0.06177 0.02016 0.10963 1851.5 0.00158 41.67 0.34006 1951.5 1261.2 30.7 0.24114 0.01278 1145.4 2008.2 0.0017 78.64 32.21 0.20639 24.04541 1867.3 0.00209 49.83 1392.7 1383.4 2.08059 0.00351 15.77 1078.8 1795.6 0.00308 35.77 28.7 2.01629 12.16 14.99 1916 2.95441 2610.5 0.00493 365.5 2.23304 1929.6 14.51 175.9 2652 0.05336 5.41555 32.33 2.87619 1850.5 20.92 60.91 0.05535 1161.6 2.19243 1924.5 0.07506 111.61 2066.5 1163 3137.9 15.17 57.76 16.25 1863.7 0.18766 1595.9 1098.8 0.11473 49.52 1272.4 28.49 1808.3 0.16917 10.2 1111.6 1293 8.78 26.04 13.35 1263 25.65 54.82 1921.9 1911 25.73 361.6 1945.6 72.9 2668.4 37.51 1546.8 8.73 0.8 1196.8 36.9 39.78 8.7 1932.4 16.75 1205.8 4.1 3245.1 2.8 45.01 26.64 28 3.44 35.47 78.64 1061.3 1142.4 48.08 1304.7 97.54 8.2 1142.9 23.36 18.29 1220.2 78.54 1153.4 4.8 1886.9 2.3 2.5 88.01 373.6 1392.6 8.51 17.35 1209.6 1.6 33.47 8.6 9.19 3270.2 11.25 -16.5 16.86 8.98 8.8 1142.4 16 -21.9 26.34 119.78 1121 1191.5 1887.3 1392.7 17.59 1.1 1178.6 1375.7 -4.4 1078.8 18.63 23.57 175.9 29.7 -4.3 60.91 53.81 30.05 -3.1 9.5 3.5 -1.2 11.1 1546.8 48.08 545556 0.0935557 0.14047 0.07857 0.11697 0.00139 0.00207 0.00227 0.00187 0.26349 0.40952 0.17881 0.34331 0.00181 0.00324 0.00229 3.38579 0.0028 7.75494 1.82336 0.07529 5.4836 0.21254 0.07277 0.15227 1499 2233 1161.3 1910.4 27.85 25.29 56.17 28.37 1507.7 2212.7 1060.5 1902.6 9.25 14.83 12.54 13.45 1501.1 1053.9 2203 1898 17.43 26.17 24.65 23.85 0.7 9.4 1.1 0.5 73 0.09001 0.00356 0.23152 0.00462 2.76585 0.17687 1425.7 73.82 1342.4 24.17 1346.4 47.69 6.5 747576 0.11715 0.09605 0.10061 0.00205 0.00158 0.00152 0.12963 0.26208 0.28793 0.00105 0.00193 0.00187 2.02424 3.39426 4.06889 0.04541 0.07904 0.08329 1913.2 1548.7 1635.4 31.05 30.63 27.88 785.8 1500.5 1631.2 5.98 9.84 9.38 1123.7 1503.1 1648.1 15.25 18.26 16.68 62.5 3.5 0.3 1913.2 31.05

Sam

245 4 9.05 38.6 16.26 23.07 13.68 23.27 4 4 4 4 4 4 e± Ag 1895 13.08 1876 16.18 1726 22.84 1891 42.33 262218292551 8.41 14.18 18.69 2299.81355.11989.11978.5 9.9 1883.1 34.52 12.32 1901.1 28.13 1770.5 31.81 1762.21822.3 16.04 15.12 1169.8 12.66 2562.2 12.19 1752.62673.1 28.1 1849.6 9.58 2700.3 11.82 1920. 14.83 13.36 9.89 1814.62565.32667.51944.6 16.54 13.46 1897.2 16.54 1929.3 24.44 1881.82099.8 14.19 23.46 25.55 7.6 1924.32852.72036.71797.3 12.87 2701. 16.64 20.55 2009.9 16.67 2911.81948.51805.1 13.66 2483.8 13.31 1868.8 32.69 1907. 18.97 1823.7 10.42 1777.2 11.26 1840. 29.53 15.47 2485.11904. 10.54 2029. ) % ( es Ag ) e 1/2 g Pa ( Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Disc Ratios 789 0.11092 0.17078 0.18159 0.00102 0.00138 0.00182 0.35387 0.51159 0.48277 0.00196 0.00304 0.00353 5.12969 12.09664 11.50631 0.09523 0.26712 0.31199 1814.6 2565.3 2667.5 16.54 13.46 16.54 1953 2663.4 2539.3 12.97 9.35 15.37 2611.9 2565.1 1841 20.71 25.33 15.78 -4.7 5.8 -8.8 123 0.176684 0.114155 0.162816 0.11181 0.16933 0.0009 0.11658 0.00212 0.00102 0.00088 0.0019 0.50158 0.37756 0.00106 0.49212 0.33686 0.00192 0.47041 0.00425 0.35383 0.00224 0.00162 12.19803 5.25178 0.00377 0.00199 11.26319 5.1667 0.15567 10.49305 0.20035 0.18303 5.70818 0.08156 0.31855 2622 0.10909 1866.5 2485.1 1829 2551 8.41 33.19 1904.4 10.54 14.18 2064.9 2620.6 18.69 2579.8 16.26 1871.5 19.89 2485.4 8.24 1952.9 9.66 7.82 1861.1 16.54 2619.8 9.46 2545.2 1847.1 2479.3 32.54 11.98 1932.6 15.15 -12.4 13.43 28.14 0.1 16.51 -4.6 -2.7 3.1 1866.5 -3 33.19 171819 0.1460220 0.0867621 0.1222322 0.1215123 0.11521 0.0008424 0.11597 0.0015725 0.11636 0.0008526 0.10827 0.0019327 0.10778 0.45008 0.0020628 0.24864 0.00085 0.111429 0.11475 0.36058 0.0010430 0.07891 0.38364 0.000931 0.00183 0.17046 0.35234 0.0007532 0.00229 0.10722 0.3451433 0.00075 0.00161 0.18221 0.00104 0.341234 0.00378 0.11309 0.00113 8.95453 0.32985 0.00374 0.18523 0.31508 0.00098 2.90071 0.00158 0.11762 0.0007 6.0567 0.32738 0.32161 0.00164 5.85297 0.00187 0.12136 0.18078 0.00084 5.24677 0.00165 0.08882 0.00135 0.49995 0.00111 5.29787 0.00152 0.00138 0.0885 0.32962 0.19972 5.61117 0.00176 0.51696 0.19488 2299.8 0.00126 4.6713 0.33437 4.63105 0.07778 1355.1 0.00213 0.5195 0.10502 0.36048 4.985 5.10221 0.00133 1989.1 1978.5 0.00352 2.03123 0.07557 0.06212 1883.1 9.9 0.00154 11.90959 34.52 1895 0.00237 0.09257 4.66969 0.00284 13.01662 0.06572 1901.1 12.32 28.13 0.04413 0.17723 5.13031 31.81 1770.5 2395.6 1762.2 1431.5 12.64586 13.08 0.05768 0.33369 5.75809 1984.9 2093.3 16.04 1876 1822.3 0.07598 1169.8 1945.7 2562.2 15.12 12.66 8.15 11.8 0.20228 1911.4 0.15891 1752.6 1892.4 2673.1 17.59 7.62 12.19 16.18 17.83 28.1 1837.7 1849.6 1765.7 9.58 2333.4 1382.1 2700.3 7.57 1920.4 11.82 1954.3 14.83 1825.7 1797.6 1984 9 1860.2 1071.2 13.36 6.61 2613.6 12.38 8 23.12 9.89 1868.5 1836.5 2686.3 23.07 29.59 6.68 8.57 31.68 1859.5 12.73 1917.8 6.87 1754.9 9.16 -6.3 -5 2697.1 1762.1 1984.4 12.54 14.97 6.43 -6.8 1816.8 1836.5 -3.9 7.42 0.2 16.13 1126 2597.3 11.2 10.05 13.53 13.47 2680.9 1761.8 -1 11.15 15.4 1841.1 0.5 13.94 -0.2 14.78 2653.6 1940.1 -4.4 24.17 10.33 -0.2 4.8 12.59 -2.4 9.1 15.05 23.88 -0.6 -5.5 -0.6 0.1 -3.9 101112 0.1192213 0.1056714 0.1161115 0.1182 0.11512 0.00164 0.13014 0.00132 0.00092 0.00156 0.35439 0.00165 0.30735 0.00057 0.32773 0.35325 0.00298 0.33619 0.0022 0.39015 0.0016 5.36937 0.00282 0.00287 4.58317 0.00121 5.36071 0.15397 5.50728 5.48573 0.11359 7.00613 0.08644 0.1529536 0.16543 1944.637 0.0604138 1726 1897.2 0.129639 0.11788 1929.3 24.4440 1881.8 0.2032841 2099.8 0.12556 22.8442 14.19 0.1098843 0.00392 1955.5 23.46 0.18536 0.00085 25.5544 0.11571 0.0020945 7.64 1727.6 0.12368 1827.4 0.0014746 0.21081 1950.1 0.00101 14.1648 0.46319 1868.3 0.11948 0.33943 0.0015449 0.11035 0.55522 2123.5 0.00276 10.8650 7.78 0.16269 0.36806 0.0009651 13.46 0.11429 0.32137 1880 0.00174 0.00911 13.8452 0.00154 0.11677 0.51811 0.0022153 1746.2 5.62 0.0044 0.11148 0.32718 0.00116 1878.6 0.00268 0.10867 0.36686 0.00101 1901.7 7.13946 0.00176 1898.4 0.11251 0.61476 0.00072 5.59006 24.54 0.00324 0.37994 0.00152 13.52966 2112.2 0.00334 20.66 0.32438 0.00183 6.11413 0.00181 13.8 23.87 0.49816 0.47561 0.00092 4.70504 0.08279 0.00405 25.9 -0.6 13.23613 0.33485 0.00243 0.00432 0.3967 0.35486 5.39937 -0.1 0.15655 0.00202 7.66 0.32922 6.27605 0.08474 -1.2 0.00214 4.2 16.63617 0.31882 2092.6 0.31257 1924.3 0.00134 0.8 0.32964 5.80586 0.19269 0.00279 2852.7 4.94638 0.10425 -1.3 2036.7 0.00316 10.73847 0.42205 1797.3 52.18 0.00163 2701.4 5.28066 12.87 0.23328 0.00412 5.31052 16.64 0.1046 1891 0.16867 4.89665 20.55 2009.9 2453.6 2911.8 4.60207 16.67 1883.9 13.68 0.0652 5.18137 0.14435 1948.5 2846.9 0.16406 2020.3 42.33 1805.1 2483.8 13.66 0.07632 1796.4 40.16 13.31 2691.1 7.42 0.23266 1868.8 32.69 1907.4 18.26 12.64 1824.7 1823.7 2014.6 18.97 10.42 3089.1 8.59 2129 1777.2 13.78 1914.6 1840.4 11.26 2076 23.27 2717.4 1992.3 16.23 1811.1 2508.1 29.53 8.52 16.17 15.47 1768.1 2696.6 62.14 12.76 1861.9 38.6 1957.8 20.18 27.72 1884.8 22.34 1834.6 9.82 9.36 2015.1 2914.1 1783.9 15.08 -20.8 22.29 2.4 6.45 1836.6 13.27 1947.3 0.3 15.31 30.57 0.9 1810.2 2500.8 14.55 24.3 7.95 0.1 0.5 1865.7 19.99 1870.6 2092.6 34.8 1801.7 4 17.86 14.59 -0.3 -7.7 1749.6 1849.6 10.54 23.23 52.18 -7.7 28.25 -0.4 -1.2 13.83 38.22 -3.1 0.4 -0.7 -0.4 0.2 16 0.12504 0.00064 0.36676 0.00128 6.4641 0.06727 2029.4 9.05 2014.1 6.02 2041 9.15 0.9

Prevost Formation - 13LB07

246 e± Ag 1846 13.03 1944 17.8 1043.91864.32070.9 44.72 1929.1 22.75 1750.42005.4 15.67 1757.9 14.77 2533.7 9.93 2741.1 10.66 1893.4 18.59 1977.9 9.75 1825.6 25.69 1923.1 17.25 1989.92071.6 22 16.99 2486.7 30.06 2676.2 41.43 2191.8 26.69 1871.8 7.98 1892.4 13.05 19.66 13.95 1992.8 15.09 2794.4 18.17 2302.4 16.16 8.2 ) % ( es Ag ) e 2/2 g Pa ( Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Disc Ratios 545556 0.0740957 0.1140158 0.1128659 0.1280260 0.00167 0.118261 0.10708 0.0014562 0.12336 0.0008263 0.10752 0.0011464 0.17302 0.1675965 0.00098 0.18988 0.00058 0.317866 0.32604 0.11587 0.0007567 0.39915 0.12147 0.001168 0.00176 0.00098 0.111669 0.34433 0.33331 0.00299 0.00238 0.117870 0.00146 0.36519 0.12229 0.0011271 0.0023 0.12807 1.75821 0.0015172 0.31939 0.51759 0.16297 0.0017873 5.02145 0.00105 0.00117 0.56453 0.18255 5.1073874 0.00145 0.34139 0.13717 0.002 0.0028975 0.05698 6.86816 0.36802 0.11448 0.00196 0.0019276 5.51917 0.00223 0.13011 0.00077 0.1158 4.729777 0.07343 0.33832 0.00674 0.11918 6.12799 0.0014578 0.13942 0.11353 0.00156 0.002 0.3666 0.3639979 1043.9 4.61107 0.00282 11.84888 0.09414 0.39936 0.12249 0.0008980 14.32854 0.04785 1864.3 0.46947 0.11575 0.0019281 0.07631 0.00098 1846 0.52352 0.19615 0.00119 0.09284 2070.9 0.17933 5.42067 44.72 0.17816 0.00371 6.10154 0.00071 0.00528 0.4065 0.00345 1929.1 0.68371 0.33331 0.14624 0.00126 22.75 5.02235 0.00166 1750.4 0.00541 2005.4 0.33352 0.00309 13.03 0.36636 0.00195 0.10894 1028.7 0.16756 5.99974 15.67 5.38219 1757.9 2533.7 0.26459 6.66284 0.00301 0.0009 14.77 10.42542 0.0016 0.09531 2741.1 1779 0.3615 0.0007 9.93 12.47231 0.41676 10.66 1819.2 0.00173 0.00227 0.22328 2165.1 0.26355 0.54708 9.69 1893.4 0.20526 1977.9 18.59 7.40835 0.00104 9.75 1907.5 0.1152 0.44828 5.30059 25.69 1825.6 0.27163 0.00231 11.64 1854.4 2006.7 0.43126 5.25348 0.01195 7.09 5.91348 0.00413 10.6 1923.1 1786.7 0.19673 1989.9 1030.2 17.25 4.20185 2688.9 2071.6 22 8.51 0.08358 2885.3 0.00169 2486.7 16.99 5.81793 1822.9 0.09014 2676.2 6.74019 0.00149 5.65 6.85 0.12749 1837.3 14.19618 1893.3 2094.6 0.04773 30.06 41.43 9.38 20.98 2191.8 26.69 9.49 10.74024 1903.6 27.79 2020.1 1878.6 0.12744 1871.8 7.98 0.72743 21.94 8.67636 13.05 1772.5 1892.4 1994.2 0.413 12.21 1944 2001.1 2013.4 9.63 17.99 2166.1 1751.3 0.12862 1856.6 1.6 19.66 2592.5 2771.7 13.27 14.66 13.95 9.23 2481.3 0.09121 1992.8 2714.1 5.2 1891.5 15.09 10.87 8.48 1.7 17.55 24.91 -5.4 2198.9 1888.1 2794.4 15.89 17.8 11.31 2635.9 16.8 1990.5 14.17 45.29 1854.4 1.3 1823.1 18.17 13.07 7.27 1855.4 2302.4 81.85 -0.1 -6.8 1975.8 1882 1513.3 13.79 2067.7 16.16 2012.2 17.23 -1.9 8.36 -7.5 -6.5 23.96 7.74 1989.3 2640.6 16.07 2245.7 2473.3 8.34 8.2 32.39 10.71 5.28 2813 2162 41.93 27.2 0 2387.6 -2.5 10.92 1869 20.47 -3.3 54.38 10.24 1861.3 2311.4 -4.7 1963.2 1674.4 -1.4 17.22 -5.4 23.76 7.52 1949.1 -1.7 2077.9 13.47 0.3 14.64 6.7 18.72 2762.9 9.32 -0.4 2500.9 18.98 95.43 1.1 2.2 2304.6 -4.1 20.7 27.6 11.12 0.2 -22.2 9.57 -0.8 11.3 1856.6 1891.5 -0.5 11.31 2635.9 81.85 8.36

Prevost Formation - 13LB07 - 13LB07 Formation Prevost

247 e± 576 13.71 Ag 1595 38.93 1631 28.56 898.3 10.09 911.9 9.06 468.5463.1473.7 23.96 27.38 26.29 439.5908.4 6.31 9.59 472.3 12.02 430.3 5.12 1638.4 28.23 1665.61503.61100.6 24.42 1160.1 30.22 2894.6 40.81 2780.3 31.29 1088.3 24.05 1824.2 20.52 1693.5 62.61 40.67 39.21 1622.11831.93598.8 40.02 1601.6 23.28 1827.2 17.71 1817.8 37.67 23 69.14 1541.41128.4 54.38 3066.91850.2 36.9 1648.4 34.62 35.53 1128.7 52.89 2494.8 66.91 1593.42683.9 34.73 1801.1 39.52 1697.6 23.94 25.58 1061.4 31.05 45.61 1816.71701.31867.9 33.95 2733.2 25.5 1005.7 27.25 1134.7 28.58 37.53 1146.5 48.88 1735.41571.2 70.76 1537.7 42.08 30.34 48.62 ) % ( es Ag ) e 1/2 g Pa ( Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Disc Ratios 123 0.069494 0.102265 0.093786 0.076217 0.00127 0.078528 0.00136 0.208589 0.00151 0.19447 0.00158 0.14952 0.07574 0.00125 0.29181 0.11151 0.00312 0.2578 0.00245 0.17719 0.0018 0.00241 0.18112 0.0032 0.00253 0.53452 0.00306 0.51964 0.0023 0.17743 1.41921 0.00209 0.34203 4.12252 0.00691 0.00577 3.2943 1.89994 0.03314 0.00297 1.92581 0.00525 0.0761 14.4551 13.40614 0.07932 0.05487 1.90663 0.04026 913.2 4.96459 0.49364 0.28436 1665.6 1503.6 0.08674 1100.6 1160.1 0.21341 37.24 2894.6 2780.3 24.42 30.22 1088.3 40.81 31.29 1824.2 898.3 24.05 1650.5 20.52 1478.6 1051.6 62.61 1073.1 40.67 2760.5 10.09 2697.7 15.94 1052.9 15.7 12.61 11.38 1896.4 29.05 24.48 1658.8 897 16.24 1479.7 1081.1 1090.1 25.21 2780.1 15.09 2708.7 13.91 18.75 19.21 1083.4 13.97 1813.3 32.43 20.04 1 1.7 1.9 4.8 30.3 8.1 36.33 5.7 3.6 3.5 -4.6 53 0.06927 0.001 0.15196 0.00162 1.43079 0.02321 906.9 29.51 911.9 9.06 901.9 9.7 -0.6 101112 0.1038213 0.1134114 0.0566215 0.0564816 0.00224 0.0575817 0.00271 0.0998918 0.00872 0.1119919 0.01267 0.3021 0.326120 0.00958 0.38184 0.098821 0.00218 0.07539 0.111722 0.00145 0.07448 0.1111223 0.00437 0.07625 0.05567 0.00379 0.0062124 0.2962 0.07818 0.0020225 0.004 0.32996 0.09567 0.00143 0.0045626 0.00433 4.13581 0.06887 0.00439 0.7636227 6.24919 0.00226 0.07728 0.2805628 0.00133 0.00426 0.23214 0.00356 0.3133429 0.43773 0.73367 0.00282 0.29388 0.1131230 0.157 0.60172 0.31605 0.00112 0.00799 0.07056 0.1013231 0.00145 0.00382 0.17084 4.26527 0.0565432 0.07231 5.00468 0.18706 0.00509 0.00335 0.26594 0.07729 0.0069333 0.11332 0.00225 33.96837 0.15134 0.09845 0.00105 1854.834 0.00294 1693.5 0.17478 3.78123 0.16375 0.16615 0.0020135 0.08881 0.00393 0.57632 4.88984 0.09837 0.00466 475.936 470.5 0.55328 0.00265 4.1078 0.34191 0.18341 0.0017137 513.6 0.52679 0.00208 0.28438 42.61 0.11011 0.12904 0.00214 39.2138 1.82614 0.00342 1622.1 0.07602 0.08297 0.10405 0.01068 1831.939 3.58182 0.00211 0.19222 0.30082 0.05882 309.26 432.79 0.00475 3598.840 1.43629 0.02401 0.00268 0.25377 0.07473 2084.9 329.23 0.0050541 1701.7 1.87524 0.04106 0.00156 1601.6 0.48174 0.11113 0.00201 16.00641 40.0242 0.18615 0.00177 1827.2 0.31179 23.28 0.05559 0.00341 468.5 463.143 0.02877 0.00374 1817.8 5.0383 0.47192 17.71 0.11105 0.00351 473.744 3.86343 0.04721 0.00172 0.31839 439 28.98 0.10426 0.94301 0.00771 1151.3 21.61 37.6745 0.60313 1672.4 0.00174 0.30919 0.11424 1838.2 1541.4 0.004446 1.82902 0.00181 0.09346 23 0.18077 0.18897 3657.5 0.00562 23.96 69.14 27.3847 894.8 3.41256 0.20208 0.0021 0.18435 0.00353 1128.4 0.0727 10.77322 26.2948 1594.2 0.00146 2011.4 3066.9 0.0486 0.26503 33.48 87.71 0.07753 1661.4 0.00377 21.1649 0.08759 0.00174 0.06902 54.38 17.25 3.98094 0.10037 0.00232 10.9212350 1660.9 0.11792 0.00331 1850.2 1757.1 29.19 0.07798 0.53954 1648.4 0.33971 368.6 33.21 0.0025 558.751 4.75975 0.29778 44.27 0.10621 0.00136 1016.7 36.9 0.00308 19.22 34.62 478.3 31.0452 439.5 4.08767 0.00192 472.7 0.3294 0.09721 1520.2 1686.7 0.00085 1128.7 0.1464 0.2908 0.76037 0.00156 1820.1 0.53425 0.09549 35.53 34.55 16.45 0.09556 1595 0.00284 0.00447 3609.1 109.56 2494.8 908.4 52.89 51.07 -14.5 1.84146 0.10078 0.00323 0.17659 4.32325 1038.4 0.10905 0.00248 -0.6 2933.7 0.17202 11.05 71.83 1588.8 32.04 0.50004 0.05679 0.00159 147.62 0.00378 6.31 0.27302 66.91 23.74 15.02 0.00751 1593.4 2683.9 1895.9 0.00251 1.6 0.20067 16.07 5.21498 0.05874 1613.4 1655.9 1801.1 1.6 1800.5 34.73 0.10135 38.93 0.00155 0.00213 0.32981 1854.8 4.277 9.59 0.00244 1697.6 8.1 11.72 43.66 0.01827 -3.5 1054.9 27.4 0.26668 472.3 5.13718 1133.4 -0.4 12.72554 0.0031 560.5 1545.5 39.52 0.25924 23.94 0.17748 429.7 0.00366 -2.1 22.83 2534.8 42.61 1061.4 59.8 1457.9 0.28875 25.58 14.3 25.36 1.72304 0.00498 0.07896 1.76732 1818 31.05 14.75 0.11856 1072.4 2877.2 0.5 904.2 0.4984 0.0031 435.7 12.02 18.42 41.25 3.83928 1749.5 132.96 0.0041 2492 1.99928 15.97 1816.7 1781.9 1825.8 0.00325 9.8 0.0422 45.61 33.52 4.4 4.82973 0.06052 18.02 1606.1 12.6 1736.7 1701.3 16.67 28.15 1867.9 56.3 11.99 3.43931 0.08399 2733.2 1.5 70.83 0.10547 1055.9 576 -0.1 21.63 479.2 3.32358 33.95 3.98852 1090.7 0.20758 30.4 24.6 17.25 42.19 1005.7 2503.8 1134.7 1507.3 1515.5 8.6 18.58 0.08006 25.5 -1.6 1151.3 5.4 27.25 430.3 28.58 31.44 1631 1146.5 0.1441 30.78 1885.3 0.08485 1630.3 13.71 -2.9 1735.4 2.4 46.53 13.6 1777.8 27.13 37.53 2516.4 48.88 33.48 1680.3 1835.5 15.69 1651.8 1571.2 2759.3 -0.5 0.1 70.76 29.84 28.56 5.12 1537.7 1638.4 21.52 -1.9 42.08 16.85 9.6 1048.3 1023.2 574.2 24.77 1060.4 21.76 16.05 30.34 1697.8 18.32 -11.2 31.55 1178.9 1556.1 48.62 28.23 1837.4 1855.1 1.2 411.7 8.6 32.76 11.64 13.43 20.99 -2.6 1523.9 19.33 1688.9 1842.3 2659.6 19.66 15.71 1635.3 1486 -2.9 12.37 24.12 29 -3 1017.2 1033.5 18.7 15.79 15.19 19.62 36.87 1115.3 16.25 1601 1.3 20.98 1790.1 -4.4 15.74 22.21 1.4 1513.4 2 -1.2 1818 35.7 1631.9 17.62 36.16 10.6 -4.6 1486.6 28.15 18.31 -3.1 17.27 -6.8 5.2 33.84 3.4 0.2 3.8

Keno Hill Quartzite - MLB89-246-b

248 4 4 e± Ag 470.5 15.25 1308.52749.9 31.35 23.05 2706.71015.6 25.78 37.4 1715.21723.51335.8 29.57 1241.8 31.31 1196.8 33.79 1856.1 32.3 48.87 1130.1 31.3 1119.11445.5 75.8 30.21 29.19 ) % ( es Ag ) e 2/2 g Pa ( Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Disc Ratios 545556 0.0846957 0.190958 0.0835359 0.0562860 0.00138 0.08055 0.18595 0.0027 0.00168 0.07306 0.00507 0.21622 0.00245 0.00293 0.52389 0.19062 0.00137 0.07572 0.00246 0.16866 0.46971 0.00584 0.00241 0.16147 0.00254 2.47741 0.00275 0.00569 13.69667 2.18782 0.00192 0.60794 0.05261 1.94512 0.30545 11.99002 0.06072 1.58436 0.06333 1308.5 0.08558 0.34514 2749.9 1281.4 0.03734 462.6 31.35 1210.4 2706.7 23.05 38.76 1015.6 1261.9 188.74 58.73 25.78 2715.6 1124.8 37.44 470.5 13.02 1004.7 2482.3 24.69 13.06 965 15.25 1265.5 15.17 24.95 2729 1177.2 15.36 10.66 482.3 1096.8 2603.6 19.34 21.1 3.9 39.99 29.51 964.1 26.98 13.3 1.5 18.3 -1.8 14.67 10 1281.4 5.4 1210.4 38.76 58.73 626364 0.1055365 0.0858966 0.08184 0.07999 0.00182 0.1134969 0.0015270 0.00136 0.00201 0.27614 0.07692 0.00199 0.23511 0.09095 0.20418 0.17696 0.0033 0.00118 0.32147 0.00278 0.00141 0.00232 0.00254 0.18903 3.92211 0.00391 2.84688 0.24995 2.09655 1.91361 0.09887 0.00204 4.86161 0.06993 0.00274 0.04361 0.06684 1.99834 0.13149 1723.5 1335.8 2.96707 1241.8 1196.8 0.03513 1856.1 31.31 0.05578 33.79 32.3 48.87 1119.1 1571.9 31.34 1361.2 1445.5 1197.7 1050.4 30.21 1796.9 16.65 29.19 14.49 12.42 13.92 1116.1 19.06 1438.2 1618.3 1368 1147.7 1085.8 11.07 1795.6 20.4 14.12 18.46 14.3 23.29 22.78 1115 9.9 1399.2 -2.1 13.3 3.9 3.7 11.9 14.28 0.6 0.3 61 0.1050567 0.0017168 0.07438 0.29884 0.07734 0.00582 0.00345 0.00302 0.19767 4.21246 0.1812 0.00706 0.09742 0.00351 2.00482 1715.2 1.85301 0.23737 29.57 0.10405 1051.7 1685.6 1130.1 150.04 17.11 75.8 1162.8 1676.4 1073.5 38.02 18.98 19.13 1117.1 2 1064.5 80.21 37.03 -11.5 5.4 1051.7 150.04

Keno Hill QuartziteKeno Hill - MLB89-246-b

249 e± 375 11.75 Ag 1671 76.61 2462 62.07 2569 75.81 475.9421.3 29.64 24.01 426.8 10.21 422.2438.3508.9 44.63 420.5 15.13 393.2 38.31 433.8 41.22 999.7 59.76 375.3 48.89 42.28 28.99 562.2453.8 28.91 20.76 436.8446.3413.3 23.59 367.6 31.19 39.84 418.6380.8 16.21 67.76 47.57 519.3433.8 31.57 22.64 1036.22301.51842.7 38.1 69.03 1990.7 47.32 1468.71861.9 67.93 109.18 115.16 1143.7 80.81 1870.32256.4 132.35 1060.9 57.55 1700.5 27.38 110.9 1753.3 106.68 1675.4 101.61 1690.81698.9 145.05 1034.6 116.44 1945.8 27.41 89.84 ) % ( es Ag Ratios Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 Disc 123 0.085474 0.069815 0.056386 0.054937 0.01183 0.071748 0.01146 0.146169 0.01351 0.1124 0.00882 0.20559 0.05527 0.00672 0.18642 0.12942 0.00601 0.07661 0.06753 0.01252 0.00633 0.00368 0.17439 0.01196 0.00693 0.41456 0.00495 0.00398 2.22848 0.3309 0.06844 0.00694 1.93462 0.29617 0.01044 0.50201 0.46884 0.48205 0.00977 0.00169 1.59046 0.46373 0.00879 8.44981 0.12888 0.08338 1326.1 5.22355 0.52822 0.21211 5.14127 922.8 0.86722 466.6 409.4 0.04102 0.6466 246.84 978.5 0.63084 2301.5 305.22 458.49 422.8 324.09 1838.5 1205.3 2090.1 180.01 1101.9 69.03 475.9 66.95 421.3 142.17 98.68 1036.2 91.18 64.96 2235.7 29.64 1190 24.01 426.8 1842.7 38.1 1672.3 1093.1 47.56 413.1 390.4 47.32 10.21 43.71 160.45 ± 966.5 2280.5 87.13 1856.5 57.64 430.6 -21.1 1843 83.14 93.18 10 -2.1 105.49 27.26 -3 104.3 -6.4 3.4 1101.9 1326.1 -0.3 -1 64.96 22.7 246.84 2090.1 91.18 le TS1 -le 28LB05 111213 0.0920714 0.1138615 0.0812416 0.2345617 0.00548 0.1025618 0.00755 0.054119 0.01367 0.056120 0.02954 0.23928 0.0778821 0.00436 0.31967 0.0555422 0.14845 0.05755 0.0052623 0.49355 0.00708 0.01878 0.160624 0.00325 0.29614 0.05529 0.0107325 0.0057 0.01031 0.054326 0.0599 0.01454 0.07756 0.0487527 2.82184 0.06768 0.19419 0.05527 0.00638 0.0060328 5.16405 0.02118 0.072129 1.33431 0.07035 0.08214 0.05427 0.00193 11.95222 0.0296330 0.00739 0.01016 0.2987 0.11439 0.0037231 4.25834 0.74008 0.4645 0.02691 0.10994 0.067432 0.00251 0.2986 0.14239 4.50231 0.00643 0.0085133 0.44106 0.06289 0.01391 0.51778 0.17907 0.0586234 1.96212 0.35892 1468.7 0.00878 0.06961 0.05598 0.01082 1861.935 0.00682 0.01488 0.51184 0.0739936 0.64965 0.16774 0.00985 1227.2 0.0479 0.00484 3083.4 0.19347 0.05994 0.1049637 0.0099 0.12677 0.00921 0.10422 11.18927 0.00811 0.358138 1671 109.18 0.00741 0.66156 0.05961 0.25745 0.05559 115.1639 0.18682 0.00766 0.60375 0.42209 0.0047 0.05554 0.0047740 299.11 187.92 0.01035 375.1 1.74499 455.9 1.18724 0.09113 0.05533 1143.741 0.3797 0.01459 0.00651 0.29213 0.07292 0.10725 0.0169842 1383 0.00813 1788.1 1.62528 433.6 0.36806 0.05363 76.61 0.0079443 0.43913 512.4 0.17889 0.01312 0.26969 0.08164 0.00489 0.329144 892.3 2586 0.01872 5.74745 0.19371 0.05538 205.25 2462 609.46 0.00346 0.307345 80.81 3.25222 0.00648 423.7 0.29761 0.05442 0.070146 8.64756 0.12221 52.43 0.00501 36.83 0.01059 383.3 0.07168 1672.1 0.10716 213.97 0.0140447 1.09107 476.15 0.00628 0.06622 0.08319 1135.7 1.062948 0.51827 57.84 0.75815 210.43 0.00944 0.03189 422.8 0.30881 0.10504 422.249 375 0.63684 62.07 0.00392 1144 0.03357 1.70661 988.8 0.05869 0.05799 1846.7 683.64 0.00519 1361.450 382.1 0.22493 3.5545 31.74 0.00814 0.24132 438.3 0.05546 907.58 0.0065951 0.07854 508.9 0.00553 2600.7 4.75353 0.06708 0.10007 240.69 1870.3 0.01005 1798.4 860.852 0.01402 0.43765 44.63 0.16317 0.06084 0.07853 826.96 0.00266 2256.453 0.49358 2459.4 121.91 11.75 20.09 0.01129 79.36 0.37755 0.67262 0.10412 420.5 223.12 0.00844 1685.354 0.60775 552.9 491.87 0.00994 15.13 0.62227 0.24665 0.07638 393.2 0.01122 352.96 4.48146 451.3 38.31 0.01837 1061.9 129.88 0.29679 0.07181 0.17115 132.35 227.91 0.00783 0.49232 1041.2 0.00872 0.1277 423.7 433.8 47.63 0.01601 0.1193 0.0839 1102.6 57.55 2.85906 0.23923 4.5 1713.6 0.00685 371 69.31 41.22 0.06961 999.7 0.00795 6.5 0.48198 0.58656 375.3 310.28 1700.5 0.00476 419.7 59.76 19.5 0.02044 0.2999 508.3 54.12 0.10463 270.21 0.3487 0.00797 29.2 1973.2 1476.8 435.6 0.14176 6.65172 129.43 0.38053 123.15 0.00531 433.7 43.46 48.89 0.30463 2539 0.00376 0.00618 3.15336 425.3 171.14 2270 0.2997 515.6 42.28 0.17409 33.75 -0.1 1753.3 28.99 562.2 4.5221 0.02925 40.03 479.6 110.9 114.99 0.49054 0.21943 1025.3 0.00675 355.5 69.25 87.05 453.8 1.2968 0.54862 296.68 0.01071 1236.9 1060.9 3083.4 0.58763 7.6 0.31952 0.40846 326.8 1227.2 454.85 0.00499 1539.2 98.9 178.52 0 617.43 35.98 4.86373 427.4 1.32717 980 106.68 369.6 0.0135 1.27811 233.03 28.91 121.73 0 -1.1 1727.4 388.4 0.7 187.92 1938.5 1469.7 0.121 20.76 0.11883 0.00901 1751.7 299.11 393.5 4.335 27.38 436.8 143.88 1273.6 1.82471 142.56 71.26 446.3 1.8936 2301.6 0.8 0.19453 413.3 11.59749 0.1 1734.8 1715 939.18 115.11 86.23 -2.7 46.56 159.95 181.04 749 7 993.94 4.6731 430.6 0.57043 0.18048 132.86 424 1393.6 528.9 1011 23.59 367.6 124.49 -2.7 1.39795 1539.4 67.03 31.19 1625.4 1160.2 39.84 49.52 -1.2 418.6 1776.7 -6.4 227.17 1.8 0.47801 109.22 20 380.8 1698.9 2064.8 1061.9 43.85 1105 356.81 368.6 1421.2 52.53 61.21 16.21 149.96 377.99 2569 407.3 -0.7 307.42 1727.5 482.1 205.7 109.82 67.76 1675.4 1945.8 -1.8 54.12 47.57 74.91 116.44 1371.2 41.12 433.8 50.72 406.5 11.4 119.79 -0.6 519.3 -2.1 1798.4 108.65 86.81 1690.8 151.09 75.81 -1.8 101.61 854.6 399.4 89.84 100.12 2066.2 1714.2 303.7 227.91 1445.8 22.64 1034.6 71.19 -0.3 31.57 145.05 1.2 2.9 1713.6 -3 1735 2573 205.34 38.11 172.09 -14.1 1787.4 52.92 165.2 99.86 27.41 469.4 444.1 -3.5 171.14 1796 244.04 2.1 -20.9 58.4 836 44.01 1700 -12.9 1054.4 2 1236.9 79.34 76 327.9 2.6 2572.5 1762.4 143.88 86.7 108.57 64.88 1751.7 1273.6 1.9 -4.6 -0.8 112.68 85.55 132.86 -1 28.1 124.49 6.9 -0.2 9.3 1160.2 205.7 10 0.12235 0.00478 0.34062 0.00741 5.51431 0.46424 1990.7 67.93 1889.6 35.65 1902.8 72.36 5.9 p

Sam

250 e± Ag 1045 46.41 1480 55.56 858.7410.8 11.75 416.7 6.25 6.32 382.1414.1 3.07 981.4 8.97 413.9416.3 65.3 441.4 4.3 4.56 13.56 415.7 4.75 416.6 6.72 1594.92669.2 20.22 1481.6 9.74 34.52 1585.81193.71932.3 74.7 2692.7 52.36 1778.2 35.08 1765.9 15.03 1073.9 14.87 40.3 88.75 1128.91280.6 38.72 2568.31945.6 39.99 1265.9 36.64 19.04 18.29 1034.11643.9 43.43 38.97 2633.51251.2 30.16 115.23 1637.51109.82797.9 81.81 96.72 1498.2 86.6 81.68 ) % ( es Ag ) e 1/2 g Pa ( Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Disc Ratios le TS2 -le 27LB05 12345 0.190896 0.055087 0.098448 0.181789 0.00486 0.20126 0.00181 0.0927 0.00107 0.05521 0.00107 0.08979 0.44606 0.00132 0.09797 0.06661 0.26951 0.0017 0.00293 0.45996 0.00822 0.00854 0.48353 0.00079 0.00401 0.00153 0.23778 0.06675 11.55612 0.00177 0.20225 0.00217 0.49265 0.26342 3.53525 12.35946 0.00218 0.00111 0.83146 13.75193 0.00815 0.01822 0.00434 0.06999 0.18755 3.16731 0.53969 0.24386 2.23334 2749.8 3.85175 415.3 0.03159 0.1031 1594.9 2669.2 0.29658 2836.4 0.25053 41.26 71.3 420.6 20.22 1481.6 1420.9 9.74 2377.7 10.64 1585.8 1538.3 415.7 113.94 34.52 2439.4 171.77 36.63 2542.6 74.7 7.75 4.75 416.6 1375.2 1187.4 2569.1 7.8 9.44 1507.3 1535.1 11.33 43.69 6.72 406.7 67.24 2632.1 2732.8 22.14 15.67 1449.2 1191.6 12.39 438.2 16.2 14.25 16.79 1603.6 25.12 93.14 4 20.83 -0.1 10.3 12.5 52.43 2749.8 18 8 41.26 1 5.6 2836.4 1420.9 10.64 171.77 p 1011121314 0.0719315 0.0798716 0.1184117 0.1843818 0.01418 0.1087319 0.00216 0.10820 0.00235 0.075221 0.00169 0.10414 0.1759822 0.00089 0.06739 0.1900223 0.19316 0.3351924 0.00241 0.05499 0.00342 0.00847 0.503125 0.00142 0.29013 0.0773 0.0022126 0.00334 0.0551 0.0038527 0.00348 0.08349 0.29727 2.33873 0.1733128 0.00321 0.00273 0.17108 0.26013 0.00129 2.2298529 0.11929 0.14249 0.00152 5.5735930 0.08286 0.47064 0.00347 0.0032631 12.93802 0.00173 0.57684 0.05428 0.0028 0.0658 4.60679 0.001832 0.10444 0.0038 0.0923 0.00208 0.2038133 0.00128 0.24659 0.0548 0.00614 4.59229 0.0667734 0.00079 0.33288 0.07373 0.21843 1.7166235 0.00103 0.00135 0.07333 0.10107 3.87116 983.8 1.35507 0.4768336 0.00169 0.00126 0.07184 0.33055 12.1519137 1193.7 0.20134 0.00105 0.05471 0.19437 1932.3 0.00395 0.0019738 0.10186 0.00161 0.05541 0.49242 0.06106 2692.7 0.0959139 0.00736 0.00215 0.08024 0.17791 2.17009 0.25725 1778.2 0.00206 0.6243240 0.00235 356.78 0.05587 0.50105 0.00088 2.59169 0.0663441 0.00154 0.08074 52.36 0.15653 1765.9 0.02675 0.00051 35.0842 11.13186 0.00176 0.21441 0.27388 1073.9 0.06391 0.00163 5.11388 15.0343 1699.2 0.00326 0.19774 0.14661 0.03153 849.9 2.27572 14.87 104544 2769.2 0.00148 0.00447 0.08475 0.10073 0.06631 0.00135 0.4582845 1121.5 0.01836 0.68811 0.07656 0.06671 1863.5 0.00289 3.6312146 40.3 0.01505 0.11539 0.19656 411.6 0.49387 2627.1 0.00187 88.7547 1128.9 0.01324 0.03462 0.08817 0.53015 24.95 0.07087 1642.2 0.00071 1.67966 46.41 0.00456 0.01267 0.09211 416.3 99.66 29.25 0.21421 1280.6 0.00075 11.96 4.04235 0.00383 0.07956 18.61 0.09351 0.50794 2568.3 0.00602 1.42439 1677.8 0.01073 13.76 0.08185 0.47988 1030.3 1945.6 107.25 0.04203 0.00225 0.50164 1490.5 0.09684 0.0115 38.72 6.44 0.0502 0.28211 1224.1 1265.9 0.50466 0.0217 2486.4 0.00754 0.15925 1190.5 858.7 0.19882 12.47079 0.02618 382.7 127.3 39.99 0.00415 0.06167 1912 0.48799 1704.5 17.24 0.02261 0.55589 2675.1 36.64 0.00376 15.36 0.01631 410.8 0.00653 9.19 19.04 0.28782 175.43 1195.7 0.01178 0.01813 2.17142 1750.5 0.25808 12.53785 404 0.00463 0.65741 26.91 18.29 29.02 1034.1 11.75 0.23605 10.56861 1273.6 1643.9 0.01806 416.7 0.05381 38.09 1747.9 0.17606 24.25 2513.4 54.8 1014.8 981.4 4.12058 21.97 0.0186 6.25 0.33977 0.79702 0.01084 2.53009 1607.7 400.1 2.07992 9.03 1841 -6.7 13.28 2616.2 11.54123 0.00513 428.4 1145 1.8984 869.7 2633.5 10.45 153.76 43.43 6.6 0.00378 6.32 38.97 36.56 0.35643 32.13 38.07 1475.7 4.1 0.02136 4.14865 382.1 446.8 3.29374 0.16517 3 19.99 406.6 65.3 1.68014 1171.5 2.70163 9.96 2939.1 48.2 8.7 1215 61.5 1298.3 414.1 1.9959 4.77 34.6 937.5 68.83 30.16 1560.5 2807.6 7.29982 2534.2 412.4 0.48306 5.7 1.1033 8.38 1637.5 3.07 4.4 168.83 0.19942 20.47 1109.8 18.2 13.7 881.9 1838.4 2797.9 109.1 23.96 0.14401 12.3 413.9 392.13 1204.8 8.97 2587.4 2.74283 416.3 14.6 57.59 7.5 -1.1 105.44 21.33 1556.4 1469.5 441.4 81.81 383.1 1386.2 1498.2 10.49 19.16 -6.5 96.72 2647.8 1251.2 0.2 10.73 86.6 25.96 1699.2 0.6 4.3 2526.7 431.9 1642.8 4.56 1242 1564.2 1000.9 2769.2 2.6 17.44 -0.1 13.56 148.01 1602 8.82 231.69 111.91 899.2 115.23 81.68 1169 24.95 6.2 2640.5 98.49 10.4 2562 32.07 27.89 29.25 19.02 412.8 414.9 212.16 87.48 1480 1630.6 15 448.9 2645.6 32.82 1171.9 25.83 1366.1 0.2 24.92 49.55 2486 78.24 1885.6 -2.6 11.03 5.7 12.23 1045.4 10 93.11 189.76 55.56 35.12 255.18 1658.4 26.73 1142.2 10.8 1704.5 2.1 102.75 166.62 2567.9 20.72 -3.6 1663.9 2.9 1479.6 70.68 12.1 -3.3 1328.9 1.3 54.45 21.97 2148.8 136.03 12.1 1114.1 217.59 114.23 2.4 54.7 335.55 2939.1 -5.8 10.2 48.81 -20 -0.8 2807.6 109.1 -23.7 9.8 105.44 17.1 1386.2 1564.2 231.69 1242 212.16 87.48

Sam

251 4 4 35.7 4 e± 406 23.38 Ag 1541 163.42 1728 111.16 2921 80.39 428.7 45.26 425.3996.7 26.36 40.33 496. 501.5393.6 20.65 469.6 15.5 32.7 1687.5 44.06 1863.1 99.01 1790.9 80.12 1338.81524.7 136.9 1126.4 149.2 131.89 1436.91864.2 85.16 2696.1 94.88 1456.4 76.19 1299.8 78.96 72.27 1808.2 82.12 1784.51897.5 156.05 2806.6 151.56 124.21 1140.31912.7 38.77 104.66 ) % ( ± es Ag ) e 2/2 g Pa ( Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Disc Ratios le TS2 - TS2 le 27LB05 p 60 0.05547 0.01927 0.06876 0.00757576 0.39888 0.1006 0.09483 0.14846 0.00874 0.00789 430.9 0.25343 0.28614 0.0112 630.57 0.01171 3.05742 3.94855 428.7 0.45596 0.60554 45.26 1635.2 1524.7 340.8 107.76 153.26 149.2 1456.2 1622.2 0.5 57.61 58.7 1422.1 1623.7 114.1 124.25 12.2 -7.2 1635.2 153.26 6162636465 0.1078766 0.0956667 0.1032168 0.0789569 0.05557 0.007670 0.00878 0.0810471 0.00606 0.1139472 0.01287 0.07069 0.2733373 0.01181 0.11923 0.2486874 0.00436 0.05495 0.29924 0.00646 0.10949 0.23223 0.00995 0.00701 0.08422 0.01109 0.068277 0.01139 0.10827 0.18029 0.0088878 0.01115 0.08603 0.01626 0.316679 0.00495 3.79945 0.1672 3.2622980 0.00437 0.00976 0.00442 0.2753 4.3279281 0.00608 0.09088 0.06501 2.4835 0.00936 0.00638 0.32181 0.0772 0.50668 0.52254 0.52527 0.10579 0.0073 0.16845 1.88225 0.01448 0.50147 0.18513 0.26636 0.00386 0.01381 4.90323 0.05731 0.00704 0.2119 0.7142 0.12392 0.00873 0.00534 1.6573 1763.7 0.15676 0.00665 3.97818 0.00739 0.51762 1541 0.01661 0.29856 1682.7 0.53119 4.76567 0.00718 0.01171 0.17354 1.7457 0.30312 0.24297 0.69826 3.79925 1171 123.44 0.11551 434.9 0.38779 1222.4 0.02227 0.38265 2.89903 163.42 0.08004 104.54 1863.1 0.00534 0.29937 0.00933 0.37621 1557.7 0.02232 4.12156 1944.7 948.4 292.57 414.75 0.36629 102.24 0.00598 1431.7 410.2 1687.5 1.7707 1790.9 5.19647 99.01 7.22399 1297.6 50.37 1.24118 1770.5 1346.2 0.60265 1068.5 161.57 425.3 57.23 190.64 44.06 1338.8 0.18662 399.34 0.62637 80.12 1773.1 1.37575 1592.6 210.07 0.14441 85.06 1567.7 24.14 99.27 1444 1472.1 26.36 996.7 1698.7 136.94 406 1126.4 1798.6 45.81 1728 107.19 1003.5 2699.4 1267.2 73.22 1074.9 124.48 1522.3 503.2 95.57 428.7 40.33 264.97 1238.9 34.33 1802.8 23.38 131.89 13.1 48.17 208.18 111.16 140.95 1629.8 55.22 37.62 7.9 1684.2 82.49 992.3 396.32 -0.3 38.2 1778.9 91.37 1031.6 423.6 1706.8 1025.6 2112.6 142.42 -16.6 1592.6 110.54 13.7 1763.7 496.4 92.84 1381.7 2.3 67.39 29.35 77.28 110.71 5.5 46.18 103.68 123.44 21.8 1658.6 79.6 35.7 1171 95.39 -5.5 1222.4 1034.8 -0.5 2139.5 24.5 1852 1.1 246.07 292.57 102.24 15.7 1944.7 68.39 478.9 169.86 8.2 102.64 -18.9 161.57 1297.6 91.49 1770.5 25.4 9.1 210.07 1.4 1444 99.27 1.4 2699.4 264.97 140.95 4849505152 0.0905453 0.11454 0.1013955 0.1847656 0.00415 0.0914857 0.2077758 0.00619 0.00462 0.082759 0.00875 0.05715 0.25991 0.00389 0.07006 0.02405 0.05458 0.34585 0.32741 0.11054 0.51324 0.00591 0.01064 0.00679 0.23589 0.0566 0.00333 0.44549 0.01023 0.00768 0.00621 0.01555 3.15062 0.2234 0.00513 0.08091 0.0049 0.17503 0.03721 0.01085 5.59416 4.80529 0.06296 12.44789 0.25107 0.01372 0.00346 0.2913 2.7281 0.00371 9.50178 0.07557 0.42802 0.6458 0.00256 1.5452 2.32658 0.61339 0.00695 1436.9 1.68064 0.19423 0.00546 2.90778 0.53574 1649.7 1864.2 0.48937 0.08667 4.19193 2696.1 0.12173 0.54654 85.16 0.07161 1456.4 2888.2 0.35053 82.16 94.88 1262.1 0.12109 496.9 76.19 1489.4 930 176.43 78.96 395 1825.8 1914.7 1808.2 2670.4 232.62 242.95 30.24 475.1 2375.2 1365.3 94.75 37.29 49.01 236.78 1299.8 66.24 82.12 1445.2 501.5 165.93 376.39 25.56 1039.8 1785.8 1915.2 393.6 72.27 2638.8 1648 61.42 20.65 2387.7 469.6 1336.1 20.35 74.86 99.44 116.67 1220.4 15.5 281.14 485.7 34.7 -4.1 32.74 52.9 1001.2 -12.3 149.37 -3.1 1.2 435.6 21.2 54.54 1672.4 442.7 46.11 6.9 -3.3 1649.7 47.34 68.55 -1 79.5 2888.2 -12.8 82.16 0.4 176.43 10 1.2 930 94.75 8283848586 0.1091187 0.1031588 0.1161389 0.1976290 0.00985 0.1244791 0.00715 0.21201 0.01031 0.07658 0.01569 0.30779 0.1211 0.01348 0.11573 0.24563 0.01083 0.08249 0.32262 0.00643 0.52905 0.01457 0.00824 0.01378 0.2874 0.00835 0.53531 0.01491 0.02687 0.02713 0.1935 4.77117 3.32753 0.34542 0.01571 0.37513 0.01323 5.05818 15.05462 0.2332 0.00718 0.82792 0.02184 4.23048 0.3929 0.01375 14.3892 0.89815 3.25853 0.03289 2.32926 5.54715 1784.5 0.86547 6.73531 1.3934 1681.5 2.71242 1897.5 0.31378 2806.6 1.28364 0.99233 156.05 2021.3 1.4751 122.79 2921 151.56 1110.4 124.21 1972.4 1729.8 1891.2 180.44 1415.9 1802.5 1257.3 2737.4 80.39 159.14 71.84 1628.5 124.36 190 42.65 72.68 114.39 1140.3 531.59 2763.8 1779.8 2053.5 78.69 1912.7 1487.5 1829.1 2818.7 1351.3 38.77 55.54 145.66 64.47 104.66 1680 92.19 150.53 206.09 171.95 1221.3 2775.7 3.5 2077.3 1907.9 168.01 17.6 1331.9 5.7 3 91.94 95.7 130.26 199.08 403.45 22 1681.5 6.6 -2.9 -10 3.5 -8.3 122.79 2021.3 1891.2 180.44 1257.3 124.36 531.59

Sam

252 APPENDIX B Detrital mineral, whole-rock, and conodont fossil data collected from samples in Chapter 3 are presented here. Detrital zircon interpreted ages with ~ <10% discordance are indicated in bold type.

Table B1 – Location data for detrital zircon samples in Chapter 3. ------

Table B2 – Location data for whole-rock geochemical samples in Chapter 3. ------

Table B3 – Location data for Ar-Ar samples in Chapter 3. ------

Table B4 – Location data for Nd isotope samples in Chapter 3.

253

e± 405 13.97 452 5.23 Ag 3319 99.52 670.3 17.03 424.8572.2388.1 20.42 33.92 20.33 448.7584.9 10.67 8.73 405.1638.1 3.78 10.92 437.1 2.75 1407.71890.31259.6 69.83 1483.3 45.83 1096.9 93.01 1578.9 16.33 50.23 31.94 1201.92055.91194.1 27.76 15.97 1147.5 60.44 1012.62025.8 25.34 1827.4 87.84 17.2 30 1522.11657.8 119.41 91.86 ) % ( es Ag 5 Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Disc. Ratios le JL1le - 17LB0 123 0.070044 0.131415 0.110436 0.00564 0.0757 0.09378 0.025778 0.00761 0.09479 0.17999 0.10183 0.00776 0.4407 0.0211 0.062 0.28507 0.08201 0.00624 0.00521 0.00594 0.16964 0.21545 0.05239 0.01363 0.00388 0.01054 0.24794 0.31425 1.84812 0.00639 9.33815 0.17503 0.10958 0.0256 4.24958 0.00778 0.00761 0.2173 1.83713 5.01436 0.01069 0.00293 0.54477 2.4066 3.05611 4.50191 0.22195 1.81147 929.4 0.94998 0.33123 2116.8 1.15776 1806.4 0.36806 0.41543 1503.7 0.08208 157.09 308.67 1522.1 1068.5 120.24 1657.8 1245.6 148.7 1066.9 2353.8 674 1616.8 119.41 481.23 91.86 32.43 1010.2 295.01 234.4 52.87 1427.8 1257.8 128.35 1761.6 1062.8 35.21 2371.8 1039.8 1683.7 40.17 135.79 670.3 37.33 1058.8 77.47 58.62 492.5 1421.8 1244.6 105.37 17.03 1731.3 1049.6 -16.1 79.43 -13.4 11.9 345.08 82.92 678.1 67.93 150.04 35.4 -19.5 929.4 2116.8 1806.4 6.9 42.74 -7.2 17.9 1503.7 1068.5 157.09 308.67 120.24 0.6 1245.6 148.7 481.23 295.01 p 111213 0.2722414 0.074815 0.0986416 0.01793 0.0554817 0.05922 0.0070118 0.05475 0.0119919 0.65396 0.09174 0.0083320 0.01023 0.07758 0.1564921 0.11567 0.00802 0.2470622 0.06812 0.01119 0.08259 0.0228523 0.09283 0.00969 0.17527 0.0060324 0.06206 0.09278 0.00299 0.0141725 0.24405 0.07607 23.72461 0.00405 0.0033826 0.00147 0.00575 0.1472 0.097627 0.33419 0.05578 1.45643 0.00335 0.0008 3.3077228 0.05592 0.00194 3.32283 0.20774 0.01348 0.4813329 0.05958 0.30693 1.16907 0.00168 0.0076330 0.00495 0.47799 0.0802 0.0037 0.19039 0.2568931 0.72754 0.18636 0.00172 0.12693 3.16029 0.00491 0.0851932 0.07988 0.00234 0.00141 3319 0.26646 0.27072 1.6461833 0.05486 5.58843 0.08486 0.00114 0.07209 0.0010334 0.07264 0.06097 0.00115 0.0022 0.62457 2.4134435 1063 0.07803 1598.6 0.09497 0.0025 7.3490736 431.5 0.29292 0.07295 0.00139 0.0024 0.32373 0.21088 3.35034 0.00177 575.237 99.52 0.12479 0.35435 0.00087 0.0031 1.86033 401.9 0.20171 0.05546 0.00148 0.001 0.19574 1461.8 0.11347 0.11171 0.00325 0.06486 177.95 211.2 3.87662 0.00139 303.87 0.00122 0.58313 1136.1 0.0454 0.00156 0.5771 0.10404 3243.7 1890.3 336.95 0.00093 0.073 0.72169 0.00285 298.42 0.00187 0.19521 1259.6 0.16289 0.00062 215.74 0.12645 937.2 1423.3 0.36446 2.37801 2608.6 0.04481 6.37118 424.8 89.04 0.00187 0.07016 230.42 0.0208 1483.3 572.2 45.83 0.03453 0.32308 2.11318 0.00314 0.48558 0.0011 388.1 1407.7 1096.9 73.23 0.00162 93.01 33.61 0.05269 3257.1 0.09702 1578.9 20.42 0.83428 0.00046 13.86 885.2 443.3 33.92 0.00285 0.10417 1858.7 1.69761 16.33 0.01393 2.06531 20.33 69.83 449 1482.9 588.4 6.21141 912.5 1216.8 50.23 0.53089 0.05055 136.46 1201.9 399 1725.6 42.89 2055.9 31.94 4.83197 786.2 23.91 0.11176 141.23 1447.5 0.03831 396.7 1473.9 1194.1 0.09034 171.49 406.4 26.2 0.01017 1101.6 66.97 83.1 78.7 2.9 988.1 6.93 0.15267 1914.3 27.76 638.2 1544.5 58.39 124.73 15.97 448.7 5.26 152.44 1012.6 12.2 1147.5 60.44 2025.8 58.3 1246.6 11.96 2154.8 12.7 430.7 54.8 584.9 452 12.2 1233.5 112.4 49.89 1827.4 0.5 105.72 1955.4 1.6 10.67 1492.9 4.1 1067.1 87.84 1598.6 1152.4 25.34 3.5 17.2 60 1608.8 8.73 7.37 13.8 23.6 5.23 405.1 36.28 1.9 7.43 466.5 1063 638.1 10.6 30 15.35 25.91 972.8 1149.5 211.2 2003.3 551.7 1236 26.33 3.7 462.6 38.5 2028.3 3.78 1136.1 10.92 437.1 177.95 28.74 1153.1 0.7 17.41 -0.5 1804.7 5.91 7.66 401.9 2.4 20.37 13.36 2608.6 2.75 13.39 616 15.84 230.42 -1.3 33.97 13.87 1007.6 1137.4 2006.1 432.4 0.6 -0.7 5.7 -2.9 9.52 1790.5 13.86 27.98 3.8 42.06 12.69 12.72 6.74 26.58 0.3 4.2 0 -0.2 1.3 1.4 -1.5 10 0.05476 0.0053 0.06484 0.00231 0.46245 0.05415 402.5 203.32 405 13.97 386 37.59 -0.6

Sam

254

45 4.12 13.38 14.05 38.07 6 e± 4 4 4 4 95 52 73 92 Ag 190 1163 58.87 17201018 56.05 21.61 600.1363.3 6.06 633.1 9.15 338.4376.6 5.78 3.13 478.2 7.05 669.7560.6 3.24 30.24 11.49 681.4648.2451.5 23.99 29.67 876.1985.5 7.46 12.61 440.2470.1 14.4 20.44 10.03 405.1 6.03 1130.61504.21379.31938.4 31.17 16.6 1338.4 36.43 19.86 1515.1 51.1 46.34 2005.21114.81580.31606.4 22.27 38.31 31.39 1595.4 44.41 1284.91634.71750.4 23.23 1558.11690.2 35.26 82.53 64.66 1925.1 36.11 1309.3 53.8 52.97 42.43 1637.51303.82059.2 90.88 2030.8 178.15 1625.6 37.66 1932.5 28.19 1945.3 45.57 1092.1 72.02 33.13 1781.41059.8 33.67 2029.61992.21179.5 25.09 1000.3 91.96 2967.9 45.68 1478.7 45.61 1475.1 44.39 1484.7 59.74 22.72 79.94 78.04 40.74 ) % ( es Ag ) e 1/3 g Pa ( Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Disc. Ratios le JL2 -le 29LB05 2456 0.077367 0.09388 0.059959 0.0878610 0.00122 0.1188111 0.05384 0.0008312 0.00156 0.0853213 0.0876 0.00169 0.07088 0.209914 0.00133 0.0943515 0.24918 0.00371 0.09756 0.0608916 0.00202 0.23498 0.0754317 0.00159 0.00746 0.33078 0.00158 0.0532418 0.00118 0.05797 0.00103 0.00235 0.0579619 0.19507 0.00234 0.00143 0.0540520 2.28971 0.23074 0.00223 0.00169 0.123351 0.14502 3.15133 0.00138 0.07675 0.81504 0.00152 0.24531 0.00228 0.00119 0.097683 2.9369 0.10319 0.06402 0.00976 0.00278 5.260824 0.15717 0.00144 0.0566 0.0531 0.00156 0.027595 0.00327 0.09905 0.42722 0.0539 0.00149 2.148996 0.08468 0.00099 0.06176 0.10745 0.00166 2.802867 0.1352 0.06016 0.00161 0.05859 1.4069 1130.68 0.32676 0.09847 0.03364 3.2279 0.00051 0.00098 0.086639 1504.2 0.18242 0.00069 0.00239 0.06367 601.9 0.90375 0.4501510 0.27423 0.00116 0.00733 0.08368 1.64918 1379.3 0.0471311 0.00249 0.00314 0.10057 1938.4 31.17 0.40526 0.1580512 0.00168 0.00123 0.10709 0.68035 0.02821 0.077 364.4 0.09653 0.271113 1322.7 0.00255 0.00294 16.6 0.48203 0.05743 0.10948 55.23 0.1036314 1373.8 0.00153 5.32056 0.09086 36.43 1228.3 0.06815 0.0119515 0.00459 1.92236 0.01766 0.28863 19.86 954 0.1166816 0.00054 1515.1 0.00344 0.00387 3.75217 0.02897 0.12059 1434.2 0.00188 0.11793 635.3 148.23 0.005217 600.1 45.23 0.15248 0.20306 0.00195 0.00308 1360.5 0.08473 8.49 155.5718 1080 0.0615 0.27921 1842.2 0.06236 0.001919 0.003 0.59533 3.75124 338.9 0.1314 0.29567 0.00233 0.06095 6.08 527.820 0.0025 363.3 0.25492 46.34 1148.8 0.89482 6.06 12.24 0.00182 0.00355 1338.4 0.08133 1209.1 4521 0.7124 0.27959 49.62 373 10.79 2005.2 0.00689 0.00187 0.0786422 0.01275 3.95694 0.17353 44.34 0.00597 0.00598 0.05629 1.15995 1445.323 0.15412 12.31 1114.8 0.00259 1414.2 0.13352 9.15 1391.5 0.32502 57.56 605.3 0.00722 0.10072 2.36062 19.76 51.124 1580.3 0.34969 0.00455 44.78 1862.5 633.1 0.0464 0.00166 0.06862 3.7603825 0.23088 873 0.09213 22.27 0.00238 0.08449 4.25163 0.07241 12.99 111.426 1164.7 16.94 941 0.00252 0.11149 3.31473 27.71 1606.4 0.00398 361.2 0.00245 475.2 0.07342 15.43 -9.527 1356.3 338.4 0.0707 0.10579 0.00618 38.31 3.74567 21.93 0.00508 665.7 0.12717 0.32976 5.78 52428 0.17079 0.00248 31.39 0.00245 1822.7 0.12514 0.30669 27.9329 1463.9 5.2 8.1 0.00414 376.6 551.7 1.54632 0.11808 0.2174 1595.4 1.5 0.00822 120.19 0.05572 5.20737 23.9330 0.3 0.07255 0.00509 1080.2 730.7 3.13 5.62595 0.21336 9 5.7 44.41 0.00258 0.0564131 38.09 0.25989 0.00167 653.7 1562.3 2.56043 4.12 1284.9 12.11 0.00275 0.10008 14.3 235.67 37.9632 1634.7 0.14557 0.09473 0.96673 7.05 2.9 0.00318 891.9 0.00201 0.11842 0.2396833 0.3 1750.4 0.20376 0.00124 112.95 0.80833 0.37757 9.17 1558.1 23.23 345.5 0.00734 1546.4 0.1053334 12.91 0.16518 0.00671 989.2 2.00896 0.09511 15.05 478.2 1872.2 1690.2 0.00317 0.11927 94.835 669.7 7.4 0.39221 0.00224 527 0.11802 35.26 0.00249 0.05477 2.56505 399.5 19.8836 0.34726 82.53 0.51501 0.11849 0.0089 1088.9 560.6 17.46 0.00488 1634.7 0.0758937 1582.6 8.64 0.07068 873 64.66 3.43663 0.06413 0.0026 1906 22.01 0.4 1925.1 36.11 0.00328 24.5 3.24 0.1037938 30.24 0.07566 0.00513 1.37826 1309.3 0.00224 1191.7 10.67 0.07544 734 0.13251 53.839 19.84 9.1 0.30098 0.00323 1587.4 0.02586 21.37 1322.7 1582.4 11.49 0.00236 0.10892 2.22797 686.5 28.0740 9.5 0.35131 1669.8 0.32008 13.8 0.0034 0.2 0.00129 1463.8 0.07467 1.65305 637.5 10.4 41 474.3 0.29008 0.00167 7.33506 0.06935 649 1229.4 52.97 0.00329 0.12506 88.53 9.75 38.07 0.742 34.75 0.35305 0.00406 13.38 1589.3 5.93546 37.08 -1 3.4 546.2 42.43 0.00384 0.12245 0.3306743 45.23 29.69 1.3 0.06487 0.00836 1625.4 1163 13.29 0.00151 0.07929 0.50128 0.08649 463.1 192.3944 0.19375 0.00501 0.62675 0.38157 8.12 1637.5 0.00352 1933.1 0.07251 236.37 1230.8 1814.245 1584.3 71.55 22.94 0.25314 0.00385 0.20338 781.9 924 4.0402 4.2 0.00328 1339.1 0.21826 27.51 887.4 39.546 1684.1 0.17107 5.50905 18.87 1484.5 0.001 0.00319 0.09256 0.0742947 681.4 1303.8 0.29423 0.00154 4.00958 29.52 0.00181 -0.7 0.09238 19.35 0.042 58.87 21.36 70.34 1581.2 648.2 -0.6 1025.5 0.16098 0.00435 5.54184 94.3 34.04 2059.2 90.88 0.00217 1080 0.09272 0.19819 -1.7 14.05 0.36478 0.00393 59.3 1016.5 13 0.50974 -2.8 27.79 2030.8 0.08522 0.0031 23.99 0.33706 0.00219 72.15 0.50303 1.98913 0.25299 1920.1 1853.8 178.15 45.65 1268.1 7.9 29.67 3.3 0.18645 0.00322 0.004 440.8 3.48486 0.22044 -0.5 0.00389 1489.3 451.5 0.17007 0.00575 69.58 44.34 1.85544 9.19 949 5.2 6.8 1289.4 37.66 0.00564 467.8 1625.6 0.00518 686.8 0.02476 4.36822 0.05287 57.86 876.1 0.55445 1932.5 39.21 28.19 0.00386 1195.5 16.83 6.7 0.00198 601.5 0.20522 1.6513 34.36 1720 0.27273 0.00226 7.46 0.14655 0.2518 269.31 1118.5 985.5 6.2463 1945.3 27.12 2133.1 37.78 5.42153 0.11421 60.93 -0.5 12.61 0.259 47.68 0.00544 1290.7 1921.5 5.5 120.72 0.25308 45.57 2.07943 66.53 1512.8 1092.1 72.02 402.7 0.11318 0.00613 1.66904 21.64 440.2 23.76 0.00543 -2.5 421.8 0.37079 14.4 -6.3 1693 0.30479 56.05 1189.9 15.73072 0.8 15.44 1080 p ______lb29 lb29 lb29 lb29 lb29 lb29 lb29 lb29 lb29 lb29 lb29 lb29 lb29 lb29 lb29 lb29 lb29 lb29 lb29 lb29 lb29 lb29 lb29 lb29 lb29 lb29 lb29 lb29 lb29 lb29 lb29 lb29 lb29 lb29 lb29 lb29 lb29 lb29 lb29 lb29 lb29 lb29 lb29 lb29 lb29 lb29 lb29 lb29 lb39 lb29 lb29 lb29 lb29 lb29 lb29 lb29 lb29 lb29 Sam lb29 lb29 lb29 lb29 lb29 lb29 lb29

255

e± Ag 2979 17.82 2330 61.14 109512572002 17.87 18.47 11.83 1256 35.61 1547 38.97 956.6974.8 34.85 19.01 518.2 22.29 960.2442.7842.5 32.08 422.2 6.22 11.48 11.18 995.4624.7 23.54 13.92 959.2434.5475.2 38.91 7.47 19.9 396.2 37.39 614.9373.6533.6372.6 12.16 7.9 15.14 25.51 1206.41631.31570.33039.8 54.07 1525.8 45.09 1107.2 41.71 1579.3 26.63 91.84 57.92 51.21 1649.21179.91454.11359.8 80.34 48.66 27.28 1645.9 45.43 1345.61873.2 65.71 1353.51347.3 45.4 1338.4 38.81 1925.6 41.28 1665.3 60.26 87.75 31.32 37.3 1451.41026.8 100.16 81.55 1632.41430.2 73.17 1887.7 42.96 2638.6 29.46 1702.6 12.28 1029.8 20.32 1956.61644.9 37.01 10.47 12.75 ) % ( es Ag ) e 2/3 g Pa ( Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Disc. Ratios 35 0.104336 0.070978 0.073589 0.00116 0.07161 0.00122 0.12003 0.00136 0.31592 0.00067 0.16674 0.00071 0.17391 0.00187 0.00127 0.1626 0.00145 0.3543 4.40907 1.56081 0.00069 1.70215 0.09793 0.0011 0.03962 1.60582 0.04756 5.93104 1702.6 0.022 956.6 0.06131 1029.8 20.32 34.85 974.8 1956.6 37.01 1769.8 994.1 1033.6 9.15 19.01 10.47 7.01 7.96 1714 1955.1 971.2 1009.3 954.8 18.38 5.23 3.83 17.87 15.71 -4.5 1965.8 972.5 -0.4 -4.2 8.98 8.57 0.1 0.4 24 0.076 0.082487 0.00068 0.12312 0.00079 0.18806 0.00082 0.20155 0.00079 0.36731 0.00093 1.94071 0.00133 2.38352 0.02641 6.42744 0.03687 0.08567 1095 1257 2002 17.87 18.47 1110.9 11.83 1183.6 4.27 2016.7 4.99 1095.2 6.28 1237.7 9.12 11.06 2036 -1.6 6.4 11.71 -0.9 1 0.17845 0.00133 0.50549 0.00237 12.73612 0.25081 2638.6 12.28 2637.4 10.14 2660.3 18.54 0.1 10 0.10113 0.0007 0.30986 0.00111 4.24297 0.05335 1644.9 12.75 1740 5.45 1682.4 10.33 -6.6 le JL2 - JL2 le 29LB05 484950 0.0803851 0.1003952 0.0970753 0.0578854 0.00225 0.2282455 0.00247 0.0948856 0.00556 0.0764657 0.00731 0.0976358 0.21645 0.00383 0.0932159 0.28468 0.00477 0.2197760 0.27582 0.00226 0.0720761 0.00288 0.0837 0.00272 0.1095162 0.61017 0.00367 0.00169 0.0757163 0.26497 0.00826 0.00245 0.0558664 0.18255 2.54296 0.0037565 0.0063 0.0664 0.27346 0.00743 3.67683 0.00334 0.0774767 0.20898 0.00665 3.77826 0.00362 0.1013669 0.57925 0.00254 0.12365 0.00218 0.05532 0.7497270 19.78383 0.00401 0.17038 0.16061 0.0793171 0.17505 0.00224 3.93041 0.41996 0.0019 0.00572 0.0913673 0.12656 0.00364 1.81422 0.00451 0.08697 0.11414 1.0553674 0.07108 3.81625 0.00578 1206.4 0.00417 0.0729575 0.00285 0.38896 0.13962 1631.3 0.00198 0.14861 2.5810576 17.73728 0.26299 0.00276 0.08199 1568.6 0.00132 0.1906177 0.28722 0.00103 0.20307 0.00208 0.10118 1.5160979 0.06769 3039.8 524.8 2.53072 0.00203 0.00429 54.07 0.07197 0.07739 0.4214380 0.19927 0.00911 1.18208 1525.8 0.00542 45.09 0.0863381 0.25038 0.00695 0.53078 103.69 1107.2 0.00883 0.1872182 0.0606 0.23368 0.00185 0.12652 1579.3 0.00366 0.11457 1263.183 1.3348 0.19102 0.00236 26.63 3.21998 0.07658 255.62 0.00411 0.08668 1614.984 1492.1 0.45411 0.00178 1570.3 0.02419 2979 4.1464 0.00206 91.84 0.0864185 0.47116 0.00276 0.47273 15.28 57.92 0.0817486 0.31013 0.00479 0.00364 0.06362 2.16045 987.8 3070.7 0.44364 518.2 1791.3 18.41 51.21 0.0860187 0.0025 0.16697 0.01091 41.71 3.14737 1087.5 0.00188 0.11796 1515.2 0.3723788 0.22992 0.01582 33.92 2.70625 0.04005 1284.4 0.00275 0.10224 1080.9 446.589 17.82 0.00605 29.77 1.87912 0.08758 1566.4 0.10176 22.29 0.00732 0.07431 1558.490 10.15866 1588.1 0.00426 0.07647 168.52 0.30749 1133.6 0.00402 54.51 0.05546 819.1 33.9 0.21377 1223.4 10.6724 0.10912 0.0027 35.44 0.00208 13.82 92.95 0.11274 2945.7 3080.9 0.21604 1649.2 3.84013 0.16846 36.99 0.00238 0.00209 20.32 0.05672 568.1 425.1 89.24 0.19017 1.0307 84.41 1.51322 960.2 0.00369 1179.9 0.00911 1039.9 0.22128 0.00226 10.13 1.38017 1620 140.18 1050.6 -5.2 1454.1 0.00259 2.75476 14.84 51.56 768.2 0.34407 0.00333 68.87 0.27393 1596.2 1359.8 0.00255 1.1 0.78808 66.24 -0.1 0.27279 0.00778 80.34 0.12566 442.7 32.08 1012.6 15.62 4.71083 0.0065 1295.3 0.16044 0.00498 160.1 1505.1 2.55227 29.58 48.66 2975.6 0.11323 80.1 2330 -1.3 0.06972 0.00327 15.81 2.48653 842.5 42.81 2747.5 27.28 0.05832 0.25882 1.3 1627.6 2.56687 0.0029 1280.9 1645.9 45.43 936.9 0.20136 6.22 21.94 46.49 2.47102 0.09176 114.74 422.2 0.007 2.6 22.84 0.0765 1171.4 0.00124 985 792.3 5.62499 0.8 11.48 0.1344 1.5 1440.4 1345.6 0.00315 34.79 0.39044 61.14 36.38 1353.8 3.70094 19.8 74.2 75.55 432.3 625.1 1126.9 1462 0.1916 11.18 12.67 65.71 1.4 0.00332 1873.2 1.68494 0.56597 0.19373 35.63 1353.5 9.19 1663.5 861 45.4 2413.5 112.19 14.43 4.032 0.13581 1347.3 25.92 2488.7 45.4 16.05 3 106.75 1168.4 1239.3 393.1 1741.3 0.64444 0.29745 0.03139 31.1 124.33 73.47 1444.4 1338.4 38.81 48.35 1330.2 27.67 1925.6 41.28 995.4 -36.8 1073.8 69.33 0.16959 28.14 0.9 29.76 1334.1 27.61 1665.3 60.26 0.08756 166.16 1492.1 624.7 18.72 1.5 2449.3 1728.3 29.89 1248.9 430.6 23.54 1050 -3 59.41 87.75 2495 1601.2 14.17 0.8 31.32 1791.3 0.7 1260.9 1122.3 1844.1 13.92 33.92 18.22 1.1 93.79 37.3 12.02 0.5 479.9 -12.3 935.7 1087.5 1288.6 120.06 1343.4 57.47 1906.2 100.61 17.67 42.13 228.9 1133.6 54.51 590.1 1769.2 -4.3 1287.1 40.44 1554.9 11.3 26.27 50.77 30.62 92.95 -6.6 15.66 235.67 1268.1 434.5 1291.3 140.18 959.2 33.12 35.8 26.23 14.68 1483.8 1263.6 -1.1 1919.9 0.9 111.15 39.14 475.2 1012.6 7.47 38.91 0.1 1571.6 16.12 8.8 8.5 56.05 10.3 29.69 7.1 19.9 114.74 1002.9 2747.5 455.4 29.33 1640.7 4.1 1.2 112.49 505.1 20.36 34.22 7.5 74.2 9.3 54.07 -0.9 1239.3 21.8 166.16 1 1844.1 40.44 p ______12345 0.0898 0.083867 0.054688 0.074789 0.0823210 0.01531 0.00563 0.1691511 0.02063 0.0768912 0.01753 0.1060513 0.10182 0.25251 0.0054714 0.21473 0.06005 0.0079715 0.06339 0.09101 0.0053516 0.17268 0.05419 0.01946 0.0143620 0.21511 0.00682 0.01119 0.05801 0.41599 0.00617 0.00309 0.1155 0.22769 0.01483 0.00591 0.05414 2.90931 0.22933 0.00671 0.09365 2.68584 0.0036 0.28817 0.01324 0.00457 0.45167 0.10008 0.00707 1.71003 0.00191 0.87859 0.2484 0.01436 0.01117 2.63013 0.34447 0.01462 11.90178 0.05966 0.18303 0.0051 0.00208 0.0863 2.1259 0.5865 0.33409 0.00832 2.47269 0.3212 0.0595 4.72487 2.03971 1421.1 0.0013 1289.3 0.90069 0.27121 0.00255 0.24456 399.2 0.00314 3.14454 0.53086 1.24926 1062.6 0.00419 0.47381 0.05983 295.05 1253.1 0.00768 2549.2 125.39 0.8091 4.79434 0.38057 677.68 1118.4 0.40982 1732.6 1451.4 0.03488 411.14 1657.5 3.26776 1253.9 0.07993 124.65 76.85 0.16198 605.5 396.2 0.09235 100.16 1446.6 1026.8 132.98 36.18 0.33013 229.7 190.83 1256 378.9 2242.3 1384.3 37.39 529.8 107.63 1887.7 81.55 1322.4 1324.6 119.03 376.8 1632.4 1331 60.29 35.61 1501 228.2 378.4 142.79 1012.3 614.9 37.13 94.89 1430.2 164.23 29.46 73.17 2596.7 1309.1 75.31 407.49 -2.4 128.02 219.75 373.6 1157.3 12.16 42.96 99.54 533.6 1771.7 3 1858.2 160.53 89.84 1264.1 372.6 0.8 3.6 79.44 652.1 1443.7 7.9 221.57 14.2 15.14 15.15 1547 155.22 -0.3 25.51 -20.2 31.96 1253.9 93.24 1.7 1783.9 25.6 393.8 601.9 38.97 348.7 -1.6 1.3 28.38 24.03 44.86 1473.4 36.18 2549.2 66.51 1.8 1118.4 78.55 -0.7 1.4 1732.6 76.85 1.1 132.98 -3.4 229.7 ______lb29 lb29 lb29 lb29 lb29 lb29 lb29 lb29 lb29 lb29 lb29 lb29 lb29 lb29 lb29 lb29 lb29 lb29 lb29 lb29 lb29 29 29 29 29 29 29 29 29 29 29 Sam lb29 lb29 lb29 lb29 lb29 lb29 lb29 lb29 lb29 29 lb29 lb29 lb29 lb29 lb29 lb29 lb29 lb29 29 29 29 29 29 lb29

256

18.43 17.18 27.28 4 4 4 e± Ag 184026371093 16.81 14.32 31.15 26621088 14.19 38 2343 14.12 568.4933.8 13.58 23.95 552.7433.5 3.43 2.33 432.2364.1492.5 3.59 2.09 3.67 414.1 2.92 1751.31941.71812.9 14.29 1992.5 11.12 1625.11935.2 20.66 1617.9 11.01 1977.8 12.38 1894.1 15.96 15.74 1197.6 10.33 1423.1 17.67 59.97 1678.5 13.77 1660.22019.61672.21816.8 18.14 1314.7 13.85 1557.7 14.31 1071.8 17.45 20.32 1642.8 20.34 1475.9 16.27 71.5 1844.5 17.94 1675. 14.36 17.51 1260.82765.31389.3 42.22 12.18 1204.11645.3 17.59 1909.21995.81948. 20.76 1450.3 17.03 1737.3 27 1654. 14.7 22.25 18.79 ) % ( es Ag ) e 3/3 g Pa ( Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Disc. Ratios 111213 0.1071414 0.1190315 0.1124916 0.1782917 0.00084 0.1108218 0.00074 0.1224719 0.00105 0.0759220 0.00154 0.10005 0.3199821 0.00127 0.1186 0.3815822 0.00076 0.09967 0.3298123 0.00119 0.12146 0.48485 0.0013324 0.00067 0.10269 0.33622 0.0012725 0.11591 0.36811 0.00166 0.0010626 0.00085 0.05899 0.18619 0.0026627 4.5339 0.00071 0.08003 0.29344 0.00209 6.0642528 0.00137 0.08989 5.17948 0.001229 0.35056 0.00115 0.07019 11.74049 0.29074 0.001330 0.00409 0.06623 0.34761 0.00099 0.181 4.92783 0.0697431 0.00248 0.07573 0.25712 0.0986232 0.00172 0.00065 6.10619 0.10298 0.26705 0.34814 0.0012533 0.00083 1.92799 0.10196 0.09217 0.00102 4.03932 0.1160934 0.12435 1751.3 0.19388 0.0017835 1941.7 0.00156 0.00145 5.63044 0.06777 0.10263 0.25318 0.00187 4.1122936 0.00102 0.04654 0.11106 1840 0.15245 5.86863 0.04528 0.0023 263737 0.00077 0.08497 0.00272 3.7772938 1812.9 0.00101 0.09651 0.1037 14.29 0.18438 0.00088 0.4994 0.0634939 5.3772 11.12 0.00097 0.07512 1992.5 0.29575 0.00079 0.0538840 0.00125 0.75684 0.05872 0.29571 2.05631 16.81 109341 0.0954 1625.1 0.10101 14.32 0.0009 0.36897 0.00157 1789.6 3.1815442 0.00264 20.66 0.00084 2083.7 0.10967 0.09242 0.29333 1.50276 0.001543 1935.2 1617.9 0.00274 0.06347 0.14974 11.01 0.33685 0.00109 0.10223 1837.444 1977.8 0.00095 0.05557 2548.4 0.00158 6.47 2.01596 0.03559 12.29421 0.23395 12.38 0.00098 1868.4 0.11277 31.15 5.91 1673.3 0.28164 0.00141 0.02527 4.07649 0.0007 0.1028 1894.1 0.18143 0.00206 2020.5 4.11779 8.07 15.96 15.74 0.00124 11.56 0.08952 0.26689 566.5 0.05991 1737.2 6.2728 10.09 1197.6 0.00117 10.33 1658.7 0.00079 1100.7 1985.1 0.29458 4.08601 0.0012 1423.1 0.07337 0.0011 24.43 0.00294 5.00427 5.65 0.05085 1849.3 0.25906 2583.9 1937.3 1645.2 933.8 17.67 0.42479 0.00058 0.00103 12.15 1923.2 2.70677 1807 0.10048 4.92 10.02 7.05 0.06956 0.00142 0.06906 144.11 59.97 3.73619 2662 1088 1475.1 1.94104 0.11902 1991.1 21.28 0.00091 13.77 8.19 0.3388 16.2 6.26 1678.5 0.00189 1925.7 0.73545 -2.5 1660.2 0.29366 0.04652 4.87 -8.6 1642.2 1090.8 19.89 23.95 0.00039 4.18876 568.4 1142.3 0.05556 2019.6 9.15 0.11352 1672.2 9.68 1454.8 4.1 3.36052 1920.8 1656.7 0.00167 0.2 14.19 8.92 8.65375 0.0145 1816.8 0.00146 1956.6 38 16.14 -3.5 18.14 9.12 0.52065 0.07265 914.7 13.58 14.71 13.85 1314.7 1587.9 0.03758 15.88 4.54 -1.6 12.61 1557.7 14.31 5.32873 2611.2 1881.2 0.1429 1071.8 17.45 4.09825 -0.8 7.97 1670.2 0.00847 -2.3 1134.4 1090.9 20.32 572.2 4.44 1670 556.8 20.28 1642.8 -0.1 -1.9 1452.7 20.34 2024.5 11.35 0.09773 17.46 1658.2 0.07205 1475.9 16.27 7.45 33.96 3.2 1871.5 8.54 36.69 71.5 931.5 13.2 2343 5.42 2627.1 8.64 435 1355.2 7.46 -1.9 34.78 17.94 7.05 1599.6 1649.6 1844.5 1120.9 9.95 -0.4 5 1675.4 14.36 1074.8 10.25 1657.8 20.38 6.12 -2.5 2014.7 1664.4 14.12 1651.5 552.7 6.01 14.68 20.17 30.84 16.06 1820 2.2 1485 10.09 17.51 18.43 2.3 14.03 1330.3 7.09 1673.3 13.79 2282.2 3.43 1579.2 0.6 -0.3 1095.4 433.5 20.13 -0.7 1880.9 4.65 1659.8 12.74 -0.3 1671.8 8.54 0.9 11.91 24.43 559.7 39.19 2.33 -3.5 8.03 1495.2 7.29 -3.4 14.22 2302.2 -3 -0.3 8.49 425.6 1873.5 8.75 1654 -1.5 15.03 0.8 15.68 5.66 -0.7 14.35 3.1 -2.3 0.4 1.1 454647 0.0826448 0.192749 0.0555550 0.0883151 0.00181 0.0538252 0.05702 0.0014453 0.00123 0.0802954 0.00082 0.10115 0.221255 0.00084 0.1168957 0.00113 0.5262 0.1227 0.0693558 0.00085 0.11947 0.2325959 0.00231 0.00093 0.09118 0.0581160 0.00177 0.05498 0.00202 0.07939 0.0006 0.10633 0.20714 0.00099 0.00102 0.00116 2.56421 0.10165 0.28948 0.00034 0.00107 14.16585 0.34298 0.00062 0.00108 0.53212 0.00099 2.82274 0.35198 0.09644 0.0011 0.35549 0.00126 0.43936 0.00151 0.19997 0.25968 0.00283 0.62822 0.0137 0.06634 2.26433 0.03901 0.00138 0.00171 4.03114 0.00767 0.31555 1260.8 0.29012 0.00144 0.01478 5.3511 2765.3 0.00048 0.03547 6.0573 5.89802 0.05901 1389.3 0.00156 434.1 0.00213 3.21088 0.17894 363.3 42.22 0.50952 491.6 12.18 0.08003 0.10331 1204.1 4.5816 4.16532 0.06175 1645.3 17.59 48.29 1288.2 0.01138 1909.2 34.95 2725.4 43.25 0.07958 0.11329 1995.8 1948.4 20.76 1348.1 12.18 432.2 1450.3 17.03 8.52 364.1 411.5 492.5 27 1213.6 5.18 1290.5 1737.3 1654.4 17.18 1638.9 3.59 14.7 2760.9 22.25 2.09 3.67 27.47 1361.6 5.3 42.86 1960.7 1901 6.3 433.2 1944.1 13.39 18.79 27.28 1488.2 369.8 10.36 -2.4 1201.3 414.1 495 8.12 13.58 1640.5 6.6 9.08 1.8 1642.1 7.36 1768 5.41 3.3 11.03 1877.1 2.92 1960.9 9.21 11.91 10.65 1984.1 0.5 1459.8 7.67 -0.2 -0.9 28.61 15.21 418.1 1667.2 -0.2 0.4 11.51 14.89 1745.9 -0.7 0.5 22.27 7.66 -2.9 3 14.48 0.8 -0.7 -2 le JL2 - JL2 le 29LB05 p

Sam

257

e± Ag 1670 33.33 2062 19.51 369.7 2.91 984.8773.5 5.26 657.5519.9563.3585.6 7.66 6.16 537.7 4.13 3.9 5.82 9.89 1375.21609.42355.11032.91875.7 20.28 19.41 1956.1 24.09 1065.6 41.63 1945.6 18.17 1428.6 20.41 54.1 15.48 22.45 2429.51150.91698.6 20.4 41.6 41.22 1343.62706.21935.51552.82420.2 22.89 18.39 22.43 1630.6 32.27 13.47 14.3 ) % ( es Ag Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Disc. Ratios le OG1le - 10LB06 123 0.086244 0.18595 0.118626 0.096267 0.00103 0.156698 0.05391 0.002089 0.0015 0.11692 0.00167 0.23369 0.10035 0.00125 0.10251 0.52515 0.00115 0.34197 0.00134 0.00222 0.26188 0.00078 0.44954 0.00388 0.00187 0.05903 0.00237 0.00229 2.74734 0.50128 0.00202 0.30247 13.2949 0.00048 0.29906 5.35967 0.05788 0.00615 3.5754 0.00112 9.85101 0.44399 0.44853 0.00285 0.14984 8.95801 0.12518 1343.6 0.18382 4.29146 0.01101 2706.2 4.114 0.67607 1935.5 1552.8 0.0577 22.89 2420.2 0.15982 18.39 367.3 1909.7 22.43 1353.8 32.27 1630.6 13.47 2721 1896.1 47.26 1670 33.66 7.01 1499.4 2393.2 14.3 16.39 11.37 369.7 2619.3 11.71 1341.4 33.33 8.97 1703.6 2700.8 1878.4 26.41 2.91 1686.6 1544.1 15.68 2420.9 5.56 31.54 23.92 2333.7 14.13 376.2 27.78 -0.8 17.2 1691.7 -0.7 2.3 68.94 1657.1 3.9 7.72 1.3 11.07 -45.4 31.73 -0.7 -5.1 -1.1 1909.7 33.66 p 101112 0.0876713 0.0992115 0.150816 0.0736917 0.00093 0.1147418 0.00104 0.0722619 0.11999 0.0021420 0.00154 0.24408 0.0748921 0.00116 0.28941 0.1192922 0.00095 0.09015 0.4410923 0.00124 0.00138 0.17576 0.0653224 0.00205 0.32737 0.0015 0.0614425 0.00104 0.16506 0.00382 0.057926 0.00165 2.93501 0.00107 0.31917 0.1273727 0.00169 0.00162 0.18814 0.05889 3.8908528 0.00095 0.00148 0.36967 0.05949 8.8668529 0.05372 1.83581 0.00191 0.25256 0.15754 0.0012230 0.00232 5.20789 0.00142 0.12749 0.05808 0.07528 1.60808 0.00152 0.00107 0.10737 0.07816 0.33973 0.06146 0.00141 5.13618 0.00155 0.10411 0.08399 1375.2 0.10553 1.85324 0.00134 0.00191 0.38222 0.00106 6.16229 0.00285 0.09131 1609.4 0.0313 0.11737 3.23783 0.00166 0.09509 2355.1 0.00069 1032.9 0.08101 0.00215 1.14082 0.00236 0.45489 20.28 1875.7 0.09142 0.89981 0.00066 0.08699 0.06623 19.41 0.00099 0.18942 993.3 0.68402 1956.1 0.03981 24.09 0.00299 6.69815 0.30507 1407.9 41.63 1065.6 0.02873 0.00167 0.72651 18.17 1945.6 1638.6 0.00182 0.76741 0.01786 1428.6 10.12189 2355.5 0.00362 1043.7 0.149 26.43 20.41 6.43 0.01648 784.8 0.72859 1825.6 54.1 0.02535 654.8 7.49 2.1532 0.28339 15.48 4.71152 17.1 1785.7 525.5 984.8 22.45 9.03 0.04535 1391 1111.3 8.2 51.34 563.1 2062 2027.8 0.07519 1611.8 50.88 585.2 0.2319 2429.5 1451.7 2324.4 9.31 5.26 1058.4 45.93 12.59 532.5 773.5 13.86 1853.9 7.13 15.63 39.12 657.5 19.51 1150.9 7.26 34.96 55.41 1842.1 1698.6 20.4 519.9 973.4 22 1064.6 -2.6 7.66 17.26 2086.6 104.6 563.3 -2.1 1999.1 6.16 585.6 1466.3 41.6 19.42 0 2417 41.22 4.13 12.18 28.83 -1.1 537.7 10.04 3.1 772.9 12.96 3.9 651.6 1118.3 15.87 5.82 1716.4 10 13.23 -4.7 0.9 529.2 2072.4 9.89 -4.9 18.88 9.88 -1.8 554.5 15.35 17.86 578.3 2446 10.77 19.65 1.5 555.7 -0.4 1166.1 1769.3 9.69 14.56 25.87 1.1 -1.4 26.64 24.21 41.23 -0.1 0 0.6 -1 -1.2 3.1

Sam

258

e± 460 6.09 Ag 1015 20.81 2475 21.98 1236 27.4 1052 34.06 426.2 2.46 470.4459.8 2.96 3.06 624.1371.7623.5 6.71 3.51 533.1 7.19 491.6 7.85 415.8 3.5 2.42 438.5 3.62 1403.21458.41123.61021.21368.8 21 2731.8 25.63 50.16 1626.8 35.77 1894.4 29.67 11.34 1978.5 30.4 1418.3 10.87 1588.7 16.56 1988.2 19.06 27.68 16.48 1633.71694.91944.51218.5 24.98 1573.3 22.42 25.47 1802.5 32.87 16.02 1948.52608.41763.5 25.93 27.41 1714.6 16.36 1521.5 18.47 1999.4 18.74 1358.8 25.39 19.32 43.6 ) % ( es Ag Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Disc. Ratios le OG2 - OG2 15LB06 le p 1234 0.088965 0.091576 0.077097 0.073268 0.08738 0.000989 0.00125 0.1888 0.00197 0.0553 0.10015 0.00132 0.23429 0.11593 0.00136 0.2462 0.19586 0.00131 0.17806 0.00085 0.00126 0.00165 0.23825 0.00166 0.0007 0.00228 0.52615 2.82201 0.00144 0.06835 0.28619 0.00181 3.23614 1.95226 0.05586 0.33847 0.00215 1.84093 0.00041 0.08484 3.00075 0.00246 0.08242 13.57566 1403.2 0.05384 0.001 0.08933 0.51564 1458.4 4.00534 1123.6 0.2384 1021.2 0.00939 21 1368.8 0.13929 5.3175 25.63 50.16 2731.8 35.77 424.2 0.05279 1626.8 29.67 1418.8 1357 1153 11.34 1056.3 1894.4 1377.6 33.74 30.4 8.59 6.6 2725.2 12.27 7.88 426.2 10.87 9.42 1622.5 1465.9 9.1 1099.2 1361.4 1879.3 1060.2 12.32 2.46 1407.8 20.34 2720.6 4.8 28.35 14.84 19.24 1635.3 422.2 22.67 3 -2.9 16.61 3.7 1871.7 -3.7 28.26 -0.7 6.29 0.3 8.48 0.3 -0.5 0.9 10111213 0.0563914 0.1215215 0.056216 0.0896617 0.10105 0.0009418 0.09812 0.0011319 0.07304 0.0009920 0.12217 0.0009 0.0756921 0.06065 0.00081 0.3525322 0.00147 0.0562 0.0739323 0.05411 0.00076 0.00049 0.2375224 0.16184 0.00114 0.25213 0.0017825 0.06149 0.00168 0.2735126 0.10052 0.00051 0.57215 0.1693727 0.002 0.00115 0.00137 0.1039 5.87593 0.00098 0.347828 0.11921 0.00212 0.10165 0.01154 0.002129 0.05799 0.5624 0.00182 0.00078 0.11862 2.8787630 0.08088 0.00136 3.57522 0.05935 0.0739731 0.09731 0.00173 0.43797 0.00127 0.01194 0.00115 3.69723 466.932 0.00171 0.05031 0.0816 1.69125 0.10156 1978.5 0.049233 0.05705 0.00226 0.30104 0.00058 5.8918634 0.11019 0.00102 0.00137 0.11417 0.82282 0.00358 0.02612 459.3 0.2870735 0.05507 0.00084 1418.3 0.34437 36.83 0.0012336 16.56 0.11948 1643.5 0.11682 0.45249 0.08621 0.00115 0.02992 0.55391 0.002137 0.17525 0.00107 1588.7 9.04206 0.2081438 0.10785 1015 0.00181 0.00158 0.78965 470.4 38.83 0.26708 19.06 0.00274 0.01334 1946.739 0.07439 0.02366 0.00085 1988.2 14.73 0.00132 0.31414 4.26699 626.7 0.2165441 0.06958 0.00185 0.07925 27.68 0.00165 0.03018 3.9369542 0.10502 0.00173 1373.8 5.79033 459.8 0.00108 0.3242 20.81 2.96 8.49 375.643 0.09467 0.11979 1449.4 459.7 0.66408 0.0011 0.06663 16.4844 0.05551 2475 0.00142 0.00127 0.09454 1558.6 2.38327 0.36267 58.77 0.00059 0.19323 656.5 0.12295 0.00147 3.68024 1008.7 0.51204 0.03248 3.06 6 0.09682 0.00247 0.00108 1633.7 1924.1 5.07 55.96 2.52251 77.05 0.0694 0.0004 0.31308 1957.7 0.08692 459.4 10.64 0.00129 1694.9 0.61879 624.1 0.1919 1944.5 21.98 0.0031 0.00123 0.052 0.17206 62.09 0.00289 4.89243 4.3 528.9 0.00135 0.06125 371.7 0.30338 24.98 8.3 0.01417 0.51467 453.1 0.00156 0.00154 1218.5 460 2341.5 0.27368 22.42 1376.4 1544 6.18099 17.52 6.71 1570.8 25.47 12.57973 0.00146 0.14983 623.5 0.07039 7.46 0.002 1573.3 0.00158 0.00935 1696.5 0.36432 83.71 1236 0.00149 4.78244 3.51 492.9 1005.2 0.22593 1626.9 0.31194 16.05 0.22317 32.87 0.00181 1907.6 1.96212 6.09 1802.5 1960 1.54163 7.76 13.17 1.9 24.68 7.19 0.0006 16.02 10.92 609.6 10.43 0.09056 -0.8 4.33889 0.22482 533.1 0.00202 415 1948.5 0.05373 1218.9 2608.4 3.53102 9.04 27.4 40.77 13.13 0.00174 0.04935 2342.3 9.86 379 25.93 1525.9 0.07761 0.54265 1763.5 3.5 447.6 -0.1 6.17363 17.21 13.2 2.1 0.00247 0.08799 7.85 16.67 1687 2.95428 1263.6 491.6 591 27.41 16.36 1052 8.8 33.71 0.01433 1810.2 916 1621.3 1714.6 0.13209 1945 5.47 31.76 0.7 2.94791 18.47 1521.5 0.0827 1994.8 3.7 9.32 2665.3 15.46 7.55 415.8 0.4 3.5 517.1 12.01 34.06 432.4 23.09 1999.4 0.1248 1237.6 17.12 18.74 42.74 1755.9 19.44 6.4 1567.1 25.39 1643.5 14.67 12.31 1563.7 28.9 1131.6 -0.1 2.42 1.1 1278.5 1023.4 48.04 19.32 1708 1358.8 -4.4 19.82 1801 7.67 489.1 5.3 1559.5 20.83 4.5 29.46 11.28 2001.8 14.73 2648.7 7.92 2.2 2002.6 438.5 8.72 421.6 17.66 7.37 43.6 -0.8 9.16 1298.6 1781.8 25.82 0 8.89 3.4 31.95 23.32 9.53 1102.6 3.62 1307.3 -2.5 947.2 9.16 1700.8 6.26 1534.2 -0.5 15.9 0.3 -2.8 -2.7 12.99 2000.7 18.42 440.2 1395.9 -0.2 19.71 14.76 19.72 0.5 1394.3 -8.3 18.7 -12.7 9.43 0.4 21.24 -2.8 32.1 -0.2 18.7 1.5 4.2 916 1563.7 42.74 29.46

Sam

259

e± Ag 433.8422.2 8.83 476.2486.4 10.48 435.4619.7379.6 6.92 12.07 8.65 30.29 5.84 554.8515.7 22.81 29.38 542.9975.7 11.58 969.2 6.04 15.47 503.8931.2689.2 30 16.78 65.79 402.4378.5421.2 13.97 389.7 21.58 11.22 6.48 961.9 9.22 1457.21945.21063.7 68.84 41.88 14.94 2866.1 18.13 1090.13108.41926.91126.81264.7 81.4 2910.3 95.76 1147.8 85.13 62.72 2770.6 97.73 1628.6 67.2 1785.1 86.81 1823.7 42.5 32.71 1061.7 35.9 2350.3 45.65 2709.7 11.4 1938.21031.9 99.06 1788.5 22.75 81.76 24.11 41.8 2572.8 54 2697.12618.8 40.05 50.8 2466.72624.52300.8 27.2 36.05 89.26 ) % ( es Ag ) e 1/2 g Pa ( Ratios Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Disc. 234 0.091515 0.073516 0.055397 0.119268 0.00338 0.072239 0.00375 0.0566 0.00375 0.05694 0.26011 0.00284 0.05556 0.19826 0.00244 0.06768 0.00493 0.00216 0.00375 0.3432 0.00464 0.17939 0.00297 0.00174 3.40115 0.07667 0.07837 0.00479 1.80806 0.00273 0.06987 0.49231 0.00116 0.23712 0.00202 5.57608 1.77093 0.00144 0.141 0.03786 0.58728 1457.2 0.5666 0.29734 0.09082 0.55264 1028.1 0.02663 427.8 0.04355 68.84 1945.2 0.0345 992.3 99.91 144.61 475.2 488.7 41.88 1490.4 434.4 66.88 422.2 1166 83.03 139.64 25.21 1902 115.06 1063.7 476.2 10.48 24.95 486.4 1504.7 435.4 22.99 14.94 1048.4 406.5 6.92 54.7 12.07 1912.4 1034.9 8.65 50.99 25.76 469.1 455.8 -2.6 45.91 33.28 446.7 -14.7 1.4 17.03 28.22 2.6 -7.8 22.56 -0.2 0.5 1028.1 -0.2 99.91 1 0.05566 0.0031 0.06961 0.00146 0.49677 0.03148 438.3 119.74 433.8 8.83 409.5 21.35 1.1 101112 0.0604513 0.0542214 0.2049615 0.1269316 0.00803 0.0755817 0.00224 0.1074318 0.0023 0.07529 0.1009119 0.00417 0.05838 0.0606520 0.00587 0.0576421 0.00448 0.56975 0.00517 0.07581 0.3332323 0.01016 0.00096 0.23826 0.2175724 0.00641 0.11805 0.35702 0.0044525 0.00947 1.04531 0.07722 0.0066 0.2473526 0.00316 0.45615 0.00763 0.08281 0.0898727 0.01482 0.00834 16.73625 0.21062 0.0832928 0.00577 0.18408 0.01396 0.07803 5.24742 0.1944929 0.00248 0.02143 1.81776 0.00386 0.05836 0.5791330 0.00428 0.55744 5.31022 0.00494 0.19332 0.3421631 0.00895 3.16754 0.00359 0.37963 0.10025 619.732 0.00351 0.21738 0.71646 0.176 0.02911 0.10914 0.2297633 0.00359 380 0.59954 0.5146 0.00996 2866.1 0.07193 0.5254734 0.00508 0.77714 2.05097 0.11148 0.2047235 2055.9 28.04287 0.00178 263.36 0.09566 0.00264 0.00562 0.11329 0.08786 108436 0.00217 0.11456 5.39859 0.01721 0.07213 0.54478 18.1337 1756.3 0.00105 0.13784 89.6 0.00434 1076.3 0.07175 0.30529 8.429438 0.00285 1.81354 2.76287 56.86 0.00195 0.15038 619.7 0.3162939 12.90458 0.00541 544 0.58704 148.41 0.01066 515.7 0.16341 0.081440 0.00184 2.19395 74.44 2906.8 0.00292 1090.1 0.18629 249.43 0.3484441 0.00276 0.09029 0.25432 0.63074 379.6 0.00353 3108.4 0.11879 1.74424 0.3708442 14.73556 0.00902 1854 0.00109 1926.9 0.07571 30.29 0.1790343 223.5 1269 325.39 0.16302 4.67996 0.00509 0.00159 0.10934 0.1622444 1424.8 0.00259 81.4 0.04518 18.26 4.76448 1968 1126.8 0.01057 1264.7 0.05759 1.30657 0.45574 95.7645 2910.3 0.00558 1.62391 0.00209 5.84 0.06999 85.1346 0.00414 726.6 0.17423 5.25921 0.21753 0.00279 1147.8 31.9 515.7 0.50549 0.0628 554.847 0.00254 0.19751 6.78045 40.4 2919.8 0.01837 72.13 543.2 62.72 0.36329 0.0907 97.73 1145.748 2770.6 0.01259 0.03611 1.85173 39.63 2945.2 0.07741 67.2 0.0020549 0.00301 0.1736 381.6 1.59989 0.2969 1897.1 0.00457 1628.6 91.39 0.32512 0.0929 86.8150 1860.4 0.83106 0.01016 1785.1 9.7997 0.01768 0.10965 29.38 31.91 1051.9 22.81 0.08128 1449.351 128.94 0.07429 1045.1 1333.2 1870.5 0.02221 0.05951 19.39 42.5 0.15541 118.85 0.0043952 2.5339 0.00555 984 0.09295 13.2799 2722.3 0.00422 0.17155 14.94 32.7153 1823.7 47.83 6.57087 0.11283 1200.6 0.00503 1852.8 0.00551 61.7 0 1.89248 0.0545854 189.34 0.00746 78.33 476.9 -1.8 35.9 548.6 0.33043 0.00301 542.9 2.02388 989.7 1132.6 0.24649 82.81 3420.655 0.00629 0.08608 0.054 14.48 0.50722 29.44 5.08215 2803.4 0.05543 978.8 0.0113656 29.44 0.00565 0.81416 72.72 0.74938 0.30403 45.65 1884.6 0.1 1717.5 0.10613 0.26941 83.98 -36.1 0.0321157 2350.3 0.00603 11.3 1.51524 -18.8 23.2 0.00785 0.17884 0.18487 72.72 56.59 0.09478 1771.658 0.25421 45.87 294.7 1050.4 1345.6 -14 1231.1 2709.7 50.9 0.05462 11.58 0.89308 0.48762 0.0095959 0.00884 0.00425 0.18774 76.05 2672.7 44.5 0.00945 1938.2 0.17634 93.16 5.22279 0.06442 975.7 1927.160 0.00231 0.09773 14.41 3.03205 99.06 2033.3 0.00388 0.07118 1179.161 1087.3 0.00455 -2.1 0.01127 1788.5 0 -5.6 0.07967 32.59 68.63 4.53936 0.06047 37.83 6.5 0.06752 17.3 22.75 0.3231 0.00248 496.6 5.45695 1061.7 0.00231 127.37 1076.3 3.97002 0.08567 0.27294 2798.3 2055.9 81.76 0.00548 514 0.43023 969.2 1.8 1763.7 0.7297 1084 0.07218 24.34 928.1 0.51954 2420.7 11.76142 6.04 0.00344 51.83 49.73 1756.3 105.9 0.00355 0.00186 0.06232 0.6125 0.00419 41.8 1.00949 0.41724 7.9 1778.7 1268.8 2637.3 0.00318 -6 28.13 701.5 7.9 0.48389 1440.3 0.00155 84.31 11.4 249.43 1997.7 0.00904 1131.9 1.32936 31.15 0.19684 1862.3 419.63 0.0954 0.00166 15.47 0.47207 0.53023 56.86 85.76 2083.2 148.41 0.00107 81.33 979.5 1031.9 -5 0.05021 3.89955 0.178 1485.6 1793.5 34.79 74.44 0.0105 0.19914 1814.7 13.49706 507.33 10.84 406.62 19.56 0.1 0.00407 -1.5 0.16092 136.4 2572.8 0.08913 -6.2 1064 0.04736 48.16 48.05 503.8 108.46 0.4904 970.2 585.7 2416.1 0.16236 931.2 13.98 0.00416 0.00171 12.04148 24.11 119.07 1.03581 395.1 108.5 1.91428 0.9 1281.8 2699.8 1840.5 0.00166 689.2 20.53 2055.4 -11.4 1420.4 -6.6 0.02606 370.7 429.3 26.45 177.93 54 1.23223 2.43788 214.3 36.3 2.0304 1123.6 1734 0.9 30 1537.8 2697.1 16.78 230.49 0.14951 1.57938 1711.3 24.73 36.07 1833.1 155.56 109.19 65.79 331.82 -3.6 162.57 0.07337 40.58 396.7 -7.9 2618.8 0.17012 583.8 0.05492 60.05 2560.4 1.1 40.05 936.6 39.34 402.4 47.98 962.7 1856.3 567.9 1852.8 -3.4 47.43 42.44 3.3 -3.6 1415.7 648 1330.6 378.5 421.2 98.07 1188.8 50.8 990.9 5.5 48.86 1893.8 2697.2 22.87 39.45 1555.7 647.8 108.97 1738.2 95.34 -1.7 13.97 83.98 108.34 34.67 100.43 173.3 21.58 389.7 11.22 2544.2 158.75 2585.6 46.18 112.27 556.4 -0.4 2.1 38.34 -32 1158.3 16.1 354.1 -28.4 1170.7 1056 1.8 392.6 105.77 -17.3 16 432 45.64 6.48 2715.1 961.9 1613.6 35.97 56 21.9 9.17 0.6 61.48 1440.3 22.78 2607.6 1131.9 72.55 31.43 405.2 33.65 -1.9 1086.1 9.22 0.3 1485.6 1793.5 1253.9 1125.7 -2.2 95.94 406.62 1.9 17.75 0 11.6 136.4 52.09 962.1 21.67 108.5 119.07 3.4 57 1.8 -22.2 21.62 13.1 1734 12.1 3.2 962.7 39.34 1330.6 1188.8 95.34 34.67 100.43 62 0.16105 0.00262 0.45487 0.00431 11.10538 0.44147 2466.7 27.2 2416.9 19.09 2532 37.03 2.4 636466 0.1769667 0.1461 0.11707 0.11644 0.00388 0.00783 0.00378 0.46256 0.00398 0.39914 0.30507 0.0067 0.28471 0.01378 0.00564 0.00536 11.24889 7.86729 5.19239 0.70372 4.60662 1.12194 0.37905 0.33804 2624.5 2300.8 1912 1902.3 36.05 89.26 56.89 60.11 2450.8 2165.1 1716.4 1615.1 29.51 63.48 27.88 26.88 2544 2215.9 1851.4 1750.5 58.34 128.47 62.15 61.22 7.9 6.9 11.6 17.1 1902.3 1912 60.11 56.89 le OG3le - 18LB06 p

Sam

260

4 4 4 4 e± 397 18.43 Ag 513.2961.9889.4 9.52 14.47 562.8 15.41 454.6 30.35 12.2 395.4 30.17 2499.6 52.77 2754.31523.41735.41953.6 41.5 80.97 64.98 69.08 1833.22530.82711.3 128.53 2914.3 72.52 1981.1 52.6 1239.91019.9 54.0 2684.81493.5 90.89 1989.6 27.6 2783.9 30.36 15.46 31.57 18.3 23.98 ) % ( es Ag ) e 2/2 g Pa ( Ratios Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Disc. 686970 0.1642371 0.1159673 0.0574674 0.0743975 0.00524 0.0714976 0.00331 0.1914177 0.00291 0.09476 0.4428378 0.00266 0.10621 0.3024479 0.00302 0.05822 0.0828780 0.00491 0.11982 0.0094 0.16092 0.00418 0.00487 0.19364 0.14794 0.00385 0.05581 0.0016 0.50315 0.00882 0.00261 10.43022 0.27609 0.00474 4.82669 0.00274 0.27678 0.00358 0.68444 0.0089 0.09123 0.00405 0.96901 1.65941 0.00626 0.32591 0.29028 1.51021 0.00542 0.42332 0.00514 12.61969 0.04287 0.07307 0.09107 0.00746 2499.6 3.8996 0.09657 4.06062 0.00456 1894.9 0.93963 0.00204 0.8046 508.6 5.43686 1052.2 0.38166 52.77 12.35693 0.3108 971.3 50.52 0.52506 2754.3 0.15459 0.49385 108.06 0.53808 1523.4 70.4 2363.3 1735.4 0.04493 83.63 1703.4 41.5 537.3 1953.6 2773.3 513.2 80.97 961.9 64.98 444.7 42 889.4 24.1 301.61 69.08 2627.3 29.96 1571.6 9.52 1575.1 14.47 154.09 2473.7 1789.6 15.41 562.8 1818.5 38.19 2275.5 31.62 529.5 993.1 27.38 454.6 86.08 50.59 934.5 2651.7 30.35 36.27 20.63 1613.6 25.84 1646.4 34.77 6.5 11.5 12.24 39.06 70.05 1890.7 599.4 2631.9 79.09 -0.9 62.36 9.2 428.5 5.6 77.9 9 86.98 40.9 -3.6 1894.9 10.4 29.91 7.9 -5 21.3 50.52 -2.3 2773.3 29.96 848586 0.167387 0.0545888 0.18647 0.1019690 0.00741 0.2111491 0.01423 0.00606 0.1216993 0.00582 0.48799 0.08177 0.0632594 0.00718 0.4794695 0.18351 0.25222 0.01501 0.00641 0.00498 0.09328 0.52893 0.00116 0.01085 0.12227 0.00747 11.88036 0.34259 0.00173 0.41125 0.01332 0.21651 11.57472 0.00157 0.00127 1.78641 3.48214 0.0108 0.51985 14.54445 0.11681 0.00141 1.06379 0.26192 0.36314 0.39485 0.00234 2530.8 1.61328 5.65269 2.38056 0.00215 394.9 2711.3 0.00177 13.06204 1660.1 0.69545 72.52 2914.3 0.05491 3.4625 498.19 6.16041 52.6 0.22401 102.05 1981.1 54.04 1239.9 0.10858 2562 0.10856 395.4 2684.8 2524.9 1449.9 90.89 27.64 1493.5 2737 1989.6 65.02 15.46 30.17 47.27 38.43 1899.1 31.57 1263.4 18.34 56.15 2595 2698.5 349.8 2570.6 1523.2 51.86 1499.7 7.49 2785.9 1997 140.83 84.04 9.92 85.9 89.45 1924.2 10.97 105.38 1236.8 -1.5 -0.1 8.35 2684.1 14.1 8.3 106.14 1518.7 7.5 16.49 1998.9 16.18 4.8 24.71 -2.1 1660.1 15.39 -0.6 -0.5 102.05 -0.4 818283 0.11111 0.07093 0.11207 0.00229 0.0097489 0.0083 0.28798 0.18584 0.0546692 0.31517 0.00299 0.01087 0.07321 0.0128 4.53131 0.007596 1.99653 0.00111 0.17684 4.61717 0.06353 0.19489 0.44999 0.17131 0.00304 0.80749 1817.7 0.00288 955.5 0.00112 0.49052 1833.2 0.54674 36.88 258.01 1.7451 0.07693 0.00511 128.53 1631.4 1098.8 0.0391 14.72721 398.2 1766.1 14.97 0.6359 59.11 1019.9 281.22 62.75 1736.7 1114.3 2783.9 30.36 397 1752.4 32.46 152.48 23.98 1019.3 145.97 18.43 11.6 -16.3 2811.6 4.2 6.18 405.3 21.29 1817.7 1025.4 955.5 52.41 2797.8 14.46 36.88 258.01 0.3 41.06 0.1 -1.2 le OG3 - 18LB06 - OG3 18LB06 le p

Sam

261

e± 420 6.85 403 8.16 Ag 1369 22.92 1654 87.63 19011020 20.12 1787 40.21 1597 50.76 1495 15.19 24.21 10921340 46.26 60.62 679.5534.1610.3 15.95 540.1468.5 4.64 424.4 14.3 706.3 4.71 4.83 625.1 5.03 922.4 6.6 459.6 18.78 5.68 8.41 416.5 11.02 943.7 5.77 391.4434.5 4.97 9.86 680.6512.8422.4427.9 7.91 5.58 4.18 5.98 644.1 13.3 1871.61886.3 16.19 1333.5 21 1152.8 22.33 1609.4 73.07 22.86 1644.61087.91119.51990.91537.5 30.42 1121.2 30.51 1992.5 36.88 1060.7 32.17 1232.7 29.74 52.89 1623.2 10.83 61.44 2715.1 66.26 1074.72591.5 25.59 1646.31137.1 33.9 1181.3 38.41 15.05 19.7 2893.4 86.03 38.52 1498.61292.8 18.45 1616.5 19.72 54.76 1627.8 24.01 1287.31628.8 26.17 49.01 31.43 2804.71637.8 42.29 1582.4 24.43 1191.21826.7 120.94 1067.6 49.08 56.38 1274.7 37.43 26.64 ) % ( es g A ) e 1/2 g Pa ( Ratios Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Disc. le OG4- 19LB06 123 0.06234 0.114475 0.115416 0.0582 0.003777 0.00103 0.059928 0.00136 0.058239 0.08579 0.11115 0.00134 0.3315 0.00361 0.0564 0.33344 0.00132 0.05545 0.00275 0.08638 0.001 0.00179 0.0993 0.00236 0.00155 0.85107 0.08738 0.00176 0.00078 5.29965 5.50554 0.00244 0.22955 0.00079 0.07539 0.65849 0.06805 0.0675 0.11243 0.83221 0.00136 0.15378 0.72862 0.00081 0.00083 0.01869 2.68806 684.3 0.06572 0.59542 1871.6 0.02107 0.53329 1886.3 0.05765 536.8 0.0199 600.7 0.02014 124.3 537.7 16.19 21 1333.5 50.14 467.5 430 125.5 1845.7 679.5 49.52 22.33 1855.1 534.1 60.18 610.3 8.68 68.83 15.95 540.1 1332.1 11.4 4.64 468.5 1868.8 14.3 625.2 424.4 4.71 7.15 1901.5 513.7 4.83 614.8 5.03 555.7 18.12 1325.2 37.03 474.3 24 11.44 434 36.42 12.38 1.6 15.87 0.7 12.66 1.9 0.5 13.34 -1.7 -0.5 0.1 -0.2 1.3 p 101112 0.0631613 0.0782314 0.0992115 0.00148 0.060616 0.00295 0.0710917 0.00123 0.0561 0.1157918 0.08738 0.00487 0.1922519 0.00104 0.10111 0.2828820 0.07573 0.00114 0.0028421 0.00105 0.07694 0.00349 0.10183 0.1538322 0.00167 0.12236 0.00194 0.9927623 0.00116 0.09548 0.07389 2.07191 0.00321 0.2295724 0.00144 0.00102 3.85936 0.077 0.2910725 0.00224 0.12247 0.03186 0.74037 0.001426 0.1841 0.00152 0.07471 0.00142 0.13258 1.56859 0.1991327 0.08146 0.0027 0.0998 0.3502528 0.00208 0.00075 0.10162 0.59379 2.7306 0.00135 0.07411 713.729 0.26357 0.00233 0.09995 0.00177 0.03579 1152.8 4.2986530 0.00282 0.05526 0.00398 0.20301 1.89261 0.3543931 1609.4 0.00495 0.03616 0.00227 2.04663 0.1869 0.06076 0.1771532 0.00139 0.07549 625.2 5.58388 0.15779 959.9 48.91 0.2134533 0.00262 0.00412 0.17348 0.00132 73.07 3.55235 0.2865934 0.048 0.00251 0.06426 0.1012 0.00389 22.86 0.2840835 456 0.00654 0.07762 0.00363 2.20246 6.05537 1369 0.2489 0.0667536 164.35 1644.6 0.00157 0.07937 0.00746 1.80548 0.1186 29.49 706.337 1133.5 0.07115 0.50285 2.28715 0.0022 1119.5 0.00108 0.1814138 1087.9 0.00345 0.10514 0.11635 0.00182 0.08745 3.8684 1605.8 0.4916439 1990.9 0.00157 108.85 0.20844 0.09026 22.92 0.00795 30.42 625.1 3.7754340 1537.5 0.00102 0.07322 0.00704 0.14153 0.27659 0.55544 18.88 922.4 0.1876941 6.6 0.00131 0.09353 0.00327 36.88 1121.2 1992.5 30.51 12.5415 0.1922442 0.4112 0.00239 0.08402 2.17981 9.75 1060.7 0.00165 0.11023 32.17 0.1576443 459.6 11.97459 0.00147 0.05461 0.00391 1332.3 0.0494 1232.7 1646.9 18.78 29.74 0.3389344 0.00098 0.10926 0.00179 1139.6 0.89085 3.98257 5.68 0.5632345 1170.7 0.09959 0.00104 0.32736 52.89 10.83 2.25694 700.1 0.0024 1089.3 0.34576 1654 0.1627246 1623.2 0.00194 0.05557 0.00229 1605.2 61.44 2.09563 1935.8 0.2619647 8.41 7.42 13.48 0.00309 0.09856 0.00514 422.4 66.26 1.56194 562.6 1508.1 0.0897648 2715.1 0.00129 0.05514 0.18386 0.22246 5.65554 0.0015 1081.5 0.0625949 957.9 9.49 1191.5 14.94682 2591.5 1955.5 0.00147 0.07262 7.32 0.1002 0.0035 43.82 25.59 0.3210850 87.63 1051.4 18.99 0.00081 0.09335 0.03495 0.00311 1693.1 1.68282 0.29127 1336.8 16.23 158.58 1646.3 473.3 1247.2 0.00247 0.08378 0.00082 0.15638 3.33249 11.6 20.85 1137.1 0.58952 33.9 164.56 0.10026 0.00528 0.06973 1181.3 14.05 0.00142 1131.2 2.61847 15.05 0.27321 6.28 43.24 1078.5 0.00211 0.49352 0.0012 1611.9 13.74 0.05375 1913.6 1624.5 961.7 0.06733 0.00214 0.06932 5.36967 14.15 19.28 0.00164 416.5 1.8 1901 19.7 2893.4 0.00171 0.00123 86.03 0.28206 3.99474 1539 1074.7 0.13587 30.24 0.00113 1181.8 16.54 0.02047 1.1 38.52 0.25416 2626 23.04 2577.7 1983.8 0.49377 0.3 0.21779 11.03 0.36056 1047.4 37.37 3.81627 1020 1498.6 0.00222 29.12 0.27596 21.42 0.10995 1208.3 0.47453 16.85 11.02 0.00174 0 18.45 1292.8 20.12 38.39 1574.2 1108.9 38.41 0.00277 0.03658 396.5 4.2 3.9405 1133.5 14.11 0.00262 0.06462 34.12 1587.5 3.15541 1607.1 1787 -0.2 26.45 0.02466 19.72 2.39055 40.21 33.34 1616.5 -0.8 943.7 3 12.59 3.79782 448.6 32.67 21.23 1174.6 54.76 1881.5 8.31 2880 0.12042 -5 43.72 435 -0.1 0.07953 2602.4 77.03 9.66 2645.8 1597 0.10861 3.2 417.9 50.76 1499.9 0.13624 24.01 971.9 5.77 23.44 85.76 11.02 1627.8 2.1 1294.9 1199 -6.9 1630.7 21.19 2.2 1495 1287.3 1147.4 391.4 104.53 134.6 32.25 15.19 1 1628.8 -1.3 96.84 7.53 27.06 1647.9 1795 66.8 8.33 955.2 1924.6 26.17 16.4 2811.9 49.01 0.8 24.21 1557.1 4.97 2 434.5 18.29 57.32 31.43 10.52 1488.7 0.7 25.78 23.82 420 1.4 1002.1 1601.7 1305.8 0.6 1270.2 23.86 1459.9 4 13.85 6.21 37.54 407.3 9.86 1633.1 1571 1880 4.9 6.85 2.7 11.15 16.25 4.4 14.64 20.34 8.96 1596.2 38.13 407.5 13.22 1.2 0.6 2 13.92 1622 22.35 394.3 1239.8 57.48 1446.3 -0.1 1592.3 5.1 -0.2 13.62 24.87 -2.2 1.3 16.98 24.75 32.52 -0.5 19.43 28.83 2.8 0.1 -0.5 1.8 1.5 2.6 4 51 0.19738 0.00518 0.54576 0.01109 15.47719 1.78643 2804.7 42.29 2807.5 46.25 2845.1 110.09 -0.1 525354 0.0620755 0.1007456 0.0575357 0.00186 0.0551658 0.00134 0.0554159 0.09779 0.0017 0.1113660 0.00151 0.0546861 0.2884 0.07977 0.002162 0.00659 0.11167 0.00136 0.0828 0.0677163 0.00298 0.07481 0.0021364 0.00202 0.07588 0.06863 0.91102 0.2727465 0.00094 0.00354 0.08608 0.00069 4.01989 0.06451 0.00658 0.06117 0.00099 0.19531 0.00178 0.08324 0.00978 0.03679 0.70986 0.49249 0.32032 0.00275 0.00135 0.11518 0.18011 0.5321 0.00324 0.00231 3.7016 0.1869 0.00114 0.02675 0.00595 0.01581 0.47234 676.7 0.21814 0.00685 2.27979 0.10508 1637.8 0.02413 5.35148 0.00212 0.52891 0.20498 0.00339 1.68617 0.0301 511.4 418.4 0.00228 0.10138 2.03847 62.72 0.41625 2.62217 0.0014 428.4 24.43 1582.4 0.23018 0.87134 400.1 1191.2 0.08525 63.84 59.31 2.33673 0.15101 1826.7 680.6 0.06128 120.94 1063.4 1633.5 82.23 0.05714 116.73 49.08 1092 512.8 422.4 1340 56.38 645.3 7.91 167.42 10.64 1554.7 427.9 1274.7 1150.1 403 46.26 5.58 4.18 60.62 1791.3 109.97 1067.6 49.51 1638.2 657.6 5.98 26.64 12.47 1104.5 8.16 29.05 544.7 406.6 37.43 1272 1571.7 644.1 433.2 1202 1206.1 23.3 19.55 11.5 1877.1 392.8 1003.3 17.95 13.3 114.23 15.89 10.76 7.48 1128.4 15.99 31.39 -0.6 1306.9 0.3 636.3 66.54 87.01 20.76 1223.5 -0.3 2 -1 28.49 0.1 3.8 42.33 2.2 33.25 -0.4 -0.7 17.39 -1.2 5.6 0.2 6.3

Sam

262

6.07 e± 4 468 9.2 92 Ag 1966 23.99 451.3949.7393.1 3.01 10.99 405.9 3.61 418.1589.8439.8 4.65 431.7400.5 9.09 10.62 9.7 2.51 3.37 420.7350.3 5.75 3.51 1080.11801.9 47.72 1684.81682.4 11.66 3091.2 26.87 20.59 9.87 1353.31993.2 33.34 17.9 2539.81816.81098.1 25.42 2033.3 37.74 15.99 41.16 ) % ( es Ag ) e 2/2 g Pa ( Ratios Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Disc. le OG4le - 19LB06 p 666768 0.0754369 0.0560870 0.1101671 0.00182 0.0723472 0.00098 0.054773 0.00071 0.10333 0.1691974 0.00196 0.1032 0.0725275 0.2357 0.00133 0.3122776 0.00152 0.00187 0.05471 0.1587277 0.0005 0.0564 0.0011678 0.00112 0.05502 1.77132 0.06288 0.00146 0.2891479 0.00172 0.00198 0.05952 0.5586280 0.05534 4.59997 0.2778 0.00301 0.0005981 0.00318 0.00239 0.06973 0.05567 1.69575 0.59368 0.0649982 0.00276 0.05474 0.01197 0.4707183 0.00173 0.00325 0.06091 0.08668 4.30588 0.0753 0.00269 0.06701 0.00085 0.00077 0.07369 0.12251 1080.1 0.0958 0.00125 0.07166 3.86348 19.37509 0.01351 0.07061 0.00153 0.00151 455.2 0.13839 0.48297 0.0015 1801.9 0.06926 0.00124 995.6 0.0018 0.06409 0.08885 0.00111 0.00161 0.38738 0.54279 47.72 0.55066 0.22721 400.1 0.00042 0.01794 1684.8 0.34473 0.00056 38.02 0.76126 11.66 0.54784 0.15412 0.03447 0.00205 1682.4 3091.2 0.5274 0.03863 54.14 1007.6 0.48484 0.0021 400.1 0.04505 0.00109 0.03877 52.97 26.87 2.52622 1751.9 451.3 467.2 0.00987 5.66892 0.01307 20.59 1.51719 9.87 10.31 413 949.7 0.08211 586.1 425.9 68.42 1637.3 393.1 0.13401 5.51 438.9 0.03611 3.01 114.61 401.6 1580.3 10.99 1353.3 3004.3 1035 123.91 126.31 11.94 97.51 405.9 1993.2 3.61 1749.3 976.3 33.21 450.6 468 49.84 8.72 1006.9 33.34 10.9 418.1 1694.5 439.8 589.8 4.65 17.9 25.55 391.7 31.21 431.7 1606.1 400.5 11.04 1319.9 3060.7 9.2 9.09 7.8 27.76 10.62 9.7 400.1 1909.4 26.48 924 2.51 7.2 10.77 3.37 9.33 440.3 445.4 18.55 3.2 574.7 10.06 19.3 443.6 5 0.9 1279.6 430.1 12.28 6.07 3.2 401.4 1926.6 1.8 22.69 25.29 6.8 25.97 3.5 25.43 937.3 23.64 -1.5 6.56 8.94 20.4 -0.2 -1.3 -0.7 -3.4 14.57 2.7 1.7 0.3 4.9 5.7 848586 0.168287 0.1110688 0.0761189 0.05542 0.0025790 0.00234 0.12066 0.00061 0.12531 0.00204 0.05371 0.45274 0.31997 0.00164 0.17654 0.00296 0.00492 0.06743 0.00147 0.00396 0.34469 0.00068 11.33304 0.36511 0.00095 5.11008 0.05584 0.00283 1.85294 0.00539 0.54961 0.47822 0.00057 0.26197 5.70725 0.02454 5.7741 0.02072 0.43479 2539.8 0.18373 1816.8 1098.1 0.33258 0.01399 428.9 25.42 1966 37.74 2033.3 15.99 358.9 79.91 2407.4 23.99 1789.6 41.16 1048.1 60.69 21.85 420.7 19.34 1909.2 2006.4 3.72 350.3 2550.9 5.75 1837.8 13.58 25.47 1064.5 3.51 396.9 1932.5 45.25 1942.5 43.54 366.6 8.74 27.81 14.23 6.2 49.85 1.7 4.9 9.9 3.3 2 1.5 2.5

Sam

263

e± 982 45.13 657 8.21 Ag 1093 63.33 16491031 25.79 27.37 1171 38.72 642.8424.9 10.41 568.8 8.02 428.3 5.2 371.6 3.76 3.95 396.3417.1991.8 3.58 6.79 39.04 394.9371.5 5.59 5.77 546.6 7.38 590.2622.3 6.85 9.13 939.6414.8427.8 11.94 6.29 5.63 523.6412.2 6.38 4.54 594.9618.7595.6 6.77 6.72 5.24 1170.81617.51559.1 33.92 31.63 2556.5 28.6 22.09 1926.81111.3 24.28 1668.4 43.99 26.88 2032.6 26.46 1331.41117.9 62.3 23.34 1025.31309.6 47.4 32.44 1088.41674.51018.4 47.14 1664.7 24.67 91.43 1054.3 28.69 1035.71104.7 46.17 1108.91135.2 33.7 37.67 2096.3 35.51 1008.2 74.48 2090.1 35.59 1443.9 37.13 39.13 27.64 1041.41902.2 21.74 1184.7 35.5 34.28 1480.3 99.42 2634.51040.41803.9 26.22 37.08 29.13 1398.81027.6 39 39.96 ) % ( es Ag Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Disc. Ratios 134 0.078955 0.099656 0.096587 0.05978 0.00137 0.169889 0.00171 0.0604 0.00149 0.0598 0.20039 0.11804 0.00139 0.28736 0.00226 0.27647 0.00129 0.00212 0.00084 0.09668 0.0032 0.00161 0.49154 0.00285 0.10073 2.07097 0.00115 0.09679 3.85593 0.35381 0.0049 3.67106 0.00115 0.04829 0.80308 0.00089 0.00346 0.10679 11.20874 0.08484 0.81185 0.81495 0.02223 5.88552 1170.8 0.25785 1617.5 0.02051 1559.1 0.0125 0.12452 593.2 2556.5 33.92 31.63 618 28.6 596.3 1926.8 49.34 1177.4 22.09 1628.3 1573.6 45.51 30.08 24.28 11.36 594.9 2577.3 16.04 14.4 618.7 1952.8 595.6 1139.3 6.77 21.2 1604.5 1565.1 6.72 16.48 5.24 15.97 2540.6 598.6 22.33 18.44 1959.1 603.5 605.2 -0.6 21.44 12.52 -0.8 -1 18.36 11.5 6.99 -0.3 -1 -1.6 -0.1 0.1 le SL -le 11LB07 101112 0.0611413 0.0766214 0.1024215 0.055416 0.00227 0.0759217 0.00171 0.0590318 0.0015 0.1252719 0.10485 0.05546 0.0026220 0.00245 0.19327 0.1013521 0.00092 0.05411 0.0017822 0.00189 0.286 0.06813 0.085723 0.00243 0.00076 0.17982 0.0736224 0.00142 0.09224 0.07829 0.8682825 0.00118 0.36795 0.00133 0.00286 0.05458 1.9445126 0.00279 0.05524 0.0687 0.00281 0.0008827 0.28241 0.00102 0.07221 0.0400328 0.00387 0.51303 0.05933 0.00386 3.96294 0.07341 1.83274 0.0624329 0.00081 0.08183 0.00062 0.74323 0.22483 0.0027330 0.00222 0.07027 0.1705 0.00065 6.5264931 0.02748 0.18936 0.08468 0.0014 0.08475 644.232 0.00175 0.06341 0.52712 0.085 0.05456 3.80635 0.01281 0.004 1111.333 0.00402 0.06684 0.05409 0.00158 0.44252 0.1675834 0.00431 0.00177 0.07575 0.1681735 0.00059 0.17304 428.1 0.00143 1668.4 0.10276 0.07341 0.007636 2.56061 0.00112 0.00181 0.18264 77.96 1.72871 0.07316 0.01044 568.1 1.9310137 0.00201 1093 0.17422 43.99 0.10221 0.00188 0.00219 0.47593 2032.638 0.00181 0.23958 0.05855 0.6247639 0.13715 0.00443 0.06318 0.00138 0.02801 0.07449 102.09 26.88 1649 0.1382540 430.5 0.05932 642.8 0.0023 1.70482 0.0034 0.07379 1.71857 375.441 0.00252 0.0075 0.16785 33.57 1139 0.0016 0.07636 0.00092 1.86334 0.03152 63.3342 0.00179 0.29008 26.46 0.07653 0.00095 1331.443 0.00172 424.9 1.68338 0.04448 1621.5 0.07754 0.05638 1031 0.18213 2.76962 1154.344 10.41 0.00216 0.00124 0.12988 25.79 0.48829 29.75 0.28961 0.1356745 0.00269 0.08848 0.00146 568.8 48.38 13.15 0.07279 395.2 0.4321846 1066 2019.8 421.6 0.00138 0.05941 0.12942 0.1748 0.00407 1.7241847 14.36 0.18188 0.00297 8.02 0.066 1025.3 0.09087 0.00297 62.3 991.8 0.01804 0.00125 4.0475148 0.00266 634.6 1603.5 0.18616 94.75 0.07895 27.37 0.01772 428.3 1241.449 0.00135 371.6 0.18652 1.73736 1096.6 0.05964 5.2 0.00219 18.25 0.0018650 15.24 0.00292 0.0566 32.83 0.17791 4.01503 0.07396 936.4 0.71299 87.22 0.0675251 0.00206 1626.6 0.00133 0.37592 1307.3 0.06069 420.5 394.1 13.72 1309.652 1117.9 0.00199 0.00156 47.4 1014.9 39.04 0.18081 1.71717 0.11888 0.11644 21.75 1.79725 374.7 3.7653 0.00146 3.95 0.38284 93.34 0.0032 0.09165 21.53 0.02563 2049.5 0.0795 1.97453 1057.3 0.00507 564.3 0.00366 396.3 0.25007 1088.4 0.07186 417.1 1.95332 1674.5 21.03 0.00195 0.00208 0.19259 17.32 50.98 0.05444 0.06833 0.03851 23.34 1594.1 1028.9 18.44 0.00568 8.72 0.00233 32.44 0.09588 1002 71.91 1.83983 1018.4 0.2 6.57288 0.05093 1081.4 0.00238 429.9 0.17534 81.36 1664.7 -2.7 0.00139 550.2 22.61 0.00219 1.76381 0.04645 372 30.47 0.10135 0.00162 3.58 7.46 47.14 6.79 6.70781 1289.5 1035.3 0.00116 0.00186 0.33796 24.67 3.2 1054.3 0.10078 1035.7 12.03 1091.9 15.51 3.09622 0.26225 1384.5 0.00396 0.8 394.9 10.35 1019.3 2.04806 24.13 0.20457 91.43 0.00156 1104.7 0.04264 371.5 0.16333 28.69 0.00426 5.05 1108.9 0.7 0.31199 0.7753 0.15691 2.7 65.45 1000.2 12.65 395.3 1.69455 -0.1 0.05625 7.35 39.11 1641.9 492.8 1135.2 1015.5 0.00214 0.84511 0.05556 13.08 47.89 46.17 2096.3 3.1 0.00199 33.7 1010.3 5.59 10.42 1078.6 5.15332 1068.2 0.00214 1008.2 5.77 37.67 0.02224 1639.6 2090.1 0.11883 11.91 0.5 546.6 35.51 2.18295 0.03504 1002.3 13.42 1.62574 1443.9 5.16 2 1038.5 21.06 1.51311 0.18118 1347.4 1 74.48 1171 19.7 3.4 1077.3 22.19 35.59 1.7 16.7 403.7 48.11 1100.5 14.87 37.13 0.04999 590.5 364.7 1040.2 0.04882 1102.5 1017.6 7.38 39.13 0.05555 1643.8 628.2 22.48 12.02 27.64 1902.2 1055.5 -0.4 10.15 -0.3 17.78 2057.2 1022.5 1.1 38.72 11.19 -1.1 12.31 1071.4 14 1637.2 1184.7 10.81 12.56 2089.5 52.26 96.67 -11.4 982 21.1 546.5 878.6 13.58 1438.8 17.53 72.21 1015 1044.5 23.75 -6.4 35.5 1135.4 44.1 10.64 1106.9 -0.2 18.56 26.46 1099.6 34.28 1035.3 1041.4 0.9 590.2 1241.4 12.29 8.7 2.2 15.19 1059.8 622.3 55.25 45.13 13.98 2055.7 11.86 20.34 1876.8 1032.2 -6.4 93.34 17.39 12.65 1.7 1199.8 21.74 2073.7 15.97 6.85 1431.8 0.7 939.6 36.03 9.13 975.3 -4.4 20.52 1131.6 35.16 1.6 15.67 0.4 11.44 1006.5 0.6 41.1 582.8 13.94 11.94 7.6 1844.9 18.51 11 2.2 622 -6.8 1175.6 44.78 0 0.4 12.72 935.7 29.9 3.3 980.2 19.28 15.95 -0.1 0.1 22.44 1.5 18.88 1 -1.4 -7.5 0.7 555657 0.0926458 0.0549859 0.0555260 0.1780261 0.00502 0.0739662 0.00202 0.1102763 0.00163 0.0614664 0.00284 0.23881 0.0577265 0.00138 0.06646 0.08875 0.06861 0.00178 0.05502 0.00687 0.00168 0.49575 0.0735 0.00104 0.00166 0.17846 0.00093 0.00183 0.31928 2.88803 0.00127 0.10728 0.0053 0.48458 0.0019 0.08462 0.50244 0.00147 0.00324 0.22836 0.26778 0.00141 11.70925 0.06603 0.01977 0.00107 1.87119 0.01648 0.17089 0.00271 4.6592 0.31395 0.00075 0.9144 0.69669 1480.3 0.04461 0.00188 2.95287 411.4 0.10311 433.1 0.51394 0.03029 0.02286 2634.5 1.76586 0.08987 1040.4 99.42 0.01307 79.49 1803.9 63.77 0.04518 655.3 518.9 26.22 1398.8 1380.5 37.08 412.8 414.8 29.13 427.8 1027.6 2595.5 57.59 62.22 35.76 1058.5 39 6.29 1786.2 50.05 5.63 22.84 39.96 523.6 10.39 657 1378.8 1325.9 15.85 401.2 412.2 2581.4 413.4 1017 6.38 69.93 1071 8.21 14.23 1759.9 4.54 13.52 25.08 10.36 11.14 536.8 7.5 1395.6 15.78 659.4 18.5 -0.9 421.1 1.8 1.3 1033 13.68 -1.9 23.08 16.07 1.1 8.77 16.59 -0.9 5.8 -0.3 0.2 1.1 p

Sam

264

4 4 4 4 4 4 4 4 4 4 4 4 e± g A 1812 18.72 1822 26. 2683 14.1 2588 21.87 1818 23.8 996.5 17.11 433.2 2.83 1701.41856.41820.91844.92374.8 14.89 1846.4 20.12 2701.7 15.8 1567.6 17.17 1519.9 14.13 1038.62087.3 16.22 1190.4 22.7 27.56 77.1 1902.1 16.25 1727.2 14.8 34.18 2678.31921.12209.7 21.5 17.05 2019.7 18.61 2073.9 74.61 1812.6 47.9 1548.92792.9 19.51 2660.11662.3 31.98 1706.6 24.3 1851.9 21.97 2616.4 14.4 16.12 1844.4 17.51 1837.5 16.31 1525.3 18.5 1552.8 28.16 2699.8 33.37 1827.6 21.49 1828.1 18.06 1810.8 39.16 1674.81210.9 15.7 28.31 19.47 21.18 35.81 30.16 2045.91839.41770.12714.71867.21582.1 28.83 1838.8 18.36 1849.1 49. 1236.7 14.19 1098.6 21.91 1311.9 38 1811.7 25.09 1819.4 12.01 1906.8 37.39 2675.5 16.25 38.58 20.05 18.7 12.79 13.0 2665.11880.9 15.16 21.9 ) % ( es g A Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Disc. Ratios le HL - HL 09LB07 le 5 0.126218 0.18686 0.00208 0.35813 0.00162 0.00358 0.5184 6.23683 0.00289 0.22882 13.3834 2045.9 0.28739 28.83 2714.7 1973.3 14.19 17 2692.4 12.26 2009.6 2707.1 32.11 20.29 4.1 1 67 0.112459 0.10825 0.00115 0.1142 0.00297 0.33146 0.31299 0.0014 0.00184 0.00494 0.33079 4.98882 4.82988 0.00225 0.09842 0.27836 5.41397 1839.4 1770.1 0.13654 18.36 49.4 1867.2 1845.5 21.91 1755.4 8.92 1842.2 24.23 1817.4 10.91 1790.1 16.69 1887.1 48.48 21.62 -0.4 0.9 1.5 3 0.11507 0.00141 0.35136 0.00246 5.71753 0.1481 1880.9 21.94 1941.1 11.72 1934 22.39 -3.7 12 0.18134 0.11077 0.00167 0.00115 0.51118 0.33797 0.00318 0.00191 13.1031 5.14773 0.33346 0.10546 2665.1 1812 15.16 18.72 2661.7 1876.9 13.56 9.21 2687.1 1844 24.01 17.42 0.2 -4.1 p 2021 0.11138 0.10427 0.00164 0.0008527 0.32636 0.3101929 0.11289 0.00271 0.0012231 0.09702 5.14577 0.00102 4.60449 0.0739 0.15425 0.00144 0.32657 0.06112 0.28893 0.00061 0.0014937 1822 1701.4 0.0023 5.16749 0.10574 0.1762 26.4 14.89 0.08127 0.00061 3.8508 0.00099 1741.7 1820.7 1846.4 1.73412 0.1104 0.313 13.17 5.99 0.0181 16.2247 1567.6 0.00141 1843.749 1750.1 0.09606 1821.7 1038.6 4.62151 27.56 0.18079 25.49 11.07 16.25 7.24 0.00113 0.0702 1636.253 0.00177 0.27231 1046.255 1847.3 0.17609 1727.2 11.5 0.1 -2.7 0.51822 0.00158 0.11276 3.37 13.38 17.05 0.00301 1603.4 0.00278 3.77743 0.0021 1021.3 0.50224 1755.4 12.97054 0.07557 23.11 1.5 0.26026 0.00597 0.33568 6.94 6.72 1548.9 11.94536 0.0035 2660.1 -5 1753.2 21.97 0.56037 5.04724 -0.8 16.12 1552.5 12.68 2616.4 0.18567 2691.6 7.99 28.16 1844.4 11.82 -1.9 2623.4 1588 33.37 2677.5 25.61 1865.8 16.06 18.92 2600.1 16.9 -0.3 43.95 -1.4 1827.3 31.18 -0.3 -1.3 222324 0.1135125 0.1113126 0.11279 0.15256 0.0012728 0.18331 0.00097 0.00108 0.3268730 0.18539 0.00127 0.32658 0.00158 0.32634 0.0019832 0.09459 0.41794 0.0014633 0.00257 0.51728 0.0016234 5.08888 0.12922 0.001935 5.01619 0.07973 0.00397 0.52415 0.0026536 5.00409 0.10945 0.109 0.17311 0.07637 0.00109 0.27487 8.83781 0.00513 12.8425538 0.11643 0.08586 0.001439 0.00151 0.38298 0.14291 0.24466 0.00537 14.20272 1856.4 1820.940 0.07237 0.00229 0.20121 1844.941 0.18279 0.00141 0.28429 0.56613 0.0016342 3.67335 0.11767 2374.8 0.50487 20.12 2683 15.843 0.13859 0.00166 0.00061 0.34955 17.17 0.0021444 6.57273 0.10676 0.27675 0.00207 2701.7 0.0044745 1823.2 0.12436 14.13 0.00502 0.16606 2.23642 1821.8 0.00231 14.1446 3.89828 0.11067 0.09516 1820.6 0.00389 0.51041 12.99578 1519.9 0.12823 22.74 0.00119 0.38078 0.06106 2251.1 0.0005948 5.48381 9.64 0.09751 0.00138 2687.6 0.1108 0.40783 7.08 0.4644 0.0037 2087.3 7.88 0.00148 0.34533 77.14 2716.8 0.0101750 1.58689 0.19597 0.12751 0.00235 1190.4 0.38002 8.66 0.00756 1790.351 1834.3 11.27 12.95642 0.41812 1822.1 14.8 0.001552 5.85517 0.10208 1565.5 0.01656 0.002 2588 1820 21.69 0.36423 0.00224 1902.1 8.05184 0.10456 34.18 0.36455 0.00174 2321.4 25.02 0.00321 2668.2 18.1854 0.11323 0.61381 0.33618 12.89 2090.2 0.00396 27.13 5.30865 6.65501 2763.3 0.58246 0.00097 996.5 21.87 0.54245 1181.8 21.54 14.52 2678.356 6.23903 0.11113 1612.9 0.00093 14.75 0.00244 17.95 1921.157 6.20547 0.11351 0.14393 0.00117 0.29169 1565.6 7.62 0.00245 2634.7 2209.758 37.81 0.11233 17.11 0.19842 1932.5 2.1 0.30526 8.93 18.61 -0.1 10.74 5.1673259 0.09486 0.00147 0.2473 0.33335 74.61 0.00125 1744.8 2019.760 14.5355 0.09626 1.5 2055.7 60.13 19.14 0.00117 990.4 47.9 11.01 6.2 1810.561 -0.2 0.13484 2658.4 0.00134 0.0556 0.34235 1192.5 1613.3 0.0016562 3.99149 0.18517 0.23298 2079.9 0.00091 -0.7 2073.9 20.33 19.5163 4.42548 0.11172 0.00203 2679.3 12.76 0.32912 1898.1 24.17 0.00244 1812.6 15.7964 2205 5.20668 0.11175 3.24 0.05448 19.16 0.26896 20.21 0.00097 -3.4 47.46 2792.965 1912.3 0.11069 31.98 0.05267 2076.4 0.00177 0.26108 0.00197 5.09494 0.10278 0.08614 0.00176 33.69 2252 19.97 2676.5 24.34 0.00111 0.06951 1662.3 0.08057 0.00121 965.1 34.6 0.52552 1954.6 2002.2 14.44 0.00288 -0.2 10.46 1706.6 5.15307 0.13377 9.6 0.0013 0.34112 11.2 0.8 1851.9 3.56259 1868.3 0.00047 0.00202 0.33608 26.52 14.61 17.51 0.00236 3.46953 2793.7 0.10766 0.00125 2236.9 18.73 -2.2 90.92 2066.7 16.31 -1.8 6.5 0.33638 0.0029 0.04592 1818 1870.3 0.29668 0.53338 18.54 0.00168 13.78802 11.77 0.12989 2009.9 0.21327 1650 10.23 1837.5 2005.2 1717.3 65.34 0.0019 5.24682 19.09 0.21227 0.00308 0.0106 1525.3 0.9 5.18889 1854.6 23.84 18.27 1847.2 0.00152 -9.7 1552.8 27.83 2785.3 0.15843 21.49 0.7 6.25 5.39146 34.85 4.37509 1790.3 0.08534 5.78 2699.8 18.06 1897.9 2.37751 436.2 7.98 0.3 39.16 22.2 -3.3 0.10608 0.16675 1834.1 1827.6 -11.1 15.23 1632.5 1828.1 1717.1 0.05475 1535.5 15.7 -29 11.72 1853.7 38.01 1495.4 4 1810.8 1674.8 28.31 9.56 25.02 19.47 11.08 1210.9 2722.5 5.63 -3.5 1835.3 9.86 433.2 14.09 14.7 0 21.18 1892.1 35.81 1844.9 1867.8 30.16 1541.2 9.96 22.29 1744.8 1520.3 2.83 1869.2 0.8 1674.8 13.94 -0.7 17.77 1246.2 8.11 1810.5 -0.2 10.22 2735.3 15.29 29.51 1860.3 9.18 -5.1 434 1850.8 8.07 14.58 20.33 0.2 1707.6 1883.5 25.75 -0.8 24.17 1235.9 7.02 4.1 14 31.5 16.85 -1 16.46 -4.1 0.7 -2.5 -3.7 0 -3.2 101112 0.0977813 0.1124214 0.1130615 0.08163 0.0020116 0.07613 0.0015717 0.08852 0.00075 0.2723718 0.11075 0.00158 0.3303419 0.11122 0.00062 0.33073 0.00304 0.11674 0.00596 0.20514 0.00263 0.18247 0.00123 0.18575 0.00103 3.58338 0.00115 0.2257 0.0019 5.12823 0.00083 0.32431 0.00067 5.07583 0.00144 0.1387 0.32942 0.14622 0.00734 0.35304 2.38217 0.00194 1.97168 0.05052 0.53393 0.00183 1582.1 2.81076 0.07434 0.00121 1838.8 0.02197 5.0923 0.00255 1849.1 5.06767 0.32626 5.61766 1236.7 0.11464 25.09 38 13.86195 1098.6 0.0993 12.01 0.06356 1393.8 0.26525 37.39 1811.7 1840 16.25 1552.8 1841.9 1819.4 124.02 1906.8 2675.5 1202.9 20.05 1098.3 12.73 15.4 1311.9 4.97 18.7 12.79 13.04 10.18 1810.7 3.63 1840.8 1545.9 38.58 1832.1 1835.6 1949.1 1237.3 2758 9.46 1105.9 24.23 1358.4 30.73 8.86 5.76 8.44 22.32 10.73 1834.8 7.51 86.93 1830.7 1918.8 -0.1 2740.3 2.1 19.11 0.4 3 16.62 9.75 18.12 6.5 0 0.1 -1 -2.6 -3.8

Sam

265

5 5 5 5 5 5 5 5 5 e± g A 1646 14.33 1778 22.03 27421072 30.36 44.76 939.4401.9 5.97 2.91 467.9 4.02 419.7621.1331.8 2.89 3.55 4.72 437.6433.9 5.79 4.84 463.4 6.14 410.2 2.81 927.9 5.61 1092.1 14.74 1160.41055.91590.8 49.63 12.39 35.6 1097.61203.52825.31105.9 11.61 25.67 10.3 28.3 1742.41501.91659.9 30.23 2834.21089.4 20.32 1547.1 14.66 1788.6 10.96 2668.5 32.38 1240.9 11.44 1663.3 86.56 1887.6 12.13 14.48 21.1 1578.9 17.76 1768.71493.9 20.26 1149.7 25.29 1971.61245.6 20.01 16.36 12.86 16.3 2632.11055.81917.51066.5 20.71 2049.4 13.21 1673.7 52.46 1247.6 47.2 1019.6 13.21 1086.8 23.22 1194.1 22.9 33.8 1728.3 22.09 1758.5 51.84 1625.41629.5 19.9 1226.6 15.53 49.5 2049.3 23.2 30.34 15.06 1152.41301.52726.41083.6 28.2 2847.5 34.58 1674.6 12.78 43.86 60.84 1696.4 46.73 30.32 ) % ( es Ag ) e 1/2 g Pa ( Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Disc. Ratios le TF - 2002LHA10-1C 1 0.07589 0.00056 0.18735 0.00064 1.9736 0.02098 1092.1 14.74 1107 3.48 1106.5 7.16 -1.5 2 0.1011967 0.00079 0.07454 0.09823 0.29442 0.00045 0.00122 0.0019 0.17943 4.06919 0.26683 0.00049 0.05649 0.0028 1.83571 3.65682 0.01514 1646 0.12854 1055.9 14.33 1590.8 1663.6 12.39 6.08 1063.8 35.65 1524.7 2.7 1648.2 14.25 11.31 1058.3 1562 5.42 -1.2 28.03 -0.8 4.7 345 0.07037 0.05472 0.07853 0.0011 0.00109 0.002 0.15687 0.06433 0.00107 0.00048 0.19616 1.49534 0.00236 0.49059 2.00106 0.03207 0.01088 0.07733 939.2 401 1160.4 31.73 43.72 49.63 939.4 401.9 1154.7 5.97 2.91 12.73 928.5 405.3 1115.9 13.05 26.17 7.41 0 0.5 -0.2 8 0.07609 0.00044 0.18328 0.00049 1.92212 0.01527 1097.6 11.61 1084.9 2.65 1088.8 5.31 1.3 9 0.08027 0.00105 0.20355 0.00129 2.19801 0.04432 1203.5 25.67 1194.4 6.9 1180.4 14.07 0.8 p 1011 0.19989 0.07641 0.00127 0.0011 0.52172 0.19462 0.00226 0.0013 13.65057 1.98524 0.21529 0.04215 2825.3 1105.9 10.3 28.35 2706.5 1146.3 9.56 7.01 2725.8 1110.5 14.92 14.34 5.1 -4 14 0.09369 0.00101 0.26475 0.0014925 3.3438926 0.06047 0.09761 0.062930 0.00089 0.00106 0.0933 1501.9 0.10114 0.2706935 0.0006136 0.00099 20.32 0.0015537 0.05539 0.84543 0.24964 1514.1 0.10872 3.66272 0.17776 0.00136 0.01519 0.00166 7.58 0.00132 0.07006 0.00223 3.13894 0.06963 0.32317 620.6 1491.4 0.50585 0.0008 1578.9 0.05573 0.0022 0.00482 31.46 14.7 0.5255548 20.26 11.54714 1493.9 4.91747 621.1 0.01779 1544.3 0.1058 0.37686 -0.9 0.11567 20.01 3.55 7.87 427.8 0.0011654 1436.6 2632.1 1778 0.30446 622.1 1563.3 0.12646 65.06 20.71 7 0.00177 22.03 15.26 8.36 0.00108 2638.9 433.9 4.31635 1805.2 1442.3 0.34875 20.64 4.84 0.08408 2.5 -0.1 10.73 0.00157 13.67 2568.466 428.8 1805.3 5.92778 1728.3 4.3 30.5 0.10398 0.08797 19.85 19.95 11.84 0.00173 1713.4 -0.3 2049.3 -1.8 -1.5 0.28208 8.73 15.06 0.00252 1696.5 1928.6 4.00292 16.06 7.49 0.1196 1965.3 1696.4 1 12.89 30.32 1601.8 6.8 12.67 1634.8 24.27 6.3 1213 0.1066215 0.05641617 0.00178 0.1019518 0.2009819 0.00134 0.30756 0.0757820 0.09596 0.0008121 0.07528 0.10935 0.00136 0.0029122 0.00124 0.29276 0.181723 0.00067 0.08181 0.00059 0.5351424 4.4572 0.00535 0.10214 0.17733 0.00124 0.55683 0.25733 0.1155 0.00134 0.0025 0.05525 0.31267 0.00061 0.00134 0.1466127 4.08151 0.00118 0.0007828 0.50116 0.01492 14.28141 0.00895 0.21448 0.00115 1.85008 0.00101 0.10817 0.29441 0.0586431 3.31438 1742.4 0.00252 0.05307 0.00075 0.24671 3.86121 0.3248732 0.06727 0.00185 0.04425 467.333 12.00936 0.00151 0.07811 0.0312334 0.00185 1659.9 2.33652 30.23 0.12104 0.00214 0.00048 0.3375 2834.2 4.05928 0.08201 0.3166 0.21729 1089.4 52.35 4.84247 1728.7 0.05553 0.00065 0.05281 0.02531 0.51624 1547.1 14.66 0.00088 0.0859838 0.00251 1788.6 10.96 0.00069 0.18446 0.00077 467.9 14.36 0.0910739 2668.5 32.38 0.01068 0.00208 1655.3 0.339340 1240.9 11.44 4.57483 2763.1 0.21094 0.071841 0.0007 1663.3 0.41123 86.56 0.11744 1052.4 0.07024 4.0242 1723 1887.6 0.00132 12.13 6.17 0.07493 1476.2 0.00083 422.2 0.1216243 10.49 14.48 0.12647 1753.8 0.00096 1.9917 0.0180244 0.00229 21.15 7.32 0.10271 2618.8 5.49944 0.003545 449.5 2.42549 17.76 3.97 27.28 1650.6 0.08209 0.00179 1252.6 43.95 2768.646 0.17795 1768.7 39.78 0.4905 0.00095 1663.5 0.0732 0.0231847 10.82 0.34411 0.07056 331.6 1063.5 0.07569 1813.5 0.18155 0.0013 0.03022 0.00241 3.97 11.72 1484.4 0.00097 0.07988 9.73 0.39637 419.7 1605.6 16.3949 0.9 0.00622 25.29 9.23 0.02026 0.05646 0.00201 0.00125 2605.150 1149.7 0.31613 8.99 15.76 0.19775 0.00084 1971.6 1.62943 88.951 0.0016 1245.6 1223.5 0.00213 0.10756 1773.1 5.36239 2.89 7.35 70.552 0.18052 0.3 0.00221 -0.1 1.8031 1646.2 0.10007 0.00203 0.00109 0.17015 3.1 433.4 16.9653 16.36 1792.3 0.07038 0.19598 0.10029 6.66287 12.86 331.8 12.27 0.00141 3.7 16.35 0.33719 0.00092 4.26939 0.07454 0.00085 0.0835 7.7 2.30441 422.655 0.06308 17.26 0.05502 1091.3 0.00271 0.00253 5.1 2.2 56 1883.3 15.83 81.34 1.76522 0.00126 1233.8 0.0905 0.30452 2.3 4.72 0.00102 1744.7 980.3 1.75642 0.09888 0.04036 0.17714 1917.5 0.30304 2.06621 0.00474 7.15 3.8 0.00104 0.18998 1066.5 0.29175 6.33 0.00132 437.6 0.0435359 4.41 -1 0.5781 0 22.15 0.02715 4.5 60 0.0045 349.8 2049.4 0.20959 63.52 0.06571 0.00154 1673.7 1247.6 52.46 0.0846 0.0019461 4.45194 0.08439 0.00355 5.79 47.25 1112.7 1900.562 1019.6 0.00569 0.6 0.02373 1250.2 0.18819 1055.8 0.00047 0.27015 4.263763 1906.4 1086.8 4.00157 13.21 -0.3 12.96 0.07556 0.53652 23.22 0.06315 22.964 1075.4 1194.1 0.20263 0.00152 0.00131 2.0633 11.02 0.50828 13.2165 405.3 7.87 33.85 29.85 2152.3 0.10276 0.00147 8.96 0.22588 0.08994 469.7 0.0079 1770.8 22.09 0.00168 10.95 0.16116 1163.2 0.22233 -0.1 1758.5 6.26836 51.84 0.00773 0.01069 0.06983 1069.8 0.52405 0.17412 981.6 7.39 13.04933 1878.9 10.82 0.17521 0.00264 13.8 1012.9 5.2 0.00193 5.5 1625.4 1629.5 5.85 78.49 1046.6 0.00382 0.50366 1153.7 0.00221 0.09417 1 7.69 15.53 0.00104 0.00175 0.29616 0.68739 413.1 1280.7 2.43857 4.71 27.18 2067.7 53.81 1687.5 0.55874 0.01586 463.4 13.62 13.6236 23.25 1213.6 49.5 22.85 0.15482 1713.7 -1 0.00427 1.9167 2626.3 1032.8 0.01041 12.93896 0.06722 106.97 41.24 11.99 19.05 1029.5 2742 1650.3 6.14 1137.7 0.20297 -8.4 1706.4 0.001 0.7 3.59255 6.51 12.4 11.65569 0.06221 -0.9 1.45079 1226.6 15.98 14.42 410.2 1301.5 9.67 22.25 28.02 1.52138 0.16137 -5.9 30.36 -6.6 0.77836 10 463.2 2726.4 1722.1 30.34 1541.6 1083.6 2847.5 7.4 2.81 -5.3 2768.8 34.58 1686.4 1634.5 0.03071 1674.6 2467.9 12.78 15.27 6.65 11.76 3.7 1136.7 43.86 60.84 7.3 1294.2 33.16 417.3 43.57 18.26 2716.3 923.3 46.73 39.45 57.71 1040.8 2629.5 2014 1.4 10.18 2.9 2683.2 9.33 7.19 2861.4 1672.2 -5.7 67.99 -1.4 9.62 30.27 1254.1 13.16 4.6 49.68 43.04 21.25 2723.9 927.9 2675.2 1086.9 0.7 19.85 46.3 2577.2 1547.9 -1.2 14.09 105.68 5.61 21.66 0.6 62.45 35.68 2626.3 9.3 0.5 939 4.3 -19.8 0.2 14.42 12.37 2467.9 -0.5 39.45 5758 0.07513 0.07853 0.0017 0.00486 0.18707 0.19575 0.00195 0.00524 1.93106 1.74089 0.06456 0.15539 1160.2 1072 117.87 44.76 1152.4 1105.5 28.25 10.58 1023.8 1091.9 57.56 22.37 0.7 -3.4

Sam

266

16.61 5 e± 486 2.41 Ag 1688 19.19 1431 27.82180 463.4967.1 4.58 8.8 411.8 1.87 2731.81812.2 15.26 1946.4 16.49 25.4 1885.81254.2 66.5 26.41 1046.3 47.56 ) % ( es Ag ) e 2/2 g Pa ( Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Disc. Ratios le TFle - 2002LHA10-1C p 777879 0.1107880 0.10351 0.25886 0.11934 0.00101 0.00108 0.00277 0.31553 0.00171 0.28383 0.73924 0.0013 0.35552 0.00141 0.00548 4.85033 0.00282 3.96153 25.03013 5.49167 0.06285 0.06268 0.71526 0.14891 1812.2 1688 3239.8 1946.4 16.49 16.77 19.19 1767.9 25.4 3567.8 1610.6 6.37 1960.9 20.32 7.06 13.41 1793.7 3309.4 1626.4 1899.3 10.91 27.9 12.83 23.29 2.8 -13.2 5.2 -0.9 3239.8 16.77 7576 0.07101 0.18881 0.0016 0.00176 0.16187 0.52073 0.00159 0.0026 1.55855 13.75881 0.04811 0.24324 957.8 2731.8 45.51 15.26 2702.3 967.1 11 8.8 2733.2 953.9 16.73 19.09 1.3 -1 727374 0.11538 0.08236 0.05641 0.00436 0.00113 0.00148 0.35334 0.20469 0.07454 0.00818 0.0013 0.00076 5.68102 2.35549 0.55476 0.44996 0.04764 0.01655 1885.8 1254.2 467.6 66.5 26.41 57.45 1950.5 1200.5 463.4 38.95 6.98 4.58 1928.5 1229.2 68.39 448.1 14.41 10.81 -4 4.7 0.9 676869 0.09026 0.0568171 0.05492 0.00133 0.11034 0.00074 0.00067 0.25294 0.07831 0.00101 0.06596 0.00186 0.0004 0.32991 0.00031 3.12787 0.61482 0.00143 0.50867 0.07583 4.90374 0.00918 0.0069 1431 0.06805 483.6 408.9 27.82 1805 28.87 26.69 1453.6 16.61 486 411.8 9.55 1838 2.41 1.87 1439.6 6.91 486.6 417.6 18.65 1802.9 5.77 4.64 -1.8 11.7 -0.5 -0.7 -2.1 70 0.07418 0.00178 0.1769 0.00192 1.68731 0.05729 1046.3 47.56 1050 10.54 1003.7 21.65 -0.4

Sam

267

Whole-rock trace element geochemistry: Mount Christie Formation stratotype (MC) and in Ogilvie Mountains (MC_OG)

Unit MC MC MC MC MC MC_OG MC_OG Sample No. 02LB05 05LB05 11LB05 13LB05 14LB05 04LB06 06LB06 Lithology slt-sh. sh. slt-sh. sh. slt-sh. sh. sh.

La (ppm) 32 34.9 29.4 34.1 40.7 15.9 15.8 Ce 60.4 57.2 58.3 64.5 75.4 44.4 38.7 Pr 7.85 8.34 7.31 7.98 8.8 3.9 3.4 Nd 29.9 31.7 27.4 29 29.1 15.2 12.7 Sm 6.13 5.77 4.95 5.5 4.34 3.3 2.6 Eu 1.29 1.17 1.18 1.18 0.869 0.7 0.6 Gd 5.59 4.7 4.84 5.5 4.34 3.2 2.7 Tb 0.753 0.748 0.753 0.863 0.652 0.5 0.4 Dy 4.94 4.17 4.3 5.28 4.45 2.5 2.4 Ho 0.968 0.962 0.861 1.07 0.978 0.5 0.5 Er 3.11 2.78 2.58 3.12 3.15 1.5 1.5 Tm 0.43 0.427 0.43 0.431 0.543 0.2 0.2 Yb 3.11 2.88 2.47 2.91 3.26 1.6 1.6 Lu 0.537 0.427 0.43 0.431 0.543 0.2 0.2 Ba 5411 5937 3799 2740 3468 1205 5490 Cr 107 128 86 86 108 30 60 Ni 33.3 32 17.2 39.9 43.5 17 40 Co 2.15 1.71 4.3 10.6 10.4 9.4 14.9 Th 9.68 8.56 8.61 10.8 11.9 3 4 Sc*****9.412.8

Cr/V 0.51 0.621 0.714 0.888 0.409 0.731 0.697 Th/Cr 0.09 0.066 0.1 0.125 0.11 0.1 0.066 Th/Co 4.5 4.99 2 1.01 1.14 0.319 0.268 La/Co 14.9 20.4 6.85 3.2 3.9 1.69 1.06

Eu/Eu* 0.671 0.687 0.736 0.657 0.609 0.656 0.69

[La/Yb]N 6.98 8.22 8.09 7.97 8.49 6.75 6.7 Th/Sc*****0.3190.312 La/Sc*****1.691.23

268

Whole-rock trace element geochemistry: Jones Lake Formation stratotype (JL) and in Ogilvie Mountains (JL_OG)

Unit JL JL JL JL JL JL JL JL JL JL_OG JL_OG JL_OG JL_OG JL_OG Sample No. 15LB05 16LB05 18LB05 20LB05 24LB05 26LB05 31LB05 33LB05 35LB05 08LB06 11LB06 14LB06 16LB06 21LB06 Lithology slt-sh. slt-sh. sh. sh. sh. sh. slt-sh. slt-sh. slt-sh. slt.-sh. slt. slt.-sh. sh. slt.-sh.

La (ppm) 50.5 65.1 39.1 51.5 50.5 26.3 57.6 51.2 41.4 41.7 26 53.8 32.7 27.2 Ce 92.6 121 74.7 93.3 98.3 54 108 98 97.3 76.1 50.4 97.8 56.7 56.2 Pr 11.2 14.4 8.77 11.2 11.3 6.79 13.1 12 12.2 9.1 6 11.1 6.8 6.3 Nd 39.6 50.7 30.6 40.5 41.2 26.7 44.6 43.4 44 34.1 23.4 41.1 25 25 Sm 6.44 8.68 5.1 7.14 7.56 5.46 7 8.01 7.54 6.7 4.5 7.7 4.6 5.3 Eu 1.44 1.78 0.999 1.56 1.64 1.11 1.4 1.64 1.31 1.4 1 1.6 0.9 1.3 Gd 6.55 8.35 4.66 7.25 7.12 5.23 6.89 7.68 6.66 7.1 4.8 8 4.9 5.8 Tb 1 1.11 0.666 1 0.986 0.78 0.969 1.2 0.984 1.1 0.7 1.2 0.8 0.9 Dy 6.22 6.68 3.88 6.02 5.91 4.9 5.81 6.47 5.68 5.9 4.2 6.6 4.5 5.3 Ho 1.33 1.33 0.777 1.22 1.2 1 1.18 1.31 1.2 1.2 0.9 1.3 1 1.1 Er 4 4.23 2.55 3.57 3.5 1.11 3.66 3.84 3.49 3.7 2.6 4 3 3.1 Tm 0.666 0.668 0.333 0.557 0.548 0.445 0.538 0.548 0.546 0.5 0.4 0.6 0.4 0.4 Yb 4.11 4.45 2.66 3.57 3.28 2.78 3.76 3.62 3.49 3.5 2.7 3.7 3.1 2.9 Lu 0.666 0.668 0.444 0.557 0.548 0.445 0.646 0.548 0.546 0.5 0.4 0.6 0.5 0.4 Ba 4489 4656 2298 2644 2022 476 1024 928 886 1395 885 1345 1040 3380 Cr 166 178 111 145 142 55.7 140 120 120 100 50 110 160 130 Ni 51.1 51.2 49.9 54.6 69 25.6 46 49.3 49.2 49 9 45 46 58 Co 9.44 13.8 15.5 15.3 17.4 8.91 14.4 13.6 11.9 14.9 4.5 17.8 7.6 13.9 Th 16.6 21.1 13.3 16.7 15.3 8.91 17.2 15.3 15.3 12 8 14 10 6 Sc * * * * * * * * * 14.7 8.5 18.3 11.8 23.7

Cr/V 0.187 0.751 0.833 0.902 0.872 1.04 0.855 0.859 0.833 0.552 1.06 0.748 1.05 0.792 Th/Cr 0.1 0.118 0.12 0.115 0.107 0.16 0.123 0.127 0.127 0.12 0.16 0.127 0.062 0.046 Th/Co 1.76 1.53 0.857 1.09 0.88 1 1.19 1.12 1.28 0.805 1.77 0.786 1.31 0.431 La/Co 5.35 4.71 2.52 3.37 2.89 2.95 3.99 3.76 4.3 2.79 5.77 3.02 4.3 1.95

Eu/Eu* 0.677 0.637 0.624 0.661 0.682 0.635 0.614 0.639 0.563 0.618 0.655 0.621 0.577 0.714 [La/Yb]N 8.35 9.93 9.99 9.8 10.4 6.41 10.3 9.61 9.99 8.09 6.54 9.87 7.16 6.37 Th/Sc * * * * * * * * * 0.314 0.259 0.324 0.258 0.31 La/Sc * * * * * * * * * 2.83 3.05 2.93 2.77 1.14

269

Ar-Ar detrital muscovite geochronology: Mount Christie Fm. and Jones Lake Fm. type sections

Mount Christie Formation type section (12LB05) - Muscovite Laser Isotope Ratios Power(%) 40Ar/39Ar 38Ar/39Ar 37Ar/39Ar 36Ar/39Ar Ca/K Cl/K %40Ar atm f 39Ar 40Ar*/39ArK Age 2 33.407 ± 0.029 0.015 ± 0.747 0.212 ± 0.120 0.030 ± 0.327 0 -0.002 0 50.65 27.344 ± 3.181 435.93 ± 45.05 2.5 33.850 ± 0.016 0.022 ± 0.775 0.214 ± 0.113 0.031 ± 0.408 0 -0.001 0 47.73 27.440 ± 3.996 437.29 ± 56.56 3 119.005 ± 0.156 0.202 ± 1.527 3.125 ± 0.175 0.578 ± 0.387 0 0.011 98.71 1.62 0.515 ± 161.533 9.26 ± 2898.12 Total/Average 27.659 ± 0.009 0.008 ± 0.938 0.000 ± 47328.882 0.002 ± 2.455 0.003 100 26.955 ± 1.672 J = 0.009996 ± 0.000008 Volume 39ArK = 1.19

Integrated Age = 430.42 ± 47.50 Ma Plateau Age = 436 ± 28 Ma

Jones Lake Formation type section (17LB05) - Muscovite Laser Isotope Ratios Power(%) 40Ar/39Ar 38Ar/39Ar 37Ar/39Ar 36Ar/39Ar Ca/K Cl/K %40Ar atm f 39Ar 40Ar*/39ArK Age 2 61.733 ± 0.102 0.077 ± 1.501 1.515 ± 0.140 0.237 ± 0.457 0 -0.004 0.01 3.46 16.515 ± 44.844 275.42 ± 693.58 2.5 25.871 ± 0.011 0.016 ± 0.482 0.096 ± 0.136 0.019 ± 0.325 0 -0.001 2.54 72.07 22.390 ± 1.848 364.08 ± 27.22 3.5 30.295 ± 0.026 0.022 ± 0.706 0.299 ± 0.143 0.047 ± 0.381 0 -0.002 0 24.46 22.118 ± 5.617 360.06 ± 82.89 Total/Average 22.572 ± 0.006 0.009 ± 0.483 0.001 ± 15.620 0.001 ± 2.859 -0.002 100 22.120 ± 1.212 J = 0.009987 ± 0.000008 Volume 39ArK = 1.86

Integrated Age = 360.10 ± 35.78 Ma Plateau Age = 363 ± 26 Ma

Volumes are 1E-13 cm3 NPT Neutron flux monitors: 28.02 Ma FCs (Renne et al., 1998) Isotope production ratios: (40Ar/39Ar)K = 0.0302 ± 0.00006, (37Ar/39Ar)Ca = 1416.4 ± 0.5, (36Ar/39Ar)Ca = 0.3952 ± 0.0004, Ca/K= 1.83±0.01(37ArCa/39ArK).

Nd isotope geochemistry: Mount Christie Fm. and Jones Lake Fm. type sections

147 144 143 144 Sample No. Lithology Formation Strat. Age (Ma) Sm (ppm) Nd (ppm) Sm/ Nd Nd/ Nd εNd(t) TDM (Ga) Permian 13LB05 sh. Mount Christie 275 5.5 29 0.1189 0.512063 ± 8 -8.2 1.74 Triassic 15LB05 slt-sh. Jones Lake 248 6.44 39.6 0.1019 0.512009 ± 6 -9.3 1.55 18LB05 sh. Jones Lake 248 5.1 30.6 0.1046 0.511960 ± 6 -10.3 1.65 26LB05 sh. Jones Lake 248 5.46 26.7 0.1281 0.512062 ± 6 -9.1 1.93 33LB05 slt-sh. Jones Lake 248 8.01 43.4 0.1157 0.511986 ± 6 -10.1 1.8

270

Conodont biochronology: Report No. MJO-2007-17 by Dr. Michael J. Orchard, GSC-Vancouver

Mount Christie Formation stratotype (1) GSC Loc. Num: C-307444 ; 09 464284E 6964975N NAD 83 Age: Early Permian (Early Artinskian) CAI 4.5 – 5.5

Fossils: Sweetognathus inornatus Ritter 1986 Mesogondolella sp. aff. M. bisselli (Clark and Behnken)

Jones Lake Formation stratotype GSC Loc. Num: C-307445 ; 09 464463 6965238N NAD 83 Age: Early Triassic (Dienerian-Smithian) Notes: Reworked Devonian and Permian(?) elements ; CAI 4 – 4.5

Fossils: Icriodus sp. indet. Mesogondolella sp. indet. Neospathodus sp. cf. N. dieneri Sweet 1970 Scythogondolella? sp. indet. ------GSC Loc. Num: C-307446 ; 09 464513E 6965298N NAD 83 Age: Early Triassic (Smithian) Notes: Reworked Carboniferous and Permian elements ; CAI 4.5

Fossils: Discretella sp. Mesogondolella sp. Gnathodus sp. cf. G. girtyl Hass 1959 Borinella chowadensis Orchard 2007 Neospathodus sp. cf. N. pakistanensis Sweet 1970 Neospathodus sp. cf. N. posterolongatus Zhao and Orchard 2007 ------GSC Loc. Num.: C307447 ; 09 464797E 6965398N NAD 83 Age: Early Triassic (Smithian) Notes: Abundant, mixed fauna with Pennsylvanian and Permian elements; CAI: 4.5 – 5

Fossils: Rhachistognathus sp. cf. R. prolixus Baesemann and Lane Neospathodus posterolongatus Neognathodus pakistanensis Sweet 1970 Neospathodus waageni Sweet 1970 Wapitiodus sp. Idiognathodus sp. Scythogondolella n. sp. D. Scythogondolella crenulata Idiognathoides spp. Borinella chowadensis Orchard 2007 Mesogondolella sp. Neospathodus waageni Sweet 1970 Scythogondolella mosheri (Kozur and Mostler 1976)

271

Conodonts from the Mount Christie Formation (GSC loc. No. C-307444) and Jones Lake Formation (GSC loc. No. C-307447, unless stated otherwise). Scale bar = 200 microns (all figures x80). 1. Icriodus sp. indet. GSC 131179; GSC loc. No. C-307445; 2, 3. Rhachistognathus cf. proxilus Baesemann & Lane; GSC 131180; 4. Idiognathodus delicatus Gunnell; GSC 131181; 5. Idiognathoides sinuatus Harris & Hollingsworth; GSC 131182; 6. Gnathodus cf. girtyi Hass; GSC 131183; GSC loc. No. C-307446; 7. Idiognathoides pacificus Savage & Barkeley; GSC 131184; 8-11, 14. Mesogondolella bisselli (Clark & Behnken). 8, 14. ; GSC 131185; 9-11 GSC 131186; 12, 13. Sweetognathus inornatus Ritter; GSC 131187; 15-17. Wapitiodus robustus Orchard; GSC 131188; 18, 19. Discretella discreta (Muller); GSC 131189; GSC loc. No. C-307446; 20, 21. Neospathodus dieneri Sweet; GSC 131190; GSC loc. No. C-307445; 22, 23. Neospathodus waageni Sweet; GSC 131191; 24, 25. Neospathodus posterolongatus Zhao & Orchard; GSC 131192; 26-28. Scythogondolella mosheri (Kozur & Mostler); GSC 131193; 29, 30. Scythogondolella? aff. crenulata (Mosher); GSC 131194; 31-33. Neospathodus pakistanensis Sweet; GSC 131195; 34-36. Borinella chowadensis Orchard; GSC 131196; GSC loc. No. C-307446; 37-39. Scythogondolella? n. sp. D.; GSC 131197.

272 APPENDIX C U-Pb zircon and Ar-Ar muscovite data collected from samples in Chapter 4 are presented here. Detrital zircon interpreted ages with ~ <10% discordance are indicated in bold type.

Table C1 – Location data for detrital zircon samples in Chapter 4. ------

Table C2 – Location data for Ar-Ar samples in Chapter 4.

273

7 . 20 9 91 54 18 59 12 65 91 12 73 98 5 83 95 49 13 4 06 92 01 6 06 1 64 81 82 . 69 45 35 63 21 18 71 52 65 68 55 92 93 45 57 88 88 02 46 31 56 78 11 ...... 2 5 7 8 6 4 2 2 3 3 1 5 5 2 7 2 5 4 5 5 40 5 3 19 20 54 51 32 62 15 12 49 35 25 21 14 37 15 16 27 21 14 14 29 32 20 19 23 34 4 . 5 9 1 4 8 2 8 6 5 6 1 9 1 5 4 7 6 7 6 8 8 4 6 4 3 1 6 7 5 2 4 7 2 9 1 9 8 4 7 1 8 7 4 7 1814 5 1 2 1 ...... ge A 1050 975 630 606 464 406 996 611 361 298 534 421 429 362 578 428 561 469 669 487 477 540 2729.9 17.89 1605 2084 1455 2621 2076 1021 2093 1087 1144 2667 1031 2823 1001 2651 1605 1962 1792 1009 1003 2808 1166 1025 1083 1485 1789 1659 1458 ) % ( ges A 1/2) age (P

0.099 0.0009 0.28701 0.00121 3.82395 0.05428 1605.4 16.92 1626.5 6.08 1597.8 11.42 -1.5 0.0523 0.00126 0.04745 0.00041 0.33616 0.00881 298.6 54.03 298.90.1019 2.5 0.00131 294.3 0.28794 6.7 0.0018 -0.1 3.93022 0.08527 1659.1 23.63 1631.2 9.02 1619.9 17.56 1.9 0.071590.099010.060790.12904 0.00110.09141 0.001060.17663 0.001180.12845 0.001520.07326 0.16342 0.00265 0.283050.06009 0.00558 0.102750.05627 0.00237 0.382030.05471 0.00112 0.00231 0.25214 0.001580.12969 0.00064 0.51052 0.000810.07215 0.00086 0.37176 0.002630.07572 0.00133 0.18482 1.58974 0.003740.07791 3.66788 0.00118 0.01151 0.09860.06034 0.87513 0.00217 0.00403 0.07470.18859 6.44063 0.00191 0.06512 0.002640.05381 0.00143 0.03592 3.2085 0.38179 0.07395 13.07946 0.00043 0.00091 0.16712 0.021880.05808 0.00044 6.44481 0.00206 0.17889 0.00061 0.175040.05521 1.86601 0.00076 0.19783 0.00184 974.40.18161 1605.5 0.17695 1.32064 0.09958 0.79131 0.002190.07362 0.00169 631.7 0.54237 0.57206 0.00201 0.277720.19971 2084.9 0.50219 0.00228 0.05762 0.09588 0.00170.07254 6.62529 0.00286 30.95 19.91 1455.1 2621.4 0.000610.05524 1.63593 0.00081 0.01039 0.08651 0.00407 41.320.05383 2076.8 0.00178 0.01032 1.9759 20.54 0.06755 0.00032 0.014190.05924 1021.2 0.00134 0.52012 1606.7 975.7 0.11939 2.0901 54.180.17985 51.59 0.82743 0.00192 0.16767 606.9 0.07384 14.67797 0.001 0.00104 630.5 32.12 0.53312 2085.8 462.4 0.00090.05535 0.42773 0.00226 0.07846 400.1 62.65 0.17153 0.00560.12043 1449.5 2093.8 2658.9 7.92 0.00164 6.18 0.06893 0.00081 0.062310.05877 0.0156 990.3 0.51772 22.94 0.05777 2037.7 0.00277 12.280.05635 4.71 0.68914 33.69 0.09395 1087.6 1093.2 0.51036 0.00142 0.001 0.00686 53.320.10959 0.00184 19.24 13.56919 15.91 0.51048 0.00089 49.1 1564.40.07251 1144.5 1.67448 0.00213 966.2 2729.9 0.00042 615.7 606.2 59.89 18.92 14.576180.07581 0.00167 2037.8 0.00134 0.02454 464.4 49.73 14.380.07451 638.3 0.00127 0.02355 362.8 406.7 1.6197 0.06877 0.34484 2084.7 0.00262 0.65405 1459.20.11091 16.09 0.00136 35.98 0.5301 2685.4 0.09099 0.025760.19789 17.89 14.08 0.44166 0.00259 996.2 0.30272 32.07 2038.4 2.52 0.07558 23.890.06181 1060.9 0.70355 0.00083 532.4 1069.1 2.65 11.85 0.00048 0.00294 420.6 0.3187 31.65 12.791830.07879 3.68 2667.6 42.69 0.00127 0.04453 8.6 1163.7 0.17689 -0.1 0.00129 95.240.05692 1031.1 2793.4 0.02133 0.0018 -0.1 0.16957 2823.9 0.00084 37.88 611.9 0.00972 12.120.07341 -0.1 0.00126 591.9 0.16846 33.97 0.03201 62.440.07557 11 0.52014 0.00188 5.49371 0.2 361.1 0.26662 25.83 0.0012 459.3 1001.1 0.39987 89.5 0.00148 0.4 0.05655 413.2 9.17 0.75701 -1.7 2062.7 21.95 0.0018 0.00266 421.80.09288 14.49 17 0.56971 363.7 0.5367 2.2 0.0015 984.1 3.55 0.10943 0.000810.10939 -7.7 0.00124 5.89 534.8 2699.7 2651.5 4.73381 0.00241 576 0.01086 0.17653 37.130.05845 1107.3 1.92 1.81721 0.00181 6.66 421.4 0.1908 9.59 1145.6 0.03402 15.9 999.3 2754.6 1.76535 0.0785 75.24 0.00255 0.00091 0.001 0.01971 43.190.09158 0.16857 2794.6 28.45 1.72575 0.00117 612.2 0.18205 23.74 15.06 5.93 1020.5 1962.7 5.64995 0.1 0.00088 426.2 0.10089 26.77 80.71 0.07684 0.00133 0.05206 361.6 -0.4 5.45 20.47 558.7 11.64 -1.7 0.00093 4.45 0.5 429.7 15.27835 0.0927 0.00154 0.91021 0.00166 465.6 362.1 33.53 0.25975 0.30788 -0.6 0.00134 0.02626 2658.7 8.67 2720.1 27.01 1792.6 7.83 0.00096 0.0874 532.3 2.7 578.8 0.1321 39.1 1000.3 2.01344 -1.8 4.88 76.99 418.7 0.62172 2788 0.28299 998.9 0.26123 1090.1 0.00127 1.67194 0.00154 5.4 0.02385 64.67 -2.9 2.57 1055.1 1.87299 11.19 1909.9 45.58 21.06 0.00052 0.63474 0.6 37.65 14.75 977.9 1814.4 428.7 0.04578 7.88 561.4 15.83 2808.8 0.00229 0.5 0.02317 67.07 19.73 3.28853 4.73051 0.05038 667.7 9.78 469.7 22.49 0.04562 14.09 2664.4 431.9 371.4 1783.4 -1.5 0.70889 0.02446 1050 -0.5 1166.8 17.26 20.7 2.88 540.9 14.81 -0.2 1009.7 3.26146 487.9 7.6 1025.4 1003.6 0.05287 0.08187 42.97 3 5.02 1083.6 19.63 3.3 1899.6 14.16 9.21 6.85 0.01288 473.2 29.82 2168.4 -2.1 8.1 2769.6 19.08 14.64 425.2 0.10061 68.98 1485.4 1789.3 40.9 4.46 669.5 32.69 572.3 -0.3 27.6 457.8 -1.9 1773.2 1125.7 0.5 546.7 11.08 69.95 10.68 -0.5 1032.8 1051.7 1458.6 7.26 487.1 20.45 19.35 1004.2 1078.2 1018.2 19.66 5.31 12.75 17.87 3.1 7.2 477.2 1923.8 32.42 2832.8 34.04 18.76 34.21 1488.6 1730.3 -0.6 5.56 7.29 8.5 9.78 -0.5 657.2 -0.9 0.6 20.17 540.1 5.78 17.65 1120.1 1496.1 -5.4 6.49 8 7.6 1071.6 490.9 5.3 997.9 12.68 -23 3.11 15.42 1.7 11.69 499 1478.3 16.12 1772.7 14.5 19.14 0.3 3.8 1471.9 544.1 12.52 15.19 14.51 0.5 0.2 2.2 23.97 7.66 -0.2 -0.9 3.8 -2.9 1.3 os 07JKM141 ti Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Disc. a - R AK 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 e l amp S

274

5 7 02 99 22 28 33 89 94 15 8 54 75 61 63 02 26 1 62 35 ...... 2 8 4 5 3 4 4 6 3 7 24 35 36 40 38 21 25 9 7 2 5 7 1 1 5 7 6 4 2 9 9 4 4 ...... 5. . 5. . ge A 1036 413 984 426 998 562 587 436 607 616 957 410 619 1389 1038 1047 1277 2197 ) % ( ges A 2/2) age (P

0.0739 0.001330.0738 0.16989 0.00149 0.00134 0.1825 1.72241 0.00163 0.04442 1.82647 1038.7 0.05446 35.99 1036 1011.5 40.28 7.38 1080.6 1016.9 8.86 16.57 1055 2.8 19.56 -4.7 0.088340.054990.072190.05545 0.00112 0.000750.07223 0.001590.05883 0.00174 0.237540.07421 0.06617 0.00104 0.164920.05948 0.00099 0.001380.05558 0.0684 0.00135 0.000360.06018 0.167570.06026 0.0016 0.001220.08336 0.0912 0.00075 0.00135 2.96937 0.173810.07247 0.00163 0.50965 0.001040.13764 0.0013 1.735890.05494 0.0954 0.00061 0.001660.06048 0.0014 0.5244 0.05815 0.00418 0.07 0.09889 0.00813 0.00207 1.6855 0.10035 0.00079 0.00135 0.05659 0.22086 0.76146 0.00191 1389.9 0.16021 0.00107 1.83581 0.01873 0.00067 411.7 0.39473 0.00088 0.03376 0.06574 0.00204 0.76819 991.2 0.01561 0.10086 24.02 0.00394 0.78894 0.04986 430.1 0.53806 0.00321 30.03 0.84332 0.0006 992.5 2.59764 0.01932 44.13 0.00125 1373.9 560.8 1.618 1047.2 0.02638 68.18 7.36957 413.1 0.0155 0.02281 29.08 0.51023 0.08238 584.6 984.1 0.82018 7.17 36.15 36.22 609.9 426.5 0.13459 0.2223 2.15 435.4 612.9 998.7 1277.5 0.01441 43.84 8.85 0.03197 562.6 1399.8 1033.1 57.35 4.54 999.1 2197.7 53.01 418.2 45.95 38.33 5.75 409.7 587.4 620.9 14.87 1021.9 3.61 7.66 607.9 112.89 25.94 428.1 436.2 1286.4 616.5 5.47 53.31 1003.1 4.63 66.61 1.3 21 1058.4 574.9 957.9 2144.7 6.26 12.48 10.78 4.02 5.17 12.77 -0.4 410.4 619.4 578.7 17.85 21.89 14.83 0.8 9 590.6 0.9 1300 437.1 -0.7 3.62 621 7.35 11.1 1.5 2157.3 977.2 14.97 -0.3 23.25 10.23 418.6 12.56 608.1 -0.5 26.97 52.2 0.3 -0.8 -0.2 9.69 -0.6 17.83 2.8 4.4 -0.2 0.3 os 07JKM141 ti Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Disc. a - R AK 52 53 54 55 56 58 59 60 61 62 63 64 65 66 67 68 69 70 e l amp S

275

4 4 4 18.39 4 e± 385 5.13 623 6.26 929 78.66 336 12.97 Ag 2011 13.89 1012 20.17 550.5373.3 28.15 12.29 400.2504.5458.2342.5 60.77 27.6 28.55 9.6 903.6933.8341.8667.3 59.15 52.54 30.75 64.32 423.7385. 421.8 18.08 7.46 580.5381.5636.2 8.3 431.3 6.1 8.65 419.9 6.16 363.7 2.98 1.89 683.9386.6 73.14 27.67 534.3520.1 32.52 67.54 384.8420.8 1.97 1.7 1021.61218.41502.1 49.45 85.53 56.55 2397.3 44.71 1038.31955.81023.7 25.49 1191.1 32.79 1233.6 26.98 1867.8 45.67 45.51 14.88 1165.8 118.26 1357.11189.81263.3 122.93 1308.2 89.47 84.38 1410.6 15.01 27.98 1010.81238.11062.3 20.41 24.44 16.33 ) % ( es Ag ) e 1/2 g Pa ( Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Disc. Ratios 126 0.06322 0.05403 0.07875 0.0186 0.01386 0.00489 0.11193 0.06181 0.18701 0.01261 0.00456 0.00561 0.68998 0.65706 2.09429 0.23666 0.19608 0.2054 715.5 372 1165.8 525.73 493.02 118.26 683.9 386.6 1105.2 73.14 30.44 27.67 532.8 1146.9 512.8 142.19 67.4 120.15 4.7 -4 5.7 111213 0.0581415 0.0581817 0.0868526 0.07943 0.0096534 0.08249 0.02791 0.10499 0.00577 0.12625 0.08642 0.01854 0.08403 0.01292 0.24111 0.01715 0.20271 0.00548 0.02837 0.01136 0.2165 0.25989 0.00756 0.32105 0.01669 0.64287 2.33923 0.01592 0.02189 2.7646 0.03503 1.96095 0.12479 1.67915 2.1324 4.13427 0.31474 6.29069 0.65957 534.4 0.35051 1.25949 536 3.86076 1357.1 1183 327.58 1257.3 1714.2 122.93 2046.4 804.26 534.3 403.03 279.04 273.6 1392.4 520.1 351.25 1189.8 32.52 1263.3 39.25 1489.3 67.54 1794.8 89.47 504.1 84.38 1346 170.94 112 1224.3 1102.2 1000.7 77.13 2017.2 1661.1 648.41 84.89 226.18 132.84 537.69 0 249.08 3.1 -2.9 -0.6 -0.5 14.1 14.7 2046.4 1714.2 351.25 273.6 1234 0.058566 0.071558 0.07316 0.08248 0.01084 0.05404 0.0195 0.09474 0.0095 0.08916 0.017873 0.00635 0.155014 0.00785 0.171726 0.20804 0.004767 0.05457 0.059628 0.01409 0.05736 0.262399 0.00899 0.15459 0.01603 0.80978 0.05629 0.00202 0.0435 1.39253 0.05333 0.01003 0.01107 1.50387 0.05307 0.00413 2.84307 0.17656 0.01055 0.52731 0.06405 0.00493 0.0814 0.486 3.165 0.40976 0.00677 0.30944 1.35789 0.07367 0.01003 550.8 0.06849 0.05457 0.00463 0.05351 0.00663 1018.3 0.4829 0.00475 973.2 0.68607 1257 0.00158 359.9 372.6 1.22314 0.00212 7.65953 0.56308 242.81 474.34 1523 0.60751 0.42973 373.7 550.5 0.32928 0.37584 245.14 0.46836 1021.6 0.1223 929 0.04448 1218.4 28.15 148.66 394.7 373.3 0.05191 49.45 504.8 2397.3 78.66 85.53 1502.1 602.3 12.29 463 1193.11 342.9 932 331.9 345.06 44.71 885.8 56.55 1367 400.2 99.06 430 196.26 369.63 504.5 125.49 2213.8 266.09 1448.7 206.26 358.77 60.77 342.5 458.2 0.1 45.53 30.33 27.6 117.73 -0.4 336 530.4 4.9 3.4 28.55 9.64 2191.9 811.2 -0.2 12.97 1.5 365.85 453.5 54.92 363 150.39 324 -1.4 79.45 31.59 9 0.1 38.31 1.1 0.1 -1.3 _ _ _ 16171820 0.07038 0.07084 0.05332 0.06204 0.01445 0.01196 0.01581 0.15047 0.022110 0.1558712 0.0544617 0.01056 0.1090618 0.09493 0.0094219 0.08018 0.0050320 0.10881 1.36897 0.01107 0.05532 0.01496 1.62936 0.05408 0.01024 0.41739 0.05548 0.00925 0.81559 0.38389 0.20766 0.00719 0.17639 0.00784 0.3938 0.13689 0.28178 0.00252 0.06794 0.01402 0.35856 939.4 0.00879 0.0616 0.06762 0.01287 952.8 342.5 0.00299 3.45968 675.7 2.50407 372.13 0.00303 0.00124 3.04253 311.81 0.56339 560.08 1.15221 903.6 0.45037 0.55293 620.22 0.49529 0.47686 933.8 341.8 0.0859 1526.7 59.15 667.3 0.07385 1201.5 52.54 1779.5 30.75 0.03 875.7 270.89 64.32 425.1 232.95 981.6 374.1 354.2 147.55 1216.3 164.54 605.6 431.2 1047.2 266.67 152.08 1600.3 297.17 98.06 74.84 200.53 48.14 4.1 423.7 97.89 64.72 385.4 2.1 1518.1 0.2 1273.2 18.08 1.3 1418.4 421.8 18.39 262.34 160.22 453.7 119.78 7.46 377.5 22.3 13.9 55.79 408.5 11.4 51.7 20.37 0.3 1526.7 -3.1 1201.5 1779.5 2.3 270.89 232.95 147.55 le CC1le - 55LB05 ______1 0.08468 0.00066 0.22445 0.00079 2.61339 0.02914 1308.2 15.01 1305.4 4.17 1304.4 8.19 0.2 3456 0.07293 0.0544 0.0893 0.05423 0.00073 0.00207 0.00132 0.17366 0.00074 0.06155 0.24483 0.00076 0.0615 0.00084 0.00179 1.80648 0.00032 0.45075 3.02205 0.45918 0.02569 0.0191 0.07805 0.00705 1012 387.7 1410.6 380.6 20.17 82.69 27.98 1032.2 30.54 1411.8 385 4.17 384.8 9.28 5.13 1047.8 1.97 1413.2 377.8 9.29 383.7 19.71 13.37 -2.2 4.91 -0.1 0.7 -1.1 7 0.07289 0.00074 0.17726 0.00079 1.79688 0.02604 1010.8 20.41 1052 4.34 1044.3 9.45 -4.4 89 0.08169 0.07477 0.00103 0.00061 0.22375 0.17741 0.00133 0.00063 2.59778 1.82774 0.05301 0.0201 1238.1 1062.3 24.44 16.33 1301.7 1052.8 6.99 3.47 1300 1055.5 14.96 7.22 -5.7 1 p 13141516 0.0591817 0.0542218 0.0738919 0.1199720 0.00225 0.0608921 0.00239 0.0733522 0.00094 0.05552 0.0942223 0.00223 0.07976 0.0609624 0.00223 0.1732125 0.00099 0.0815 0.12375 0.34503 0.00212 0.00142 0.05531 0.10373 0.00187 0.001 0.11423 0.16797 0.00099 0.00193 0.05375 0.06919 0.00097 0.00371 0.79111 0.19093 0.00105 0.00148 0.00095 1.77268 0.20732 0.001 0.4477 0.36591 0.00102 0.00075 5.52075 0.03713 0.00216 0.0673 0.80916 0.33398 0.00235 0.03268 0.05804 0.00138 0.02196 1.70848 0.52466 0.21954 2.08931 0.00049 573.8 0.03635 0.00132 0.00031 2.3743 6.25366 1038.3 0.02296 0.0331 380.1 1955.8 0.48915 0.07944 5.33641 80.53 635.4 0.42773 0.09198 0.08005 25.49 1023.7 433 32.79 95.5 1191.1 0.0105 0.07151 580.5 76.79 0.00662 1029.8 1233.6 2011 1910.8 26.98 381.5 45.67 8.34 82.68 1867.8 424.4 636.2 5.42 360.3 17.76 45.51 1000.9 13.89 1126.4 6.1 591.8 431.3 14.88 8.65 1035.5 41.27 1903.8 1214.5 31.21 5.52 2010.1 11.68 375.7 6.16 21.05 1857.7 11.97 602 419.9 12.55 34.19 1011.7 1145.3 363.7 6.53 428.3 6.36 15.4 1234.9 -1.2 2.98 0.9 20.4 12.41 26.11 1.89 2.7 2012 1874.7 15.29 27.68 404.3 -0.4 361.6 11.21 2.4 -0.1 5.9 11.46 0.4 1.7 7.16 4.71 0.1 0.6 1.1 -1 1012 0.06049 0.05513 0.00158 0.00061 0.10147 0.06746 0.00107 0.00029 0.82861 0.52014 0.02687 0.00648 621.3 417.5 55.29 24.15 623 420.8 6.26 1.74 612.8 425.2 14.92 4.33 -0.3 -0.8 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 lb55 lb55 lb55 lb55 lb55 lb55 lb55 lb55 lb55 lb55 Sam

276

4 5.97 6.22 4 4 e± 613 4.07 391419631 4.41 10.18 6.88 Ag 419.5429.8418.1637.8 3.19 4.63 3.33 615. 12.61 430. 600.5353.6411.6542.7357.7 8.89 382.3 3.98 532.9 2.42 423.7 7.41 1.74 3.87 5.79 3.75 532.2 3.74 1223.8 26.83 2064.31769.51717.4 28.53 26.19 39.4 1043.81515.61104.41077.6 43.17 1383.1 19.76 32.29 21.2 62.11 1062.3 22.49 1025.7 81.58 1018.22092.41169.6 22.28 1328.31852.8 18.57 25.2 36.59 22.6 ) % ( es Ag ) e 2/2 g Pa ( Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Disc. Ratios le CC1 - 55LB05 - CC1 55LB05 le p 60 0.0811 0.00112 0.21167 0.00127 2.34216 0.04447 1223.8 26.83 1237.7 6.76 1225.2 13.51 -1.2 26272829 0.12754 0.10821 0.10518 0.05517 0.00208 0.00156 0.00228 0.36818 0.00114 0.31752 0.30381 0.06724 0.00348 0.0024 0.00363 0.00053 5.85645 4.77999 4.69586 0.51647 0.20178 0.13401 0.22041 0.0122 2064.3 1769.5 1717.4 28.53 419.1 26.19 39.4 2020.8 45.07 1777.6 1710.2 16.38 419.5 11.73 17.95 1954.8 1781.4 3.19 1766.5 29.88 23.54 422.8 39.29 2.5 -0.5 8.17 0.5 -0.1 303132 0.05548 0.0550535 0.07408 0.00165 0.00122 0.07636 0.00161 0.06895 0.067 0.16994 0.00125 0.00077 0.18326 0.00055 0.00162 0.54503 0.00133 0.53069 1.77425 0.01874 1.89047 0.01337 0.05624 431.3 0.04481 1043.8 414 64.47 1104.4 43.17 47.9 429.8 32.29 1011.8 418.1 4.63 1084.8 8.92 3.33 441.7 1036.1 7.23 432.3 12.32 1077.7 20.58 8.87 15.74 0.4 3.3 1.9 -1 333436 0.0943737 0.060953839 0.07534 0.00099 0.08803 0.00314 0.0602 0.25992 0.06035 0.0008 0.00291 0.104 0.00104 0.00129 0.00153 0.17528 0.23926 0.00216 0.09975 0.10017 3.44888 0.00081 0.00393 0.86677 0.00069 0.00102 0.05712 1.85406 2.84984 0.05694 0.8192 0.81258 0.02637 1515.6 0.16391 637.4 0.01716 0.02519 1077.6 19.76 1383.1 107.27 610.9 616.3 1489.4 21.2 62.11 637.8 6.59 36.73 53.68 1041.1 1382.8 12.61 1515.6 615.4 20.45 4.42 613 633.8 13.04 1368.8 1064.9 5.97 4.07 30.97 43.23 603.9 1.9 9.38 607.6 -0.1 14.11 0 9.58 3.7 0.2 -0.4 43444546 0.05365 0.0549348 0.0583649 0.07342 0.0016650 0.0008851 0.05432 0.00228 0.05638 0.05811 0.00304 0.06594 0.05535 0.08784 0.05448 0.0015 0.17239 0.00065 0.00171 0.00134 0.0004 0.00125 0.0016958 0.06109 0.08618 0.00318 0.4058 0.06794 0.49859 0.06253 0.70265 0.00064 0.08556 0.00097 1.86043 0.00062 0.0138 0.00073 0.00894 0.03207 0.45973 0.00164 0.64795 0.1157 0.5411 0.48403 356.2 0.23511 409.4 0.01416 543.3 0.0222 1025.7 0.01493 0.01695 0.00209 68.51 34.99 384 83.13 533.6 81.58 426.3 2.70956 390.7 353.6 411.6 542.7 1025.3 60.56 63.8 0.08031 52.69 3.98 67.87 2.42 7.41 17.51 382.3 532.9 345.8 423.7 1328.3 410.7 1067.1 391 540.4 3.87 5.79 3.75 36.59 9.97 41.07 6.06 4.41 19.12 384.1 507.2 439.1 1361.2 400.8 0.8 -0.6 0 0.1 9.85 10.92 13.68 9.83 11.6 1331.1 0.5 0.1 0.6 -0.1 21.98 -2.7 404142 0.07477 0.05559 0.06011 0.0008447 0.00228 0.0024 0.18532 0.06904 0.0536952 0.0976453 0.0009 0.00103 0.000695455 0.00151 0.0731556 0.05706 0.05513 1.877357 0.54337 0.06076 0.74481 0.12959 0.0008159 0.00029 0.00371 0.0789 0.02839 0.02558 0.05812 0.00174 0.17717 0.00138 0.03546 0.06716 0.11328 0.42956 0.00101 0.10284 0.00107 1062.3 435.7 0.38144 0.00082 0.00169 0.00143 607.4 0.20416 0.00621 0.08606 0.00118 22.49 0.00181 1.81422 89 0.3247 0.46178 0.00113 84.11 0.00063 0.87305 358 6.87448 1096 0.02529 0.00192 0.03346 2.20025 430.4 0.70892 600.5 0.03083 4.91 0.1054 29.01 1018.2 5.01765 0.03828 6.22 8.89 417.4 0.01541 630.8 1073.1 357.7 2092.4 22.28 0.09878 440.6 565.2 1169.6 143.73 533.9 10.02 60.36 1.74 1051.5 18.57 1852.8 16.83 20.63 25.2 419 40.15 362.9 -3.4 4.48 631 2083 22.64 1197.6 10.18 1.3 1.2 532.2 1050.6 6.88 4.41 8.43 1812.6 385.5 6.07 3.74 9.12 637.2 2095.4 9.34 1181.1 0.1 23.24 544.1 1822.3 16.72 13.59 -3.5 12.15 -0.4 9.16 16.67 0.5 0 -2.6 0.3 2.5

Sam

277

4 4 4 4 1.95 2.41 6.46 3.28 4.58 4 4 4 4 4 e± 356 7.2 256 1.65 266278 9.1 1.41 387 3.1 Ag 359.8369. 6.6 265. 351.2 1.81 228.2228.9230.2233.9239.3242.2 3.92 2.88 261. 2.41 3.27 11.76 2.81 346.6 5.4 300.3302.2304.5305.3312.5320.3 2.39 334. 2.4 2.89 7.32 2.49 2.46 262.9 3.9 371.9377.1387.9401.3401.9 1.33 406.3 7.45 406.5406.7 1.8 411.5 4.16 416.9 1.7 420.9 8.91 423. 4.92 426.3 3.11 429.1 2.86 448.6 10.47 460.6 8.48 468.6518.1 10.31 540.3 3.65 594.1 3.97 598.6 7.4 602.7 6.63 608.2 2.51 613.5 10.1 619.7 5.03 622.1 5.99 704.8 1.9 716.9 7.46 907.6 4.07 982.9 4.89 3.36 7.21 7.29 11.08 16.63 1011.31012.21014.11017.41042.71044.6 27.8 45.86 1046.7 26.61 33.78 37 15.96 24.27 1003.11004.41007.6 13.09 12.49 45.4 ) % ( es g A ) e 1/2 g Pa ( Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Disc. Ratios le CC2 - 61LB05 2 0.0565 0.00217 0.0754 0.00111 0.5973 0.02719 471.3 83.4 468.6 6.63 475.5 17.28 0.6 p 45 0.05369 0.00266 0.0574 0.00108 0.45648 0.02602 358.1 107.49 359.8 6.642 381.8 0.07562 18.14 0.00509 0.16986 -0.5 0.00505 1.8189 0.18472 1085 129.42 1011.3 27.8 1052.3 66.54 7.3 6720 0.07458 0.07542 0.00593 0.00284 0.17097 0.17591 0.00614 0.00291 1.66794 1.85318 0.19795 0.10348 1057 1079.8 152.67 73.74 1017.4 1044.6 33.78 15.96 996.4 1064.6 75.34 36.83 4 3.5 52 0.05354 0.00348 0.05677 0.00119 0.39866 0.02866 351.6 140.15 356 7.24 340.7 20.8 -1.3 61 0.05095 0.00727 0.03781 0.00189 0.2452 0.03651 238.5 298.74 239.3 11.76 222.7 29.77 -0.3 58 0.0517 0.00635 0.0421364 0.05339 0.00147 0.00239 0.33242 0.05523 0.04282 0.00089 271.9 0.43836 259.03 0.02285 266 345.4 9.1 98.09 291.4 346.6 32.63 5.44 369.1 2.2 16.13 -0.4 53 0.0524951 0.05321 0.00388 0.0485 0.00294 0.05325 0.00119 0.00106 0.3505 0.36907 0.02811 0.02265 306.7 337.7 159.44 120.43 305.3 334.4 7.32 6.46 305.1 319 21.14 16.8 0.5 1 57 0.0541212 0.00324 0.05494 0.0602465 0.00348 0.00123 0.05514 0.06506 0.47829 0.00332 0.00147 0.03246 0.06747 0.49414 375.7 0.0014 0.03525 129.26 0.48142 409.611 0.03291 377.1 0.06331 135.7939 417.9 7.45 0.07236 0.00161 406.3 129.36 0.11762 396.9 0.00232 8.91 0.16836 420.9 0.00126 22.3 407.7 0.00237 1.00791 8.48 0.03436 23.95 1.83848 -0.4 399 0.08926 718.5 0.8 22.56 996.2 53.25 63.79 -0.7 716.9 1003.1 7.29 13.09 707.8 1059.3 17.37 31.93 0.2 -0.7 28 0.0733 0.00221 0.1686 0.00226 1.68065 0.07511 1022.3 59.95 1004.4 12.49 1001.2 28.45 1.9 117 0.05391 0.0013 0.05897 0.00054 0.43011 0.01197 367.3 53.37 369.4 3.28 363.3 8.5 -0.6 128162 0.07294178 0.073152 0.07404 0.00169 0.07419 0.00097 0.17818 0.00137 0.17373 0.0009 0.17337 0.00183 0.00099 0.17027 0.00144 1.75479 1.75206 0.0009 0.06335 1.86088 0.03247 0.05056 1.7833 1012.2 1014.1 0.03066 1042.7 45.86 26.61 1046.7 1057 37 1032.6 24.27 1030.7 10 5.44 1013.6 7.94 1028.9 1027.9 4.98 1067.3 23.35 11.98 1039.4 17.95 -4.8 11.18 -2 1.2 3.4 142 0.05162 0.00134 0.04204118 0.00039 0.05363 0.28845 0.00073 0.00792 0.05599 268.8 0.0003 58.48 0.42783 265.4 0.0067 2.41 355.4 257.3 30.32 6.24 351.2 1.81 1.3 361.6 4.76 1.2 121176185 0.05069 0.0509147 0.05079129 0.00185144 0.05105 0.00152 0.05129 0.00235 0.05147 0.03615 0.00167 0.03636 0.03694 0.0009 0.00046 0.00109 0.03829 0.00039 0.00053 0.04052 0.04138 0.25492 0.00045 0.24732 0.25559 0.00027 0.00991 0.00032 0.26314 0.00765 0.01219 0.29541 0.29036 226.8 0.00899 236.5 0.00575 231.5 0.00649 243.2 82 67.25 253.8 103.41 262 73.52 228.9 230.2 233.9 40.01 47.83 242.2 2.88 2.41 3.27 256 261.4 2.81 230.6 224.4 231.1 1.65 1.95 237.2 8.02 6.22 9.86 262.8 258.8 7.23 4.51 -0.9 -1.1 5.11 2.7 0.4 -0.9 0.2 174 0.05077 0.00287 0.03603 0.00063 0.25485 0.01487 230.2 125.67 228.2 3.92 230.5 12.04 0.9 155143183 0.05181127 0.05241 0.05249168 0.05248 0.00072120 0.00116 0.0526 0.00113 0.05279 0.04407 0.00138 0.04769 0.048 0.00123 0.04837 0.00023 0.00112 0.00039 0.04968 0.05095 0.00039 0.00047 0.31494 0.3446 0.0004 0.00469 0.35427 0.33878 0.0004 0.00823 0.00825 0.00988 0.36598 0.36545 276.9 303.2 0.0092 0.00869 306.3 307 31.55 49.79 311.6 319.7 58.73 48.14 278 300.3 52.23 304.5 47.27 302.2 1.41 2.39 312.5 320.3 2.89 2.4 278 300.7 2.49 2.46 296.2 307.9 3.62 6.22 316.7 316.3 7.49 6.18 6.84 6.46 -0.4 1 0.6 1.6 -0.3 -0.2 160 0.05156 0.00213 0.04163 0.00064 0.28966141 0.01266 0.0541 265.9 0.00051 0.05939 92.11 0.00022 262.9151 0.44264 0.05549 3.94 0.00462 0.00387 258.3 0.06836 375.1 9.97 0.00171 21.26 0.49345 371.9 1.2 0.03834 1.33 431.9 372.1 148.58 3.25 426.3 10.31 0.9 407.3 26.06 1.3 179136180 0.05437138 0.05433 0.0547182 0.05489 0.00127165 0.0007193 0.05485156 0.00163 0.06187 0.0549 0.00063 0.05506 0.06202131 0.05528 0.00184 0.06423 0.06432 0.00051125 0.00113 0.05531 0.00102124 0.0003 0.06508 0.00481192 0.00069 0.05535 0.00028 0.46415 0.06513 0.05588 0.06592 0.00166154 0.05608 0.47004 0.00081 0.0668132 0.50542 0.01191 0.48486 0.00125157 0.00051 0.05776 0.06788 0.00047 0.00133187 0.00668 0.05846 0.48719 0.00243 0.01682153 0.00173 0.00617 0.06883 0.0597148 0.50004 386.3 0.05983 0.07207 0.00076 0.50315 0.00074184 0.01824 0.07407 0.0601 0.00305145 384.7 0.52585 400.1 0.00061 0.0601 0.01163139 407.5 0.00138 0.01054 0.06034 0.08369 0.00066 0.49491 0.00155122 51.34 0.06034 0.08742 0.00123 0.04945 0.00049 0.06057 406 0.51092 0.09654191 0.00206 28.6 0.01726 0.06276 408.2 0.00042 0.55843 0.0973 0.00104 64.6161 25.06 414.4 0.55519 0.00124 0.0017 387 0.09801 0.01368 0.06927 423.4 0.00084 0.09894 0.00086 0.07189 0.09984 0.66647 0.00163 0.016 72.66 387.9 0.00102 424.7 401.3 0.0275 401.9 45.18 0.1009 0.00032 40.78 0.61962 0.10131 0.00223 0.00127 0.75851 426.2 0.00999 183.27 3.1 0.11554 0.00069 0.00059 0.83297 406.5 0.0384 406.7 447.2 0.00083 65.16 0.81325 1.8 0.15119 4.16 411.5 455.2 0.00057 1.7 0.02085 0.83328 0.15273 416.9 0.00125 0.82651 0.02661 49.29 520.4 387.1 0.00772 0.80553 4.92 423.4 0.00198 0.84449 0.03465 3.11 51.96 547.2 391.2 415.4 0.01723 2.86 593.2 0.00053 0.98786 401.4 93.6 10.47 429.1 597.6 0.02023 28.16 8.26 0.01441 607.2 1.48254 403 0.03505 448.6 4.58 607.1 1.51165 411.7 11.34 110.22 4.62 615.8 413.8 460.6 4.22 48.88 429.1 0.06463 518.1 3.65 55.21 615.6 624.1 0.01535 17.52 540.3 408.2 12.46 -0.2 700 3.97 7.87 72.36 594.1 7.12 36.84 32.91 -0.3 7.4 598.6 -0.9 906.9 419.1 2.51 43.75 1.4 602.7 29.71 982.9 11.72 608.2 10.1 450.5 613.5 54.35 5.03 -0.1 448.4 0.4 619.7 5.99 9.19 64.82 518.6 0.7 1.6 622.1 16.63 1.9 489.6 10.43 7.46 704.8 4.07 573.2 0.3 17.95 907.6 615.3 4.89 6.09 916.3 3.36 -0.7 604.3 24.08 615.4 611.7 7.21 12.04 -0.3 11.08 14.74 599.9 -1.2 621.6 2.94 4.32 19.19 0.5 697.6 9.58 1.3 923.3 -0.2 11.38 7.93 -0.2 935.1 17.9 -0.2 0.8 26.43 0.4 -0.7 6.2 0.3 -0.7 0.1 7.3 159 0.07277 0.00165 0.17602 0.00179 1.74902 0.05831 1007.6 45.44 1045.2 9.79 1026.8 21.54 -4

Sam

278

e± Ag 10981113 35.59 22.65 13781438 23.47 1608 22.2 22.85 1710 18.27 1066.51068.21073.21076.11082.7 40.71 1087.6 33.78 1089.4 21.53 1092.3 55.53 25.99 24.35 1117.2 41.58 1119.8 25.56 1126.31158.11171.5 40.99 1172.4 50.18 1176.1 30.61 1190.4 49.47 1287.2 22.43 1373.4 21.19 28.79 1386.5 25.08 1432.6 43.29 30.35 1484.81488.2 38.77 1498.51598.7 30.9 22.21 1623.6 27.06 1634.2 34.32 1652.51659.7 19.7 1666.3 35.21 1667.5 53.44 50.89 1790.2 21.24 1910.8 20.83 1935.5 15.64 1983.52640.1 22.1 59.19 32.12 17.64 34.43 ) % ( es Ag ) e 2/2 g Pa ( Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Disc. Ratios le le CC2 - 61LB05 p 494026 0.07617 0.07336 0.07528 0.00588 0.0035168 0.00212 0.18022 0.07611 0.1811310 0.18382 0.0061821 0.07695 0.00394 0.00136 0.00224 0.07959 1.78557 0.19151 1.83686 0.00197 1.89043 0.20623 0.00949 0.13388 0.18393 0.00153 0.07886 0.196825 1099.4 0.00217 1.95231 1023.9 1076.1 0.09034 0.00918 0.05142 147.27 2.15146 93.91 0.00148 55.53 1.58121 0.08628 1068.213 109830 1073.2 0.26153 0.25738 1087.8 0.09997 1119.8 33.78 0.10055 35.59 21.53 0.00207 1186.7 12.18 0.00191 1040.2 0.00294 50.18 1129.6 3.24898 1058.746 0.29403 1077.731 218.9 0.29616 75.17 1088.4 0.11699 0.08805 47.92 0.11861 8.29 0.00289 27.7 1158.1 0.00456 11.83 0.00394 1432.6 4.31236 0.00215 3.1 1099.2 4.35506 49.47 -5.2 0.33349 1165.5 0.15186 0.34775 -1.2 30.9 17.68 0.2516 962.8 0.00638 27.8 0.00337 1623.6 1497.7 1634.2 5.91208 101.25 -3.1 5.55471 35.21 10.58 0.45129 3 53.44 0.1914 2.6 1661.6 1468.9 1910.8 1672.3 1935.5 14.39 21.04 59.19 22.69 32.12 1695.7 1855.3 1703.9 -5.1 1923.9 29.03 30.86 47.71 16.13 -2.7 1963 1909.1 -2.6 66.29 29.65 3.3 0.7 119 0.07492188170 0.00154149 0.07553123 0.07572 0.07578 0.16979181 0.0759 0.00099126 0.00093 0.07668 0.00154 0.00159133 0.07685 0.17161 0.00098 0.18601163 0.18671 0.0772 0.00088 1.7973146 0.00097 0.0016 0.19378150 0.07897186 0.001 0.07901 0.19434 0.00179 0.05797190 0.07916 0.0012 1.83483 0.19867158 0.00111 0.07973 0.0009137 0.08378 1.92471 0.00095 1.96806 0.00085169 0.08758 0.03236 0.19239 1066.5 0.00116 0.00187 2.01573 0.08779 0.00102 0.19395116 0.08818 0.03317 0.06271 0.19683 2.05151 0.00189171 0.19849 0.00133 0.04004 0.0014130 1082.7 2.12997 40.71 0.19297 0.0906 0.00108140 0.09285 0.03166 0.21955 0.001 0.00097 0.00181 1087.6173 1089.4 0.09302 2.00423 0.00133 0.07468 0.23359177 0.09352 1092.3 0.22625 0.00109 25.99 1011 0.00106 0.09864 0.23534 0.00232 2.24144 0.00109 2.01458 0.09914 0.04823 1113 0.00134 24.35 41.58 2.2748164 0.00182 1117.2 0.00133 2.19572 0.00172 0.24753167 25.56 1021 0.03627 0.25369 0.00237 2.34041 0.00105 0.03279194 8.49 0.10154 0.25043 0.00122 0.05175 1099.7 1126.3175 1103.5 2.70125 0.10194 22.65 0.25566 0.0395 2.79584172 0.00137 40.99 0.08171 1141.8 0.1023 0.00142 2.71178 0.2654134 1172.4 0.10237 1044.5 1171.5 0.28237 5.33 0.00172 0.00284 0.0703 0.10476 0.05612 1176.1 0.00239 1144.9 0.00118 30.61 5.44 9.7 3.05006 0.10945 1168.2 1190.4 0.0918 3.32794135 1287.2 0.00133 0.00116 6.01 0.29235 3.26546 0.00087 21.19 21.04 0.0017189 22.43 1058 0.28429 3.21606 0.00105 1134.3 1373.4 0.0623 1089.7 28.79 0.12185 1378 0.06268 5.14 0.00134 1104.6 0.30118 10.07 3.60687 25.08 0.17862 0.08414 1386.5 0.28637 0.00429 1120.8 43.29 1158.3 1142.7 3.7623 0.10466 0.30591 0.00163 11.59 1167.2 0.31988 11.52 0.00121 30.35 7.21 5.6 0.05969 1132.8 1484.8 0.00152 21.45 1158.6 1438 1137.5 23.47 0.00104 0.00375 4.0219 1279.5 1488.2 13.48 38.77 0.07673 0.00145 3.93885 5.22 1498.5 5.39 0.34809 0.0019 1353.3 1116.9 7.14 10.53 4.2401 1598.7 0.49723 24.23 1314.8 3.98778 22.21 0.21661 6.2 5.89 0.07733 1362.4 -1.2 12.28 22.2 4.49424 27.06 -1.4 1194.1 1608 0.00191 1120.4 34.32 -4.9 4.79303 0.06992 0.04475 0.00699 1204.5 9.49 16.3 1457.5 0.07258 1652.5 19.7 6.97 1179.7 1224.6 1440.7 1659.7 12.35 1425.7 -3.1 11.36 5.73759 0.10691 -5 1467.6 11.04 22.85 12.01677 1666.3 1667.5 16.05 1328.8 1354.4 1517.4 7.3 12.55 24.84 1331.7 50.89 1710 0.11731 21.24 8.87 0.67926 -0.8 7.1 1790.2 12.29 1603.3 19.28 1.3 20.83 15.64 2.7 15.01 1653.3 25.11 1487.6 6.78 1612.9 1983.5 0.8 1472.9 18.27 2640.1 1420.2 1461 4.8 0.7 8.54 22.1 1697.2 1623.4 14.71 21.4 1551 1.6 20.03 1720.5 17.64 8.2 15.62 34.43 5.1 1.9 1584.7 1789.1 25.2 7.55 5.23 1638.6 1925.5 13.16 7.18 2601.9 1621.7 2.1 16.36 3.6 9.26 1681.8 1631.7 1 43.8 2.3 9.13 1729.9 30.08 15.9 1783.7 5.7 13.55 9.11 0.3 2605.7 13.41 1937 -0.1 18.74 3.2 -2.1 52.99 17.68 3 -0.7 0.1 1.8 3.4

Sam

279

4 4 3.84 38.26 46.43 4 4 4 e± 482 2.65 Ag 1228 29.9 1165 35.26 1429 26.35 627.1 6.01 249.9 2.58 313.2274.7610.3915.9 3.67 3.77 3.2 5.35 358.2257.5310. 5.15 1.69 339.6589.8 4.45 521.5 5.84 377.2445.5392.7 4.48 12.81 228.3 7.11 1.48 1.36 1274. 1445.61049. 26.79 1121.5 45.83 1354.9 29.86 1188.61022.82224.2 33.31 42.71 26.5 1689.1 30.9 1325.81056.1 30.32 30.35 1065.21781.2 31.92 1187.21073.81010.1 30.89 1659.8 99.25 57.85 1371.3 37.89 1052.8 47.43 1350.91627.6 17.28 1651.3 31.82 1439.31583.1 38.95 30.13 16.85 35.21 20.5 ) % ( es Ag Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Disc. Ratios 123 0.054154 0.101945 0.055916 0.00533 0.087497 0.00265 0.054488 0.00243 0.07442 0.060279 0.00079 0.05072 0.28929 0.00055 0.08657 0.07156 0.00119 0.10019 0.00211 0.23337 0.00086 0.06282 0.004 0.00177 0.00118 0.1764 0.00164 0.50279 0.00096 0.03606 0.00024 0.23469 4.00789 0.53302 0.05518 0.28537 0.00126 2.80399 0.00022 0.46628 0.19818 0.02624 0.00234 0.03625 0.00241 377 1.75264 0.24818 0.00517 1659.8 448.5 2.8351 0.03979 1371.3 0.00438 3.9028 207.47 391.1 47.43 0.09655 93.34 1052.8 0.11492 17.28 228.3 377.2 22.36 1350.9 1638 31.82 1627.6 445.5 1352.1 38.53 12.81 38.95 392.7 1047.3 30.13 19.99 7.11 228.3 5 1359.1 413.6 1.48 1618.4 6.89 1635.8 433.8 1.36 12.24 1356.6 37.28 12.08 388.6 1028.1 40.18 17.38 1364.9 225.1 9.68 1614.3 -0.1 14.68 3.58 1.5 25.56 0.7 3.57 23.8 1.6 0.6 -0.4 -0.7 0 0.6 le CC3 CC3 -le 62LB05 21 0.08323 0.00165 0.20748 0.00183 2.38661 0.06996 1274.4 38.26 1215.4 9.78 1238.6 20.98 5.1 23 0.07429 0.00174 0.17021 0.00175 1.70012 0.05616 1049.4 46.43 1013.3 9.67 1008.6 21.12 3.7 2224 0.09096 0.0607 0.00129 0.25124 0.00154 0.10216 0.0016 0.00103 3.12522 0.82975 0.065 0.02538 1445.6 628.4 26.79 53.72 1444.9 627.1 8.23 6.01 1438.9 613.5 16 14.08 0.1 0.2 25 0.07701 0.0018 0.18723 0.00196 1.82769 0.06069 1121.5 45.83 1106.4 10.64 1055.4 21.79 1.5 414243 0.05119 0.08675 0.08127 0.00145 0.00136 0.00125 0.03952 0.22736 0.20381 0.00042 0.00169 0.00141 0.27487 2.76537 2.20106 0.00849 0.07798 0.05263 249.5 1354.9 1228 64.05 29.86 29.9 249.9 1320.6 1195.8 2.58 8.87 7.55 1346.2 246.6 1181.4 21.03 6.76 16.7 2.8 -2 2.9 44 0.0527 0.00172 0.04979 0.0006 0.36268 0.01323 316.1 72.47 313.2 3.67 314.2 9.86 0.9 454647 0.0796648 0.051849 0.060350 0.00136 0.06971 0.07332 0.00197 0.13976 0.20199 0.00082 0.00104 0.04353 0.00157 0.09929 0.00216 0.00155 0.15266 0.17443 0.00061 0.38916 0.00055 2.18722 0.00096 0.00162 0.29385 0.00328 0.0594 0.82625 1.4693 0.01218 1.76412 0.0141 7.24857 1188.6 0.03032 0.05793 276.6 0.24767 614.4 33.31 919.8 1022.8 84.61 2224.2 29.28 1186 30.25 42.71 26.54 274.7 610.3 1036.5 915.9 8.31 2118.9 3.77 8.92 3.2 5.35 15.21 1177 261.6 1032.4 2142.5 611.5 917.8 18.92 9.56 21.28 30.49 12.47 7.84 0.2 0.7 -1.5 5.6 0.5 0.7 161718 0.0535419 0.0568120 0.07455 0.00218 0.05136 0.00084 0.05254 0.00112 0.05714 0.00095 0.07763 0.00187 0.17659 0.00084 0.04076 0.00044 0.04932 0.00112 0.00027 0.41 0.60676 0.00063 1.79593 0.27743 0.01023 0.01823 0.35326 0.0364 0.00544 483.6 0.01347 351.6 1056.1 257.1 308.8 32.8 89.45 30.35 42.06 78.97 358.2 1048.3 482 257.5 310.4 5.15 6.16 2.65 1.69 3.84 348.9 1044 481.5 248.6 307.2 13.13 13.22 6.46 4.32 10.1 -1.9 0.8 0.3 -0.2 -0.5 55 0.10357 0.00176 0.3399 0.00293 4.80657 0.17538 1689.115 30.94 0.08545 1886.2 0.00135 14.11 0.22517 0.00166 1786 2.68996 30.67 0.0658 -13.5 1325.8 30.32 1309.1 8.72 1325.7 18.11 1.4 515253 0.0748854 0.05314 0.0595556 0.07872 0.001257 0.0019158 0.00154 0.1089159 0.17947 0.00142 0.0796 0.0540960 0.0752 0.09581 0.00186 0.05788 0.20024 0.00125 0.07286 0.00073 0.00414 0.00099 0.31756 0.00221 0.00131 1.85659 0.0016 0.20145 0.00138 0.36486 0.18123 0.78173 0.00269 0.08426 0.04423 0.01475 0.17407 2.04833 0.00486 0.02571 0.00234 4.80421 1065.2 0.00075 0.0560910 334.8 2.15911 0.001411 587.2 0.15759 1.8025212 0.67742 0.07408 31.92 1165 0.1872413 0.10147 79.49 1.74344 0.08232 1781.214 0.09066 55.07 0.01906 0.00123 1064.1 0.09783 1187.2 0.04861 35.26 0.00093 0.09017 1073.8 339.6 30.89 0.00169 589.8 525 0.1356 0.00108 99.25 1010.1 0.28972 6.83 1176.6 0.00126 57.85 0.24595 1777.8 4.45 0.27656 0.00099 49.01 5.84 1183.1 37.89 0.00117 0.24544 1065.8 1073.7 0.00222 8.6 13.16 0.00142 1.38487 315.8 521.5 4.05051 1034.5 26.07 0.00158 586.5 3.07683 12.78 15.72 0.03077 1785.6 3.81546 1131.7 0.05212 0.09535 2.9498 10.97 7.71 4.48 1168 0.06504 1043.5 14.65 1046.4 1651.3 0.1 27.57 18.68 1439.3 0.0631 1583.1 1024.7 -1.5 33.22 525.2 60.18 16.85 -0.5 29.82 35.21 1429 -1.1 0.2 20.5 819.7 17.99 1640.1 11.53 0.4 1417.5 0 26.35 1574 5.61 -2.6 5.86 11.51 0.7 1414.9 7.15 1644.4 882.5 1426.9 8.18 10.48 1596 23.75 13.1 1394.8 0.8 13.71 1.7 22.8 16.22 0.6 1.1 1043.5 33.22 p

Sam

280

5 5 5 5 4.08 5.78 18.67 12.87 5 5 5 5 e± 346 6.11 582430 23.76 12.2 Ag 1398 35.29 472.4 9.01 552.9484.2576.4639.7 2.96 598.8398.8 2.57 8.85 14.81 11.9 3.57 624.3614.6620.3601.3 4.06 375.4 3.13 8.12 14.86 2.69 621.2472.4417.4996.8593.6563.2 9.57 977.3 17.24 13.03 562.3 7.1 3.97 637.8 4.02 5.91 12.82 292. 391. 6.33 386.1546.4454. 368.4453.4 3.95 538.1429.1 5.71 546.9 3.33 411. 8.19 18.59 964.9 5.5 4.66 378.4631.1361.2 6.66 7.01 8.69 4.2 2115.21112.91102.81034.71340.21081.6 28.3 1063.7 45.66 58.04 6.45 52.9 9.81 9.91 1614.31135.5 19.88 37.91 1006.5 25.72 1214.31000.81067.6 19.53 22.18 27.8 1230.21023.11208.2 46.57 2254.3 5 1496.2 79.27 2621.7 13.61 2110.3 34.99 34.54 24.0 2580.2 59.27 1169.31297.71105.6 72.54 17.22 44.3 ) % ( ±± ± es g A ±±± 5 Pb207/Pb206 Pb206/U238 Pb207/U235 Pb207/Pb206 Pb206/U238 Pb207/U235 Disc. Ratios 123 0.131284 0.076685 0.076297 0.070778 0.00214 0.086099 0.00178 0.07527 0.00226 0.07731 0.00104 0.40157 0.05645 0.0024 0.18399 0.00162 0.20029 0.00426 0.00164 0.17411 0.00198 0.00284 0.23817 0.0028 0.18268 6.19041 0.00118 0.17941 1.91659 0.07603 0.00327 2.00963 0.25539 0.0018 1.53434 0.00181 0.07198 2.47089 0.0015 0.09993 1.79388 0.03459 1.89457 2115.2 0.11827 1112.9 0.57326 0.06253 0.06796 1102.8 950.7 28.35 0.0348 1340.2 45.66 1075.6 1129.3 58.04 2176.3 29.84 1088.7 52.95 469.4 1176.9 42.67 19.61 41.6 1034.7 10.79 1377.2 108.54 15.05 1081.6 2003.1 1063.7 6.45 1086.9 17.02 472.4 1118.8 9.81 9.91 36.06 944.2 1263.6 25.06 9.01 1043.2 33.71 1079.2 -3.4 13.86 34.6 460.1 2.4 22.73 -7.4 23.84 -9.6 -3.1 22.46 -0.6 6.3 -0.7 le CC4le - 64LB0 111213 0.0603414 0.0567616 0.05518 0.0722820 0.00246 0.0598821 0.00608 0.0589722 0.0737523 0.00486 0.00122 0.10116 0.0813624 0.00101 0.07603 0.0589625 0.00107 0.0724127 0.00163 0.00104 0.06689 0.16722 0.0609728 0.00288 0.00197 0.09646 0.0804629 0.00354 0.77413 0.05349 0.0913 0.0021630 0.00128 0.00083 0.56028 0.14221 0.163732 0.00067 0.0016 0.19356 0.0520933 0.00333 0.03961 0.52139 0.09115 1.71085 0.00068 0.0545534 0.00267 0.06932 0.17199 0.78453 0.00107 0.0934135 0.00227 0.00113 0.17665 0.10399 0.7331936 0.00217 0.05475 0.00202 0.04616 0.22207 0.05456 1.5948938 0.00091 615.7 0.00214 0.01733 0.05514 0.13092 2.36739 481.5 0.00175 0.41054 0.78113 0.00108 0.05857 0.0171340 0.00445 0.00371 0.04643 1.70504 0.05634 0.0345141 412.2 993.8 0.00148 0.06262 0.001 0.05385 0.86426 85.6542 0.00222 599.1 0.10241 0.00181 0.05966 0.25132 2.40434 0.05613 221.2243 0.00066 0.00159 0.46653 0.0308 0.05792 565.944 0.00095 0.00599 1034.7 0.41781 0.06173 8.34297 0.05558 186.44 0.02906 33.8345 0.00252 621.2 0.00131 0.18352 0.41341 0.34403 0.05875 472.4 1230.2 36.1546 0.00717 565.5 0.00283 0.08845 0.48252 0.0595747 0.00065 0.00548 0.02395 0.19445 0.07305 3.62796 0.05488 417.4 997.4 39.248 0.00404 996.8 0.00193 28.1 13.63593 0.01502 0.05881 9.57 0.17231 638.3 17.24 1208.249 0.00096 593.6 0.00127 0.02227 0.07286 46.57 0.48576 0.07306 125.6950 0.00311 0.00629 0.08706 8.13187 0.1609 0.05532 13.03 0.98295 2254.352 563.2 0.00055 349.4 0.0055 0.06884 0.05404 977.3 7.1 0.7511 582.1 451.753 0.00136 23 289.1 0.00624 0.01571 1140.6 0.08855 0.74065 3.97 79.27 0.06082 562.3 55.6 0.00314 393.9 0.00117 0.36922 0.09449 0.46119 0.05378 426.1 0.00091 0.00442 1496.2 4.02 2621.7 0.60497 13.61 0.07889 108.83 0.02597 0.06591 5.91 0.00079 1012.6 0.00288 12.23 0.11711 1292.8 0.45388 0.64121 1023.1 12.82 588.1 22.67 637.8 45.11 0.00403 0.00219 86.3 0.16147 0.58662 394 0.0131 2110.3 0.00176 84.9 0.03673 2217.4 0.06899 0.79142 0.00213 558.4 34.99 346 36.54 34.54 0.01239 1232.7 0.00296 0.07277 23.48 968.2 0.06046 0.72989 551.2 586.1 17.29 465.2 0.02457 5 0.0012 6.33 0.10285 292.5 0.52246 0.00202 0.02237 10.24819 9.86 10.14 -0.9 0.05763 24.05 391.5 364.8 59.55 1445.3 2 2468.3 0.00115 457.2 0.09577 1243.9 0.18944 6.11 10.04 30.88 0.00149 526.6 1.8324 -1.3 58.03 0.60305 0.06017 13.5 220.46 1.14142 632.4 4.08 1010.4 34.01 0.00069 435.4 -0.3 2230.5 0.48966 2269 13.01 31.54 386.1 5.78 0.00351 557.9 53.75 0.8993 108.58 354.5 54.74 587.9 0.05798 1 0.0482 0.47035 546.4 454.5 195.19 0.02999 18.45 300.2 0.5 2580.2 2.29954 7.9 407.2 1555.7 2724.8 11.56 15.83 75.28 3.95 399.8 0.6 368.4 453.4 0.04344 6 21.13 46.59 0.01779 538.1 18.67 214.02 5.71 425.1 17.15 0.15571 2245.8 1015.6 -7.7 59.27 429.1 372.6 209.89 11.34 68.19 35.3 402 3.33 8.19 546.9 -2.8 0.1 15.25 632.9 18.59 562.8 582 361.6 1.9 568.9 169.02 32.03 1169.3 2412.5 411.5 41.05 5.5 115.21 1 385.1 480.4 4.66 -1.2 503.1 10.74 75.57 23.76 7 3.8 54.95 0.6 430 964.9 68.32 12.87 71.9 15.06 72.54 378.4 468.7 -6.7 592 23.24 631.1 556.5 9.11 2457.4 45.02 1118.4 6.66 426.8 361.2 12.2 2.1 7.01 2.4 0.9 15.73 8.69 103.04 1057.1 12.68 56.22 19 0.9 479.2 4.2 -2.3 404.7 40.13 -1 651.4 1.5 1212.1 17.28 7.8 391.4 2.1 36.73 20.44 1 -1.1 23.23 47.92 12.28 5.4 -1.2 -1.6 0.3 4.7 0.1 ______p ______79 0.05987 0.05419 0.00416 0.00107 0.09776 0.05996 0.00253 0.00044 0.94241 0.44022 0.08928 0.01002 598.8 378.7 143.63 43.85 601.3 375.4 14.86 2.69 674.1 370.4 46.67 7.07 -0.4 0.9 456 0.060398 0.06057 0.08071 0.00079 0.07253 0.0021 0.00081 0.10003 0.0008 0.101 0.20501 0.00053 0.17094 0.00094 0.00139 0.83036 0.00083 2.2834 0.83788 0.01402 1.70846 0.03623 0.0384 617.5 0.02799 1214.3 623.9 27.93 1000.8 19.53 73.16 614.6 22.18 1202.2 620.3 3.13 1017.3 5.01 8.12 613.8 4.55 1207.2 618 1011.7 7.78 11.2 10.49 21.22 0.5 1.1 -1.8 0.6 123 0.08423 0.0764 0.06044 0.00075 0.00172 0.00102 0.23132 0.1878 0.10168 0.00095 0.00189 0.00069 2.72057 2.03693 0.84014 0.03943 0.07832 0.01852 1297.7 1105.6 619.3 17.22 44.3 36.03 1341.4 1109.5 624.3 4.98 10.26 4.06 1334.1 1127.9 619.2 10.76 26.18 10.22 -3.7 -0.4 -0.8 1314 0.07756 0.0567620 0.0015 0.00079 0.08871 0.18145 0.078 0.00159 0.00166 0.00043 1.93039 0.60705 0.23389 0.06031 0.00213 0.01032 1135.5 2.83169 481.6 0.0963 37.91 30.82 1074.9 1398 484.2 8.67 35.29 2.57 1091.7 1354.9 481.7 20.9 11.14 6.52 1364 5.8 -0.6 25.52 3.4 1215 0.09947161718 0.0594519 0.00107 0.06112 0.05982 0.05466 0.00289 0.29018 0.07273 0.00367 0.00315 0.00155 0.00133 0.09353 0.00093 0.10432 0.09734 3.85388 0.0015 0.06382 0.00254 0.17495 0.00203 0.07822 0.75495 0.00059 0.85498 0.00098 0.79195 0.04409 0.4836 1614.3 0.06811 1.70471 0.05432 0.01385 0.03293 19.88 583.5 643.5 597 1642.4 398.3 1006.5 102.14 124.1 110.04 7.74 576.4 25.72 53.4 639.7 598.8 1604.1 1039.3 8.85 398.8 14.81 11.9 5.37 16.36 571.1 3.57 627.4 592.3 1010.3 400.5 25.51 -2 37.28 30.78 12.36 9.48 1.3 0.6 -0.3 -3.5 -0.1 11 0.05861 0.00082 0.08955 0.0005 0.73051 0.01283 552.7 30.13 552.9 2.96 556.9 7.53 0 10 0.07496 0.00105 0.1767 0.00111 1.83245 0.04076 1067.6 27.85 1048.9 6.08 1057.2 14.61 1.9 lb64 lb64 lb64 lb64 lb64 lb64 lb64 lb64 lb64 lb64 lb64 lb64 lb64 lb64 lb64 lb64 lb64 lb64 lb64 lb64 lb64 lb64 lb64 lb64 lb64 lb64 lb64 lb64 lb64 lb64 lb64 lb64 lb64 lb64 lb64 lb64 lb64 lb64 lb64 lb64 lb64 lb64 lb64 lb64 Sam

281

4 4 17.93 4 e± Ag 1905 10.51 1881 18.3 1836 13.05 2321 11.68 182 1776 9.37 752.3 3.59 2308.31902.61893.91902.2 14.16 2692.5 16.92 16.91 1801.2 12.45 1824.7 13.89 1802.61857.6 21.89 2052.2 13.05 1912.7 12.99 2744.5 16.4 13.49 2667.8 12.45 2308.22003.5 13.13 1743.6 12.77 1544.61626.7 8.96 16.5 1790.2 12.47 2142.4 17.99 1835.9 10.92 17.33 11.63 13.16 1838.52637.51915.7 9.8 1883.8 15.52 1872.1 12.63 1864.22609.1 13.28 18.22 1869.72567.3 15.1 1804.1 8.51 1032.9 12.68 1910.9 8.06 11.51 1904.8 17.88 2297.4 18.59 2302.62874.5 20.83 2801.6 12.9 1767.6 8.88 13.19 2336.51809.9 8.56 15.48 7.97 13.18 2005.9 12.5 ) % ( es Ag ) e 1/2 g Pa ( Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Disc Ratios le GL1le - 18LB07 p 123 0.11244 0.10865 0.178346 0.117317 0.06444 0.000618 0.11525 0.000569 0.00168 0.1145 0.00083 0.11401 0.32989 0.00076 0.17533 0.31612 0.00085 0.49382 0.34659 0.00116 0.00096 0.001 0.12379 0.0009 0.34352 0.0009 0.00312 0.00139 0.32453 0.3255 0.00063 5.16896 0.00143 0.4922 11.91763 4.71648 0.00183 5.77901 0.00153 1.09179 0.05497 5.4995 0.33358 0.0016 0.0454 5.06028 0.08977 4.8784 0.01756 1838.5 11.83395 0.0878 2637.5 0.11152 1915.7 1776 0.08568 756.1 0.15333 9.8 15.52 1883.8 1872.1 12.63 9.37 1864.2 24.68 2609.1 2587.2 1837.8 13.28 1918.3 18.22 1770.8 15.1 752.3 13.47 8.51 1903.6 4.84 1811.8 6.65 4.4 1816.5 3.59 2598 2580.2 1847.5 6.86 1943.3 8.9 1770.2 7.42 749.4 6.92 1900.5 26.22 9.05 13.45 1829.5 1798.5 8.06 2591.4 13.72 8.52 18.69 2.3 -0.2 0 14.8 12.13 0.3 -1.2 0.5 3.7 2.9 1.3 29 0.14674 0.00122 0.43989 0.00223 9.0099346 0.10669 0.1954 0.00073 2308.3 0.30678 14.16 0.0011 2350.1 4.55071 9.99 0.05677 2339 1743.6 19.82 12.47 -2.2 1724.9 5.44 1740.3 10.38 1.2 303132 0.1164633 0.115934 0.1164335 0.1843636 0.0011 0.1166237 0.11011 0.001138 0.00081 0.1115439 0.00156 0.11019 0.3406440 0.00068 0.1135941 0.00133 0.33929 0.34544 0.1266642 0.00081 0.50785 0.11712 0.0018143 0.00079 0.34657 0.1773344 0.00104 0.32742 0.00178 0.00134 0.1902745 0.00097 0.33005 0.00285 0.18163 0.00082 0.32721 5.56561 0.00111 0.1467447 0.00456 0.33257 0.00218 0.12323 5.38338 5.5067848 0.00153 0.38055 0.0013 13.3535649 0.00141 0.34758 0.00127 0.09584 5.5126950 0.00077 0.11595 0.56417 0.00167 0.10014 4.8990151 0.00116 0.00166 0.10945 0.5314 0.10916 0.08095 0.33363 5.09244 0.50589 0.00133 0.13334 5.02394 0.00092 0.41953 0.00959 0.11224 0.06142 1902.6 5.15019 0.00059 0.37084 0.12736 0.00282 6.49548 0.00105 1893.9 1902.2 0.00253 2692.5 5.76182 0.00089 0.07457 0.00121 0.2784 0.07121 12.5701 0.00082 0.29331 16.92 0.00198 0.09876 1905 13.68234 0.31139 1801.2 0.10914 16.91 12.45 13.31923 0.39028 13.89 0.08204 1824.7 0.00135 8.3773 0.34048 1802.6 0.00088 0.93561 1889.8 6.55341 1857.6 0.00157 0.31349 10.51 21.89 1883.3 1912.8 2052.2 0.00145 0.29112 2647.4 1912.7 13.05 3.62148 0.00133 12.99 4.06311 0.08189 2628.1 0.14056 8.7 4.58013 1918.2 16.4 1825.9 2744.5 13.49 7.23183 8.57 6.42 2667.8 12.2 1838.6 12.45 5.35005 0.06354 1824.8 0.03943 2308.2 42.12 2003.5 1910.8 0.08554 5.33 1850.8 13.13 10.6 2078.8 1882.2 1901.7 0.10021 12.77 2705 6.29 1923 1544.6 6.16 0.076 2883.9 1626.7 8.96 16.54 17.93 1902.6 2747.4 1790.2 8.09 1802.1 7.76 17.36 12.63 2639.1 2142.4 1834.8 17.99 1823.4 23.6 6.37 39.52 10.92 2258.3 2033.4 1835.9 11.85 17.33 1844.4 9.58 21.92 2045.3 10.84 11.63 0.8 12.43 1583.3 -0.6 0.6 1940.7 1658.1 2648 12 13.16 5.51 9.32 1747.6 2728 16.3 14.78 2 2702.5 2124.1 -1.6 -0.8 6.8 12.32 4.4 70.01 -0.9 2272.7 2053.1 1889 7.71 21.68 20.64 6.74 -1.4 -1.5 0.4 1554.3 1646.9 8.87 18.9 1745.7 -0.6 6.37 -12.1 2140.4 -0.1 1.3 13.96 7.91 15.57 1876.9 12.36 -1.7 2.6 12.15 -2.8 2628.1 -2.2 2.7 1 42.12 -3.3 101112 0.1150713 0.1143614 0.1709915 0.1102816 0.00118 0.0736917 0.00081 0.11718 0.00083 0.1122419 0.0007 0.32788 0.1166120 0.00066 0.33235 0.1458121 0.50492 0.14626 0.0012222 0.00081 0.00188 0.20602 0.3222423 0.00136 0.17481 0.00131 0.1970124 0.0011 0.00152 0.1478325 0.00076 0.35242 0.33014 0.1081 0.00113 5.1058326 0.00168 0.35488 0.00073 0.14918 5.3159527 0.00103 0.11064 11.60091 0.42857 0.00101 0.44372 0.00208 0.00132 0.16971 4.93013 0.56646 0.00092 0.11416 0.00235 0.1115 1.76353 0.00069 0.54244 0.07872 0.00199 0.00081 0.13271 0.00138 0.4347 5.70852 4.93314 0.00132 0.00325 0.32106 0.06313 5.68868 0.43644 0.00111 0.02398 0.00184 1881 0.34043 1869.7 8.10519 2567.3 0.00181 8.95279 0.33386 0.1358 0.0733 0.00147 16.53458 0.00118 0.33828 1804.1 0.15226 14.96075 1032.9 0.00137 18.3 12.68 0.14992 8.90302 0.00163 0.10408 8.06 4.73672 0.43764 1910.9 0.00185 8.91571 1836 11.51 0.20929 1904.8 17.88 5.11352 1849.8 1828.1 2297.4 8.06785 0.15391 2634.9 2302.6 0.08226 2874.5 18.59 4.89125 0.08327 1800.7 13.05 1038.6 2801.6 20.83 0.07676 6.34 9.13 0.14942 12.9 6.52 8.88 2321 1946.1 1767.6 13.19 0.10141 2336.5 5.51 1839.1 1957.9 3.98 8.56 1809.9 1871.4 1837.1 2299.3 2554.8 2572.7 2367.3 11.68 2893.3 15.48 9.92 1807.4 7.97 1824 11.19 6.4 1032.1 2793.7 13.18 12.66 18.99 8.98 10.69 6.15 2326.9 13 1794.9 13.37 1932.7 10.81 1929.7 2334.7 17.93 1807.9 1888.7 8.81 7.69 2242.8 2333.2 1.2 8.14 2908.2 3.2 7.19 20.55 1857 -3.2 23.11 5.31 1878.4 12.54 6.57 2812.7 0.2 16.72 -0.6 10.62 2328.1 25.34 1773.8 7.86 2329.4 8.91 -2.1 1838.4 13.31 -3.2 -0.2 15.78 14.56 -0.1 -3.4 2238.7 -0.8 1800.7 8.53 12.75 0.3 16.73 -0.3 17.48 -1.8 0.1 -5 31.4 -3.4 2554.8 13 28 0.12339 0.00088 0.3725 0.00151 6.19464 0.09601 2005.9 12.54 2041.2 7.07 2003.7 13.55 -2.1

Sam

282

e± 719709 4.29 6.25 Ag 1906 12.1 20632665 17.01 10.7 2000 15.68 922.8 19.1 1907.92842.6 15.43 1843.2 9.46 1549.72657.82599.41807.7 16.5 17.59 1913.6 21.39 1812.4 25.2 12.05 14.84 1832.31068.8 27.48 1774.31816.3 14.25 1878.9 19.39 2804.7 12.49 15.33 1825.3 14.16 11.32 2433.7 23.23 12.49 ) % ( es Ag ) e 2/2 g Pa ( Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Disc Ratios le GL1le - 18LB07 p 525354 0.116855 0.2020256 0.1166857 0.0631758 0.06303 0.00101 0.0011859 0.11269 0.0007960 0.096161 0.00096 0.18054 0.34171 0.0014462 0.55494 0.17431 0.0010363 0.34821 0.110564 0.11718 0.00091 0.118 0.0016165 0.00235 0.11626 0.00192 0.1274566 0.00266 0.33106 0.00125 0.1107967 0.00074 0.18132 0.27445 0.0009768 5.52957 0.51727 0.00108 0.11201 0.00074 15.19275 0.0012469 0.51273 0.00164 0.07501 5.68039 0.0016970 0.1085 0.33649 0.00131 0.0011871 0.35177 0.11103 0.0045 0.99909 0.00088 0.0981872 0.20339 1.05445 0.38312 0.11494 0.00523 5.13616 0.0007373 0.32376 0.19738 0.07303 0.0011674 0.51785 3.50646 0.00158 0.00074 0.06981 0.0009475 0.33003 0.00209 12.80025 0.11158 0.02997 1907.9 2842.6 0.02132 12.37006 0.00091 0.17516 0.00271 0.12298 0.09649 0.00137 5.09844 0.00192 0.15794 1906 0.31914 5.59919 0.00065 0.0588 0.33476 0.00136 0.49438 6.83056 0.00144 0.33587 15.43 0.56782 0.00077 709.2 9.46 4.92337 714 0.0011 1843.2 13.43156 0.531 0.05996 0.00117 0.0011 0.15185 0.00149 0.09273 12.1 5.21423 1549.7 0.34248 0.00138 0.14971 1894.9 2657.8 1.80286 2845.7 2599.4 47.76 0.16009 0.36424 0.19706 16.5 0.44866 31.95 0.00064 0.00215 1807.7 4.79464 5.12002 1913.6 0.07812 1926 17.59 0.0024 5.41889 21.39 7.71 0.02548 2063 7.96 0.00175 25.2 709 1812.4 0.00185 1843.5 1.43418 14.86584 2665 12.05 719 0.05526 0.08325 14.84 1563.3 1832.3 0.08032 5.21066 2687.6 5.99 1905.2 1068.8 2827.4 6.64128 17.01 2668.3 27.48 9.88477 7.92 0.24119 6.25 0.01838 1869.8 1774.3 1816.3 10.7 1943 4.29 14.25 6.64 19.12 1878.9 1928.4 0.14121 15.27 19.39 2090.8 12.75 0.12361 1808.1 22.29 0.15418 1842.1 2804.7 703.3 5.58 922.8 12.49 15.33 1838.5 2690 1528.7 731.1 2665.1 7.53 14.16 11.1 1825.3 1040.5 9.75 2632.9 13.22 2000 2433.7 0.8 15.97 -0.1 11.32 1835.8 15.22 1785.5 1861.4 19.1 6.61 13.25 1866.7 36.38 8.17 10.54 1916 23.23 4.24 1806.3 2089.7 43.12 12.49 15.68 -1.2 2745.7 9.98 5.39 7.21 911.3 1854.9 0 2710.5 6.67 1898.6 0 14.27 1046.5 27.44 19.41 -1.4 -1 2389.3 -0.7 2002.2 9.07 -3.2 1839.4 1784 12.76 3.55 13.86 1887.8 11.51 -4 9.23 8.21 8.29 -1.8 0.3 -1.6 2806.7 13.81 9.68 12.71 1854.4 903.3 -0.4 -1.1 2424.1 2064.8 15.44 2.9 23.09 -2.9 7.67 -0.7 0.7 14.38 16.42 2.6 -4.6 1.3 2.2 -0.1

Sam

283

± 21.49 13.59 14.82 31.03 18.01 22.77 40.23 21.82 19.05 25.17 5 5 5 5 5 5 5 5 5 5 e Ag 12171883 20.4 24.02 1740 22.94 2649 15.87 2638 11.86 654.7 2.7 651.1 5.67 2436.41809.72445.61760.7 23.13 2119.6 44.8 2708.6 22.04 18.87 2010.3 17.03 2344.8 13.11 2586.91798. 22.46 12.66 13.3 2087.61903.81871.9 22.6 1911.6 22.43 1932.3 15.38 2503. 18.34 1964.4 63.25 1980.72564.91764. 19.02 18.13 2100.1 14.09 1850.21895. 1760.8 34.77 16.83 1865. 1824.7 21.44 2624.91843.3 35.62 2343. 25.33 2039. 1895.6 21.52 1846.21864.12636.7 30.18 1726.1 18.49 1968.1 24.15 1749. 16.1 1895.3 17.18 2045.6 18.72 1893.2 36.24 1938. 22.62 2244.72492.1 25.54 1751.22577. 25.67 23.49 19.22 ) % ( es Ag ) e 1/2 g Pa ( Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Disc. Ratios le GL2 -le 19LB07 p 123 0.158194 0.110635 0.159066 0.107697 0.00218 0.131628 0.00277 0.186179 0.00209 0.1784 0.00112 0.47408 0.1237 0.00129 0.32149 0.1499 0.00149 0.43648 0.31404 0.00128 0.00437 0.36984 0.00158 0.00454 0.51816 0.00111 0.0037 0.00169 10.18586 0.49852 0.00199 5.17365 0.3646 0.00233 0.43282 9.10934 4.58172 0.3701 0.00177 6.83366 0.28418 0.00268 13.59344 0.00158 0.29455 12.23696 0.08676 2436.4 0.13609 0.23508 5.95771 1809.7 8.88259 0.15342 2445.6 1760.7 23.13 2119.6 0.15943 2708.6 0.1126 44.8 22.04 2638 18.87 2501.4 17.03 2010.3 13.11 1797 2344.8 2334.9 1760.6 11.86 19.09 2028.6 2691.4 22.46 12.66 22.17 16.59 2607.4 8.29 2451.8 9.38 2003.9 9.87 2318.4 1848.3 2349 7.62 1745.9 33.6 12.67 2090.1 2721.8 46.74 7.12 29.58 15.78 -3.2 2622.7 17.64 1969.7 16.36 0.8 2326 5.4 11.77 0 23.27 5 0.8 11.57 1.4 0.4 1.3 1011 0.173 0.10995 0.00139 0.00131 0.47643 0.30985 0.00208 0.00197 11.27018 4.6469 0.18159 0.10407 2586.9 1798.5 13.3 21.49 2511.7 1740 9.08 9.67 2545.7 1757.7 15.03 18.71 3.5 3.7 121314 0.1292415 0.1165416 0.1144917 0.0808218 0.00167 0.1170519 0.00147 0.1184120 0.00098 0.115222 0.00084 0.16461 0.3717523 0.0012 0.12055 0.3471624 0.00427 0.12166 0.3334125 0.17074 0.0015526 0.0028 0.203 0.00134 0.1079127 0.0024 0.34286 0.0013 0.06144 0.3587428 0.0014 0.00124 0.1301629 0.32405 0.00145 6.34276 0.11313 0.46359 0.0009530 0.00088 0.00186 5.9981 0.0078231 0.116 0.35218 0.00066 0.35015 5.1108 0.107732 0.00261 0.00239 0.10648 0.49768 0.00194 0.1742633 2.24668 0.00106 5.68748 0.11409 0.3088434 5.41477 0.00204 0.15949 0.11155 0.10689 0.0018935 0.00202 0.07275 0.17699 0.37416 0.00128 0.00229 10.07094 5.0270136 0.03423 0.00134 0.06147 2087.6 0.32266 0.00113 0.1122537 0.00115 0.43109 5.98914 0.00046 0.112738 5.72072 1903.8 0.00222 0.14979 0.32436 11.53725 0.1500539 0.0046 1871.9 0.31435 0.13173 0.00272 0.12576 0.31136 0.0014540 4.59372 0.00137 1217 0.11601 22.6 1911.6 0.32261 0.1253541 0.91998 1932.3 0.10841 0.11288 0.00135 22.43 0.3262 0.19955 0.003242 0.00201 0.00193 6.34316 0.53096 2503.5 15.3843 0.00199 0.114 4.97059 1883 0.0029 0.0545 0.17826 0.1062844 0.0016 2037.6 0.00197 18.34 0.01209 0.10568 1964.4 20.4 63.2545 0.32736 1980.7 0.00116 0.00364 1921 5.17796 4.61711 2564.9 0.00557 0.28529 0.1208 0.428246 1854.9 4.67899 13.59 0.0757 0.1070347 0.00097 0.37222 0.00154 0.00174 24.02 4.99668 0.11599 1764.5 0.36012 1900.4 13.1848 1976.2 0.00099 0.00203 1191.4 19.02 654.6 4.87654 0.32379 0.18426 13.68921 0.09986 0.1262 18.1349 0.00346 14.09 0.17958 2100.1 0.10941 2455.4 0.00128 11.550 6.77 0.00129 0.00516 0.87398 0.11585 0.32442 1850.2 0.49805 0.00361 0.08381 1809.551 0.00237 14.82 2024.4 5.09784 8.94 0.11882 0.31956 0.19672 0.6146552 0.0016 1945 37.1 1935.3 5.09 22.98 8.70851 0.14142 1895.5 1760.8 2603.8 0.0016353 0.00173 34.77 0.3612 6.31835 0.16349 8.57 0.31251 1975.6 0.00228 0.00253 0.0244 1740 1837.9 6.03708 0.00166 16.83 11.62 0.10713 1865.5 0.33994 0.00132 0.11128 1735 24.1 0.00127 1929.5 5.05381 0.17203 1824.7 2624.9 0.26501 654.7 1887.2 9.02 0.37091 1195.7 0.00212 9.71 31.03 21.44 9.86 0.50535 2048.9 0.00187 0.00186 12.73889 0.32269 23.14 5.34096 12.09 0.24221 0.0023 2441.3 0.32899 1802.7 0.00384 22.94 4.65197 0.00114 655.6 1823.9 18.01 1843.3 2.8 17.04 0.3428 0.0849 0.00262 5.59 0.00256 35.62 68.24 25.33 10.71 2343.5 0.40744 1762.1 0.00233 0.24133 1811 1934.5 5.89783 4.60042 1974.3 2.7 21.59 0.14214 2567.6 2039.5 -1 13.76 0.0025 5.70345 0.47164 1895.6 1 0.06233 1747.4 7.09 0.30809 1802.5 22.19 47.24 0.00173 0.7 21.52 6.81885 0.48557 -2.6 2745.5 0.00354 12.50103 2.3 1820 1846.2 1748.1 0.10542 22.77 16.38 0.09446 18.21 9.47 2636.7 16.16 15.57 2024.4 1864.1 0.00401 40.23 2.3 0.25135 5.18817 662.3 0.00146 30.18 1726.1 4.5 1814.3 5.53924 9.8 7.78 1825.6 0.00465 0.17284 0.20088 651.1 7.74783 23.45 2297.6 9.89 18.49 2.7 17.71 1.1 1968.1 1749.5 -1.8 10.79566 39.45 1752.4 16.1 2039.8 24.15 0.1383 1849 4.51275 1895.3 1982.8 6.39 12.87 11.37677 0.09358 17.18 0.25131 1818.8 9.85 2045.6 1763.5 2649 2728.4 5.67 1808.2 15.62 0.35486 1.9 1798.2 18.72 18.05 2.8 21.82 1811.3 2605.4 24.22 0.06972 30.28 17.11 36.24 0.42204 1893.2 1787.6 2.9 0 1938.5 14.19 2244.7 19.56 22.62 42.49 1835.7 33.99 7.81 15.87 1987.9 -0.1 2492.1 637.7 2308 1753 10.89 11.1 1751.2 1886.4 5.1 2021 1981.2 2577.5 25.54 6.46 3.9 19.05 -0.5 2033.7 -5.6 18.53 25.67 2636.8 0.3 23.49 13.22 1828.4 27.72 8.87 2660.5 9.15 18.47 19.22 34.95 1875.4 44.77 1833.5 25.17 1900.1 1758.6 2203.2 1.1 12.05 2490.8 14.24 9.96 0.7 2.3 17.84 1960.9 1731.3 -5.3 22.76 1931.9 2551.5 1749.3 12.13 0 8.31 11.2 16.23 2088.2 2.4 17.55 2642.8 15.52 1.4 3.2 38.07 17.13 7.2 20.18 1850.7 -4.1 22.45 1906.7 2202.2 2505.7 15.11 -1.2 0.5 -0.2 22.69 2554.5 1733.3 14.53 0.7 29.17 30.55 0.6 3.6 34.62 12.84 2.3 2.2 0.1 1.2 1.3

Sam

284

± e Ag 1972 43.12 1897 28.41 737.8 6.68 659.8 8.94 1781.12136.71937.31857.2 20.19 1974.8 22.16 37.43 23.15 2678.9 20.3 2078.31835.92699.2 18.39 22.8 2263.1 25.27 2460.9 48.59 2312.31735.7 24.28 20.24 24.48 30.49 ) % ( es Ag ) e 2/2 g Pa ( Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Disc. Ratios le GL2le - 19LB07 p 545556 0.1210657 0.108958 0.1329159 0.1187460 0.00297 0.1135661 0.12126 0.0012162 0.0017 0.063963 0.00252 0.35832 0.116164 0.00147 0.1828565 0.00139 0.3063 0.1285566 0.40117 0.11223 0.34445 0.0014867 0.0052 0.18511 0.32491 0.0018568 0.00205 0.06161 0.36239 0.0015469 0.00168 0.00272 0.14294 0.0040670 0.12126 0.00158 5.54384 0.1605 0.00205 0.32992 0.00554 0.14709 0.50393 0.00193 4.58331 0.00248 0.10623 7.24094 0.37768 5.67124 0.00203 0.00116 0.32698 0.28699 5.29459 0.00278 0.51986 0.00194 0.00272 5.95453 0.00212 0.07543 0.10778 0.00247 0.17757 0.00179 0.25885 1.03066 0.42857 0.00225 0.11553 5.11214 0.01128 12.48948 0.45545 1972 0.10633 0.42171 0.00154 6.50636 1781.1 2136.7 0.3068 0.00324 0.03048 4.98336 1937.3 0.14963 0.23415 12.9796 0.00263 1857.2 0.00322 0.88128 43.12 1974.8 0.1472 20.19 0.00256 8.8275 0.11787 22.16 738.3 37.43 10.24881 1.11597 2678.9 23.15 1897 8.28862 0.04241 1974.2 20.3 1722.5 4.55392 2078.3 2174.4 0.24882 1835.9 0.20574 1908 48.28 2699.2 1813.7 0.22896 18.39 28.41 24.67 660.7 1993.5 0.13227 7.62 12.49 2263.1 22.8 25.27 2460.9 737.8 19.49 2630.7 48.59 2312.3 9.97 1838 1907.4 84.04 1735.7 9.13 1746.2 2141.6 2065.5 1823.7 24.28 20.24 2698.6 11.65 6.68 1927 24.48 44.53 1868 13.49 659.8 30.49 13.72 21.88 1969.2 2299.3 11.56 10.95 2419.5 47.83 2641.9 2268.2 -0.1 39.4 719.3 18.64 1838.1 1724.9 -2.1 3.7 15.52 8.94 14.64 2046.8 1816.5 11.66 17.63 2678.2 14.61 15.24 1.7 2.7 24.86 -1.1 12.64 19.91 2320.3 641.7 2457.5 20 81.06 2.2 2263.1 0.1 3.6 1740.9 0.7 25.71 22.89 18.57 0.8 0 25.03 24.18 -1.9 0.1 2 2.3 0.7

Sam

285

e± 336 3.65 323 2.92 365 1.84 Ag 1949 25 326.5327.6322.9 1.53 313.9 2.59 0.88 1.38 314.2316.8313.1305.9 2.14 315.2 1.26 302.2 2.55 315.1 1.1 320.2 1.26 2.51 328.4 1.22 335.5 1.92 312.8293.9 1.86 307.4 3.62 323.9 2.2 308.9 2.88 319.2 2.75 315.6 1.64 319.3 1.1 1.23 258.7 2.36 328.6 5.95 266.5 1.22 1.68 296.8 1.02 334.7318.9 3.34 328.2 1.62 335.3327.8 2.97 330.2 1.71 281.3 2.99 345.3 2.22 1.42 1.2 365.4 2.03 316.2275.4340.2 5.27 329.7 2.11 2.52 1.33 3.01 325.8339.5277.5382.9 3.76 273.2 1.93 2.18 276.4 2.22 333.6 1.21 343.7339.2 1.96 361.1 2.21 360.8 2.6 363.9 1.49 326.3 2.13 2.44 1.9 3.3 1941.61873.71907.5 14.91 26.44 16.64 1867.9 11.35 1979.2 18.31 1998.71883.8 15.4 78.71 1848.6 33.5 ) % ( es Ag Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Disc Ratios le GL3-le 23LB07 57 0.052678 0.11678 0.05309 0.00062 0.00109 0.00163 0.0499 0.32088 0.05351 0.00022 0.00171 0.0006 0.37047 5.05913 0.37815 0.00484 0.09983 0.01289 314.7 1907.5 332.8 26.38 16.64 68.35 313.9 1794 336 1.38 8.35 3.65 320 1829.3 325.7 16.73 3.59 9.5 6.8 0.3 -1 234 0.05311 0.052826 0.11902 0.00113 0.114619 0.00038 0.001 0.05213 0.05278 0.0017 0.05137 0.34932 0.00042 0.00098 0.00014 0.31221 0.0017 0.36564 0.04995 0.37482 0.00278 0.00864 5.93393 0.00035 0.00301 4.67057 0.1122 0.37133 333.2 0.16059 320.9 0.00772 1941.6 47.22 1873.7 16.24 319.4 14.91 327.6 26.44 322.9 1931.3 41.63 2.59 1751.6 0.88 8.11 13.68 314.2 316.4 323.2 1966.2 1762 2.14 6.42 2.22 16.43 28.76 320.6 1.7 -0.6 0.6 7.4 5.71 1.7 1 0.05286 0.00067 0.05196 0.00025 0.38137 0.0054 322.7 28.34 326.5 1.53 328 3.97 -1.2 p 101112 0.0527113 0.0526414 0.0524715 0.0527116 0.00057 0.0523917 0.00116 0.0527518 0.00051 0.0527419 0.00058 0.05037 0.1142420 0.00118 0.04977 0.0529221 0.00054 0.05323 0.048623 0.00085 0.05011 0.05263 0.0002124 0.00072 0.04799 0.05228 0.0004225 0.00081 0.05254 0.050126 0.00155 0.00018 0.05093 0.05284 0.0002128 0.35671 0.00106 0.32547 0.05251 0.0004129 0.36231 0.0014 0.05227 0.0527330 0.00134 0.05342 0.35618 0.0002 0.05257 0.0003131 0.36472 0.00425 0.00072 0.04972 0.05272 0.0010732 0.35389 0.00889 0.0005 0.1040434 0.04664 0.0003 0.00054 0.04884 0.00383 0.05146 0.0005936 0.36202 0.35295 0.00442 0.00107 0.05154 0.0529 0.00036 5.07551 0.00885 316.3 0.0028 0.0516138 0.04909 313.3 0.00545 0.00047 0.05076 0.37222 0.05283 0.0004539 0.00413 0.00631 0.00068 0.3979 0.05017 305.8 0.0002740 0.36083 0.05844 316.5 0.05228 0.00073 0.05078 302.6 24.29 0.00052 0.00018 0.35119 0.33636 0.00638 0.0531542 0.35897 0.0002 49.41 0.00131 0.04094 0.01306 0.05386 0.0003843 0.37251 317.9 0.00804 317.7 21.93 1867.944 0.05229 24.64 0.00162 0.00097 0.36666 0.00987 0.05308 0.0422 316.8 0.0114545 0.01007 50.61 0.0007 0.05138 0.36485 325.3 0.05305 313.146 0.36974 0.0002 0.00568 0.00073 338.8 0.0530347 23.17 312.8 305.9 0.00027 36.2 0.04712 0.35308 0.00388 11.35 315.249 5.99783 0.053 0.00074 0.00016 1.26 0.00419 297.5 0.05187 302.2 0.0004850 0.05329 0.00836 309.2 0.00132 0.05826 0.28846 2.55 0.05343 34.551 0.00097 322 0.38911 0.02049 0.12289 64.78 315.1 0.0005452 1816.4 0.99038 45.29 1.1 320.2 0.05223 1.26 307.9 0.11525 0.297953 0.36996 309.8 0.00061 0.00059 0.00027 2.51 0.05383 59.85 0.0534 0.0041 31754 0.0003 310.1 313.9 57.03 0.00085 0.05217 0.05271 328.455 0.006 0.32179 0.00107 335.5 1.22 5.18 316.6 0.05181 312.8 1697.5 30.79 0.0002856 1.92 0.00332 0.01016 309.4 315.7 0.00517 0.05255 0.04461 0.38908 0.05335 21.41 3.18 307.6 0.00212 293.9 0.00049 0.05502 0.41991 0.05306 307.4 0.00036 6.63 261.6 0.01082 45.53 0.00094 23.22 1.86 0.35454 0.05283 3.62 0.37966 313.7 0.00134 1832 0.32543 323.9 324.4 0.00572 306.9 116.1 93.55 2.2 0.00023 2.87 3.29 268.2 0.0002 321.4 0.00055 308.9 0.05831 0.37753 0.00645 0.00033 6.64 -0.2 2.88 0.37769 0.00132 0.05028 2.75 315.6 0.00164 319.2 0.00589 321.3 29.94 297.6 0.1 0.00165 0.04364 340.1 0.00993 3.08 0.38844 1940.3 1.64 9.77 319.3 4.73 0.05419 0.30825 0.01037 30.76 335.2 312.8 0.00087 0.40557 0.00766 23.14 55.18 0.4 1.1 0 0.05247 365.1 294.4 0.00034 6.02228 311.4 0.1 0.05183 2.36 1.23 258.7 0.00041 4.72 0.00504 4.99163 332.3 68.96 54.61 9.49 0.00389 321.5 0.00022 5.95 0.40672 0.00724 0.9 328.6 3.2 -0.8 331.1 29.31 266.5 0.00049 0.36957 6 0.10226 317.2 329.8 323 7.5 0.00061 30.5 7.53 0.30172 0.66065 319.5 315.8 1.22 1975.5 296.8 0.39814 328.9 31.02 -1 0.018 279.9 4.2 1.68 307 1 0.39197 0.00736 346.9 334.7 1.02 55.32 1998.7 2.88 0.36333 0.00837 40.71 2.92 1883.8 143.7 0.00466 257.3 1.2 365 3.11 0.6 0 6.2 3.34 328.2 0.01087 25.91 333.7 25.95 15.37 1.62 363.8 0.01253 264.8 316.5 35.35 -0.6 335.3 327.8 319.6 15.4 -0.3 277.1 -16.6 78.71 3.23 343.6 283.3 -0.7 1.84 -1.8 1.71 330.2 331.4 281.3 4.39 333.7 -0.9 345.3 2.59 2.99 86.24 321.6 40.07 2.22 1956.2 7.53 1816.2 57.95 8.31 1.1 326.8 23.09 356 1.42 1697.5 55.37 1.2 -1.3 4.18 2.03 325.2 365.4 316.2 7.82 0.6 325.3 69.27 48.29 -0.5 275.4 93.55 340.2 4.33 333.2 0.3 4.61 329.7 272.8 345.7 7.64 1979.1 5.27 1817.9 2.11 0.2 325.8 5.64 2.52 1.33 3.69 1.3 3.01 111.96 14.79 0 3.02 5.23 346.5 319.3 -1.3 3.76 267.7 0.6 340.3 -0.4 335.8 4.1 12.99 2.5 -0.5 5.46 314.7 0.5 6.53 3.39 7.93 -0.5 9.33 0.1 0.6 1 0.5 -1.3 37 0.1215641 0.00125 0.05273 0.34937 0.00137 0.00205 0.05071 5.71541 0.00048 0.12554 0.36373 1979.2 0.01039 18.31 317 1931.6 57.78 9.82 318.9 1933.7 2.97 18.98 315 2.8 7.74 -0.6 575859 0.0533660 0.0518761 0.0542462 0.0516663 0.00081 0.1195264 0.00111 0.0518865 0.00083 0.053166 0.00061 0.05407 0.0533267 0.00169 0.04398 0.0533868 0.00101 0.06119 0.0539669 0.05376 0.00095 0.0433 0.0003270 0.00107 0.34959 0.05394 0.00035 0.00061 0.04381 0.05286 0.00037 0.00084 0.11302 0.05311 0.40467 0.00098 0.05476 0.0002 0.00291 0.32178 0.00075 0.05403 0.00032 0.45317 0.00145 0.05762 0.00696 0.00212 0.00036 0.05756 0.00042 5.35793 0.00753 0.3101 0.05807 0.00024 0.32387 0.00797 0.05193 0.00035 0.32273 0.38442 0.39566 0.0004 0.16715 343.9 0.00407 0.00031 0.40863 0.00691 279.6 0.00054 380.9 0.4246 0.00768 0.00349 0.00892 0.40713 0.43909 0.00537 34.02 1949 270.3 0.39265 48.28 280 0.00751 5.01627 34.21 0.00843 333.1 0.00699 342.4 339.5 0.01201 344.7 26.84 277.5 25 0.21505 369.3 382.9 44.03 360.8 39.89 368.5 44.77 1.93 322.9 25.69 273.2 2.18 1848.6 1932.6 276.4 2.22 34.75 333.6 40.83 343.7 31.62 345 339.2 1.21 283.3 61.03 13.9 33.5 379.5 1.96 361.1 2.21 360.8 2.6 363.9 1.49 274.3 5.03 326.3 1878.2 5.79 284.9 1803 5.57 2.13 330.3 2.44 338.5 1.9 347.9 3.15 26.7 3.3 1.3 0.8 16.99 359.3 5.3 -0.5 5.63 346.8 6.49 369.6 3.87 -1.1 336.3 1822.1 1 5.35 1.3 6.08 -0.2 4.93 -0.4 1.6 36.3 8.76 2.3 0 1.3 2.8 -1.1

Sam

286

4 4 4 4 4 1.42 9.77 3.59 1.88 4 4 4 4 e± 456 3.32 Ag 377.2953.2 3.97 4.32 468.6503.9 9.96 8.64 510.2263.3306. 4.63 921.6 3 6.46 362.5267.9297. 2.51 2.43 603.9561.6 4.07 425.1 4.95 509. 3.51 299.7534.9628.7 2.79 430.1 3.76 7.54 3.47 444. 1781.31056.5 20.1 1092.91134.6 15.26 27.4 37.5 1759.9 78.47 1499.6 24.95 1005.21739.11810.6 48.23 28.75 22.1 1123.5 60.76 1070.21167.2 25.17 1871.9 64.81 1499.6 13.75 1972.3 58.95 1926.2 15.17 15.98 1693.61424.41438.6 23.67 20.4 1431.4 15.39 55.16 1799.71068.1 14.88 1005.42070.8 51.75 1009.9 32.62 1874.9 12.11 25.2 12.0 1813.41260.6 29.61 1001.9 31.06 81.06 ) % ( es Ag ) e 1/2 g Pa ( Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Disc Ratios le GL4le - 20LB07 p 789 0.05415 0.0702 0.07269 0.00153 0.00077 0.00177 0.06027 0.15936 0.17462 0.00065 0.00078 0.00195 0.42675 1.55276 1.66131 0.0136 0.02475 0.06185 377.2 934.1 1005.2 62.17 22.22 48.23 377.2 1037.5 953.2 3.97 10.69 4.32 360.9 993.9 951.6 9.68 23.6 9.85 -3.5 0 -2.2 123 0.077094 0.109925 0.056276 0.05381 0.0024 0.0516 0.00205 0.05227 0.00107 0.00103 0.18028 0.28155 0.00128 0.00069 0.0733 0.05785 0.0024 0.00299 0.04244 0.04722 0.00055 0.00041 1.69642 4.31237 0.00039 0.00023 0.56301 0.44118 0.07615 0.16699 0.30094 0.33275 0.01268 0.00949 0.00807 1123.5 0.00476 1798 462.3 363.1 60.76 267.8 297.1 33.52 41.97 42.54 1068.5 56.06 1599.2 29.66 456 362.5 13.12 267.9 15.03 297.4 2.51 1007.2 3.32 1695.7 2.43 1.42 28.67 371.1 453.5 31.92 267.1 291.7 5.3 6.69 8.24 12.5 6.3 3.63 0.2 1.4 1798 -0.1 0 33.52 373839 0.0565640 0.1089241 0.057442 0.07457 0.00323 0.07592 0.00121 0.07753 0.00276 0.00056 0.0754 0.00105 0.308248 0.0014749 0.08131 0.1830550 0.00166 0.05749 0.1752651 0.00186 0.10765 0.1884252 0.00145 0.05151 0.0005953 0.58802 0.05251 0.00111 0.0014 4.53251 0.09358 0.00172 0.00474 0.66347 0.07226 1.84257 0.00164 0.04013 1.87479 0.0009 0.09888 1.87931 0.08237 0.00125 0.32016 0.03816 0.00122 0.01878 0.04169 0.03964 473.6 0.04867 0.05761 0.00078 1781.3 0.25322 0.00806 0.15369 506.6 0.00048 1056.5 1092.9 0.00031 122.43 0.67974 5.10208 0.0017 1134.6 20.1 0.00116 0.30212 102.95 15.26 0.34351 0.02008 468.6 27.4 0.51725 3.30804 37.54 1.56255 1731.8 0.01034 503.9 1083.6 0.00642 0.07831 509.8 9.96 1041 1759.9 1112.8 0.03842 9.18 263.9 8.64 3.23 307.7 1499.6 53.16 469.6 78.47 9.36 993.2 6.1 1737 71.41 1060.8 516.7 38.31 1790.5 24.95 510.2 25.66 1073.8 1072.2 33.96 18.15 263.3 6.71 23.29 306.4 39.38 1455 20.32 4.63 1.1 921.6 14 3.2 -2.8 0.6 3 1836.5 1.88 2.1 8.74 526.6 6.46 5.1 86.07 268.1 299.8 1482.9 12.14 955.5 -2 8.07 4.85 18.46 -0.1 15.22 0.2 3.3 0.4 7.7 1011 0.10643 0.11068 0.00169 0.00136 0.30408 0.30382 0.00268 0.00212 4.19007 4.60452 0.13524 0.1179 1739.1 1810.6 28.75 22.14 1711.5 1710.2 13.25 10.51 1672.1 1750.1 26.46 21.36 1.8 6.3 272829 0.0750630 0.078831 0.0588932 0.1144934 0.00095 0.0935835 0.05526 0.0026336 0.00134 0.12109 0.00088 0.17956 0.118 0.00298 0.05741 0.00122 0.1974 0.09103 0.00104 0.30912 0.00105 0.26024 0.00106 0.00327 0.06817 0.00313 0.00084 0.32192 0.00124 1.88799 0.00444 0.33522 0.08222 0.00058 2.34611 0.72557 4.77925 0.0015 0.03688 3.00178 0.00164 0.00164 0.48946 0.02044 0.1325 0.06696 5.33562 1070.2 0.17615 5.42024 0.65968 0.01242 1167.2 563 0.08926 1871.9 25.17 1499.6 0.09706 0.04403 422.6 64.81 1972.3 13.75 48.86 1064.6 58.95 1926.2 506.8 47.95 1161.3 1736.4 15.17 561.6 5.75 1491.1 15.98 120.98 425.1 16.86 1799.1 6.11 1076.9 4.95 22.7 1863.6 509.4 1226.4 3.51 7.33 1781.3 12.97 553.9 1408.1 7.92 9.77 40.21 404.5 1874.6 11.76 0.6 44.69 12.03 1888.1 514.4 0.6 8.47 14.3 8.3 15.35 0.6 0.3 26.94 10.1 -0.6 3.7 -0.5 1214 0.10383 0.09063 0.00134 0.00074 0.28436 0.25544 0.002022526 0.00103 0.11468 3.98371 0.05993 3.2005 0.00077 0.10238 0.00107 0.04491 0.33929 1693.6 0.0982 1438.6 0.00118 23.67 0.00069 5.32487 15.3943 1613.3 0.81693 0.06506 1466.5 0.11085 10.14 0.01825 1874.9 0.00183 5.29 1630.9 600.9 0.32996 12.04 1457.3 20.86 38.13 0.0031 1883.2 10.86 5.4 603.9 5.10967 5.66 -2.2 4.07 0.18252 1872.9 606.3 1813.4 10.44 10.2 29.61 -0.5 1838.2 -0.5 15.02 1837.7 30.33 -1.6 1315 0.089951617 0.0522318 0.0902819 0.00097 0.0581520 0.0607421 0.00131 0.1100222 0.00266 0.05535 0.2448923 0.00106 0.0749824 0.00187 0.07269 0.04759 0.0009 0.12801 0.24724 0.00133 0.00126 0.07286 0.08652 0.00196 0.10245 0.00045 0.00118 0.00367 3.09711 0.00088 0.3211 0.06899 0.00063 0.00091 0.1704 0.00129 0.3494 0.16619 2.90127 0.05965 0.39388 0.00143 0.00058 0.67807 0.17499 0.85968 0.00189 0.00966 0.00122 0.15275 4.83272 0.51736 0.0015 1424.4 0.01503 0.00098 0.03396 1.70501 1.70992 295.4 1431.4 0.07819 7.01299 0.0135 20.44 1.74383 534.9 0.06595 630.1 0.0424 56.29 55.16 0.09933 1799.744 1412.1 0.03309 426.245 39.8 1068.146 64.98 1005.4 0.0670247 1424.2 299.7 2070.8 0.08263 14.88 6.88 1009.9 0.07257 49.56 51.75 534.9 0.05581 628.7 32.62 0.0014 18.99 1795.1 12.11 0.00133 2.79 25.24 1432 0.00297 430.1 1014.3 0.00124 3.76 7.54 991.1 1382.2 0.15675 2140.8 0.21146 6.99 1039.6 304.3 0.16512 14.78 10.41 3.47 0.07137 525.6 0.00141 39.76 629.9 6.76 0.00163 6.93 1790.6 5.39 0.00295 7.27 1010.4 1 0.0006 423.4 1.52262 2.30662 9.09 18.54 1012.3 0.6 13.61 2113.1 1.6297 1024.9 24.75 -1.5 0.5339 0.04736 9.04 0.06046 15.89 0.2 12.59 0 0.09904 0.3 12.24 5.4 0.01375 838.5 1260.6 -0.9 1.5 1001.9 -4 -3.2 444.6 42.98 31.06 81.06 1236.6 48.43 938.7 985.2 444.4 8.69 7.87 16.31 1214.3 3.59 939.5 981.7 18.57 434.4 19.06 38.24 2.1 -12.8 9.1 1.8 938.7 0 7.87

Sam

287

4 e± 374 2.82 Ag 1253 28.34 230.4553.9403.9 3.28 4.85 9.1 684.1 3.12 323.7453.9352.5391.4 4.26 4.41 926.5 3.59 2.53 705.7 6.29 696.2 7.25 11.21 1125.21222.3 28.1 49.41 1825.7 33.59 1463.51201.5 25.52 1950.6 24.27 2063.21927.4 24.59 14.46 26.86 1768.61366.3 18.32 1594.8 57.28 34.47 1171.71694.41467.9 31.79 59.68 28.64 ) % ( es Ag ) e 2/2 g Pa ( Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Disc Ratios le GL4 le - 20LB07 p 545556 0.0771657 0.0823158 0.0810359 0.0508560 0.0011 0.05879 0.00121 0.11161 0.00207 0.05454 0.00207 0.18467 0.00137 0.21113 0.00209 0.20529 0.00334 0.03639 0.00121 0.08972 0.00147 0.32356 0.00255 0.06466 0.00053 1.95653 0.00082 2.39274 0.00345 2.10966 0.00151 0.26818 0.04252 0.73794 0.0571 5.54103 0.08742 0.44544 0.01156 1125.2 0.021 0.23228 1253 1222.3 0.031 234.1 28.1 1825.7 559.3 49.41 28.34 91.15 393.3 1092.4 33.59 1203.7 49.94 1234.8 230.4 131.59 6.59 1807.1 13.66 553.9 7.85 403.9 3.28 1100.7 16.82 1152 1240.4 4.85 9.14 241.2 14.6 1907 17.09 28.54 561.2 374.1 9.26 36.06 3.2 1.6 1.7 12.27 21.78 1.6 1.2 1 -2.8 626364 0.0801865 0.0621866 0.1196267 0.1274568 0.11808 0.00169 0.00073 0.0528770 0.00166 0.0560271 0.00105 0.0537672 0.00179 0.05459 0.21118 0.1119673 0.00207 0.10816 0.3597174 0.00152 0.07106 0.3739675 0.00147 0.08726 0.00121 0.3413 0.0005476 0.00095 0.06287 0.05149 0.0028277 0.00109 0.09844 0.07296 0.0014278 0.00118 0.05417 0.056279 0.98161 2.3061 0.00265 0.00289 0.06252 0.0626 0.0006980 0.00169 5.7935 0.07898 0.31293 0.00073 0.00184 6.5238 0.10387 0.15457 0.00113 0.01458 0.00059 5.58553 0.09203 0.25339 0.04428 0.38444 0.00268 0.00042 0.16933 0.1157 0.00151 0.57231 0.00128 0.08453 0.2813 0.00113 0.00343 0.43319 0.05974 0.00392 0.1773 0.01653 680.4 0.0014 0.48467 1201.5 0.11405 4.55993 0.01806 0.00126 1950.6 0.20118 1.49172 0.00276 2063.2 0.30772 0.01343 0.00046 3.17005 0.00962 0.00194 1927.4 0.26101 24.27 24.95 0.07574 323.2 0.97152 0.0015 24.59 0.03501 452.6 3.51588 0.00568 0.44305 14.46 0.18324 360.8 0.92443 0.00194 1235.1 26.86 0.03387 395.5 684.1 1768.6 86.64 2.20936 1980.8 0.12059 4.30402 58.94 0.01041 959 2048 1366.3 0.05037 3.15866 60.57 1892.9 6.44 38.09 18.32 0.05567 703.8 3.12 323.7 13.37 0.29383 1594.8 453.9 377.8 57.28 0.08083 33.47 6.68 691.8 352.5 13.88 1214.2 1755.1 391.4 1171.7 1945.4 56.14 694.4 4.26 1694.4 34.47 4.41 1455.9 46.23 1467.9 926.5 2049.1 1913.9 88.71 3.59 13.6 7.41 25.31 31.79 2.53 705.7 1597.9 7.47 59.68 330.3 20.15 459.5 28.64 374 11.41 27.34 6.29 696.2 365.4 1181.6 -3.1 -1.8 1742 1729.5 401.3 7.25 13.9 12.13 -0.6 1449.9 11.66 1495 0.9 2.1 2.82 11.21 927 9.51 8.06 13.83 1530.8 6.58 689.2 28 -0.2 44.62 -0.3 664.7 9.9 372.4 14.27 1184 2.4 27.11 0.9 17.44 1694.1 -7.3 1.1 26.58 1447.1 7.33 3.6 17.61 -0.2 56.25 -0.3 19.74 -0.7 1 -0.9 -2.4 -2.1 61 0.09182 0.00124 0.24578 0.00162 3.19211 0.07396 1463.5 25.52 1416.7 8.38 1455.3 17.91 3.6

Sam

288

e± 278 3.24 253 2.5 252 4.67 Ag 257.9261.3258.8255.5256.7 1.73 257.5 1.66 256.4 3.28 253.8 1.23 247.5 1.12 257.5 2.6 1.34 251.7 1.79 254.4 2.13 251.4 1.79 258.6265.1 2.5 1.44 257.2 1.77 262.7 1.42 251.7 1.71 255.3259.8 1.19 1.64 248.6 3.08 257.2 2.72 258.5 1.48 268.2252.6 2.07 249.2 1.35 253.6 3.51 263.6 1.73 249.1 1.66 252.4 2.75 255.4 1.62 253.5 2.77 268.9 2.21 257.9 1.35 247.1 2.18 254.4 2.04 265.9 1.49 251.2 1.83 263.7 2.77 252.2 3.89 274.1 1.86 264.5 2.14 1.92 248.2 2.71 1.37 259.6 3.51 245.7 2.26 2.19 4.13 265.6258.5260.1255.7275.3 2.4 270.8 2.3 263.5 1.88 259.5 2.75 262.8 2.17 254.1 4.43 2.33 2.28 1.73 2.01 2474.5 27.55 ) % ( es Ag Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Disc Ratios 1 0.05134 0.00096 0.04081 0.00028 0.29269 0.00596 256.1 42.43 257.9 1.73 260.7 4.68 -0.7 234 0.051515 0.051356 0.051317 0.051338 0.00089 0.051399 0.00183 0.05135 0.00067 0.05127 0.00061 0.05115 0.04136 0.00146 0.04096 0.00074 0.04042 0.00104 0.00027 0.04062 0.00123 0.00053 0.04075 0.04057 0.0002 0.30246 0.00018 0.04015 0.29088 0.00042 0.03915 0.00022 0.28613 0.29039 0.00574 0.00029 0.01128 0.00034 0.3046 0.28885 0.00409 0.28977 0.00376 263.6 0.2869 0.00947 256.6 0.00452 0.00636 254.8 255.5 0.00746 39.23 258.2 79.94 256.7 253.1 29.95 27.08 261.3 247.4 258.8 64.04 32.68 255.5 45.99 256.7 1.66 54.25 3.28 257.5 256.4 1.23 253.8 1.12 268.3 247.5 259.2 2.6 1.34 255.5 1.79 258.9 4.48 2.13 8.87 257.7 270 258.4 3.23 2.96 0.9 256.1 -0.9 3.56 7.37 -0.3 -0.5 5 5.89 0.1 0.3 -0.3 0 le FL1 -le 77LB06 101112 0.0513413 0.051714 0.0513115 0.0512816 0.00101 0.051217 0.05143 0.0016918 0.00153 0.0515219 0.00079 0.05136 0.0407620 0.05137 0.0009921 0.04406 0.00077 0.05157 0.0398322 0.00092 0.00029 0.05129 0.0402523 0.00144 0.05135 0.00053 0.03978 0.00064 0.05145 0.04093 0.000425 0.00089 0.28448 0.00023 0.04198 0.161826 0.00186 0.04002 0.3107527 0.00029 0.00153 0.00023 0.05142 0.0407128 0.2839 0.28903 0.00607 0.0008 0.00028 0.05139 0.041629 0.05155 0.03981 0.00267 0.0004 0.27852 0.0111630 0.28853 0.00019 0.05129 0.040431 0.00075 0.00911 0.00488 0.05123 0.29532 0.00026 0.04113 256.2 0.002 0.0005 0.0513 0.28647 0.0058533 0.45244 0.29016 0.00472 0.0009 0.05153 272.234 0.00044 0.00096 0.05128 0.0407 0.2961635 0.00024 0.00164 254.8 253.5 0.00576 0.05127 0.28832 0.0087136 0.00486 44.71 0.00397 0.04091 0.05126 0.00091 250.1 0.2909937 0.04248 0.00151 259.9 73.39 0.03996 0.0513 0.29457 0.0056138 0.00022 0.00136 0.03941 0.0516 9.73287 0.0112739 67.28 35.2 0.00076 264.3 0.00057 257.5 0.05134 256.9 0.0094440 0.00028 0.04012 0.00124 257.5 43.95 0.00027 0.05115 0.04173 0.29462 0.0050241 34.14 278 0.00044 0.05141 0.00117 266.6 0.0394 0.4704742 0.27794 251.7 0.05158 0.03992 0.00078 253.7 0.29439 1.7943 254.4 40.62 0.00026 0.00104 63.31 0.00045 0.2842 0.04041 0.0513 256.4 0.0046644 251.4 28.51 0.00175 0.28014 258.6 0.05148 261.245 0.00036 0.04011 3.24 0.01162 0.0024 39.33 0.00022 0.05122 2474.5 0.29842 0.0056546 0.04259 2.5 254.2 0.29272 1.44 265.1 0.00035 0.05173 0.04082 81.4 0.001 0.0057347 253 1.77 0.00965 257.2 67.11 0.05164 0.03908 0.00122 259.6 0.28057 1.4248 0.00033 0.00102 0.28691 274.8 35.51 0.11532 0.0057849 262.7 0.00024 27.55 0.04026 0.00159 258.2 0.00932 0.00029 0.2892 0.05119 253.7 257.8 265.4 1.7150 4.8 0.00069 251.7 0.00045 0.05132 249.5 0.0421 254.1 0.28581 0.00798 1.1951 255.3 0.03973 257.4 0.00207 2.5 251.2 0.00462 32.99 0.05144 0.04175 0.29532 259.8 8.65 0.00063 2406.1 0.00118 0.29222 1.64 0.05128 0.03989 254.4 0.00756 86.85 262.5 0.00144 3.84 264.6 0.28169 7.2 39.75 0.05155 0.04344 -0.5 3.08 0.00707 0.00034 0.0003 258.7 0.00275 4.65 2.72 42.29 0.00031 0.04189 253.3 3.72 0.28269 255.8 0.00487 257.2 21.57 72.2 0.00123 253.2 1.48 0.00641 -2.2 0.00044 0.28422 263.4 0.01029 258.5 0.0024 40.32 0.00022 0.03925 -0.4 4.51 252.6 0.28736 268.2 65.67 257.2 0.00138 0.29395 1.2 0.29443 0.00057 0.03986 259.3 -0.5 254.3 3.12 0.01409 252.6 2409.8 0.28401 1.35 0.5 6.88 59.86 0.00144 262.2 267.6 0.0411 249.2 33.61 4.39 256.3 0.30066 0.00036 3.51 0.00744 253.6 0.03884 -0.3 0.00624 247.6 0.30208 1.73 0.00641 263.6 54.54 0.00075 0.04207 8.88 44.51 7.42 4.40315 1.66 0.00945 0.1 51.73 262.2 259.1 249.1 0.00035 1.5 3.94 0.27719 2.75 0.00444 252.4 34.17 1.5 0.00067 46.04 0.28394 1.62 0.01302 249 0.00039 254.2 2.77 255.4 76.91 262 262.2 0.8 0.08097 3.3 267 0.28579 0.4 253.5 254 103.91 3.65 250.9 2.21 0.00825 250.8 0.29936 0.5 1.35 268.9 273.7 0.29969 0.01634 257.9 265.2 260.7 269.5 2.18 9.23 247.1 53.81 4.43 45.06 1884.9 0.0074 2.04 254.4 44.01 251.1 0.01529 0.9 4.53 69.68 256.1 7.65 249.2 1.49 0.00865 1.83 30.39 4.52 255.4 257.9 7.32 2.77 -0.1 251.2 89.11 -1.1 263.7 255.3 18.3 3.89 265.9 260.8 6.33 252.2 0.6 262.7 253.4 3.64 0.8 63.54 260.3 265.5 274.1 118.61 0.3 5.96 2.14 0.4 264.5 252 1.92 252.8 1612.6 5.58 1.86 2.71 1.7 53.98 103.97 3.82 0.3 248.2 5.04 1.37 60.29 252 256.5 -1.1 3.51 7.25 8.15 262 11.16 261.7 0.3 253.8 259.6 245.7 -0.5 2.26 266.9 -0.6 265.6 4.67 5.87 1712.9 268 1.8 0.2 4.89 5.03 7.47 2.19 4.13 248.4 3.47 2.4 253.8 15.22 1.2 10.15 -0.6 0.4 255.2 265.9 -0.5 6.56 -0.1 266.2 16.3 12.92 1.9 11.95 5.85 0.4 1.4 6.76 3.1 0.5 1884.9 0 18.3 24 0.05113 0.00127 0.03932 0.00033 0.28113 0.00746 246.5 56.03 248.6 2.07 251.6 5.91 -0.9 525354 0.0514355 0.0515256 0.0513957 0.0517358 0.00131 0.0516459 0.00108 0.0515660 0.00159 0.05153 0.00112 0.05155 0.04091 0.00235 0.05135 0.04117 0.00137 0.04046 0.00135 0.00037 0.04364 0.00094 0.0003 0.0429 0.00116 0.00044 0.04173 0.28642 0.00035 0.04107 0.04161 0.29107 0.00072 0.28793 0.00038 0.04021 0.30052 0.00789 0.00037 0.00028 0.30044 0.00658 0.29309 0.00965 0.00032 0.28875 0.00712 260.3 0.287 0.01493 0.29223 0.0084 264.3 258.2 0.00813 273.5 57.37 0.00572 0.00716 269.5 47.27 265.7 69.64 264.7 48.68 258.5 265.6 256.6 101.1 260.1 255.7 59.91 59.14 275.3 2.3 270.8 41.24 51.13 1.88 2.75 263.5 259.5 2.17 255.7 4.43 262.8 254.1 259.4 256.9 2.33 2.28 266.8 6.23 266.7 1.73 2.01 5.17 7.61 261 257.6 5.56 0.7 11.66 256.2 260.3 1.6 1 6.41 6.6 -0.7 -0.5 4.51 5.62 2 0.8 1.1 1 p

Sam

289

e± 264 3.04 260267 2.6 1.07 Ag 256.5259.2375.5368.1 2.63 286.2 1.67 5.45 359.2 3.6270.8 7.21 616.1264.3 4.94 261.5 2.83 8.2261.1 2.81 1.77 269.6372.5 1.58 271.7274.4 1.67 275.7 3.4256.4 0.91 1.93 268.4 2.53 269.4 2.89 275.7265.5 1.48 362.4369.1 2 2.15 277.7 2.73 2.56 268.5 4.98 2.46 270.4264.8 1.83 270.7359.1 1.5 1.27 254.9 1.37 254.4 3.96 257.6 2.03 371.2 2.22 2.05 254.4265.9 3.57 275.1 1.47 2.8356.8 2.97 271.1269.6 2.01 1.05 2.5 268.3 2.12 1415.6 12.97 2394.8 13.17 1723.4 18.78 1760.61593.9 23.31 24.55 1610.6 14.7 2570.61765.1 20.33 16.08 ) % ( es Ag ) e 1/2 g Pa ( Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Disc Ratios le FL2le - 80LB06 123 0.05124 0.051415 0.054086 0.053817 0.05207 0.001438 0.00088 0.089549 0.00206 0.05356 0.0014 0.0516 0.04059 0.00361 0.06021 0.04102 0.00061 0.05997 0.00199 0.05876 0.00145 0.00042 0.0454 0.00202 0.00027 0.25682 0.0009 0.05731 0.00059 0.30026 0.0429 0.10029 0.00117 0.30689 0.00085 0.00081 0.44966 0.42016 0.00912 0.00573 0.00046 0.2931 0.0014 3.17559 0.01978 0.41894 0.01245 249.9 0.29985 0.03514 259.3 0.0219 0.8657 0.0176 374.2 362.8 0.00913 63.22 1415.6 0.03816 38.81 288.3 352.5 83.27 57.7 267.7 12.97 256.5 611.2 259.2 150.69 81.49 375.5 62.99 368.1 1473.6 2.63 70.93 286.2 1.67 359.2 5.45 270.8 4.35 3.6 266.6 616.1 7.21 271.8 4.94 377 1451.2 2.83 356.2 7.13 4.45 8.2 261 355.3 13.86 8.54 266.3 -2.7 8.9 0 633.2 17.2 12.59 -0.4 -4.6 7.13 -1.5 20.77 0.7 -2 -1.2 -0.8 p 101112 0.0514713 0.0515714 0.1543615 0.0514816 0.00149 0.0515117 0.00093 0.0515718 0.05396 0.001219 0.00083 0.05185 0.0418520 0.00161 0.05176 0.0413921 0.00085 0.0516522 0.46283 0.00131 0.0513 0.0413323 0.00045 0.00045 0.1055224 0.0418 0.00097 0.00029 0.05162 0.0427125 0.00127 0.05155 0.05948 0.0021826 0.00025 0.0519 0.04305 0.0015727 0.3089 0.00109 0.05158 0.04348 0.0004928 0.2972 0.00076 0.00027 0.05378 0.0436929 0.00103 0.00056 9.89195 0.0538530 0.29819 0.04057 0.00015 0.05186 0.00974 0.31614 0.0010931 0.00143 0.00031 0.29898 0.10768 0.00581 0.0425132 0.30961 0.00103 0.00041 0.05164 0.18879 0.0426733 0.43554 0.00523 0.00194 0.09839 0.0004734 0.30643 0.00123 0.00175 0.0437 0.05165 0.01014 0.0420535 0.31587 262 0.00561 0.00139 0.00024 0.05154 0.05783 266.436 0.30872 0.01205 0.00094 0.00032 0.05175 2394.8 0.0589237 262.5 0.28997 0.0029 0.05388 0.0013 0.0440138 4.65984 0.00649 0.00035 0.00078 0.00044 0.09928 0.31589 263.839 0.29786 0.00829 0.00066 266.2 0.00042 0.05136 64.96 0.0425440 0.29954 40.77 369.1 0.00082 0.05134 13.17 0.0007 0.0095841 0.09754 0.27993 0.00158 0.05142 36.55 0.0004 0.0428442 0.30434 0.30722 279 0.00477 0.00079 274.6 0.00222 0.17132 0.0419343 0.43081 70.25 0.00648 0.00111 269.8 0.05391 0.0003 37.644 264.3 0.42571 261.5 0.04288 0.00121 0.10795 53.64 0.05729 254.4 0.0019545 2452 1723.4 0.00697 0.00928 0.00111 0.00024 0.31059 0.05134 261.1 0.2878146 4.71433 0.00937 268.5 0.05164 42.37 0.0021 0.0002 19.61 0.0403347 0.01748 0.00142 265.3 0.29506 0.05172 264 55.48 0.04026 0.0002248 269.6 2.81 0.00096 0.00065 3.93928 1.77 0.05143 372.5 0.00805 0.0407849 0.30427 68.81 18.78 0.12681 280.9 0.00081 9.6 0.05163 0.0011 26750 1.58 0.50867 0.00149 361.7 0.00033 0.30078 0.05358 33.49 274.4 0.00586 0.05928 271.7 0.00151 364.7 0.00036 0.05161 45.02 0.3005 275.7 0.32358 0.1035 0.43553 273.3 3.04 0.00141 0.00033 264.2 1.67 0.05162 0.005 0.04025 279.4 1770.9 1760.6 256.4 3.4 0.00054 3.92359 2424.8 47.47 0.00421 0.00416 0.28876 0.0421 62.35 0.00081 0.00059 265 268.4 0.04359 42.9 269.4 0.29824 1.93 0.91 0.00053 0.00145 0.0044 0.0146 79.19 269.4 0.04116 2.53 1593.9 0.2937 265.6 7.55 0.00132 0.00024 273.9 4.55 0.05172 0.0423 53.42 8.57 23.31 12.57177 0.00676 270.1 17.6 367.1 2.89 275.7 0.05691 265.2 0.00045 0.44618 0.00765 0.00048 265.5 0.04295 4.09 4.67907 278.7 1.48 41.37 271.4 362.4 0.00042 369.1 0.00687 274.5 0.04271 365.8 -0.9 273.2 24.55 0.2947 0.45927 7.93 1.9 4.35 1610.6 2 1760.1 0.00017 -2.9 1769.6 277.7 0.01337 256.9 0.00033 258.5 34.29 8.52 0.3073 0.28727 2.15 29.17 0.07495 256.1 0.00017 0.5 2.73 0.28704 264.7 5.01 268.5 2.25 2.56 0.0004 0.00507 259.6 -0.1 30.49 4.98 64.78 6.43 2570.6 -1.3 1591 0.3067 17.5 14.7 0.42678 10.9 0.00965 -0.9 0.00908 367.3 2.46 266 49.06 7.54 270.4 0.31089 269.8 1765.1 264.8 0.00847 53.42 0.1 2.7 272 3.74 0.29717 363.8 1.83 -2.2 255.9 360.1 20.33 270.7 359.1 0.00356 0.00729 48.8 -3.2 9.84 1769.8 1630.6 -0.8 0.00352 269.5 272.9 274.6 58.21 254.9 5.06 5.43 16.08 1.5 1.27 254.4 260 0.0082 0 262.5 6.65 7.2 12.45 2650.9 36.05 268.9 353.2 22.53 1.37 1621.8 3.96 257.6 5.51 268.2 64.89 65.71 6.24 -1.6 371.2 1.9 1807.2 2.03 269.7 267 2.22 -0.2 61.67 -1.2 268.4 4.59 0.6 -0.6 17.76 21.28 254.4 266.8 367.1 23.98 33.69 1618.6 2.05 0.6 23.29 265.9 275.1 257.6 3.57 7.04 3.89 3.29 2648.1 0.3 265 57.48 0.2 260 10.33 10.67 1.47 3.44 356.8 261.5 267 271.1 1763.5 374.6 2.97 5.33 -0.1 2.8 34.36 0.2 269.6 -1.4 5.99 1.9 1.4 262.3 2.6 2.01 5.39 1.07 13.4 0.8 256.4 1.05 9.39 -3.8 272.1 0.7 2.5 3.98 0.8 256.2 360.9 -2.7 271.6 -1.1 274.9 7.16 7.49 0.6 264.2 6.68 5.19 -0.8 2.77 2.72 1.4 6.42 -1 0 0.7 -1.1 -0.5 52 0.05152 0.00111 0.0425 0.00034 0.29827 0.00702 264.2 48.91 268.3 2.12 265 5.49 -1.6

Sam

290

4 4 4 4 4 15.53 4 e± 255 3.75 Ag 265.9 1.65 267.6 3.2 263.1258.6362.2 1.28 269.2 1.66 265.4 2.49 267.2276.3 1.41 1.97 1.49 2.42 358.9275.3257.4 2.32 2.2 1.17 1502.2 21.2 1112.6 44.5 1779. 1811.5 17.2 ) % ( es Ag ) e 2/2 g Pa ( Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Disc Ratios le FL2le - 80LB06 p 6465 0.0516 0.0937 0.00087 0.00106 0.04211 0.26186 0.00027 0.0014 0.30211 3.31513 0.00554 0.06175 267.7 1502.2 38.06 21.24 265.9 1499.4 1.65 7.16 1484.6 268 14.53 4.32 0.2 0.7 5354 0.13962 0.05164 0.00182 0.00169 0.36589 0.04239 0.00279 0.00052 7.09107 0.28618 0.21177 0.01011 2222.4 269.5 22.38 73.43 2010 267.6 13.18 3.24 2122.9 255.5 26.58 7.98 11.1 0.7 2222.4 22.38 55 0.0515659 0.00069 0.05153 0.04165 0.0007266 0.00021 0.05119 0.042646970 0.11073 0.29473 0.00206 0.00023 0.05131 0.00427 0.00106 0.04035 0.30325 0.00062 0.32821 0.00467 266.1 0.0006 0.04074 0.00144 264.7 0.00019 0.28586 30.25 5.05867 0.01238 0.28473 31.95 263.1 0.07682 0.00379 249.3 269.2 1.28 1811.5 254.8 89.99 262.3 1.41 17.24 27.55 255 268.9 3.35 1829.7 257.4 1.2 3.64 3.75 6.99 1.17 -1.7 255.3 1829.2 254.4 9.78 12.87 3 -1.2 -2.3 -1 565758 0.05139 0.0537860 0.076676162 0.00089 0.051563 0.00099 0.05149 0.00174 0.05174 0.1088 0.04093 0.00105 0.0577967 0.00078 0.2016968 0.00123 0.00027 0.05377 0.00093 0.04202 0.00041 0.05175 0.04231 0.00213 0.04379 0.2885 0.32088 0.00094 0.00032 0.42276 0.00113 0.00024 2.10897 0.00039 0.00543 0.05726 0.00122 0.00883 0.2965 0.04363 0.30339 0.07763 0.30631 0.00038 4.75284 258.5 0.00655 361.6 0.00036 0.005 1112.6 0.00792 0.05977 0.42383 0.29865 39.34 263.4 41.29 44.54 262.8 273.8 0.00837 1779.4 0.00713 258.6 46.06 362.2 1184.4 34.21 53.53 361.3 15.53 274.4 1.66 265.4 11.41 2.49 267.2 276.3 38.75 1794 49.44 1151.7 257.4 1.97 358 1.49 2.42 358.9 5.95 275.3 25.35 4.28 263.7 271.3 6.3 269 1776.6 2.32 -7.1 2.24 0 5.13 -0.2 6.16 10.55 3.9 358.8 265.3 -0.8 -0.9 -0.9 -1.7 5.97 5.57 0.7 -0.3

Sam

291

e± 242 3.11 256261268 2.64 5.41 2.45 264 2.17 Ag 259.3255.3277.4258.2 2.88 279.6 1.25 261.2254.2 4.4 3.73 260.5 3.22 260.7 2.18 254.1 1.86 273.1 5.12 3.19 252.5 1.59 263.4 5.56 288.6 3.08 254.3 5.09 271.1 9.39 266.2249.1 2.62 252.9 8.93 266.4 2.71 274.7 3.64 248.9 7.58 258.5 3.75 258.6 6.84 3.58 3.91 1.79 260.1263.7254.6 2.58 281.1260.8 2.02 256.1 1.79 9.09 264.4 5.59 258.5 2.39 260.7251.9 2.11 251.6 6.7258.3 3.01 259.2 3.99 257.5 3.81 258.6 2.28 263.6 3.87 2.59 2.22 3.12 2011.3 43.73 1889.71973.3 23.59 17.57 ) % ( es Ag ) e 1/2 g Pa ( Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Disc Ratios 124 0.051475 0.051336 0.051747 0.051318 0.00155 0.051839 0.00067 0.0515 0.00225 0.05131 0.00208 0.05152 0.04105 0.00161 0.0404 0.00116 0.04397 0.00102 0.04087 0.00047 0.00277 0.04433 0.0002 0.00071 0.04134 0.04022 0.0006 0.28644 0.04124 0.00052 0.28148 0.28607 0.00035 0.0003 0.00945 0.27436 0.00083 0.29962 0.00421 0.01366 0.28516 0.27897 0.01205 0.31376 0.01027 262 0.0071 255.8 273.9 0.00616 0.01853 254.7 278.1 67.57 29.67 96.74 263.3 254.7 264.3 90.45 69.54 259.3 255.3 277.4 50.82 44.94 258.2 118.6 279.6 2.88 1.25 261.2 4.4 254.2 260.5 3.73 3.22 255.8 251.8 2.18 255.5 1.86 5.12 246.2 266.1 7.46 3.33 254.7 10.78 249.8 277.1 9.6 8.02 1.1 -1.3 0.2 5.61 4.89 14.33 -1.4 -0.6 0.8 0.2 1.5 le FL3 - le 81LB06 101112 0.0515413 0.0512514 0.0517815 0.0509617 0.00172 0.0512318 0.00087 0.0514420 0.00294 0.0520921 0.00181 0.12377 0.0412724 0.05128 0.0017 0.0402125 0.00271 0.0516 0.0432826 0.00462 0.05149 0.0382527 0.00052 0.05121 0.003128 0.00026 0.03995 0.00147 0.05136 0.0417129 0.0009 0.05154 0.00504 0.0457830 0.00144 0.0005 0.05146 0.2721431 0.36204 0.00206 0.05129 0.27442 0.0402333 0.0005 0.00082 0.00451 0.051434 0.30256 0.00152 0.04295 0.00199 0.05136 0.00987 0.0421635 0.26909 0.00353 0.11563 0.0057436 0.0052 0.0394 0.00042 0.00203 0.30327 0.05141 0.29932 0.0400137 0.01877 0.05154 0.25228 0.00145 0.00214 0.0421938 0.00044 0.01034 0.00096 0.12115 0.0435439 265.1 6.16136 0.00153 0.05136 0.27482 0.00059 0.01107 0.0393740 0.0173 0.00122 0.00145 0.05169 0.02373 25241 0.30845 0.00061 0.04091 0.00292 275.8 0.29316 0.0515 0.0409342 0.00111 0.40106 238.9 0.05124 0.0012 0.00856 0.33061 74.9243 0.28044 0.00058 0.00139 0.05195 0.28914 0.04051 251.144 0.03285 0.00127 260.5 0.05131 0.27234 0.00063 0.00906 0.0413345 289.5 38.47 125.22 0.00029 0.05131 0.31334 0.0010746 2011.3 260.7 0.00258 0.01225 0.34437 79.83 0.00098 0.05148 0.26505 0.02744 0.0411749 253.6 0.00043 0.00466 0.05162 74.53 0.01144 0.0424451 0.28971 116.47 273.1 0.00087 0.00303 254.1 267.8 0.05145 0.27547 190.1752 262.8 0.0237 0.04176 0.05165 5.17969 0.0013 0.00203 0.01133 0.04029 43.7353 3.19 242 0.00042 0.00118 250.3 0.05134 0.29365 0.0445754 256.9 64.4 252.5 263.4 0.01319 0.00113 0.0004 0.05143 0.28316 288.6 0.00578 0.0412855 264.8 5.56 208.92 1.59 0.00423 0.05133 0.00033 0.15725 63.1356 1991.9 5.90195 0.00029 0.04054 0.00163 261.4 0.05152 0.28361 0.00918 0.04181 244.457 253.9 3.11 0.00147 89.91 0.00236 0.05138 190.06 254.3 0.01743 0.04186 3.08 5.09 0.28768 271.1 0.00211 258.8 9.39 0.0009 0.05145 0.04092 86.22 268.4 257.2 246.2 0.28961 266.2 27.16 0.13742 0.00123 0.28867 1889.7 0.00039 0.0516 0.00848 0.04127 150.32 0.00035 0.00211 0.30816 7.88 249.1 252.9 0.03985 88.54 259.4 0.00034 0.00787 0.00141 242 2.62 265.9 8.93 0.0398 269 266.4 0.00108 0.00678 92.92 0.2823 0.00119 265 228.4 14.64 0.00627 0.04088 42.58 4.14 2.71 1999 1973.3 274.7 0.00049 0.2876 23.59 0.28889 0.00166 0.03016 0.04103 257.1 248.9 0.00064 3.64 7.58 1.7 0.29023 0.04076 63.38 246.5 271.8 13.52 8.28 0.30192 258.5 0.00062 0.01805 0.04094 3.75 19.24 258.6 273 0.00037 125.18 8.62 263.3 1 1841.3 -0.8 0.30251 0.00812 56.86 17.57 251.8 6.84 0.0074 0.00062 261 0.04174 0.26292 0.00716 61.06 283.3 3.58 0.00042 257.9 256 251 0.02672 -1.1 0.30548 6.81 0.00036 -1.3 55.36 3.91 0.28902 0.3 12.48 261 244.6 254.8 1907.7 1.79 0.0106 -0.6 25.49 46.89 1.1 0.29374 0.01298 43.63 276.8 254.9 0.0005 260.1 7.11 262.4 0.29236 192.4 238.7 268.8 21.61 0.01396 0.27968 2.64 0.00776 9.72 -0.3 261.2 268 1849.3 258.3 9.76 130.43 -1.3 9.13 263.7 247.1 5.41 0.0132 254.6 18.32 0.28634 57.29 0.00896 270 256.1 2.58 -1.3 281.1 51.56 1.6 9.09 0.00728 49.59 260.1 261.4 25.84 178.21 260.8 0.5 10.38 255.9 2.45 1961.5 -0.6 2.02 0.01016 253.2 -5.2 4.6 1.79 256.1 264.1 102.08 253.5 70.83 9.09 264 264.4 258 258.5 2 261.2 2.9 91.66 7.21 5.59 20.22 0.1 53.95 256.7 258.3 13.79 251.9 257.5 -0.6 267.8 2.39 91.13 260.7 6.71 272.8 2.11 2.17 61.87 251.6 6.7 52.24 3.8 258.3 1.3 252.5 1.5 6.2 5.34 3.99 4.94 259.2 72.12 256.7 3.01 -1.2 23.41 258.7 257.5 257.7 258.6 3.81 267.9 14.29 2.28 -0.2 263.6 1.4 -1.1 3.87 237 6.4 268.4 0.8 2.59 5.63 5.83 2.22 270.7 -2.4 20.84 257.8 3.12 261.5 10.44 -0.5 8.26 260.4 -0.6 1.7 250.4 10.86 1.1 6.11 255.7 10.36 1.7 3.5 7.04 3.3 5.77 -1 1.9 8.02 0.2 1 1.6 p

Sam

292

4 4 4 2. 3.8 3.85 2.12 5.02 4.43 3.36 4.06 2.07 4.03 2.74 7.68 5.51 5 6 5 6 4 6 6 5 5 4 4 6 e± 4 261 3. 273 3.98 26827 2.48 Ag 250.2254.7256.7 2.79 263.7252.8 3.34 265. 3.29 253. 4.42 2.8 268.3265.9266.8277. 2.21 273.7 7.59 292.3 6.37 252.7 4.72 266. 3.78 250. 2.54 268.3258. 3. 276.3253.1265. 3.29 270.1 4.12 258. 252.1270.3 9.35 9.35 6.36 262. 253. 254. 255. 1488.2 35.47 ) % ( es Ag ) e 2/2 g Pa ( Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Disc Ratios le FL3 -le 81LB06 596061 0.051364 0.1300265 0.0513366 0.0513667 0.05154 0.0015668 0.0045 0.0511969 0.00191 0.05147 0.0018 0.0513271 0.03957 0.00239 0.0515172 0.29101 0.00156 0.0402975 0.0011 0.0516577 0.04062 0.00287 0.05163 0.00045 0.0417578 0.0019 0.05147 0.0061979 0.00054 0.04 0.0520381 0.04207 0.00115 0.05162 0.00053 0.27237 0.040183 0.00071 0.00415 0.05217 4.6383884 0.04131 0.00345 0.27509 0.0930185 0.00169 0.00045 0.00034 0.04249 0.0514 0.27128 0.00912 0.00248 0.27972 0.05164 0.00081 0.0421187 0.34674 0.00187 0.05131 0.01117 0.00055 0.04225 0.00176 0.04397 0.27882 0.2855189 0.01043 0.00036 0.01411 0.04337 0.00143 0.0516 0.28798 0.00123 254.3 0.00224 0.04638 0.28348 2098.2 0.00103 0.00134 0.05137 255.9 0.2398793 0.00941 0.00701 0.00054 0.2928394 0.01756 0.00076 257.1 0.03998 0.29303 264.9 0.04222 0.0017895 68.32 0.01149 0.00061 0.30176 59.52 0.05195 0.0396396 0.00235 0.00208 0.31875 83.12 0.05122 0.0075197 249.2 261.9 0.31877 0.05178 0.02555 0.0004198 78.65 0.00066 0.04251 255.1 102.76 0.31672 250.2 0.02212 1646.6 0.051399 0.00039 263.7 0.00167 3.19817 0.05164 0.01172 0.0409 254.7 0.00235 0.05141 0.01698 269.9 0.28547 68.54 48.44 0.00206 0.30142 256.7 263.7 0.05128 0.01278 0.00055 268.9 123.65 30.89 2.79 0.28086 0.11607 261.9 0.00427 0.0438 82.52 0.00523 0.00061 3.34 286.8 0.04005 0.00901 0.00312 252.8 265.6 50.31 0.01455 268.5 0.04326 0.29703 253.5 3.29 4.42 0.00542 174.17 1756.2 0.00835 292.9 244.6 0.04204 147.09 1488.2 0.00053 261 0.26939 0.0428 0.00066 246.8 72.48 0.04093 268.3 0.01154 0.00064 2.12 258.7 2.8 106.45 265.9 5.02 62.44 0.03988 269.3 243.7 250.4 266.8 79.81 0.00124 254.9 7.28 0.28132 0.01195 35.47 0.27212 0.00151 277.4 3.4 0.00089 0.31274 273.7 8.9 2.21 62.68 24.4 0.00151 7.59 267.5 255 249.7 96.24 11.19 8.33 0.28369 257 292.3 6.37 0.0102 58.78 1386 0.01365 1.6 0.27751 257.6 0.28658 0.01397 3.36 4.72 253.4 0.24215 252.7 260.8 0.5 266.6 77.16 260.9 0.02544 7.47 0.5 5.54 0.2 3.78 13.85 250.6 267.8 0.03004 12.22 0.01884 250.9 2098.2 90.24 283 280.9 0.02707 275.7 9.09 2.54 268.3 281 5.9 20.07 4.06 -1.5 -1.4 254.2 0.6 279.4 1456.7 17.25 59.52 2.4 269.5 102.16 258.4 259.1 9.02 253.4 88.6 72 1 1.1 13.07 3.4 255 267.5 0.6 180.54 28.07 -1.9 9.86 253.1 216.28 251.3 133.93 3.8 3.3 225.75 276.3 273 265.4 11.35 -2 7.12 264.1 7.6 270.1 0.2 4.12 258.6 6.62 252.1 242.2 3.29 7.68 3.98 1 9.03 2.4 9.35 244.4 5.51 1.7 9.35 9.56 251.7 253.6 276.3 -0.3 248.7 10.89 255.9 -0.3 220.2 20.13 8.08 10.81 -0.9 23.88 14.87 22.13 -4.5 2.4 1 -0.2 0.2 0.5 9092 0.05143 0.05181 0.00128 0.00139 0.04245 0.04342 0.0004 0.00044 0.29841 0.2988 0.00861 0.00922 260.3 276.8 56.22 60.18 268 274 2.48 2.74 265.2 265.5 6.74 7.21 -3 1 58 0.05136 0.00205 0.04157 0.00062 0.28277 0.01238 257.1 89.27 262.5 3.85 252.8 9.8 -2.1 70 0.05124 0.00247 0.040138688 0.00071 0.05135 0.05125 0.25743 0.00111 0.00224 0.0134 0.04027 0.04042 0.00033 251.7 0.00065 0.28268 107.15 0.26333 0.00716 253.6 0.01255 4.43 256.6 252.1 232.6 48.91 97.27 254.5 10.82 255.5 -0.8 2.07 4.03 252.8 237.3 5.67 10.09 0.8 -1.4 p 100 0.05179 0.0038 0.04282 0.00103 0.27428 0.02132 276.1 159.53 270.3 6.36 246.1 16.99 2.1

Sam

293

e± 385 21.99 263 4.2 244 12.36 263 3.74 280263 5.97 263 3.13 2.11 Ag 293.5350.9299.6272.8 4.3 23.36 270.3 13.07 311.6 9.11 292.6 7.87 277.8 7.79 276.7289.8 8.03 267.9 6.75 279.1 6.51 12.95 321.2 11.91 264.1271.9 5.53 13.36 259.4 10.25 268.5 4.26 277.1 3.95 274.9260.8 3.02 9.32 258.1 13.8 4.59 253.2267.5 8.13 277.5267.6 3.69 16.72 268.1268.4 3.11 265.9 2.15 269.3 3.47 288.1 2.31 270.1 2.32 265.4 4.87 263.1 7.5 284.1 3.66 265.6 4.3 4.95 264.2 6.47 268.2 2.56 258.6265.4 6.59 4.04 271.3 4.74 2.11 262.6 3.62 2.57 1308.8 77.89 2391.7 35.1 ) % ( es Ag ) e 1/2 g Pa ( Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Disc Ratios 123 0.052194 0.053715 0.052356 0.051527 0.00208 0.051618 0.00995 0.052829 0.00659 0.05434 0.00479 0.05245 0.04658 0.00418 0.05178 0.05594 0.00362 0.04757 0.01047 0.04322 0.00404 0.0007 0.04282 0.00383 0.00358 0.04952 0.00212 0.06155 0.00147 0.04643 0.00127 0.3413 0.04404 0.4103 0.00127 0.31805 0.00362 0.31997 0.0013 0.31728 0.01532 0.00109 0.08463 0.35324 0.0432 0.47419 0.03203 0.33365 0.0279 0.30957 0.02678 293.7 358.7 0.1038 300.7 264 0.02809 0.02325 268 321.1 88.46 371.75 384.9 264.26 305.3 199.68 275.6 147.94 175.42 293.5 350.9 299.6 383.18 165.71 272.8 150.68 311.6 23.36 270.3 4.3 13.07 385 292.6 9.11 277.8 7.79 349.1 7.87 298.2 280.4 21.99 8.03 281.9 6.75 60.93 307.2 279.8 33.28 11.6 394.1 24.64 292.3 273.8 2.2 21.51 20.1 0.4 0.1 71.49 21.38 -3.4 18.03 -0.9 3 0 4.3 -0.8 101112 0.0519413 0.0519414 0.0516116 0.0518117 0.00331 0.0528618 0.0074 0.051519 0.00667 0.0516920 0.00285 0.05138 0.0438621 0.00651 0.0514222 0.04598 0.05166 0.00578 0.0424423 0.00219 0.05177 0.0442524 0.00105 0.00212 0.05198 0.0510925 0.00225 0.0513626 0.0021 0.00193 0.00151 0.04181 0.08471 0.0430827 0.00486 0.0009 0.05134 0.30738 0.0410528 0.00218 0.00737 0.05108 0.0416429 0.00242 0.05135 0.30189 0.29645 0.00166 0.0425330 0.00069 0.00348 0.05164 0.0439231 0.02148 0.00064 0.00483 0.3137 0.05178 0.37043 0.0435632 0.00068 0.00733 0.05158 0.0412833 0.04571 0.04103 0.28967 0.00049 0.00197 0.05161 0.29977 0.2410434 0.00151 0.00895 0.05165 0.29133 0.0408635 0.01915 0.05044 282.9 0.00223 0.00158 0.05151 0.27687 0.0385736 0.00074 0.00113 0.05163 0.03482 0.30419 0.0400637 0.01448 268.2 0.00449 0.00189 0.05198 283 0.29907 0.0423738 0.01375 0.00131 0.00124 0.05163 0.33289 0.0439839 0.01371 276.9 322.9 0.00199 0.00122 139.52 0.28998 0.0516 0.0423840 0.01093 0.00258 0.0006 0.05154 263.4 0.0424741 0.03073 2.783 271.9 271.41 0.05198 0.0027 0.0037 0.31817 0.0425242 296.84 0.05255 0.00193 0.0005 0.05155 258 0.2646743 0.0421 0.01566 276.7 259.6 0.00035 121.37 0.05156 257.9 0.00235 0.0426644 270.2 0.29466 0.00056 0.00269 0.05162 238.4545 0.18984 0.03314 267.9 275.2 0.33031 0.00037 0.00328 0.04571 0.05161 94.07 289.8 0.0427946 0.04067 0.31385 284.4 0.00137 0.05144 0.29033 0.0003747 6.51 279.1 257.1 0.00079 0.00203 0.04203 0.05159 92.1 0.01346 97.59 321.2 0.29929 0.0416648 0.00357 0.05191 0.06344 65.73 264.1 0.30792 0.00122 0.0450649 11.91 1308.8 256.2 0.00059 0.00215 201.04 12.95 0.05163 0.01047 271.9 0.0420650 0.00689 244.5 0.30061 0.00273 295.47 0.05147 0.00069 0.0416551 0.3074 5.53 0.01182 272.1 13.36 104.66 0.05143 0.0008 0.0011 256.5 259.4 0.04183 263 0.00807 0.32252 0.00105 0.00309 10.25 0.05147 268.5 269.5 263.6 0.30846 0.04248 77.89 277.1 0.00041 0.00188 267.9 202.34 0.15408 4.26 275.9 0.04093 0.0078 274.9 266.7 0.29563 0.00166 300.57 0.0006 0.0167 16.68 260.8 268.2 0.29399 0.00106 0.00137 0.04204 277 320 0.02502 3.95 0.31244 0.0444 0.01259 85.94 258.3 0.00065 32.14 4.2 3.02 270 0.0011 0.30001 0.04298 1392.1 355.16 9.32 35.65 258.1 0.00077 0.00322 0.01454 266.2 0.04164 13.8 68.51 263.9 0.31136 244 0.01662 49.29 0.29641 0.00034 0.04158 2.2 4.59 0.02143 269.1 37.37 81.85 284.5 0.28631 0.00097 14.8 259.6 27.41 0.00875 253.2 0.00059 0.04164 0.1 23.3 269 267.5 269.7 0.28078 248.2 0.44716 -2.5 8.13 265.7 0.00051 54.07 11.31 0.01349 267.8 0.02222 277.5 291.8 0.30401 0.00042 12.36 53.41 267.6 265.2 0.01298 258.5 284.3 0.30488 110.76 10.82 268.1 0.5 0.30796 0.00034 -0.3 154.63 -0.8 3.69 265.3 0.00633 16.72 0.0161 8.51 0.29864 1351 10.9 24.02 280.5 83.53 268.4 0.00737 266.1 0.29513 0 100.96 40.03 3.11 268.6 238.4 2.15 0.01978 265.9 115.25 12.32 0.01252 269.3 0.29155 268.3 138.06 -0.6 3.47 288.1 9.75295 0.01076 262.2 289.8 50.95 59.64 260.7 -0.7 25.53 0.6 -1.3 0.00889 2.31 270.1 265.4 267.1 3.4 87.78 277.2 32.65 151.08 2.32 0.00719 263.1 258.8 281.3 -1.5 4.87 0.59075 284.1 269.1 92.68 265.8 7.5 10.56 48.43 261.9 -7.1 265.6 -0.8 117.41 260.1 3.66 272.6 4.3 48.11 8.09 264.2 0.2 263 4.95 266.9 5.43 261.7 130.73 2391.7 6.47 272.2 81.45 268.2 9.24 1.3 0.8 283.8 2.56 258.6 72.55 6.26 60.17 273 6.59 265.4 -0.6 263 6.09 261.7 3.74 -0.3 12.97 280 48.42 276.1 35.1 4.04 271.3 19.21 0 4.74 266.4 263 262.6 0.6 2.11 9.77 263.6 13.04 11.39 -0.8 -0.1 275.2 16.58 5.97 2382.6 263 3.62 255.7 -1.3 251.3 6.84 3.13 2.57 17.41 269.5 -0.4 0.8 10.44 0.9 28.21 0.1 270.2 10.24 272.6 2.11 12.77 -0.1 265.3 262.6 1.7 5.74 2411.7 1.2 15.39 9.72 0 259.8 0.8 8.41 6.97 55.78 0.6 0.5 -0.8 5.66 -0.4 0.5 -1 -0.5 le GL4 - 85LB06 p

Sam

294

4 e± 257 3.73 Ag 252.9251.7268.7264.4 2.06 3.28 265.8 6.08 253.1 2.33 252.8255.7 3.08 239.8 6.22 3.48 1.93 259.7257.2261.7254.6 6.09 236.4 5.53 237.8 4.31 252.4 8.92 253.8 3.32 240.9 1.81 238.1 5.65 240.3 4.82 271.8 2.23 260.3 2.03 2.91 11.62 12.82 ) % ( es Ag ) e 2/2 g Pa ( Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Disc Ratios 525354 0.0512755 0.0512956 0.0516157 0.0515358 0.00115 0.0514159 0.00186 0.051760 0.00334 0.0515761 0.00125 0.05139 0.00207 0.05137 0.04 0.03982 0.05098 0.00162 0.04256 0.00352 0.04186 0.00194 0.04067 0.00053 0.00102 0.00033 0.00098 0.00233 0.0421 0.04005 0.00038 0.03999 0.0006 0.27868 0.04046 0.28189 0.25847 0.0379 0.0005 0.001 0.28647 0.00056 0.01116 0.28891 0.00031 0.00729 0.018 0.00064 0.00797 0.28425 0.27671 0.27956 0.28134 0.0129 253.7 252.9 0.25973 0.01004 0.02057 0.01175 268.3 264.4 0.00677 259.3 0.01309 81.1 50.9 272.1 266.6 258.5 141.97 54.63 257.4 89.83 240 251.7 252.9 70.04 268.7 149.37 84.27 264.4 44.93 257 3.28 2.06 102.1 6.08 265.8 253.1 2.33 252.8 255.7 249.6 3.73 252.2 239.8 3.08 6.22 233.4 3.48 255.8 1.93 8.86 257.7 5.78 14.52 4 254 248 250.3 6.29 251.7 10.16 0.8 -0.2 0 16.36 9.32 7.94 234.4 0 5.37 0.9 5.2 10.55 2.2 2.4 0.7 0.1 62 0.05137 0.00338 0.04111 0.00098 0.29484 0.02133 257.4 144.42 259.7 6.09 262.4 16.73 -0.9 636465 0.0513866 0.0514867 0.0512368 0.0508969 0.00306 0.0509270 0.00246 0.0512871 0.00517 0.0512772 0.00196 0.0509773 0.0407 0.00101 0.05089 0.0414474 0.00329 0.05097 0.04029 0.00267 0.05164 0.03734 0.00126 0.05144 0.00089 0.03758 0.00115 0.0007 0.03994 0.00144 0.0017 0.04016 0.00053 0.00618 0.03808 0.27597 0.00029 0.00708 0.03763 0.29697 0.00091 0.27856 0.00078 0.03797 0.04306 0.2563 0.00036 0.01808 0.26535 0.04121 0.00033 0.01582 0.27669 0.03053 0.00047 0.27923 0.00188 0.01107 0.2651 0.00658 0.00207 257.7 0.25969 0.01946 262.4 0.01619 0.26739 251.4 0.31223 0.31296 0.0079 236 0.00722 237.1 131.31 253.4 0.01029 106.03 0.04146 216.03 253 0.04818 239.5 235.9 45.03 257.2 86.57 141.14 261.7 239.5 254.6 269.7 115.22 260.5 5.53 51.16 237.8 55.9 236.4 252.4 4.31 8.92 75.05 253.39 253.8 288.65 1.81 238.1 247.5 3.32 240.9 5.65 264 240.3 271.8 249.5 4.82 260.3 14.39 2.03 231.7 2.23 239 248 11.62 24.24 2.91 12.38 12.82 250 0.2 234.4 8.94 238.8 5.28 15.48 275.9 -1.3 240.6 0.3 276.5 12.85 5.82 -0.2 6.34 32.08 -0.3 0.4 8.25 37.26 -0.3 -0.9 -0.6 -0.8 -0.3 0.1 le GL4 -le 85LB06 p

Sam

295 4 4 4 4 e± 254 1.77 265 2.36 251257252 2.3 3.05 2.49 256252253 5.19 2.37 3.81 Ag 253.8255.9262.8257.1275.1 1.38 2.61 3.03 2.11 2.0 252.6254.6254.2265.3269.7251.2 1.92 251.7 2.3 265.1 1.77 3.36 252.9 3.3 285.5 3.69 256.7 3.39 259.5 2.5 290.9 1.49 262.6 4.26 2.51 2.62 2.37 4.3 273.5251.6255.3250.4262.3 3.61 253.9 4.08 2.72 2.08 252.3 3.9 255.6272.9 2.95 250.5250.8258.4 2.92 1.85 256.8 3.52 257.4 3.72 3.5 262.8 6.9 257.1 6.87 255.5 4.11 4.61 2.11 2.32 ) % ( es Ag ) e 1/2 g Pa ( Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Disc. Ratios le MK - MK 45LB06 le 1 0.0513 0.00077 0.04016 0.00022 0.27954 0.0046 254.1 34.32 253.8 1.38 250.3 3.65 0.1 234 0.051285 0.05152 0.05136 0.05179 0.00147 0.00164 0.00116 0.04049 0.0011 0.04161 0.04068 0.00042 0.04359 0.00049 0.00034 0.00033 0.29344 0.27399 0.28458 0.0091 0.30705 0.00935 0.00696 0.00711 253.6 263.9 257 276.3 64.63 71.42 51.11 47.86 255.9 262.8 257.1 275.1 2.61 3.03 2.11 2.04 261.3 245.9 254.3 271.9 7.14 7.45 5.5 5.53 -0.9 0.4 0.4 0 68 0.05124 0.05138 0.00109 0.00101 0.03996 0.04023 0.00031 0.00029 0.27472 0.28183 0.0063 0.00598 251.6 257.8 48.18 44.46 252.6 254.2 1.92 1.77 246.5 252.1 5.02 4.74 -0.4 1.4 79 0.0513 0.0515 0.00132 0.0018 0.04028 0.04201 0.00038 0.00054 0.29006 0.29116 0.00804 0.01101 254.3 263.1 57.89 78.42 254.6 265.3 2.34 3.36 258.6 259.5 6.33 8.66 -0.1 -0.9 p 101112 0.0516415 0.0512216 0.0515417 0.05154 0.0017418 0.05133 0.0020819 0.05125 0.0019 0.0427320 0.00134 0.03974 0.05221 0.05131 0.0009922 0.03983 0.05132 0.00082 0.00053 0.0419923 0.05222 0.04018 0.0006 0.00216 0.05151 0.00138 0.04001 0.00055 0.05141 0.00144 0.0004 0.30614 0.00115 0.04528 0.00029 0.04062 0.00125 0.26132 0.00024 0.04107 0.00242 0.28831 0.04616 0.01124 0.00069 0.27656 0.00041 0.04196 0.28353 0.00042 0.04158 0.0113 0.27649 0.00038 0.01148 0.00038 0.00775 269.7 0.32268 0.28719 0.00597 0.0007 0.28608 0.00485 250.6 0.31099 264.9 0.28619 0.00835 264.8 0.0147 75.54 255.6 0.00868 0.29319 252.3 0.00753 90.66 82.38 0.00756 254.6 269.7 58.51 285.5 0.01485 43.88 255.4 36.43 294.8 251.2 251.7 263.7 265.1 60.53 92.31 3.3 259.3 254 63.21 252.9 49.37 3.69 3.39 54.79 256.7 285.5 2.5 104.46 259.5 271.2 1.77 1.49 290.9 235.7 257.2 265 2.51 262.6 4.26 247.9 8.74 2.62 253.5 247.9 2.37 9.1 9.04 2.36 256.3 4.34 6.16 284 0 255.5 4.72 3.86 274.9 -0.2 5.1 6.59 255.6 -0.1 261.1 11.28 6.85 0.6 -0.2 5.83 -0.8 5.97 11.66 -1.6 0 1.4 -1.3 -0.5 25 0.05165 0.00186 0.04334 0.0005843 0.31183 0.05136 0.01228 0.00409 270 0.0409 0.00111 80.55 0.27617 273.5 0.02335 3.61 257 275.6 173.2 9.51 258.4 -1.3 6.9 247.6 18.58 -0.6 272829 0.0511330 0.0513131 0.0513132 0.05175 0.0023133 0.05132 0.0015234 0.0012 0.051435 0.0398 0.05136 0.002136 0.0404 0.05134 0.001340 0.03961 0.05139 0.0016541 0.00066 0.04152 0.05135 0.0016642 0.00044 0.03971 0.05166 0.00143 0.00034 0.04017 0.05117 0.00163 0.0406744 0.00063 0.05122 0.00101 0.27814 0.0398645 0.00037 0.00186 0.28318 0.0399246 0.00048 0.05119 0.00212 0.28497 0.00049 0.0404547 0.05123 0.00205 0.26589 0.04325 0.0134948 0.0004 0.05137 0.00047 0.03963 0.00905 0.276149 0.05127 0.00292 0.27984 0.03967 0.0072650 0.0003 0.28881 0.0515 0.00057 0.01156 0.00451 0.05129 246.8 0.00231 0.28503 0.04052 0.0006 0.28038 0.00758 0.05138 254.6 0.00132 0.00057 0.00973 0.01017 0.05136 254.6 0.28604 0.04064 0.04073 0.00252 0.28997 274.5 0.00218 0.00084 0.03986 0.00861 100.72 0.00961 0.00117 0.29265 255.4 0.28052 0.04161 66.52 0.00128 0.00111 0.00066 0.04003 0.00622 259 53.02 0.01131 257 0.00038 0.04068 251.6 0.27087 90.31 256.1 0.04043 0.01312 258.2 0.00075 0.01209 255.3 0.00061 57.19 0.29164 0.30169 256.5 250.4 0.00034 270.2 72.24 0.01654 0.2787 262.3 0.00037 72.8 4.08 62.74 248.5 0.27774 71.06 250.9 0.26712 0.01475 0.0244 251 2.72 0.29014 44.66 253.9 2.08 0.00787 80.41 249.2 0.28904 257 3.9 249.2 0.0146 252 252.3 0.01216 92.49 89.51 257.3 0.00733 253.2 255.6 251 2.3 272.9 2.95 0.00796 252.9 254.6 126.27 10.72 250.5 263.2 239.4 3.05 2.92 250.8 2.49 254 257.9 7.16 100 1.85 170.04 5.74 3.52 256 247.6 250.5 58.15 257 -2 9.27 108.45 3.72 257.6 3.54 254.6 -0.3 251 94.76 51.49 256.8 257.4 1.7 255.4 6.03 7.72 258.5 252 5.19 56.29 262.8 4.5 8.01 260.6 6.8 251.1 257.1 7.62 253 6.87 4.11 4.91 1.8 2 8.9 255.5 243.4 2.37 4.61 10.31 0 9.59 1.6 2.3 2.11 0.4 3.81 259.8 267.7 13.21 -1 2.32 -0.8 249.6 248.9 0 19.18 258.7 11.5 240.4 -2.8 257.8 6.25 11.6 -2.4 5.77 9.74 0 0.4 6.27 0.2 0.3 0.4 0.6

Sam

296 e± 253 4.02 251281 5.65 5.28 Ag 258.5259.2250.4257.4251.6252.2 4.19 249.2 2.94 263.6 2.92 261.2 8.14 256.5 3.12 254.4 4.25 257.2 5.69 267.9 2.16 2.38 268.2 2.91 237.8 2.14 254.7 2.53 261.2 3.79 267.1259.7 3.09 265.1 1.65 1.56 251.1 2.48 5.22 251.2 2.92 259.5 5.32 10.81 3.15 3.7 1069.5 3.91 ) % ( es Ag ) e 2/2 g Pa ( Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Disc. Ratios le MK - MK le 45LB06 p 525455 0.0759156 0.0512257 0.0513558 0.05139 0.0006359 0.05122 0.0022760 0.00158 0.0512 0.1804761 0.05127 0.00164 0.0409162 0.05124 0.00459 0.0410363 0.05165 0.00072 0.0019164 0.0396 0.05158 0.00248 0.00068 0.0407365 0.05133 0.00338 0.0004866 0.05137 0.00116 0.039867 0.0399 0.00047 1.94132 0.05133 0.00134 0.00131 0.0394268 0.28529 0.05169 0.00163 0.0417469 0.28118 0.05127 0.00118 0.0413670 0.0005 0.00069 0.02621 0.05144 0.00137 0.27775 0.00092 0.0405971 0.28857 0.01372 0.05091 0.00197 0.00035 0.0402672 0.05124 0.00222 0.0095 0.0003873 0.0407 0.05159 0.0016 0.28176 0.28689 1092.8 0.00047 0.04244 0.0096574 0.28312 0.02779 0.05183 0.00094 0.00035 0.0400375 250.9 0.28525 0.05146 0.0008276 0.00041 0.04248 0.28073 0.05154 0.00132 256.4 0.00061 0.01132 0.03758 0.0149877 0.29845 0.05137 16.45 0.00278 258.2 0.00065 0.0402978 250.6 0.02 0.29039 0.00715 0.05142 0.00159 0.04135 98.8379 0.05188 0.00293 0.0005 0.29723 0.00027 0.008 0.0423 0.30117 69.41 0.05126 0.00331 249.8 253.2 1069.5 0.0104 0.00025 0.04112 0.26995 0.00749 71.49 0.05151 0.00758 193.95 0.04198 269.7 0.0004 258.5 0.00299 251.5 0.03971 0.00886 0.29448 0.00084 0.01264 0.00176 0.2618 0.00047 259.2 0.03972 266.9 107.56 3.91 0.28539 83.53 0.00206 255.7 0.0127 0.00086 250.4 0.04456 257.4 257.4 0.29374 0.00091 0.03974 50.58 145.06 4.19 0.01014 255.7 0.29622 0.00174 0.04108 0.00561 271.6 0.29592 252.2 0.00547 2.94 251.6 0.00086 58.34 1095.5 0.32859 71.16 252.8 2.92 8.14 0.00051 0.00852 51.91 249.2 0.30523 263.6 0.01733 260.4 0.0006 254.8 0.30792 60.18 0.01026 236.8 84.92 251.6 4.25 9.05 261.2 0.32697 0.02055 251.6 3.12 256.5 0.28172 254.4 267.1 248.9 96.8 257.4 0.0214 5.69 2.16 0.04805 10.84 0.28531 257.2 69.71 278 261.4 267.9 0.02073 42.16 2.3 265.2 256.1 2.38 36.3 7.53 0.01081 252.1 2.91 7.67 2.14 21.9 57.63 -3.1 257.3 253 259.5 253.1 254.8 0.0126 268.2 2.53 237.8 118.21 69.44 280.2 3.79 11.82 -1.1 125.33 254.7 252.7 251.2 8.97 -2.8 265.2 3.1 261.2 258.9 141.77 15.83 307.38 5.65 4.02 263.8 267.1 3.09 259.7 264.2 0.4 126.74 1.65 265.1 267.3 -0.7 6.35 1.56 77.07 8.13 0.9 2.48 5.89 251 251.1 2.3 242.7 89.11 5.22 262.1 6.93 2.92 281 236.1 9.86 5.32 2.2 251.2 -0.3 254.9 1.2 10.81 261.5 5.65 10.15 259.5 -0.6 7.95 263.4 263.2 1.4 4.52 5.28 288.5 4.32 3.15 -0.1 6.69 272.6 270.5 -3.1 13.57 3.7 -0.4 8.04 15.71 287.3 -1.3 252 2.3 37.3 16.65 4 0.7 254.9 0 15.86 3.3 2.5 8.56 -0.3 9.95 0.6 1.7

Sam

297 e± 251 1.4 528 6.39 Ag 2127 13.09 1038 17.24 1186 67.02 411.3615.1603.8 2.73 236.3 2.87 588.7465.6 2.05 382.5 2.4 613.6 6.93 4.19 610.4 2.69 2.45 3.26 458.7541.3626.8544.8337.9 2.53 3.71 342.1 2.68 2.99 3.26 1.22 332.9538.7255.6 3.07 386.7 3.81 930.1 1.1 361.7 2.15 411.3 11.66 554.7669.9 4.05 416.2 2.7 427.1 4.54 5.25 1.85 648.6 1.35 365.2415.6 4.32 607.3 3.39 3.98 553.9 3.4 454.1288.3365.4 5.98 445.5 2.39 629.9 1.22 449.1 2.14 416.1 5.27 12.68 5.5 2.44 2702.11079.9 15.81 2694.8 42.96 1056.6 15.19 2002.9 16.66 18.02 1142.31156.9 21.78 30.4 1813.81002.9 10.98 7.89 1395.31023.31769.2 20.64 1250.1 34.21 1472.5 16.98 1441.1 26.04 1625.2 18.25 1024.21318.6 12.03 15.15 1591.6 18.69 15.78 21.51 1132.1 25.44 1050.11485.8 22.51 26.74 ) % ( es Ag Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Disc. Ratios le SA1 - SA1 02LB07 le 123 0.056164 0.058365 0.060526 0.05831 0.00081 0.053298 0.00107 0.07432 0.00066 0.00084 0.07375 0.0929 0.00139 0.0876 0.00084 0.10211 0.08818 0.00042 0.05382 0.00132 0.00063 0.1777 0.00046 0.0005 0.60296 0.00053 0.25529 0.69133 0.85374 0.00091 0.68861 0.0103 0.39389 0.0019 0.01514 0.01176 1.79822 0.01197 0.01137 458.4 3.47736 543.5 0.0302 622.1 540.7 0.09315 340.9 31.46 39.57 1050.1 23.47 31.91 1485.8 57.98 458.7 541.3 22.51 626.8 544.8 26.74 337.9 2.53 3.71 1054.4 2.68 2.99 1465.7 3.26 479.1 4.97 533.6 626.7 9.75 532 337.2 6.53 1044.8 9.09 6.44 1522.1 -0.1 8.28 10.96 7.2 0.4 -0.8 21.13 -0.4 0.9 -0.8 1.5 79 0.05335 0.05123 0.00051 0.0008 0.0545 0.0397 0.0002 0.00023 0.38894 0.28159 0.00406 0.00471 343.8 251.4 21.23 35.66 342.1 251 1.22 1.4 333.6 251.9 2.97 3.73 0.5 0.2 p 52 0.05495556 0.07543 0.05993 0.0009859 0.00164 0.05953 0.06589 0.0005363 0.1689865 0.00185 0.00045 0.06021 0.09819 0.06013 0.00167 0.09562 0.49065 0.00035 0.00063 1.75269 0.00086 0.00118 0.00992 0.81673 0.09985 0.05611 0.09931 0.78981 0.00865 0.00042 408.2 0.00056 1079.9 0.03092 0.83758 600.9 39.14 0.81731 42.96 0.01053 586.4 19.17 411.3 0.01405 1006.5 611.2 66.2 603.8 2.73 608.2 9.23 22.47 588.7 2.05 405.4 30.67 1028.2 613.6 6.93 606.2 6.76 610.4 20.7 2.45 591.1 -0.8 4.83 7.3 3.26 617.8 17.54 -0.5 606.5 -0.4 5.82 7.85 -0.4 -0.4 51 0.18543 0.00179 0.53277 0.00332 13.95214 0.34752 2702.1 15.81 2753.1 13.96 2746.5 23.6 -2.3 5354 0.06026 0.132175758 0.00073 0.0508260 0.00099 0.184626162 0.05645 0.10012 0.00144 0.05431 0.3649464 0.00171 0.07457 0.00049 0.00134 0.12318 0.03733 0.00133 0.00103 0.51119 0.00061 0.83675 0.07489 0.00039 6.54715 0.00126 0.06113 0.00288 0.17127 0.01236 0.0007 0.2505 0.08002 0.36062 0.00044 13.38469 0.00058 612.9 0.57121 0.00195 0.00744 0.29573 0.45748 2127 1.7698 0.01579 6.36428 0.00977 25.87 2694.8 232.7 13.09 0.01824 0.12452 469.5 615.1 383.9 15.19 64.18 2005.5 1056.6 2002.9 2.87 52.27 2661.7 42.06 6.27 236.3 16.66 18.02 12.29 617.3 465.6 2052.3 382.5 2.4 1019.1 2707.2 1985.1 4.19 6.84 10.77 2.69 3.2 227 9.25 20.88 6.6 -0.4 458.8 382.5 1034.4 6.04 1.5 2027.4 10.2 6.81 6.69 -1.6 17.17 0.9 0.4 3.8 1 1112 0.07839 0.053031517 0.00121 0.05134 0.00132 0.054420 0.1877 0.00061 0.05299 0.05373 0.00081 0.00139 0.04044 0.0005 0.0017427 0.06183 2.03688 0.00018 0.3691429 0.05539 0.0577230 0.00035 0.05049 0.27933 0.1081932 0.01011 0.06106 0.00066 0.00046 0.4804234 0.00352 0.05379 1156.9 0.0010136 330.1 0.41652 0.00104 0.05515 0.0685 0.0081338 0.00138 0.06003 0.3024739 30.4 256 0.01481 0.1058540 55.59 0.00144 0.00022 0.07337 387.4 0.08514 0.0583 0.00152 0.00086 0.05874 1108.943 0.00074 26.9 359.7 0.06659 0.52481 332.9 0.00068 33.06 4.32126 0.00056 0.0007 0.05202 0.09879 7.56 0.87762 0.00171 0.00066 0.00494 255.6 3.07 0.16801 71.2848 0.07506 0.43808 386.7 0.00058 0.22487 0.00059 0.01916 1127.9 0.08973 0.50591 0.05597 0.00069 427.6 361.7 1.1 319 0.0126 0.81965 1769.2 0.00086 2.15 0.04573 0.00101 16.88 0.01507 641.3 0.00192 1.654 4.05 18.2 250.1 0.01464 2.73258 7.49 0.0002 16.98 0.73296 398.4 4.5 362.3 418.2 0.07216 36.16 0.02129 353.6 0.03403 427.1 -0.9 2.79 604.6 0.32745 1703.5 0.0258 5.58 56.95 0.00091 648.6 56.51 1024.2 10.62 1318.6 0.00407 1.35 0.2 7.54 30.85 0.2 557.5 0.57028 365.2 4.32 415.6 -0.6 18.69 15.78 1697.4 428.4 286.1 607.3 0.02252 3.39 62.35 639.7 3.98 1001.1 14.32 1307.6 3.29 3.4 25.9 450.8 368.9 553.9 10.36 415.7 3.83 4.2 4.51 0.1 607.9 288.3 5.98 74.43 -1.2 8.9 10.16 991.1 1337.4 1.22 558.3 8.17 449.1 -0.8 0.6 8.15 9.26 -0.5 287.6 15.12 5.5 2.4 0.9 0.7 3.11 458.2 -0.8 14.56 0.4 10 0.077821314 0.0582516 0.00086 0.0738718 0.1108819 0.00112 0.19121 0.00064 0.069921 0.0700922 0.00067 0.0871623 0.001 0.05808 0.1732924 0.05506 0.0021325 0.00137 0.05857 0.3243326 0.00064 0.06189 0.00068 1.95914 0.00188 0.0551328 0.15521 0.00096 0.08859 0.16833 0.00101 0.71592 0.00128 0.00124 1.7879 0.03307 0.07334 0.0853531 0.00064 0.00209 0.06588 0.00143 0.00096 0.01656 0.08986 4.78333 0.08219 0.10951 0.00108 0.02269 0.00127 1142.3 0.06669 1.4759135 0.00045 1.67923 0.09225 0.2414 0.00077 0.05038 538.637 0.0009 0.69568 0.00111 0.09074 0.17206 0.00031 0.06468 21.78 1038 0.50325 0.04966 0.71471 0.00089 0.00117 0.10006 1813.8 0.02729 0.20553 41.97 0.9443241 0.00135 0.00058 0.4905 0.01003 1127.942 925.5 17.24 0.01895 930.9 0.24475 2.81096 0.00082 0.0559844 0.00135 0.02427 10.98 1.73771 538.7 0.09827 532.4 0.2448245 0.00653 5.4 414.446 1030.2 0.00117 0.04665 61.69 0.05395 551.2 0.28244 39.7447 2.37185 0.0008 0.04484 0.05584 1810.9 670.4 3.81 0.0007 0.00114 69.77 0.060549 417.3 1101.6 2.95579 3.75 0.07956 38.19 1395.350 930.1 0.00115 1002.9 0.0009 0.05198 47.06 0.07298 0.00184 1023.3 4.9 0.05511 0.27271 3.12333 548.3 42.18 0.04666 0.07742 11.35 0.00331 528 1041.1 25.74 3.86762 0.00276 11.66 411.3 7.89 20.64 0.05832 1250.1 554.7 0.07155 0.0004 0.00164 0.02834 1781.9 34.21 0.00088 669.9 1.4 9.8 0.10264 1472.5 0.05363 8.26 0.001 6.39 920.6 416.2 0.2027 1000.7 2.7 0.00035 1394 0.00088 4.54 26.04 0.55459 3.77211 0.06667 1023.5 1441.1 8.84 0.00217 5.25 18.25 0.8 0 1625.2 0.00344 536.2 0.20644 1.85 26.52 18.82 0.43389 0.53155 413.9 6.05 0.00911 0.07915 547.5 1205 7.44 0.0004 0.2 12.03 0.78739 675.1 1411.3 2.19226 -0.5 -8.4 0.00124 0.00799 15.15 16.34 405.2 0.01998 1358.5 6.77 1591.6 451.2 11.22 1022.6 0.51498 7.21 0.05231 1411.7 0.13115 12.68 6.08 2.14754 0.9 1603.6 368.6 4.45 12.43 445.7 -0.7 0.8 0.00935 16.63 21.51 1234.2 31.17 3.63 621.3 0.1 0.04241 1396.3 1186 5.8 0.1 0.3 37.16 71.79 1554.6 15.65 0 416.5 1438.5 454.1 113.81 11.98 1132.1 1606.9 67.02 365.4 445.5 8.3 4 6.98 2.39 34.93 629.9 4.6 25.44 11.19 1189.8 2.14 5.27 1586.8 2.3 416.1 12.68 448 1209.8 1.5 18.42 365.9 16.84 432.8 589.7 2.44 6.6 1178.6 5.95 2.6 5.66 13.25 29.72 421.8 41.71 -0.7 1164.3 0.9 0 -1.5 -0.4 6.27 13.68 -7.5 0.1

Sam

298 5 5 4 5 4 4 4 3.69 3.36 2.89 1.92 2.95 5.62 5.99 2.31 2.43 2.07 20.1 4 5 5 4 4 4 4 4 4 5 e± 5 37 422349 2.12 2.0 Ag 1121 41.88 1406 15.79 415.8423.9 2.18 490.9447. 3.73 7.33 411.3421.3434.2405.8 3.92 398.1 2.0 2.88 414.8 3.02 2.6 624.6418.3 1.25 410. 4.78 1.95 458.9 3.78 377.9 2.65 578.1999. 237.2467. 3.32 538.3413. 1.29 621.3407. 3.71 554. 2.62 274.3 1.47 280. 543.2 3.93 424. 1906.62795.9 18.58 10.8 2689.8 13.17 1437. 1576.61103.6 14.99 1473.6 43.76 32.48 1014.1 18.29 1796.11061.7 14.9 15.33 1632.2 12.1 1044.3 18.9 1434.32627.2 21.76 11.42 1024.9 17.27 ) % ( es Ag ) e 1/2 g Pa ( Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Disc. Ratios 234 0.07345 0.05936 0.071937 0.050888 0.00063 0.056329 0.00087 0.05807 0.00057 0.05504 0.00075 0.1725 0.06047 0.00092 0.09382 0.16771 0.00105 0.03749 0.00069 0.00068 0.07519 0.00065 0.00056 0.00061 0.08709 0.00021 0.06623 1.7549 0.78648 0.00048 0.10118 1.67606 0.00063 0.26339 0.00032 0.5957 0.00045 0.0144 0.022 0.68907 0.01886 0.50497 0.00412 0.86441 0.01151 0.01506 1024.9 0.0072 578 983.9 0.0115 235.5 464.4 531.8 17.27 413.8 31.74 16 620.5 33.73 36.18 39.44 1025.9 578.1 27.5 237.2 999.5 22.89 467.4 3.74 538.3 3.32 1.29 413.4 3.36 621.3 2.89 1029 3.71 589.2 237.4 999.5 1.92 2.62 474.5 532.2 8.11 8.18 415.1 3.31 7.16 632.5 7.33 -0.1 9.05 0 -0.7 -1.7 4.86 6.26 -0.7 -1.3 0.1 -0.1 1 0.0552 0.00132 0.06807 0.00061 0.51456 0.01423 420 52.03 424.5 3.69 421.5 9.54 -1.1 161718 0.11672 0.0552120 0.19632 0.00122 0.05599 0.00131 0.00131 0.34638 0.06797 0.00213 0.5440427 0.00199 0.00062 0.0718729 0.05517 0.0022930 5.70692 0.5522 0.05484 14.77631 0.00132 0.05467 0.0006933 0.1277934 0.05501 0.0152235 0.2575 0.0011 0.55033 0.18406 0.06754 0.0010236 0.06052 1906.6 0.05493 0.0004 0.06498 0.02399 0.05488 0.00034 0.00147 0.0637 420.7 2795.9 0.00132 0.00068 0.06647 0.50685 0.0005 18.58 0.51107 0.00087 0.00044 451.6 0.10174 51.45 10.85 0.06704 0.00021 0.50065 0.00725 0.00256 0.06575 0.48458 1917.3 0.00082 0.00032 13.01834 82.11 0.515 0.01148 2800.3 423.9 0.01021 0.0004 0.83044 419.1 9.55 0.51219 0.27325 0.00426 0.51546 9.57 447.4 0.02182 3.73 405.7 398.9 1932.4 0.0072 27.41 0.00934 2689.8 2800.9 446.4 5.99 412.5 622.2 19.35 43.92 41.04 409.5 421.3 16.57 407.3 13.17 445.2 9.96 -0.6 15.98 46.23 405.8 398.1 2.04 -0.2 27.04 2661.2 15.72 34.61 -0.8 414.8 3.02 624.6 416.3 2.64 10.9 418.3 1 410.5 412.1 1.25 401.2 4.78 4.89 2681 1.95 2.43 421.8 613.9 7.77 6.98 -0.5 419.9 19.79 422.1 2.86 0 12.1 0.2 1.3 4.84 6.26 -0.6 -0.4 -2.2 -0.8 15 0.0551319 0.00076 0.0571 0.06662 0.0024326 0.0003628 0.07913 0.05493 0.50222 0.0555231 0.00123 0.00142 0.00789 0.07699 0.00097 0.60149 0.06588 417.5 0.06968 0.00164 0.02997 0.0006539 0.00048 0.1719840 0.50119 30.11 0.09056 494.7 0.53679 0.09749 0.00163 0.01482 0.00096 415.8 1.88678 0.01088 0.00078 91.67 409.4 0.24481 0.06212 0.27094 2.18 433 490.9 0.00128 0.00108 56.02 413.2 1121 2.99191 7.33 3.62499 37.97 411.3 0.05398 5.33 0.04838 41.88 478.2 434.2 3.92 0.4 1437.4 1576.6 1023 19 2.88 412.5 20.15 8.97 14.99 0.8 436.3 10.02 1411.7 1076.4 1545.6 7.19 -0.5 6.61 21.85 5.49 -0.3 1405.6 9.5 1555 13.73 10.62 2 2.2 414243 0.0562144 0.0763245 0.0761546 0.09231 0.0012347 0.00169 0.07948 0.05408 0.00171 0.07301 0.07378 0.00159 0.05412 0.20111 0.20663 0.00103 0.0011 0.00063 0.25773 0.00066 0.00081 0.002 0.00216 0.06038 0.1719 0.5725 0.00216 0.17991 0.05989 2.07796 2.13612 0.00044 3.60075 0.00111 0.00073 0.01467 0.00034 0.07284 0.44022 0.07889 1.83008 1.77666 0.11664 0.44337 459.9 0.00937 0.02248 1103.6 0.0381 1098.9 0.00739 1473.6 48.11 374.4 1014.1 43.76 44.41 1172.2 32.48 375.9 458.9 42.2 1181.3 1210.9 18.29 27.25 1478.2 33.24 3.78 10.74 11.52 1066.5 377.9 11.05 1022.6 375 1141.6 1160.6 459.6 1549.7 4.01 6.09 2.65 24.03 25.54 2.07 9.48 25.74 1037 1056.3 370.4 -11.2 -7.7 372.6 -0.3 0.2 13.67 8.22 6.61 1098.9 5.2 13.8 -5.6 -1 44.41 0.2 1172.2 27.25 101112 0.0549413 0.0553614 0.05873 0.05175 0.00109 0.05355 0.00073 0.00157 0.06524 0.00074 0.06765 0.00085 0.0898121 0.00049 0.0434822 0.00035 0.0556423 0.10981 0.0009524 0.5013 0.07475 0.0002425 0.52238 0.00033 0.0519 0.72785 0.0584 0.0009 0.32569 0.10044 0.01135 0.00057 0.40442 0.0079 0.02382 0.00121 0.00501 0.31346 0.00117 0.17771 0.00066 0.0071 409.6 0.04446 426.7 0.00137 0.08792 0.00063 557.3 0.28812 274.3 0.00037 4.79629 0.00066 1.88962 352 0.00096 43.5637 28.9 0.3136838 57.11 0.73851 32.23 4.03761 0.02078 0.0762 0.08909 407.4 0.0741 0.00783 35.41 0.01796 554.4 0.04401 422 0.00074 274.3 1061.7 1796.1 2.95 0.0007 281.2 0.25312 349 5.62 1632.2 544.9 2.12 1.47 15.33 0.17448 412.6 14.9 0.0010249 555.3 2.04 52.3950 426.7 286.3 0.00074 12.15 43.34 3.06957 0.09042 1054.4 7.68 1757.7 0.17724 1.79322 344.8 14 280.4 0.04108 5.27 1632.1 3.84 0.00104 3.46 543.2 0.00122 0.6 6.72 0.02442 5.13 0.24908 1.1 0.5 2.31 1077.4 4.8 0 0.49828 1406 3.93 1784.3 1044.3 0.00139 0.9 0.00185 1641.8 277 7.3 561.5 13.35 3.11888 15.79 11.78966 18.94 8.87 0.06214 0.7 6.06 10.49 2.4 0.16022 1454.5 1036.7 0 0.3 0.3 1434.3 5.24 2627.2 4.09 1425.1 21.76 11.42 1043 10.25 1433.7 2606.4 8.88 -3.9 7.18 7.97 0.8 1437.4 2587.8 15.32 12.72 0 1 le SA2 - 03LB07 SA2 le p

Sam

299 4 4 e± 414 1.68 377 1.89 550415 5.66 3.71 Ag 1108 47.48 670.8301.4 3.88 309.6 2.93 307.2 1.89 2.0 374.6400.3369.1 2.41 3.55 2.01 423.8597.3 1.66 235.4 3.08 408.5 2.05 2.48 2004.8 13.32 1623.6 16.92 1019.8 31.93 1352.9 29.8 1124.8 17.69 1509.11539.5 14.95 1114.9 17.5 20.51 ) % ( es Ag ) e 2/2 g Pa ( Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Disc. Ratios 515253 0.1233254 0.0618955 0.0522756 0.09998 0.0009357 0.05517 0.00092 0.05249 0.0016 0.05252 0.36225 0.00091 0.10966 0.00057 0.00088 0.04786 0.28555 0.00095 0.0014 0.00067 0.06634 0.0492 0.00048 0.00129 0.04881 6.11037 0.93597 0.00028 0.3577 0.00031 3.91494 0.00033 0.08186 0.50974 0.01789 0.35223 0.01177 0.35162 0.06096 0.00599 2004.8 670.4 0.00644 0.00695 1623.6 297.1 418.8 13.32 31.65 306.7 308 16.92 68.15 1992.8 22.7 670.8 37.71 1619.2 40.79 301.4 6.6 3.88 414 309.6 6.47 307.2 2.93 1991.7 670.8 1.68 1616.8 1.89 310.5 2.04 11.69 9.38 418.3 306.4 12.59 305.9 0.7 8.8 -0.1 0.3 4.03 4.84 5.22 -1.5 1.2 -1 0.3 596061 0.0547662 0.0540763 0.0732164 0.05404 0.00129 0.07649 0.00078 0.08666 0.0011767 0.06406 0.0007468 0.05892 0.0018569 0.05873 0.17214 0.0013570 0.07714 0.00059 0.0602371 0.05988 0.00033 0.1862372 0.05509 0.00121 0.22421 0.0015873 0.48163 0.00031 0.0509 0.0006974 0.43888 0.09405 0.00202 0.0008275 1.70881 0.09558 0.00167 0.08907 0.0013 0.45552 0.01297 0.05498 0.19897 0.00121 1.90695 0.07676 0.0071 0.09708 0.00075 2.62219 0.03957 0.00096 0.00089 0.06649 0.00698 0.00079 0.00089 0.07076 0.0372 0.00052 402.4 0.26582 0.00079 0.70587 0.06729 0.2802 0.00061 373.7 2.11634 1019.8 0.06542 0.80306 0.00033 0.00095 372.5 0.19708 0.02305 0.49844 1108 0.00123 51.61 0.02569 1352.9 0.00041 0.26028 3.43262 0.01324 0.00091 32.25 31.93 3.57234 0.01353 30.77 0.49764 557.2 0.00656 400.3 2.11607 0.03646 47.48 1124.8 29.84 1023.9 599.1 369.1 0.05096 0.00913 415.8 0.03086 377 3.55 57.66 1100.9 1509.1 1304.1 236.1 17.69 6.64 2.01 1539.5 29.29 411.3 1114.9 399.2 51.37 10.97 1.89 8.78 1011.8 1169.8 550 14.95 369.5 53.92 597.3 17.5 1083.5 35.32 381.1 1306.9 20.51 8.89 14.83 415 4.25 1519.5 5.66 5.01 235.4 3.08 24.72 1592.4 18.86 408.5 -0.4 0.5 1154.1 4.87 1159.6 4.83 542.3 3.71 1.3 2.05 598.6 0.7 6.19 4 -1.2 2.48 8.37 1511.9 4.9 410.6 13.72 234.9 1543.4 7.46 410.1 -4.4 1154.1 8.35 1.3 9.17 5.28 11.32 0.3 10.06 6.19 -0.8 0.2 -3.9 0.3 -4.4 0.7 58 0.05419 0.000926566 0.05984 0.07574 0.05515 0.0004 0.00071 0.00055 0.43945 0.15613 0.06795 0.00842 0.00065 0.00027 1.58154 378.9 0.5201 0.01969 0.00588 37.96 1088.2 418.2 374.6 18.76 2.41 21.81 935.2 369.9 423.8 3.64 5.94 1.66 963 1.2 425.2 7.75 3.93 15.1 -1.4 1088.2 18.76 le SA2 -leSA2 03LB07 p

Sam

300 28 78 . . 19 8 5 43 33 08 94 63 95 22 66 29 09 93 15 12 51 82 85 21 79 84 77 58 43 35 69 86 17 07 15 07 49 72 54 . . 118 61 . . . . . 89 . . . 59 58 . 91 . . 32 . 73 51 . . . . 04 . . 37 . . 33 ...... 97 21 ...... 92 ...... 3 25 3 2 8 6 4 9 4 6 8 4 8 8 26 4 26 43 42 37 10 36 46 20 30 75 62 52 31 34 35 61 49 17 27 73 11 11 28 79 10 33 89 64 23 70 45 15 6 6 . . 1 7 9 7 3 9 3 7 4 5 5 4 4 2 4 9 3 9 2 6 1 2 5 4 . . . . . 7 2 . . . 4 2 . 3 . . 6 . 9 7 4 . . . 7 9 3 . . 1 5 3 . . 9 8 3 . . . 7 . 5 7 6 ...... 2388 2176 ge ± A 1504 2062 221 387 506 343 346 282 386 534 289 936 262 373 373 272 390 384 944 394 296 251 982 426 261 1109 1070 1097 1410 1450 1071 1673 1247 1614 2182 1156 1303 1390 1118 1208 2008 1178 2609 1171 1007 1250 1101 1782 (%) 4 8 7 2 5 4 3 8 2 2 1 5 9 4 3 7 6 4 1 4 6 4 6 8 6 2 3 1 2 1 3 2 1 9 7 4 2 3 8 3 9 8 2 ...... 2 2 3 2 ...... 0 1 3 - - - - 0 1 2 0 0 0 1 2 0 0 6 1 2 4 0 0 1 7 1 0 1 0 3 0 1 0 0 2 1 4 0 0 0 0 5 0 8 1 3 9 2 ------23 43 sc. Di 2 1 7 21 36 6 45 79 09 53 42 07 33 13 45 62 44 79 34 35 43 12 17 24 21 98 53 14 49 64 25 48 17 27 74 94 73 91 07 31 45 81 94 96 53 01 ...... 31 ...... 45 . . 58 94 ...... ± . . . . 9 9 9 6 36 31 21 75 12 19 19 25 16 26 18 36 17 21 23 16 82 27 11 31 34 12 75 20 17 35 16 25 60 20 23 11 34 39 34 40 24 28 59 46 30 61 97 13 120 112 1 5 7 3 3 2 7 7 5 1 3 2 3 1 1 4 4 7 2 2 6 5 7 2 . . . . . 4 8 . . . 4 . 4 5 . . 1 5 7 . . . 8 . 4 6 . 8 1 7 . 9 . 4 8 . . . . 1 . 6 4 7 ...... 575 1653 1273 1060 2541 216 374 508 348 320 271 404 274 955 263 324 342 267 407 361 949 364 317 270 955 437 257 1115 1027 1026 1409 1455 1111 1604 1187 2111 2035 1136 1362 1128 1150 1454 1908 1141 2030 1930 1031 1234 1069 1721 Pb207/U235 4 3 5 1 49 63 79 64 52 12 39 12 91 93 79 28 32 58 43 25 86 26 28 54 84 07 37 72 54 . . . 61 79 . . 42 . 89 23 . 78 59 69 58 . 91 . . 32 . 73 51 . . 43 04 . . 37 . . 33 . . . . . 97 21 ...... 92 ± 6 ...... 9 3 9 8 3 8 4 2 9 8 6 4 9 4 8 15 6 8 4 22 8 8 26 4 12 10 19 11 61 17 15 31 10 19 17 20 18 11 11 18 10 18 51 21 15 23 33 45 15 1 3 9 8 7 1 9 1 3 8 2 5 5 5 8 9 5 4 4 6 9 6 6 9 4 2 4 . . . . 7 2 . . . 4 . 2 . 3 . . 6 . 9 7 4 . . . 7 . 9 3 . . 1 5 3 . . 9 . 8 3 . . . . 7 . 5 7 6 ...... 1456 221 387 506 343 346 282 386 534 289 936 262 373 373 272 390 384 944 394 296 251 982 426 261 1121 1095 1049 1402 1071 1657 1162 1903 1591 2115 1146 1301 1405 1140 1207 1500 2060 1132 2601 1115 2097 1312 1007 1234 1170 1721 Pb206/U238 5 63 8 33 88 73 29 03 14 73 72 94 12 01 74 26 78 34 77 31 91 87 . . 43 33 08 94 . . 49 95 22 66 47 28 . 29 . 09 93 92 15 . . . 51 82 85 . 21 . 84 77 . . . 35 69 41 17 . . . . 07 15 . 49 ...... ± 25 26 43 42 37 44 36 46 20 48 19 30 75 62 66 52 34 35 61 49 141 27 73 28 79 57 33 89 64 70 103 163 158 151 151 108 194 148 423 100 203 263 139 212 118 126 825 211 406 120 1 7 9 7 3 9 3 7 6 4 5 5 4 4 2 4 9 3 9 2 6 5 1 2 5 5 8 . . . . . 4 6 . . . 7 . 6 . 5 . . 1 . 7 2 7 . . . 4 6 . . 5 1 . . 1 1 1 . . . . 2 . . 3 3 ...... 378 387 1504 2062 219 389 504 348 347 284 379 541 284 929 262 381 272 394 940 396 305 248 417 267 1109 1070 1097 1410 1450 1071 1673 1247 2388 1614 2182 1156 1303 1390 1118 1208 2008 1178 2609 1171 2176 1096 1250 1101 1782 1080 Pb207/Pb206 ges A ± 1728 0304 1375 1176 0511 2263 0306 1555 01135 03676 05363 05169 10074 06779 03712 01537 05393 . . 00963 . 02919 . 02161 60179 08248 01676 10736 05929 01579 18985 07904 05245 10742 02106 10575 08168 02826 14945 10125 01445 . 05616 41776 12398 06042 . . 03813 79228 16164 . 08737 14438 33258 24618 11454 01651 ...... 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4209 8249 2967 21291 6923 23728 99877 75086 74882 00664 19242 44584 65055 98726 85663 22108 40928 00035 37107 09366 30653 06209 48876 50348 76173 31045 56319 03788 10381 18739 37642 40138 55003 84044 30175 49321 42794 07747 54847 38823 43168 36746 76093 37317 86697 30477 45004 56297 53846 28885 ...... 6 2 0 5 0 1 1 1 3 3 0 0 1 3 2 0 7 0 4 0 2 0 2 0 0 1 2 2 3 0 0 5 1 0 0 0 2 1 6 0 0 1 2 1 0 4 1 0 0 11 Pb207/U235 ± 0018 0014 0039 0007 00058 00111 00166 00241 00164 00175 00065 00151 00397 00089 00042 00202 00231 00112 01325 00317 00071 00292 00164 00073 00558 00211 00156 00288 00098 00292 00138 00433 00339 00191 00188 00518 00337 00195 00392 00148 00133 00975 00481 00405 00295 00372 00676 00826 00258 00079 ...... 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1852 1977 1946 0618 0416 03494 18995 17687 24311 25341 06199 08168 18086 29312 05472 34342 05517 27998 04477 38849 22372 08652 04597 15634 24363 19354 20606 26216 05972 05961 37663 19203 04312 06245 06142 49713 18893 15786 38464 06316 04703 22583 16918 21115 19908 03981 30605 16465 06843 04141 ...... 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Pb206/U238 ± 005 0018 0014 0023 0014 0025 . 00234 00102 00164 00162 . 00125 00417 00116 . 00261 00087 00116 00175 00396 00163 00362 00604 00254 00165 . 00421 00254 00706 00161 . 00258 00349 00248 01171 00356 00196 00303 00235 00527 00692 00302 00326 00201 00242 00357 00523 00966 00385 . 02404 00431 00852 01144 00282 ...... 0 ...... 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1/2) age (P

1538 0542 0938 1236 1754 0704 05054 07654 07508 07611 08931 09118 05444 05735 07513 10269 08209 05347 05344 09948 05198 13644 07838 08447 05834 05197 07005 08836 07688 08047 05148 05426 05417 07925 05171 05456 05439 07896 12737 05461 05245 13598 07605 08219 07623 05116 10899 07545 05513 05159 ...... 07LB07 ...... 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - os Pb207/Pb206 ti a SA3 R e l 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 23 24 25 26 27 28 29 30 32 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 50 51 52 53 54 55 amp S

301 9 . 34 86 88 24 . . . . 130 28 44 34 08 97 22 61 83 67 01 06 77 54 26 9 53 66 94 62 42 02 57 64 24 3 79 13 . . 303 207 . . . . 27 . . . 56 32 08 . . . 23 . . 94 . . . 17 75 . . 17 . 09 . . 08 . 97 91 . 3 ...... 7 2 6 2 3 4 3 4 2 1 4 3 2 3 2 16 10 11 30 13 20 37 19 32 33 21 27 34 20 31 49 24 18 53 23 101 220 1 8 3 5 4 1 ...... 5 1 8 6 8 6 6 6 9 3 6 8 1 6 . 9 . 2 6 . 9 7 3 9 8 . . 6 7 . . 5 . . . 7 8 . . 7 . 5 8 8 9 ...... 1000 2692 1495 2260 1043 1595 ge ± 693 610 428 441 A 1680 1044 340 372 896 407 729 686 478 421 428 605 580 282 309 242 399 608 275 601 1144 1416 1141 1846 1410 1208 1154 1011 1030 1202 1261 1335 2513 1048 (%) 5 7 7 2 7 1 5 2 9 3 6 8 2 9 9 3 6 5 8 6 6 . . . 9 6 6 6 5 8 4 2 8 9 4 5 5 1 6 8 2 3 8 ...... 1 1 0 5 0 2 0 1 1 0 0 0 1 0 0 0 4 0 6 3 3 2 0 0 1 0 0 0 6 0 4 4 1 2 1 1 0 28 11 39 ------10 15 22 12 - - - sc. Di 4 2 04 76 23 . 4 7 57 39 37 02 15 68 38 48 24 63 61 43 56 66 46 52 96 85 23 77 55 21 41 4 27 13 7 ...... 46 39 . . . 65 ...... 55 59 . . . . 73 . 82 02 . . . 78 . ± ...... 10 5 9 64 6 8 40 23 7 5 4 8 5 7 6 60 46 55 27 32 63 16 28 39 103 18 15 20 19 11 12 12 15 10 18 47 10 14 22 27 10 112 139 388 5 1 6 4 3 3 7 4 8 7 3 5 8 7 6 1 2 8 . 2 8 . . . 5 . 6 . 8 7 9 9 9 1 2 . . . 1 5 . . 3 7 8 . 8 1 . . 3 . 1 . 6 3 4 . 3 8 ...... 955 981 372 356 948 428 638 549 581 492 422 605 426 594 583 982 999 280 314 419 238 400 600 274 446 594 1047 1053 2350 1065 2702 1044 1851 1975 1446 1202 1183 1195 1228 1727 1286 2499 1066 1019 Pb207/U235 12 8 33 03 22 96 46 93 61 83 67 01 06 77 17 52 9 56 3 86 ...... 27 . . . 56 32 08 34 64 . . . 23 92 32 94 71 81 26 17 75 15 . 17 91 09 . 08 . 97 91 53 ± 3 ...... 7 2 6 2 3 4 9 6 3 8 5 4 5 6 5 2 1 8 4 6 3 12 2 3 2 4 35 24 16 70 35 88 10 11 30 13 20 37 16 10 20 11 206 2 2 2 6 1 9 8 7 5 1 6 1 5 6 7 1 3 5 2 . . 9 . . . 2 . 6 . 9 7 3 9 8 . 2 . . 6 7 . 5 . 4 . 7 8 . . . 7 . 5 8 8 . 9 ...... 693 610 428 441 1219 340 372 896 407 729 686 478 421 922 428 605 580 969 282 309 242 399 608 275 601 1259 1072 1285 2336 1194 2479 1141 1871 2132 1400 1164 1002 1216 1209 1619 1302 2524 1088 1000 Pb206/U238 08 11 97 86 89 88 82 15 87 41 9 47 8 3 . . . 34 . . . 75 . 38 . . . 94 06 16 54 24 . 26 . . 53 66 84 94 62 42 19 75 02 57 53 64 . 24 08 62 04 79 33 15 13 ...... ± 130 28 29 88 44 63 90 30 46 38 19 34 32 33 21 48 27 34 20 47 34 31 49 58 24 18 34 27 47 53 52 27 23 101 396 220 303 177 207 128 106 168 411 109 1 5 1 8 3 5 7 6 4 1 8 6 6 6 9 3 6 8 1 6 . . 3 . . . 3 . 2 . 5 1 7 7 8 4 . . . . 3 5 . . 4 . . . 4 . 7 . 8 . 5 1 4 5 4 ...... 737 281 1680 1044 353 371 928 418 691 689 482 427 611 421 604 585 311 434 242 396 616 279 444 598 1000 1144 1416 2692 1495 2260 1112 1846 1043 1595 1410 1208 1154 1011 1030 1202 1261 1335 2513 1048 Pb207/Pb206 ges A ± 012 0806 0306 0218 0072 0157 0497 0085 . 16735 12007 09127 31128 55211 39306 03781 47366 . 17542 02461 05261 06642 18063 01034 01252 01788 11367 03938 27843 09702 . 01354 06299 03684 . 03245 04208 03469 . 00616 06024 25789 . . 01087 25862 . 01249 00697 07674 01548 02607 ...... 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8556 31597 7187 6248 1575 7959 71922 80553 62834 44365 82118 12502 42061 54528 79694 52548 87584 77374 51541 81491 19456 56131 99718 52139 26892 20705 77611 63218 67699 24587 31854 36248 35414 48214 51133 55046 26428 48367 80616 31028 85766 55199 79647 73001 ...... 1 0 0 3 0 1 1 0 1 9 0 1 1 0 0 0 0 0 5 1 5 0 2 2 0 1 1 2 0 0 2 4 0 2 0 0 0 0 1 0 0 1 13 10 Pb207/U235 ± 0044 0079 0166 0007 0041 0005 0005 00666 00265 01344 00174 04698 00211 00568 00104 00225 00348 00652 00043 00055 00194 00119 00349 00203 00131 00055 00167 00099 00084 00103 00123 00098 00035 00028 00152 00069 00131 00294 00038 00051 00034 00218 00066 00082 ...... 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 198 0543 2035 3369 1538 . 0708 21572 18096 22063 43687 05944 46918 14922 19378 06532 11348 11984 11233 07712 06762 09924 39208 24258 06875 09852 20816 09423 16818 16227 20768 04484 04923 20639 28564 06865 22384 03837 47932 06393 09904 04372 18394 09786 16785 ...... 0 ...... 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Pb206/U238 ± 0041 0023 0015 0011 00484 . 01066 01114 00503 01662 00451 01849 00222 00516 . 00322 00538 01378 00079 00117 00108 00123 00127 00154 00152 00281 00083 00139 00086 00136 00101 00128 00084 00109 00081 00133 00281 . . 00201 00181 00085 00078 00108 00201 00134 00076 00086 ...... 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2/2) age 07 . 0725 1844 0625 1129 0783 0595 0519 0526 07791 05358 08956 09336 05401 14273 07667 05516 06386 06245 05679 05539 06022 07407 09846 08931 05523 06003 08047 07291 07361 08021 08268 10306 05556 08589 05104 16554 05461 06035 05186 07409 05581 05986 07426 . . 0 ...... 07LB07(P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

os Pb207/Pb206 ti a SA3 R e l 56 57 58 60 62 65 66 67 69 71 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 amp S

302 4 4 4 4 e± 958689 4.7 5.98 Ag 1358 26.25 1837 18.48 470.7250.6945.9569.3 4.88 2.28 4.6 291.9 3.49 465.5 2.02 576.1 4.73 605.7 7.29 884.4551.9 4.3 5.76 544.3 4.56 485.1989.1767.9 5.49 9.16 7.63 985.5 7.2 384.5213.7 3.81 222.1423.9 2.16 1.79 2.06 3.9 592.6721.4643.7288.4 6.33 15.25 5.83 2.55 641.3 11.15 535.7807.3 2.89 15.58 374.8566.7480.5 3.58 5.01 366.6618.5 5.95 2.67 2.7 1295.61119.2 23.71 13.36 1070.21125.8 19.22 1770.2 23.13 1116.3 44.69 14.29 1193.8 27.71 1637.2 19.5 1065.5 24.33 1512.1 21.66 2662.71035.3 11.14 1185.6 67 19.22 1416.62094.8 19.53 15.92 1004.81022.71791.8 6.28 14.97 16.21 1897.21951.7 11.86 15.02 1758.91322.11520.4 17.7 1757.5 14.03 1003.5 18.92 26.41 22.5 ) % ( es Ag Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Disc. Ratios 13 0.10759 0.08529 0.0010589 0.00062 0.08765 0.32141 0.06611 0.23287 0.00118 0.00172 0.0032 0.00082 0.20986 4.60399 0.13341 2.69412 0.09279 0.00141 0.00274 0.03225 1758.9 2.5663 1.20138 1322.1 0.06008 17.7 0.08123 14.03 1374.8 1796.6 810 1349.5 25.67 8.41 4.27 98.03 1228.1 1750 1326.8 807.3 7.5 16.81 8.86 15.58 1291.1 -2.5 -2.3 801.2 17.1 37.47 11.7 0.4 1374.8 25.67 24 0.0612756 0.094617 0.1075 0.07263 0.0028 0.05802 0.00096 0.00157 0.00081 0.1046 0.00081 0.26938 0.31532 0.17058 0.00191 0.08666 0.00138 0.00256 0.00086 0.86979 0.00049 3.58067 4.71891 1.72659 0.05083 0.72524 0.06829 0.14827 0.02921 648.8 0.01254 1520.4 1757.5 1003.5 95.06 530.1 18.92 26.41 22.5 641.3 30.72 1537.6 1766.9 1015.3 11.15 535.7 7.03 12.54 4.74 635.5 1545.3 2.89 1770.6 1018.5 15.14 27.6 553.8 26.33 10.88 -1.3 1.2 -0.6 7.38 -1.3 -1.1 212223 0.0841424 0.0769225 0.0565926 0.0512127 0.07089 0.0010329 0.00052 0.058930 0.07506 0.0015531 0.07718 0.0012832 0.21549 0.00085 0.052133 0.19492 0.1082634 0.00093 0.07575 0.07681 0.0007235 0.03964 0.05639 0.00128 0.000936 0.15804 0.0732737 0.0006 0.00098 0.05908 0.00269 0.09233 0.0008238 0.1805 0.06242 0.00055 0.0003739 2.50032 0.06003 0.00153 0.19081 0.0008340 0.07987 0.00086 0.04632 2.1055341 0.00059 0.60561 0.3144 0.00194 0.068642 0.19135 0.28007 0.05217 0.0008 0.00137 0.058543 0.00102 0.07488 1.55936 0.05739 0.001144 0.02066 0.00033 0.16021 0.01982 0.10071 0.00113 0.7774545 0.00437 0.09348 0.00747 0.05834 0.0006246 1295.6 0.00109 0.11281 1.85539 0.02722 0.05691 0.00079 2.0198347 0.00127 1119.2 0.07271 0.00272 0.09852 0.00085 0.3234248 0.01543 0.20281 474.9 0.06497 0.00106 0.00124 4.8493449 250.2 2.00122 0.02704 0.07489 0.00171 0.14705 0.0010350 23.71 0.03652 954.2 0.58887 0.08948 0.00349 0.0893951 0.0066 0.00073 0.11298 13.36 1.69596 0.07245 0.00131 563.6 0.0013552 0.26355 0.28786 59.69 0.80626 0.02051 0.00154 0.094253 1070.2 0.00102 0.08811 56.33 1.03325 0.01896 1125.8 0.05427 0.00091 125854 0.00077 0.07816 24.32 0.02934 0.05043 0.00079 0.0021455 0.7901 289.8 0.16582 1148 2.21211 0.03358 1770.2 0.05055 0.00069 0.00155 34.1456 1116.3 470.7 0.12651 0.03027 0.05528 0.00093 19.22 1.4068657 0.00109 250.6 0.18456 467.1 23.13 0.18107 0.00082 0.00153 0.6997758 1021.5 6.8 945.9 0.20899 0.86443 0.01811 0.05038 0.08689 0.00117 0.0013859 0.16517 42.23 570.2 44.69 4.11215 3.24 0.07378 0.00132 569.3 0.0012760 14.29 0.03197 4.88 688.6 0.69855 1069.7 0.07954 0.00138 0.26213 0.0010261 0.01857 1125.8 2.28 0.06145 59.31 0.64841 0.05295 0.05983 0.00122 0.0008662 23.47 1193.8 1272.1 4.64 604.8 0.03371 1.59751 0.08145 0.06325 0.00119 0.0006963 1762.3 1150.6 291.9 0.03505 69.88 0.02424 1128.7 0.06105 1.1051 3.49 886.9 0.002564 480.8 4.34 0.00151 0.06796 1.90367 0.04527 0.05205 0.00078 5.53 548.6 0.00036 46 250.7 465.5 0.50969 506.3 2.65049 0.04441 0.08958 0.00166 15.13 0.00029 27.71 1637.2 958 954.2 39.19 1.65773 21.44 0.2302 0.12977 0.00346 0.00033 6.76 2.02 576.1 0.0354 3.37 542.7 0.03504 0.00144 0.17032 0.00065 1065.3 12.53 584 32.4 3.5092 0.19868 487.2 0.45828 1122.2 0.0355 0.00163 46.27 0.0014 1005.8 101.37 4.73 5.93 0.09628 0.23547 3.2 0.02193 1190.4 0.00092 689 1793.5 605.7 19.5 10.8 0.00151 0.11841 0.24134 4.7 0.00118 -2.8 1115.9 284.5 1065.5 7.29 773.3 0.00258 0.10501 0.52533 0.07277 0.00788 62.8 0.9 9.62 0.00088 12.28 884.4 130.49 12.65778 8.81 0.00574 1414.4 551.9 0.04575 0.00108 36.12 -0.2 690 470.1 7.25 0.24434 998.5 0.00661 45.75 0.00265 2.71857 1630.8 5.98 0.9 0.38124 4.3 0.01521 6.94 1.63131 24.33 1007 0.13841 1512.1 600.4 5.06 0.001 49.19 382.2 2.20515 544.3 0.1 485.1 0 5.76 -1.1 0.00041 214.9 16.66 0.79552 4.56 989.1 0.00118 12.12 0.06292 1184.9 0.5 220.2 19.25 1.05458 12.4 7.78 0.00178 0.08172 720.5 423.4 0.03166 1091.9 591.2 -1.2 2662.7 21.66 11.05 18.88 -0.7 767.9 0.89788 33.71 0.02766 5.49 9.16 0.32703 1223.5 891.8 52.84 3.17893 0.07682 15.93 538.7 0.4 7.63 1358 985.5 632.5 59.14 1656.7 1035.3 6.8044 15.12 1185.6 5.54 10.27 54.38 0.02706 11.14 1500.7 -1.1 6.7 0.00941 7.24 384.5 597.4 0.05252 537.9 507.5 4.58 13.49 213.7 0.3 716.5 11.09 969.2 0.11511 16.18 26.25 28.84 3.81 222.1 -0.1 19.22 1082.4 -0.2 67 2655.3 7.72 423.9 640.9 287.4 755.8 1416.6 2.16 59.09 14.49 1314.8 27.89 0.3 -0.6 111.99 1.79 17.36 -38.3 2094.8 1335.5 0.4 992.5 2.06 12.25 1168.2 6.97 1529.3 1013.9 3.94 50.07 17.08 19.53 -0.3 383.1 60.3 592.6 0.4 9.87 721.4 214.7 1.8 15.92 7.93 219.5 -2.7 8.38 4.72 16.39 2654.5 14.23 428.7 643.7 1409.2 0.7 690 14.8 288.4 6.33 5.49 15.25 2082.1 1333.5 4.72 1182.7 10.29 1.4 5.41 0.8 982.4 12.4 10.13 5.83 6.11 -0.6 594.3 2.55 731.1 17.18 8.3 1414.4 0.6 10.03 0.3 -0.9 31.54 -0.1 1452.1 650.6 16.66 15.64 37.97 287.3 1.8 2086.3 1.6 2.2 12.76 14.48 -0.7 0.8 7.2 14.98 0.6 -0.5 0.7 -0.4 101112 0.072513 0.0733214 0.112315 0.1095416 0.0540217 0.00108 0.00054 0.058918 0.1161119 0.00115 0.05678 0.0009820 0.11969 0.00142 0.16868 0.17539 0.05394 0.00135 0.00077 0.33209 0.0605 0.31604 0.00188 0.00114 0.05987 0.00101 0.00059 0.00111 0.09189 0.33205 0.0019 0.00154 0.00068 0.07738 0.00059 1.7234 0.34914 1.79828 0.00085 0.05852 0.00117 5.12496 4.69259 0.00099 0.1007 0.45008 0.03958 0.01955 0.00165 0.00044 0.73255 5.13331 0.08484 0.1123 0.59814 0.0134 0.00047 1000.1 1022.7 5.64026 0.02093 0.43202 0.06446 1791.8 0.02351 1837 0.81598 0.10027 371.8 29.83 14.97 563.5 1897.2 0.01 16.21 482.5 0.01154 18.48 1951.7 1004.8 1041.7 57.92 49.33 11.86 1770.4 368.3 621.6 72.13 1848.5 15.02 6.28 3.24 374.8 1848.3 566.7 7.54 45.73 480.5 24.13 9.17 1930.5 1017.3 1044.8 3.58 5.68 5.01 1765.9 366.6 1840.3 618.5 5.95 7.89 14.76 7.09 377.3 1841.6 15.13 558.1 2.67 18.62 1922.3 -0.5 476.1 2.74 -2 10.67 9.39 1.4 12.26 -0.7 15.33 364.6 14.94 605.8 -0.8 3 -0.6 1.3 7.09 0.4 6.45 0.5 0.5 le SA4 -SA4 le 08LB07 p

Sam

303 Ar-Ar detrital muscovite geochronology: Sample GL3 - 23LB07 Total Fusion Isotope Ratios Run# 40Ar/39Ar 38Ar/39Ar 37Ar/39Ar 36Ar/39Ar Ca/K Cl/K f 39Ar 40Ar*/39ArK Age 1.00 18.8240±0.0128 0.0125±0.2237 -0.0033±0.7713 0.0057±0.1331 0.013 -0.001 3.36 17.526± 0.335 266.15 ± 4.73 Ma 3.00 23.3384 0.0273 0.0088 1.5970 -0.0338 0.2991 0.0216 0.2020 0.014 -0.005 0.38 15.975 1.742 244.11 ± 24.89 Ma 4.00 26.0726 0.0179 0.0419 0.3089 -0.0287 0.7556 0.0297 0.2414 0.239 0.004 0.26 16.220 2.756 247.62 ± 39.32 Ma 5.00 18.4550 0.0101 0.0165 0.0599 -0.0018 0.6379 0.0019 0.2513 0.002 0.000 7.85 18.007 0.239 272.92 ± 3.37 Ma 6.00 17.9726 0.0075 0.0152 0.2120 0.0007 3.1749 0.0020 0.1110 0.023 0.000 10.23 17.477 0.151 265.45 ± 2.13 Ma 8.00 18.0182 0.0104 0.0122 0.1531 -0.0023 0.5981 0.0028 0.2176 0.006 -0.001 5.46 17.393 0.266 264.26 ± 3.75 Ma 9.00 19.8276 0.0057 0.0148 0.1383 -0.0003 2.2895 0.0023 0.1391 0.014 0.000 9.34 19.278 0.148 290.71 ± 2.06 Ma 10.00 18.5489 0.0086 0.0186 0.0855 0.0023 0.7662 0.0057 0.1439 0.051 0.001 6.01 17.069 0.289 259.69 ± 4.10 Ma 11.00 20.4308 0.0078 0.0154 0.2572 -0.0027 0.4645 0.0041 0.2239 0.016 -0.000 3.61 19.554 0.322 294.56 ± 4.47 Ma 12.00 23.6536 0.0070 0.0192 0.0576 -0.0011 0.5607 0.0266 0.0347 0.003 -0.000 11.30 15.854 0.295 242.39 ± 4.22 Ma 13.00 17.9892 0.0062 0.0125 0.0213 0.0004 1.6543 0.0012 0.2354 0.016 -0.000 13.71 17.703 0.140 268.64 ± 1.97 Ma 14.00 18.4124 0.0082 0.0130 0.1947 -0.0049 0.3615 0.0003 7.4906 0.000 -0.000 4.95 17.733 0.647 269.07 ± 9.12 Ma 15.00 19.9756 0.0076 0.0147 0.1645 -0.0014 0.9369 0.0026 0.4385 0.020 -0.000 4.55 19.263 0.378 290.51 ± 5.27 Ma 16.00 18.3545 0.0066 0.0157 0.1124 -0.0013 1.5758 0.0056 0.1222 0.022 0.000 4.45 16.965 0.240 258.21± 3.40 Ma 17.00 19.0070 0.0123 0.0145 0.1012 -0.0006 1.4509 0.0029 0.1116 0.013 -0.000 8.28 18.269 0.254 276.61 ± 3.57 Ma

------

Sample SA4 - 08LB07 Total Fusion Isotope Ratios Run# 40Ar/39Ar 38Ar/39Ar 37Ar/39Ar 36Ar/39Ar Ca/K Cl/K f 39Ar 40Ar*/39ArK Age 1 41.0307 ± 0.0050 0.0059 ± 0.5528 0.0095 ± 0.2868 0.0044 ± 0.3584 0.017 -0.653 100 39.714 ± 0.502 269.1 ± 5.6 Ma 2 42.0364 ± 0.0042 0.0070 ± 0.4041 0.0000 ± 42207.843 0.0057 ± 0.1881 0 0.575 100 40.326 ± 0.358 336.3 ± 3.5 Ma 3 42.2309 ± 0.0055 0.0032 ± 0.7702 0.0037 ± 0.5828 0.0079 ± 0.1571 0.007 -0.093 100 39.858 ± 0.428 332.5 ± 6.1 Ma 4 28.8102 ± 0.0057 0.0048 ± 0.7332 0.0069 ± 0.4951 0.0122 ± 0.1501 0.013 -0.002 100 25.161 ± 0.562 227.1 ± 6.8 Ma 5 58.0429 ± 0.0092 -0.0056±1.5845 0.0294 ± 0.2884 0.0580 ± 0.0557 0.054 0.077 100 40.876 ± 1.017 346.2 ± 7.3 Ma 6 26.7456 ± 0.0065 0.0001 ± 32.0325 0.0030 ± 1.3725 0.0013 ± 1.3007 0.005 -0.016 100 26.317 ± 0.546 230.8 ± 6.5 Ma 7 31.8711 ± 0.0056 0.0020 ± 1.1845 0.0054 ± 0.3817 0.0012 ± 1.0352 0.01 -0.011 100 31.482 ± 0.413 269.1 ± 5.6 Ma 8 38.4284 ± 0.0046 0.0030 ± 0.7613 0.0003 ± 6.7062 0.0000 ± 19.9292 0.001 -0.011 100 38.387 ± 0.280 319.0 ± 4.30 Ma 9 44.2102 ± 0.0046 0.0051 ± 0.3995 0.0090 ± 0.1881 0.0024 ± 0.3478 0.016 -0.011 100 43.477 ± 0.317 361.6 ± 4.4 Ma 10 44.4540 ± 0.0051 0.0090 ± 0.3724 0.0610 ± 0.0382 0.0143 ± 0.0948 0.112 -0.005 100 40.202 ± 0.451 325.2 ± 7.7 Ma 11 42.4606 ± 0.0068 -0.0017±2.0333 0.0810 ± 0.0543 0.0031 ± 0.8318 0.148 -0.013 100 41.516 ± 0.818 344.2 ± 9.8 Ma 13 39.0373 ± 0.0077 -0.0068±0.5059 0.0173 ± 0.1473 0.0010 ± 1.3534 0.032 0.08 100 38.713 ± 0.500 324.3 ± 7.3 Ma 14 44.2075 ± 0.0043 0.0061 ± 0.2832 0.0226 ± 0.0616 0.0080 ± 0.0823 0.041 -0.007 100 41.812 ± 0.265 345.0 ± 3.2 Ma 15 59.7742 ± 0.0064 -0.0045±0.6578 0.1510 ± 0.0200 0.0127 ± 0.1010 0.276 -0.011 100 56.019 ± 0.520 450.5 ± 8.6 Ma 16 41.2725 ± 0.0026 0.0098±0.0916 0.0115 ± 0.0597 0.0010 ± 0.3724 0.021 -0.006 100 40.953 ± 0.154 346.4 ± 3.8 Ma 17 41.8991 ± 0.0070 0.0015 ± 2.2074 0.0144 ± 0.1594 0.0025 ± 0.6013 0.026 -0.009 100 41.132 ± 0.530 345.4 ± 7.3 Ma

304 APPENDIX D

U-Pb zircon data from the Bug Island limestone (Chapter 5) are presented here. Detrital zircon interpreted ages with ~ <10% discordance are indicated in bold type.

Table D1 – Location data for Bug Island limestone detrital zircon sample in Chapter 5.

305 4 4 4 4 6.85 5.43 86.2 26.66 72.02 84.75 60.75 4 4 4 4 4 4 4 e± 401 23.95 550 9.5 591 17.28 Ag 107 339.7532.5 6.29 10.83 397.7405.8654.7 5.99 9.13 14.57 380.1922.8 38.16 588. 6.26 424. 574.9 14.1 546.9373.9 7.72 561.8 9.58 6.83 645.7411.2444.2388.7494.8 5.71 7.55 14.57 425.6 8.55 8.34 7.87 363.9403.7 5.2 330.1 4.32 435.3 5.55 11.51 386.1 5.7 1071.31820.61261. 43.98 28.57 1000.1 42.27 1450. 1922.2 30.02 2984.31220. 1066.2 69.82 29.88 1036.1 24.57 1603.61023. 41.31 1015.2 60.6 1004.91043.71286.1 33.87 20.16 2080.71640.9 42.98 20.38 48.39 1681.2 56.52 1217.81338.31052.8 46.87 1403.8 35.85 1022.2 63.73 27.21 58.37 1628.91176.71669.8 45.85 37.41 2651.7 89.1 1028.51035.9 27.19 49.02 61.5 1070.81224.61476.82861.6 46.76 61.95 2675.1 72.97 19.92 19.2 ) % ( es g A ) e 1/2 g Pa ( Island limestone g Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Disc Ratios le 75LB06 - 75LB06 le Bu 1 0.07304 0.00223 0.17263 0.00229 1.89156 0.09492 1015.2 60.64 1026.6 12.58 1078.1 33.33 -1.2 345 0.074086 0.058557 0.083738 0.053959 0.00075 0.12873 0.00231 0.10091 0.00187 0.0588 0.00378 0.17949 0.08855 0.0015 0.00267 0.22255 0.00085 0.05972 0.00184 0.0013 0.37884 0.00239 0.29062 1.89189 0.00158 0.09105 0.69472 0.00268 2.45126 0.00425 0.43036 0.03103 0.00116 7.12727 0.03359 3.67093 0.09631 0.03437 0.78565 1043.7 0.20394 0.20013 550.4 1286.1 0.0318 368.8 20.16 2080.7 1640.9 83.74 42.98 559.7 150.56 1064.2 20.38 48.39 1295.3 546.9 373.9 66.78 4.67 2070.9 1644.6 12.63 7.72 9.58 1078.2 561.8 12.52 21.23 1257.8 535.6 10.89 363.4 2127.5 6.83 1565.1 28.34 20.13 -2.1 25.48 24.4 588.7 43.5 -0.8 0.7 0.6 -1.4 18.08 -0.3 -0.4 2 0.07268 0.00123 0.16583 0.00129 1.68941 0.04493 1004.9 33.87 989.1 7.14 1004.5 16.96 1.7 p 4548 0.05826 0.08267 0.0031654 0.00312 0.08611 0.05483 0.21242 0.00182 0.00336 0.00398 0.6626961 2.56968 0.06497 0.07176 0.04426 0.19738 0.00151 0.00115 539 0.52004 1261.4 0.1539 0.03785 114.89 0.00112 72.02 405.4 532.5 1.55245 1241.7 0.03855 131.02 10.83 21.17 979.2 516.3 405.8 1292 27.03 9.13 32.37 56.14 1.3 425.2 922.8 1.7 25.28 6.26 -0.1 951.5 15.33 6.2 4446 0.0751 0.11129 0.0016753 0.00177 0.1702955 0.0739356 0.3226957 0.00177 0.06155 0.05488 0.00292 0.00769 0.0911960 1.72219 0.00353 4.9529762 0.01336 0.16782 0.1177463 0.00296 0.06072 0.1069 0.1635 0.17923 0.00766 0.06418 0.05954 0.00199 0.25008 1071.3 0.0025 1.67681 0.00395 0.00194 1820.6 0.00179 0.00408 0.33125 0.92816 0.41383 0.27497 43.98 0.41865 3.27578 0.00325 0.09557 28.57 0.07137 0.10783 1039.7 0.0031 1013.7 5.25968 0.00116 0.2287 1802.8 658.4 407.2 8.87794 0.74993 0.20517 196.88 9.72 1450.4 14.21 0.25686 0.02908 1922.2 118.48 468.54 1000.1 1016.8 60.75 1811.3 2492.2 587 42.27 654.7 30.02 22.65 401 30.57 1438.9 19.82 999.8 14.57 1844.4 5.8 63.84 23.95 21.04 1.1 2254.4 104.3 666.7 15.72 351.6 1475.3 588.4 14.08 1862.3 4.1 37.58 54.31 77.44 6.85 2325.5 33.28 0.6 0.9 1.6 568.2 26.4 4.7 16.87 11.3 -0.2 2492.2 19.82 43 0.053144950 0.002851 0.220552 0.08096 0.07491 0.05411 0.05448 0.0098 0.00359 0.00103 0.0011258 0.0022659 0.57928 0.21354 0.37103 0.17668 0.0737 0.06363 0.05425 0.00465 0.0211 0.0219 0.00124 0.00099 0.00426 2.57957 0.03068 18.46812 1.84336 334.6 0.44963 0.17436 3.07205 0.21039 0.06074 0.04485 0.02159 0.00448 114.73 0.00628 2984.3 1220.4 1066.2 2.14545 391.1 0.34747 339.7 69.82 84.75 29.88 0.2104 0.2007 90.03 6.29 2945.8 1247.7 1048.8 1033.1 381.1 397.7 320.4 86.12 24.69 6.77 112.48 932.62 5.99 16.22 3014.4 1294.9 1061.1 1036.1 380.1 160.23 -1.6 59.68 377 16.01 24.57 38.16 1.6 -2.5 15.12 1163.6 1.8 302.8 -1.7 67.92 151.24 -0.3 0.3 646566 0.055467 0.09891 0.07334 0.05904 0.00196 0.00222 0.00321 0.00446 0.06805 0.27694 0.15471 0.09328 0.0009 0.00335 0.00311 0.0024 0.50227 3.67896 1.56804 0.80083 0.02108 0.16708 0.10677 0.07568 1603.6 428 1023.4 568.7 41.31 76.87 86.2 156.28 1575.9 424.4 927.3 574.9 16.9 5.43 17.36 14.14 1566.8 957.7 413.2 597.3 36.26 42.22 14.24 42.67 1.9 10.1 0.9 -1.1 10 0.10313 0.00322 0.29836 0.00507 4.23247 0.28864 1681.2 56.52 1683.2 25.17 1680.3 56.01 -0.1 11 0.0611218 0.001420 0.0553621 0.1053622 0.07442 0.0889924 0.00295 0.00098 0.0587 0.0024 0.05382 0.00128 0.06826 0.831328 0.0026729 0.17306 0.00212 0.22594 0.0013 0.0794631 0.02481 0.05308 0.08907 0.0025133 0.00165 0.05808 0.56168 0.05967 0.00574 0.0016 643.535 0.00242 1.71753 0.05567 2.71207 0.00085 0.03516 0.00469 0.20026 0.07539 0.78999 0.05253 0.08974 0.41544 0.07039 48.51 0.00393 0.00697 0.09601 426.4 0.04679 0.01163 0.00091 0.01866 1052.8 0.06985 1403.8 2.55679 0.00294 645.7 0.36361 0.17432 114.31 556.1 0.00191 363.2 0.84063 0.33159 63.73 27.21 0.01858 5.71 0.01121 0.51829 425.6 96.36 0.0876 1183.5 1.7192 1029 86.4 1313.2 614.3 332.3 0.04314 7.87 591.6 136.42 550 0.40292 13.78 8.68 13.76 363.9 438.7 99.88 452.6 1176.7 1078.9 1015.1 161.8 1331.8 9.5 -0.4 5.2 150.03 330.1 22.86 37.41 33.53 19.25 282 591.2 591 435.3 352.8 5.55 0.2 1288.4 2.4 7.1 1035.9 26.54 17.28 11.51 13.38 314.9 94.66 61.54 1.1 619.5 -0.2 424 13.84 0.6 1015.7 48.32 28.85 0.7 150.45 0.1 0.8 4.3 131415 0.0550416 0.0559117 0.05442 0.0571619 0.00272 0.08085 0.00538 0.0037 0.08815 0.00289 0.0658623 0.00196 0.07134 0.0621525 0.00507 0.00125 0.07978 0.0732726 0.00242 0.2124327 0.00141 0.05479 0.51056 0.23073 0.0014 0.07199 0.54408 0.01072 0.0025 0.1002630 0.45962 0.02968 0.00162 0.00684 0.6425632 0.06126 0.00502 0.17184 2.30843 0.10249 0.00251 0.0356 3.3118134 0.06462 0.17988 0.0394 413.7 0.01061 0.18477 0.09777 448.3 0.00509 0.2861 0.07262 0.37582 0.00071 388.4 2.37425 0.00586 0.00298 497.3 106.8 1217.8 0.3017 0.00388 0.47623 0.00932 200.9 1385.7 1.68675 0.63836 0.51211 145.42 4.33091 0.00844 108.07 0.01648 46.87 411.2 0.17298 0.18433 0.00613 444.2 106.62 1021.6 4.17305 0.23974 388.7 0.00892 494.8 13.30143 403.7 1241.7 7.55 14.57 985.7 1338.3 270.83 0.44616 1.97099 1628.9 0.71502 8.55 13.29 8.34 418.8 64.27 441.1 35.85 135.76 1022.2 0.41847 1669.8 45.85 2651.7 1214.9 384 503.9 19.95 1483.8 40.28 403.7 58.37 1003.4 1093 89.1 27.19 30.01 1622 24.77 24.36 0.6 88.5 1234.9 0.9 4.32 240.63 31.89 1699.7 -2.2 2665.6 19.44 -0.1 0.5 192.09 3.8 395.5 1003.5 1028.5 41.8 1699.3 26.12 -0.1 49.02 69.66 11.34 1668.7 2701.3 45.66 1105.6 -11.8 0 87.57 50.77 0.5 143.02 -0.6 -2 985.7 -2.7 135.76 36 0.0752242 0.00803 0.07521 0.1807 0.00101 0.00856 0.18031 1.82438 0.00113 0.3147 1.86454 1074.3 0.04045 200.57 1074 1070.8 26.66 46.76 1068.7 1054.3 6.19 113.14 1068.6 0.4 14.34 0.5 373839 0.0811340 0.09246 0.20439 0.05425 0.00262 0.00364 0.00252 0.00215 0.2037 0.25206 0.53671 0.06172 0.003 0.00511 0.0048 0.00094 3.48865 2.2691 14.52027 0.45131 0.28307 0.12806 0.54702 0.02082 1476.8 1224.6 2861.6 381.3 72.97 61.95 19.92 86.22 1449.1 1195.2 2769.7 386.1 26.32 16.06 20.14 1524.7 5.7 1202.7 2784.3 64.03 378.2 39.78 35.79 2.1 14.57 2.6 3.9 -1.3 41 0.18243 0.00214 0.50399 0.00404 12.43069 0.41893 2675.1 19.24 2630.9 17.31 2637.5 31.67 2

Sam

306 4 4 4 3.91 4.25 23.27 4 4 e± 4 58 481 2.32 987 6.79 Ag 1215 35.42 426.3590.7 2.41 626.2 3.37 3.22 345.1604.3 42.2 472.7 32.38 375.5341.9 6.41 311.2 7.33 387.7410.8547.6 3.91 11.56 3.61 6.61 420.3 6.92 17.86 398.9588. 516.6 1.57 5.9 569. 400.5372.3 4.46 4.19 579.1495.8380.8 8.55 6.17 8.0 603.9451.5410.3 7.37 9.28 4.8 1231.11682.51365.2 30.53 62.37 1037.1 38.19 1011.3 28.22 60.67 1029.61011.61775.6 68.99 1140.3 34.62 1052.6 81.51 1816.1 24.71 17.71 1025.1 13.03 1593.6 25.42 13.66 1118.52612.21038.1 27.36 10.87 34.56 1270.3 28.48 1023.71495.91607.7 21.7 68.3 1046.6 65.5 22.08 ) % ( es Ag ) e 2/2 g Pa ( Island limestone g Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Disc Ratios le 75LB06 - 75LB06 le Bu 123 0.074414 0.111025 0.055396 0.061757 0.00066 0.07348 0.0008 0.059669 0.00084 0.09838 0.00078 0.17543 0.06061 0.00093 0.05955 0.31931 0.00089 0.06836 0.00072 0.00072 0.08143 0.00082 0.00126 0.17708 0.00103 0.09596 0.0004 1.77844 0.00042 0.26597 0.10201 4.85445 0.00102 0.00057 0.09483 0.51905 0.68164 0.02539 0.001 0.00055 1.76318 0.07692 0.76408 0.00066 0.00942 0.0109 1052.6 3.56257 0.84307 0.03632 0.78264 0.01475 1816.1 427.8 0.04997 0.01488 665.3 17.71 0.01769 1025.1 591.4 13.03 32.87 1593.6 625.3 26.93 1042 587.3 25.42 1786.4 32.12 13.66 426.3 28.81 504.6 3.94 36.99 1051 6.18 590.7 1520.3 2.41 626.2 1037.6 2.52 1794.4 5.57 584 3.37 5.12 424.5 3.22 9.28 527.8 13.34 1032 3.91 576.4 1541.2 6.3 620.8 1.1 6.58 1.9 13.35 8.49 587 11.12 0.4 8.2 25.1 -2.7 0.1 5.2 10.07 -0.2 0.6 504.6 2.52 p 808182 0.0534383 0.0806584 0.0599585 0.103286 0.04303 0.0872187 0.0056 0.0564988 0.00965 0.0540589 0.05499 0.00356 0.073190 0.00175 0.07291 0.2104391 0.00202 0.09827 0.0534792 0.00691 0.00284 0.05258 0.2837793 0.21137 0.00573 0.00482 0.0542794 0.00552 0.00223 0.07608 0.05513 0.4586795 0.00164 0.05998 0.00524 0.0584296 0.00208 0.00646 2.23395 0.07356 0.17455 0.8730498 0.00107 0.00133 0.16591 0.07291 0.38236 0.00234 0.05447 0.0012 3.96482 0.10857 2.40324 0.00191 0.04946 0.29073 0.00514 0.0555 0.59808 0.19249 0.00232 0.00257 0.06198 0.00064 0.00126 0.0658 0.45534 0.2938 0.08365 0.00188 0.00498 0.08865 347 1.94478 1.68933 0.02645 0.00059 0.1679 1213 0.00651 601.9 0.41014 0.17179 0.02804 0.00109 0.34724 0.00117 0.3199 0.21248 1682.5 1365.2 0.45989 0.0822 1209.81 0.00266 0.06738 0.01479 0.00135 471 130.78 0.4555 314.66 0.72395 0.04661 0.00851 373 0.01377 1016.6 1.67606 0.00296 62.37 38.19 345.1 1.74576 1011.3 348.6 0.02284 0.03065 1231.1 4.41078 604.3 77.92 310.6 0.57332 0.09453 382.1 128.05 0.04835 113.67 1610.3 1236.1 42.2 60.67 30.53 0.4457 417.2 545.5 67.72 32.38 0.0825 472.7 257.95 1029.6 1037.1 1011.6 375.5 11.04 26.3 54.17 383.3 1191.8 989.6 1775.6 637.2 91.99 70.01 341.9 311.2 6.41 431.9 28.22 68.99 1243.6 34.62 7.33 1627 266.16 387.7 91.28 12.84 104.35 81.51 3.91 410.8 547.6 1096.6 11.56 24.96 242.26 1000.5 476 1021.9 0.6 60.09 381 -1.6 3.61 1004.5 -0.4 1789.3 73.26 302.6 6.61 6.92 349 10.4 14.68 420.3 16.81 7.41 4.8 31.03 384.2 19.56 41.55 -2.2 35.13 381.1 999.5 553 17.86 10.65 -0.4 1025.6 2.3 -0.7 9.58 1714.4 -0.2 15.93 35.87 460.2 17.88 18.05 2 83.64 -1.5 1.6 3.1 53.24 -1.1 -0.4 -0.9 2.8 101112 0.0567813 0.076914 0.1756415 0.0546416 0.00073 0.0738817 0.00106 0.0596 0.00115 0.06982 0.00057 0.07746 0.05774 0.00128 0.18449 0.48116 0.00112 0.00039 0.00118 0.06383 0.00176 0.17668 0.00114 0.00186 0.09557 0.60476 0.00026 0.16546 0.00138 0.08344 2.02919 11.33539 0.00072 0.47548 0.00946 0.00123 1.74513 0.04633 0.18326 0.001 0.79852 1.91635 0.00579 482.5 0.0486 0.66841 1118.5 2612.2 0.01963 0.06053 397.6 0.02565 1038.1 28.4 27.36 10.87 589 923 23.02 519.6 34.56 1091.5 2532.3 481 40.42 34.26 398.9 1048.8 65.91 6.22 8.08 2.32 588.4 1.57 987 7.56 516.6 1125.3 2551.1 480.3 4.25 1025.4 395 6.79 15.53 15.09 5.94 5.99 596 17.98 1086.8 2.6 3.7 3.99 519.7 0.3 -1.1 11.08 21.08 -0.3 15.61 -7.5 0.1 0.6 1920 0.05407 0.08305 0.00168 0.00123 0.05945 0.20943 0.00069 0.00146 0.44785 2.41275 0.01612 0.06178 373.7 1270.3 68.2 28.48 1225.8 372.3 7.77 4.19 1246.4 375.8 18.38 11.31 3.8 0.4 72 0.07305 0.0039379 0.1721 0.05919 0.00395 0.00639 1.55586 0.09234 0.1331 0.00394 0.78406 1015.4 0.10898 105.25 574.2 1023.7 218.92 21.7 569.4 952.8 23.27 52.88 587.818 -0.9 0.05468 62.02 0.0017 0.9 0.0641 0.00074 0.49145 0.0179 400.1 66.59 400.5 4.46 405.9 12.19 -0.1 737475 0.0933976 0.0595377 0.0991378 0.05705 0.00345 0.0745 0.00228 0.05426 0.00356 0.00195 0.25688 0.00388 0.094 0.00357 0.28437 0.00477 0.07994 0.17628 0.00145 0.00526 0.06086 3.34384 0.00103 0.00403 0.73319 3.61006 0.00132 0.63948 0.25876 1.7341 0.48529 0.03641 0.27837 0.0272 1495.9 0.13918 0.03761 1607.7 586.4 492.9 68.3 1054.9 381.6 65.5 81.07 74.32 1473.9 101.66 141.56 1613.3 579.1 24.47 495.8 1046.6 380.8 26.42 8.55 1491.4 22.08 6.17 8.04 1551.8 558.4 60.49 1021.3 502 61.31 401.7 21.33 1.6 51.69 16.85 -0.4 25.71 1.3 0.9 -0.6 0.2 686970 0.0599871 0.08073 0.05588 0.05485 0.00192 0.00147 0.00303 0.00183 0.0982 0.19323 0.07255 0.06572 0.00126 0.00168 0.00154 0.0008 0.81233 2.07115 0.56734 0.49013 0.03431 0.06253 0.03727 0.01935 602.9 1215 447.3 406.2 67.74 35.42 116.35 72.34 603.9 1138.9 451.5 410.3 7.37 9.06 9.28 4.84 603.8 1139.3 456.3 405 20.67 19.22 24.15 6.8 -0.2 13.18 -1 -1 100 0.07646 0.00393 0.1935 0.00457 1.60025 0.12843 1107 99.34 1140.3 24.71 970.3 50.15 -3.3

Sam

307 APPENDIX E U-Pb zircon, whole-rock geochemical, Ar-Ar muscovite, and Nd isotopic data from the Chapter 6 are presented here. Detrital zircon interpreted ages with ~ <10% discordance are indicated in bold type.

Table E1 – Location data for detrital zircon samples in Chapter 6. ------

Table E2 – Location data for whole-rock geochemical samples in Chapter 6 ------

Table E3 – Location data for Ar-Ar sample in Chapter 6. ------

Table E4 – Location data for Nd isotope samples in Chapter 6.

308

e± 407 3.82 623 4.54 238 3.74 638 11.58 Ag 1532 27.03 1196 14.89 464.2 7.32 543.7240.3 6 3.04 500.4558.5305.5357.1 11.8 7.87 3.86 5.63 539.3525.7236.3606.7639.1619.5 2.41 636.3 4.93 5.73 6.3 5.19 7.88 13.47 238.3611.4625.2546.4 3.07 252.3 13.87 680.8 5.05 260.7 4.81 315.1 5.13 334.6 4.18 634.1565.3 1.29 238.2 10.91 372.3 2.85 944.9 8.18 421.2 5.97 557.5517.6 3.31 433.2 10.16 459.5 2.92 422.7 4.65 395.1 4.66 955.8 9.09 5.28 718.8 5.25 6.54 351.3 8.52 997.7 10.59 269.5 7.88 8.4 38.76 6.2 926.1328.8236.9 10.27 7.25 10.91 365.2 5.08 2217.81217.91650.2 18.53 16.7 11.12 2058.1 35.84 1526.1 27.99 1462.1 15.99 1105.12018.1 20.97 46.9 2003.82656.7 16.01 1837.92158.1 19.34 1586.6 44.4 15.46 24.87 2002.61536.7 65.26 27.97 ) % ( es g A ) e 1/2 g Pa ( 0.053860.05095 0.00228 0.00329 0.05829 0.03761 0.00083 0.0006 0.41933 0.26653 0.01884 0.01746 365.1 238.8 92.52 142.1 365.2 238 5.08 3.74 355.6 239.9 13.48 14 0 0.3 Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Disc. Ratios 45 0.05638 0.13924 0.00142 0.0015 0.07466 0.4034 0.00122 0.00768 0.57374 7.68074 0.01729 0.21116 466.8 2217.8 55.43 18.53 464.2 2184.7 7.32 35.28 460.4 2194.4 11.15 24.7 0.6 1.8 69 0.05833 0.05098 0.00095 0.00129 0.088 0.03798 0.00101 0.00049 0.71581 0.26044 0.01482 0.00703 541.6 239.8 35.82 57.42 543.7 240.3 6 3.04 548.2 235 8.77 5.66 -0.4 -0.2 7 0.08086 0.00069 0.20749 0.00188 2.24799 0.03182 1217.9 16.7 1215.4 10.01 1196.2 9.95 0.2 g j 11 0.10141 0.00061 0.29997 0.00215 4.29597 0.04806 1650.2 11.12 1691.2 10.66 1692.6 9.21 -2.8 26 0.09175 0.00078 0.2434 0.00104 3.15701 0.04671 1462.1 15.99 1404.4 5.42 1446.76566 11.4167 0.0583768 0.0581369 0.0509471 4.4 72 0.0601 0.00068 0.0610373 0.00158 0.0604 0.00416 0.06076 0.08726 0.12317 0.00185 0.08496 0.00138 0.03734 0.00041 0.00225 0.00429 0.09868 0.00083 0.10423 0.00463 0.00092 0.72554 0.10087 0.10374 0.00107 0.68122 0.00089 0.36435 0.27043 0.01053 0.00135 0.00231 0.87421 0.0216 0.91708 0.00707 0.02283 0.83491 0.85064 0.03278 543.6 0.02584 7.09102 534 0.03734 237.9 0.06965 0.60557 607.3 640.3 25.32 618.1 630.6 177.9 59.16 2002.6 65.19 48.01 539.3 78.3 145.11 236.3 525.7 65.26 606.7 2.41 639.1 636.3 5.73 619.5 4.93 2002.7 6.3 5.19 553.9 13.47 7.88 33.4 527.5 243 637.9 660.8 6.2 625 2122.9 616.3 13.05 18.25 17.76 13.68 0.8 38.22 1.6 20.66 76 0.7 0.1 0.2 -0.9 -0.2 0 27 0.05082 0.0026237 0.0376639 0.00049 0.05154 0.05259 0.26081 0.00072 0.01369 0.00756 0.04126 0.0501 232.6 0.00021 0.00178 0.29331 114.62 0.36983 0.0044256 0.05516 238.3 264.958 0.06378 311 3.07 0.05376 31.7162 0.001946364 0.00478 235.3 0.13454 0.11796 297.7 0.09801 260.7 0.05498 0.05601 0.00137 11.02 0.0012 315.1 0.00131 0.00138 1.29 1.12287 0.00139 0.3752 -2.5 0.2887 0.42326 0.04392 10.9175 0.06518 261.2 0.00199 0.03977 0.002 0.0006379 0.0697 734.2 319.5 7.12048 3.47 0.49706 360.8 3.91746 0.05074 0.14256 0.00192 40.89 0.01439 62.98 0.09922 1.6 0.01001 189.15 0.1545 2158.1 -1.4 411.4 1586.6 0.03743 718.8 0.00184 351.3 15.46 0.00176 1.56579 24.87 54.94 7.88 0.2714 8.4 0.06269 2053.8 764.3 1635 0.05448 407 919.6 9.33 358.4 21.01 228.8 10.02 3.82 2126.6 28.38 55.67 2.2 1617.3 401.39 409.7 17.83 2.7 926.1 20.49 236.9 9.76 5.6 10.27 -3.5 10.91 1.1 956.8 243.8 24.81 43.51 -0.8 -3.6 282930 0.0601631 0.060843233 0.095235 0.0605 0.00387 0.0583736 0.00134 0.05119 0.06183 0.0013838 0.09949 0.07638 0.00122 0.10184 0.0014340 0.00457 0.25855 0.00237 0.1242541 0.00098 0.10146 0.0008642 0.08845 0.00081 0.0532643 0.03992 0.00192 0.72265 0.0606944 0.11138 0.00078 0.00334 0.8511 0.00081 0.0589445 0.17343 0.00083 0.07996 3.35884 0.0544746 0.00142 0.00072 0.05097 0.8457447 0.35429 0.02302 0.70465 0.00237 0.00086 0.0539948 0.08656 0.30239 0.00192 0.0705549 0.05328 0.02079 0.00061 0.95689 609.3 0.00562 0.05528 0.0204950 0.10337 0.00219 1.83127 0.05869 633.5 0.0274851 0.09165 0.00592 0.0004752 1532 0.19556 0.0578 0.0195 7.67753 0.00052 0.05552 621.4 0.02943 0.001453 0.03764 0.00181 543.9 0.00101 133.17 0.0563154 0.05945 0.39026 0.00136 249.5 0.00072 0.05542 0.5142155 0.15786 46.7 0.00053 0.05466 0.86226 0.00368 668.1 0.06753 1105.1 0.00193 0.73456 27.03 0.00167 0.07161 0.0111957 0.09034 2.22326 42.89 0.0021 0.00053 611.4 0.12325 52.63 2018.1 0.25058 0.03994 0.0027 0.00077 193.03 0.0836 0.0275359 0.06952 0.46972 0.00405 0.00079 0.18041 0.0268360 625.2 1.52279 0.00199 33.58 339.8 20.97 0.07387 1482.4 0.0111361 13.87 0.00112 0.06777 0.5143 0.00153 0.00088 0.07242 0.05422 628.4 623 0.06321 546.4 564.8 0.7387 46.9 252.3 0.01606 0.15983 0.0517 0.00087 0.00212 1196 0.11236 5.05 0.36408 0.00108 9.81 0.67264 0.54874 0.01899 239.4 680.8 0.00141 1031 552.2 59.2 0.02055 370.4 0.0014 0.00191 0.58316 4.81 0.51872 4.54 82.13 944.5 5.13 0.00195 0.52103 0.04704 0.02169 69.24 1955.1 0.0043 0.46831 0.0028 423.5 625.2 1494.9 14.89 0.02409 1.53546 4.18 0.14069 0.00432 4.72 32.11 555.5 95.97 0.02809 6.35645 334.6 229.94 0.03729 541.6 622.3 0.0427 26.76 522.1 433.1 0.31391 268.3 634.1 0.06014 13.80833 0.00118 14.9 565.3 20.16 12.63 463.9 0.12806 1151.4 -0.4 71.19 681.7 1056.7 428.8 0.00384 238.2 49.78 0.48931 398.4 2.85 0.001 372.3 12.21 1.42197 11.4377 2194 21.42 974.9 8.18 134.11 75.63 5.9778 3.6 2003.8 1.4 944.9 3.86 4.79582 10.55 10.12 0.03827 81.29 421.2 0.32295 2656.7 0.05299 3.31 104.95 -0.5 10.16 -0.3 334.6 557.5 157.89 0.09544 -1.1 60.17 0.21895 631.4 517.6 55.65 559.2 433.2 0.02796 2.92 16.01 1188.4 7.3 997.7 -2 0.00469 4.65 459.5 19.34 422.7 0.00143 227 391 4.66 8.17 1837.9 3.6 395.1 21.78 9.09 16.12 5.28 0.05232 272 955.8 8.45 939.6 2001.5 0.27907 38.76 5.25 421.3 6.54 2693.8 1.6 561.6 8.52 37.46 0.00118 9.04 -1 44.4 -0.1 522.3 0.00216 10.59 444.2 9.24 4.1 6.46 179.72 12.74 18.35 0.40099 466.5 848.6 425.8 -0.5 3.75309 0.5 12 390 28.55 1759.9 944.7 14.22 2026.3 0.03704 0 269.5 2736.6 0.10582 0.6 15.45 6.67 18.75 18.82 0.9 -0.4 25.78 24.08 17.68 328.2 0 1536.7 33.55 6.2 1 1.5 898.2 1784.2 0.9 2.1 0.1 189.02 -1.7 27.97 284.2 16.04 38.36 328.8 1586.7 15.9 21.46 4.8 7.25 10.91 0.9 1582.8 342.4 22.61 26.85 -3.7 -0.2 le FLR1le - 39LB05 6a6b6d6e 0.060766f 0.057166 0.127096h 0.05876 0.003826 0.05237 0.005176k 0.00261 0.05367 0.10404 0.00318 0.08072 0.00165 0.0949 0.3756 0.00198 0.0905 0.00333 0.00198 0.04853 0.00466 0.86188 0.00142 0.05697 0.00133 0.6432 0.00063 6.76173 0.06102 0.24649 0.00092 0.75659 0.06308 0.3492 0.267 0.00246 0.43374 0.04371 630.9 0.01175 497.1 3.22323 0.02798 2058.1 558.2 129.87 301.6 0.06884 188.43 356.9 35.84 113.71 1526.1 638 70.28 500.4 133.85 2055.7 558.5 11.58 27.99 305.5 11.8 357.1 21.84 7.87 631.1 1420.3 3.86 504.3 5.63 2080.7 12.74 572 33.28 304.1 38.98 34.93 365.8 1462.8 -1.2 25.27 -0.7 8.84 0.1 19.82 16.55 -0.1 -1.3 -0.1 7.7 p ______lb39 lb39 lb39 lb39 lb39 lb39 Sam lb39 lb39 lb39

309

4 4 4 4 7.6 e± 4 50 657 9.9 327 25.07 Ag 355.3514.6539.3 6.88 16.15 259.6 6.27 574.9 3.59 10.36 681.3660.2572.2 8. 526.7432.8627.2 11.18 514.3 20.98 11.78 9.5 11.09 16.5 258.7 4.7 506.7 8.78 1689.7 53.21 1651.9 31.83 1174.5 54.93 1581.12501.21673.7 46.91 1460.2 35.28 1795.1 66.89 1143.6 85.56 1052.5 44.87 72.29 2134.6 70.7 51.5 ) % ( es Ag ) e 2/2 g Pa ( 0.1036 0.00304 0.28489 0.0043 3.99077 0.19443 1689.7 53.21 1616 21.56 1632.3 39.56 4.9 0.05135 0.003480.10151 0.04095 0.00076 0.00176 0.29083 0.29705 0.02026 0.003150.079090.05745 4.17066 256.5 0.00224 0.00349 0.10631 0.19113 148.53 0.08178 1651.9 0.00244 0.00147 258.7 2.18999 0.63915 31.83 0.08277 4.74 0.04227 1676.7 1174.5 508.3 259.2 15.67 54.93 15.94 128.57 1668.3 1127.5 -0.9 506.7 20.88 13.22 -1.7 8.78 1177.9 501.8 26.35 26.18 4.4 0.3 Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Disc. Ratios p g j p q le FLR1 -le 39LB05 6l6n6o6 0.053595a 0.057615b 0.058275c 0.003925e 0.09772 0.009265f 0.05738 0.002175 0.16438 0.056675h 0.05144 0.08309 0.002495i 0.08725 0.10271 0.003555 0.00113 0.00349 0.002715k 0.05923 0.26819 0.00273 0.001065l 0.08133 0.09166 0.427475m 0.0038 0.45275 0.63924 0.003375n 0.10975 0.0411 0.67788 0.00439 0.001275o 0.03283 0.06132 0.07787 0.00424 0.006295 0.29727 0.10719 3.555375 0.02698 0.06217 0.09328 0.00058 0.67568 0.002755r 0.07441 0.2458 9.9519 353.6 0.0051 0.002765s 0.13722 514.5 0.0029 0.001765t 0.04432 0.2957 0.32052 539.2 0.001745u 0.06166 0.46405 0.10729 0.00267 0.00458 4.534724a 0.13274 1581.1 0.19926 0.77925 0.004594b 0.01611 157.02 0.11147 0.05925 505.64e 319.1 0.05787 0.29385 0.17474 3.17704 0.0017 0.00418 2501.23 0.06213 79.94 0.05567 0.00307 4.68862 0.00398 0.00145 0.0607 260.7 46.91 0.21946 0.01074 0.00238 0.05757 355.3 0.89585 0.10784 1673.7 2.04806 131.14 0.0058 0.20821 514.6 0.37139 0.94979 0.05298 575.7 0.00448 35.28 539.3 0.09282 1.88276 0.04654 0.00192 0.00458 1460.2 0.10312 1531.6 0.01293 0.08513 117.52 6.88 0.00636 0.03267 0.06945 1795.1 66.89 16.15 0.08474 0.01372 0.00356 504 0.97975 0.10218 153.29 6.27 2407.5 0.08304 650.6 0.00198 1143.6 6.5421 0.00158 17.13 85.56 680.1 0.05203 259.6 0.77407 361.4 0.07325 1052.5 501.8 0.0019 44.87 1677.8 0.00277 0.72107 27.91 0.55219 7.6 0.39012 574.9 525.5 0.14919 0.00409 1539.6 72.29 93.67 1416.8 0.78212 0.07734 0.60507 3.59 23.36 662.2 0.04795 25.34 58.7 70.74 66.4 1792.3 2134.6 2430.3 0.38139 10.36 576.5 524.2 16.33 30.59 0.06313 0.1377 23.71 1171.3 524.7 -0.5 657 0.11716 438.9 1737.4 263 139.03 22.4 43.02 1038.2 681.3 0 585.1 51.5 628.7 26.85 3.5 0 513.1 351.84 1451.6 16.5 53.91 205.97 328 9.9 170.03 13.06 1765.2 660.2 12.63 4.5 8.4 35.45 0.3 53.35 154.87 2036 572.2 1131.7 429.86 -0.3 526.7 37.16 11.18 0.4 1075 432.8 500.42 649.5 0.1 3.3 678 29.89 20.98 34.35 627.2 514.3 11.78 0.2 693.5 9.54 29.85 24.93 327 2051.6 -2.6 11.09 582.1 17.02 16.5 551.3 37.57 1.5 446.4 -1 25.07 52.52 -0.2 586.7 85.39 480.4 45.63 0.3 31.37 328.1 5.4 0.8 35.97 -0.4 87.11 1.4 86.12 0.3 -0.2 0.3 p ______lb39 lb39 lb39 lb39 lb39 lb39 lb39 lb39 lb39 lb39 lb39 lb39 lb39 Sam lb39 lb39 lb39 lb39 lb39 lb39 lb39 lb39 lb39 lb39 lb39 lb39 lb39 lb39 lb39

310

5 5 5 5 5 5 e± 271 8 243 3.05 372393 5.14 10.22 670 24.8 644 8.27 Ag 2138 80.33 1741 44.04 375.5649.4 6.38 450.9586.2 23.13 584.1446.1262.9 14.71 271.4 9.32 22.8 15.6 49.4 25.3 781.7566.9562.2442.2 53.91 44.4 339.2290.8 44.54 578.8 35.12 955.6 11.1 673.5 4.36 443.2 24.8 971.1 17.4 685.9 27.46 9.04 22.36 589.1689.5 22.94 548.7350.3348.2 10.66 26.4 11.44 12.39 9.42 2246.91018.1 26.99 1174.7 25.42 28.98 1615.51015.9 80.7 43.17 1266.51475.6 111.97 73.29 1516.31479.4 74.48 1479.8 36.92 1123.4 49.0 1554.4 37.51 53.39 ) % ( es Ag Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Disc. Ratios le FLR2le - 05DM127d p dm1dm2dm3dm4 0.05413dm5 0.14161dm6 0.0517dm7 0.07312 0.00253dm8 0.06107 0.00223dm9 0.11014 0.00462 0.05998 0.07765 0.00429 0.39026 0.07716 0.00558 0.05597 0.00856 0.04293 0.00105 0.17108 0.00263 0.10599 0.00441 0.004 0.26484 0.00487 0.00129 0.00462 0.17236 0.48925 0.00397 0.19988 0.01171 0.07246 7.27766 0.30121 0.00275 1.53457 0.02649 0.00539 1.00123 0.00245 3.63179 0.29655 0.02879 1.78158 0.13648 2.22744 376.4 0.12395 0.54056 0.56967 2246.9 0.09541 1017.3 272 0.2176 101.19 0.05553 641.7 1801.7 26.99 1137.9 114.38 191.93 375.5 1125.4 185.06 135.12 451 2124 1018.1 66.01 271 109.92 6.38 649.4 1514.6 182.67 1025.1 25.42 18.56 1174.7 404.4 23.13 59.68 8 450.9 2146.1 15.13 944.3 28.98 1556.5 704.4 18.06 14.71 1038.8 36.38 267.3 54.67 1189.7 124.88 62.89 438.8 34.83 0.2 22.47 68.46 6.4 -0.1 17.9 1.3 36.6 10.7 0.4 -4.8 1801.7 0 1137.9 135.12 66.01 dm10dm11dm12 0.05939dm13 0.05093dm14 0.05943dm15 0.05582 0.00249 0.05129 0.00181 0.05166 0.0063 0.00562 0.0952 0.03841 0.03596 0.01538 0.09483 0.07166 0.00158 0.00049 0.04163 0.00387 0.043 0.00259 0.81207 0.00798 0.2678 0.85943 0.47633 0.0041 0.04356 0.24174 0.01025 0.11682 0.05431 0.39086 0.17001 581.6 237.8 0.12732 583.1 445.1 253.8 88.63 79.82 214.82 270.3 209.67 1112.25 586.2 243 584.1 446.1 568.74 262.9 9.32 271.4 22.8 3.05 15.6 49.4 603.6 629.8 25.35 240.9 395.6 219.8 24.41 63.79 335 8.21 37.36 139.02 -0.8 92.95 -0.2 -0.2 -3.7 -2.2 -0.4 dm16 0.05417dm19 0.05455 0.00203dm23 0.05941 0.00401 0.07105dm27 0.00085 0.06285 0.01382 0.07028 0.00168 0.46456 0.17069 0.00306 0.50062dm35 0.02029 0.00784 0.15978 0.09441 0.04229 1.77452 377.9 0.00313 0.00382dm42 393.7 0.39483 81.65 1.5408 0.26782 0.05828 156.97 958.9 0.10215 0.0057 372 0.00318 393 353.56 3.53713 0.08884 936.6 5.14 1015.9 0.00193 0.28592 10.22 86.94 387.4 43.17 0.75892 412.1 1516.3 955.6 14.06 1036.2 0.05304 28.61 74.48 17.4 144.49 1.6 539.6 1529.7 0.2 946.8 -6.4 115.84 28.99 40.82 1535.6 548.7 -2.2 63.99 11.44 573.4 -1 30.62 -1.8 dm17dm18 0.06505dm20dm21 0.0589dm22 0.05875 0.01016 0.05549dm24 0.00919 0.09954dm25 0.12892 0.02562dm26 0.05388 0.01235 0.09193 0.05217 0.00443dm28 0.00944 0.09113 0.05939dm29 0.07101 0.00477dm30 0.00753 0.29201 0.08288 0.00213dm31 0.00754 0.00677 0.86432dm32 0.0924 0.00583 0.05403 0.06233dm33 0.69095 0.00701 0.04614 0.05589 0.00493 0.09395 0.07447 0.72356dm36 0.17146 0.00365 0.00182 0.57102dm37 0.0067 0.0619 0.00071 0.21797 0.12445 0.00312dm38 4.1968 0.00422 0.06242 0.00424dm39 0.26446 0.33039 0.09259 0.38081dm40 0.11012 0.14862 0.00587 776 0.00623 0.07116 0.13301 0.34653dm41 0.16258 563.2 0.39897 0.05952 0.00545 0.73433 0.00537 0.06226 0.00182dm43 0.00473 0.10952 557.7 0.03766 0.09261 0.00628 0.0015dm44 2.2029 0.01594 431.7 298.26 0.00403 0.11227 0.00298dm45 0.10431 3.30434 307.95 1615.5 0.24797 0.05358 0.00667dm46 0.00428 0.8833 0.39617 0.05347 0.00243 743.15dm47 365.8 0.57224 0.00396 0.09569 0.22046 0.07709 431.83dm48 781.7 1.8736 292.7 0.00249 0.11289 0.24901 566.9 0.06123 0.0063 80.75 581.4 0.92175 0.01176 0.26684 0.09634 0.00391 0.12121 562.2 0.00181 0.03819 0.10654 0.00147 0.92463 188.11 442.2 1266.5 0.00456 0.16695 53.91 0.00198 2.96815 0.05585 90.5 1475.6 44.45 1651.5 0.05549 0.11497 0.00279 229.88 0.0036 7.1174 0.19143 0.80905 44.54 0.0026 685.5 0.10576 339.2 0.10505 447.8 0.89741 111.97 35.12 0.00203 632.5 0.1047 1053.9 0.00154 0.25493 533.4 34.96 73.29 290.8 578.8 3.47742 0.00174 670.6 0.89642 0.30952 0.05203 552.8 0.00142 214.25 1271.1 688.4 11.1 0.35505 119.92 0.1214 458.7 0.00377 0.40109 110.85 93.38 1673.4 1479.4 1512.6 74.73 0.17376 24.85 0.00405 2.0207 4.36 2138 0.87801 191 194.64 673.5 32.96 586 0.04526 443.2 3.34866 176.16 327.6 96.06 0.03354 971.1 683.1 77.95 27.35 36.92 3.93285 1479.8 559.1 -0.8 0.06414 302.1 0.03902 -0.7 80.33 27.46 1182 0.18196 685.9 670 -0.8 353.3 9.04 27.7 22.36 105 348.8 1482.1 213.56 0.18496 -2.5 1428 49.05 61.07 -2.5 1123.4 12.02 2151.4 647.3 642.8 69.89 1554.4 22.94 1071.8 24.85 245.79 459.5 58.74 689.5 157.19 589.1 1524.8 12.85 1741 7.5 37.51 54.32 0.5 68.08 65.35 0.7 664.8 53.39 58.99 350.3 663.3 24.67 348.2 -0.4 26.4 10.66 1399.5 18.3 -2.8 1129.1 44.04 2126.2 1463.9 644 55.8 12.39 60.75 1.8 9.42 601.9 650.3 26.79 8.5 1522.1 1.1 1738.4 112.13 9.43 19.38 308.5 8.27 342.4 29.21 64.97 39.41 0.1 0.4 19.96 1122.5 3.9 -0.7 1492.5 33.92 639.9 24.31 1620.5 21.56 -0.6 -3.4 -1 42.49 21.1 38.07 0.9 0.2 -0.6 6.5 0.5 0.2

Sam

311

4 4 5.01 4 e± 595 8.91 653582 7.67 10.22 277 13.2 580 6.33 353 3.69 445 3 Ag 10341567 37.86 63.64 1625 33.77 1146 21.91 567.6410.8640.2 8.25 11.35 11.49 603.7550.1629.2 4.93 364.6533.5 7.56 367.2432. 15.55 2.56 7.72 7.72 600.1 4.96 397.2969.2236.5 6.87 598.1 11.12 472.9317.9 6.3 15.79 39.12 404.7 4.3 421.2 10.61 13.05 616.7593.3 11.8 594.1361.7573.9 17.21 5.23 638.8 8.17 17.93 2757.71241.3 20.67 83.04 1493.61721.11004.51646.8 19.18 34.57 18.8 14.98 1769.31056.41312.81263.11445.61960.2 37.15 22.42 1178.8 82.04 1270.6 60.57 30.21 30.97 30.75 1116.8 72.15 1822.81743.1 38.25 1815.4 29.15 68.37 1400.11914.91772.81946.1 34.9 45.97 28.59 88.91 29.59 1095.5 25.84 1106.72946.11098.3 64.45 11.15 17.24 ) % ( es Ag ) e 1/2 g Pa ( Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Disc. Ratios 1234 0.191815 0.059916 0.073737 0.0591 0.002438 0.08182 0.002399 0.05513 0.0014 0.09699 0.51671 0.00227 0.20874 0.00357 0.0967 0.06097 0.00415 0.17502 0.00336 0.00447 0.09204 0.01444 0.21191 0.00319 0.00152 0.0658 0.26424 0.0015 13.10355 0.50163 0.0014 0.00445 0.10441 0.85077 0.00188 0.45519 0.00469 1.71883 0.02522 0.69683 2.50372 0.04257 0.00197 0.4902 3.87634 0.04843 2757.7 12.75344 0.03214 0.18217 0.90493 600.3 0.04163 0.26353 2.72522 20.67 1034 1241.3 570.7 0.05827 84.16 417.4 1567 2685.2 2895.8 37.86 83.04 81.29 638 19.01 595 159.95 107.97 63.64 1039.7 1239 567.6 2687.1 108.84 2620.8 410.8 8.91 1511.5 8.24 23.66 8.25 32.77 108.25 640.2 11.35 625.1 23.93 1015.6 1273.1 2661.6 536.9 11.49 3.2 1608.8 405 23.35 18.09 52.79 201.2 19.23 654.4 54.87 28.37 -0.6 0.9 0.2 11.5 31.06 0.6 4 1.6 -0.4 2895.8 107.97 10111213 0.0598714 0.108215 0.0727216 0.08488 0.0012717 0.08274 0.0022318 0.09096 0.0042419 0.12027 0.00368 0.0975520 0.10005 0.0026221 0.07927 0.30642 0.00146 0.1780722 0.08306 0.00211 0.2419323 0.00084 0.05469 0.00184 0.2096924 0.07035 0.00124 0.00348 0.2407625 0.05193 0.0041 0.00315 0.3442226 0.00507 0.05104 0.00258 0.7557 0.2762927 0.00322 0.07683 0.00211 4.31098 0.1936428 0.00194 0.11143 0.0085 0.21671 1.9229329 0.00351 0.10666 2.84998 0.00402 0.0635630 0.00268 0.05999 2.23937 0.00149 0.02 0.16224 0.1734931 0.00143 0.05657 2.91965 0.00181 0.1666932 0.00397 0.05275 0.04391 5.35361 0.21397 0.00407 0.0373633 0.00113 0.11097 3.62335 0.11477 0.00442 0.1919134 0.05943 2.12885 0.08041 0.01125 1769.3 0.002 0.3301235 0.08881 598.8 2.51823 0.19613 0.00206 1006.2 0.00214 0.3044 1312.836 0.00102 0.11726 0.46165 0.00216 0.1241 0.09722 1263.137 0.00175 0.10841 0.05256 0.00178 0.07611 1445.6 37.15 0.00297 0.05487 1.59577 0.15933 0.00217 0.05055 0.33549 114.09 45.34 1960.2 0.11933 0.26133 0.02451 0.00189 82.04 0.32535 0.0064 0.00269 0.05535 1.92846 0.00544 60.57 0.09415 1625 1178.8 0.00653 4.76165 0.06841 0.00408 1723.1 30.21 0.25358 0.05803 1270.6 1056.4 0.0007 0.02151 0.00199 30.97 600.1 0.33335 1396.7 0.00356 4.47431 0.69439 400.1 0.05772 0.00495 0.3023 1227.2 0.00107 0.63048 0.15492 30.75 17.2 33.77 0.0648 22.42 1390.6 0.00314 938.5 72.15 0.37408 0.34361 282.1 26.31 1906.9 0.00302 4.96 242.8 0.34889 0.05974 5.0065 0.06752 101.44 17.16 1116.8 0.71944 0.13963 1695.5 1089.1 0.0082 10.08 1822.8 1141.1 1572.6 3.14635 0.00175 1368.8 0.01606 16.82 1264.5 60.28 0.00328 5.34832 336.61 571.5 1193.5 172.02 1743.1 0.00216 0.2016 397.2 603.2 38.25 33.17 57.91 0.026 13.52 1387 4.87726 7.71 474.1 0.13729 29.15 0.47831 1877.5 56.43 21.02 5.82951 0.17877 11.57 969.2 317.9 35.97 277 236.5 0.52271 68.37 6.87 152.01 1815.4 1554.7 1131.7 1158.2 20.83 -5.4 0.5154 1277.3 31.34 389.03 1400.1 3 0.0398 1839 0.20804 -7.1 583 11.12 1914.9 -0.2 0.05261 86.52 6.34 3.1 13.2 1713.1 27.25 385.4 598.1 9.47 17.06 45.98 34.9 472.9 1772.8 4.2 45.97 14.42 3.1 968.6 1946.1 406.8 28.59 63.77 31.65 235.7 317.9 293.7 17.03 426.2 15.79 1091 3.6 3.5 1815.8 39.12 1778.2 0.5 1456.9 88.91 26.76 29.59 1726.2 158.26 1854.6 17.32 44.12 535.4 580 188.21 4.3 20.01 0.7 17.32 496.4 27.3 16.16 1702.7 64.71 -3.5 14.59 404.7 1904 35.8 2.6 421.2 1820.4 1.8 322.7 6.33 -1.5 86.96 1444.1 40.61 1876.6 -1 10.61 15.76 2 34.08 13.05 11.87 33.62 550.3 0.9 1798.3 0.3 28.59 396.9 1950.8 427 15.35 89.04 0 -4.5 0 30.93 27.34 3.6 35.08 0.5 4.5 2.5 0.5 1.2 ______le SDH -le 44LB05 15 0.05991 0.00072 0.09818 0.00084 0.82666 0.01274 600.2 25.77 603.7 4.93 611.8 7.08 -0.6 1617181920 0.0932821 0.0584422 0.1053923 0.07266 0.0009526 0.10123 0.001227 0.06064 0.0020128 0.05375 0.00068 0.2476429 0.05829 0.00082 0.05402 0.08907 0.00211 0.29302 0.06128 0.00067 0.17327 0.00305 0.05945 0.00129 0.05557 0.284 0.00207 0.00128 0.10253 0.00795 0.00101 0.05819 0.00151 3.16476 0.00154 0.08629 0.00108 0.68904 0.05861 0.00288 0.00266 3.98145 0.1066 0.00042 1.69304 0.05946 0.09448 0.0013 0.06938 0.01754 0.00127 3.96335 0.80706 0.15507 0.42033 0.02347 0.00132 1493.6 0.00173 0.70994 0.00083 0.43372 0.06078 0.03595 546.3 1721.1 0.00589 0.86177 1004.5 0.78473 19.18 0.01945 0.52158 0.01864 1646.8 626.3 44.41 34.57 0.01834 360.7 0.02573 18.8 1426.3 0.0118 539.9 371.8 14.98 1656.6 73.33 550.1 649.1 15.77 27.86 583.7 1030.1 48.45 434.8 1611.5 39.61 83.78 7.56 629.2 1448.6 35.07 364.6 8.3 55.36 1630.4 14.46 533.5 42.11 367.2 15.55 532.2 14.5 2.56 1005.9 653 1626.7 31.61 582 7.72 600.8 432.4 7.72 10.55 8.85 356.3 5 12.43 7.67 10.22 4.2 544.7 20.2 365.8 5.01 -0.7 4.21 -2.8 631.1 2.4 588.2 11.55 13.2 426.2 -0.5 14.64 -1.1 10 1.2 7.87 1.3 0.3 -0.6 0.6 121314 0.07602 0.0605 0.0597 0.00099 0.00165 0.0006 0.18732 0.10039 0.09641 0.00246 0.00201 0.00068 1.75564 0.84723 0.80279 0.03538 0.02994 0.01017 1095.5 621.6 593.2 25.84 57.8 1106.9 21.23 616.7 13.37 593.3 1029.2 11.8 4 13.04 623.1 598.4 -1.1 16.46 5.73 0.8 0 30 0.0536 0.00103 0.05629 0.0006 0.43703 0.00948 354.2 42.88 353 3.69 368.2 6.7 0.3 3132333435 0.0593436 0.0541337 0.0764438 0.21533 0.002539 0.07612 0.0013940 0.05923 0.0025241 0.09188 0.00149 0.07797 0.09654 0.00066 0.0577 0.05581 0.00127 0.19611 0.06107 0.00158 0.55745 0.12725 0.00087 0.00293 0.17122 0.00062 0.00086 0.09311 0.00692 0.00242 0.28281 0.00774 0.00093 0.70671 0.19408 0.00131 0.42961 0.07146 0.00138 1.87556 0.10417 15.85514 0.0063 0.48132 0.03683 0.00212 1.77973 0.01248 0.74784 0.0005 0.09851 0.30867 0.00307 3.43344 0.00486 2.01077 0.0224 579.5 0.01995 0.54416 376.4 1106.7 0.84559 2946.1 0.1145 8.14549 0.03451 1098.3 88.93 0.00708 575.7 56.68 64.45 0.0429 11.15 0.12301 1464.7 1146 17.24 594.1 444.3 1154.4 46.01 361.7 2856.1 641.6 2060.4 32.44 21.91 17.21 1018.9 37.32 32.05 5.23 573.9 24 82.98 12.9 1605.5 542.8 1143.4 7.22 1072.5 2868.1 362.9 8.17 31.68 638.8 11.45 445 21.91 1038.1 34.79 2533 18.59 8.87 1512.1 567 17.93 1119.2 8.18 21.17 -2.6 -4.7 3 3.8 26.22 11.59 622.2 11.64 4 2247.3 7.8 441.2 -10.9 23.6 13.66 0.3 0.2 4.66 -27.8 0.5 -0.2 1464.7 2060.4 32.44 12.9 p lb44 lb44 lb44 lb44 lb44 lb44 lb44 lb44 lb44 lb44 lb44 lb44 lb44 lb44 lb44 lb44 lb44 lb44 lb44 lb44 lb44 lb44 lb44 lb44 lb44 lb44 lb44 lb44 lb44 lb44 lb44 lb44 lb44 lb44 lb44 lb44 lb44

Sam

312

5 e± 339 5.14 648 10.54 Ag 429.6506.2971.9638.7403.6658.5563.3 16.82 13.8 334.1 16.3 552.2 37.93 952.7 6.82 430.3 12.03 564.8 7.33 5.14 9.26 602.7 13.32 280.3 7.1 13.45 975.5645.2406.3 5.77 6.33 454.6339.1 16.68 12.68 563.2 9. 461.6 11.94 6.07 480.3320.2 27.98 376.3637.6 9.15 558.5 11 465.6524.9 3.17 886.4 7.2 18.97 394.1 7.42 554.2 18.82 7.04 8.94 453.3 18.18 9.79 7.95 1104.1 182.46 1215.11054.7 97.58 1697.91404.9 24.98 63.23 1380.71467.3 67.16 1589.4 66.29 1782.6 55.6 49.65 1229.5 33.05 1749.3 68.63 2687.41022.62055.3 39.58 1123.6 35.21 1458.31123.7 18.8 62.69 54.85 74.16 55 ) % ( es Ag ) e 2/2 g Pa ( Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Disc. Ratios 38394041 0.0763442 0.055343 0.0571744 0.07294 0.007445 0.06118 0.0059646 0.05475 0.0043247 0.06151 0.003348 0.05887 0.19122 0.0109249 0.07893 0.06892 0.00252 0.081750 0.05321 0.0030251 0.16273 0.0587 0.00222 0.00828 0.1041552 0.07567 0.00434 0.00279 0.0646153 0.05567 0.00226 0.00232 0.1075654 0.05877 0.00294 0.00264 0.091355 1.6936 0.07409 0.00247 0.0065 0.1516456 0.4523 0.08074 0.00113 0.00247 0.62383 0.053257 0.05312 0.00207 0.00429 1.6666658 0.08944 0.0602 0.00208 0.23919 0.00124 0.15927 0.7617259 0.05187 0.00382 0.50716 0.00414 0.05416 0.0690360 0.05513 0.07401 0.85409 0.00247 0.00084 0.0915661 0.10575 0.07108 0.00157 0.13824 0.78421 0.0014962 0.15664 0.10407 1104.1 0.00409 0.0024 0.02674 1.6482 0.1976863 0.06108 0.00118 424.1 0.00418 0.05181 0.39752 497.764 0.05495 0.00228 0.054 0.00336 1012.3 0.7788265 0.03572 0.08904 0.00175 0.00365 182.46 0.098 0.04443 1.77422 645.666 0.13201 0.05611 0.00479 0.48904 0.00366 401.9 0.1777667 0.01876 224.07 0.0531 0.74607 0.00409 657.2 0.16337 158.768 0.04302 0.08792 0.00084 89.15 1.33425 0.0032 0.29977 562.269 0.08733 1128 0.00103 2.07547 0.00409 343.25 0.02478 0.092 0.00098 1170.4 0.1052770 0.05889 0.00456 99.29 429.6 0.06395 0.06506 0.00268 337.871 101.82 0.00301 0.39623 0.0613 506.2 0.00311 0.05216 971.9 555.872 0.05627 0.00556 0.25928 0.31606 44.82 0.16693 1086.4 0.07306 0.83865 80.13 638.773 104.86 0.09816 0.00217 0.00274 0.00971 438.9 1.8299 16.82 403.674 0.05674 0.00157 0.05401 1.52903 658.5 558.4 0.02023 0.24122 93.24 0.00256 13.875 0.10899 1043.9 1006.1 4.28201 0.00317 16.3 0.02625 95.07 0.0046 0.0264776 0.05275 0.00199 1215.1 37.93 64.16 0.83884 563.3 0.00265 910.2 0.24694 378.9 0.091377 0.05422 0.1578 95.69 0.49092 6.82 0.10168 0.0035 0.00099 12.0378 151.81 0.06081 0.00427 0.10576 492.2 90.16 334.1 333.8 0.30189 0.07422 995.9 55.62 0.00279 0.08334 3.20497 0.53931 552.2 279.6 0.05996 0.0014 575 0.27115 97.58 610.9 7.33 952.7 21.480 37.87 0.05884 0.00376 0.00316 0.04069 0.00474 416.5 0.37279 626.9 430.381 0.05629 1041.9 0.07735 2.77327 0.00527 959.9 564.8 34.47 0.00181 5.1482 101.83 40.27 0.05801 -2.4 0.00152 1697.9 0.01321 834.7 0.04495 0.31239 0.2084 9.2683 170.89 0.06901 0.00386 13.32 0.05093 587.9 1162.8 90.28 3.15512 988.9 0.00203 52.57 0.06011 0.89438 642 -1.3 84 0.02066 18.02 28.37 0.10702 410.2 0.16867 109.88 0.0066 0.00184 7.1 13.45 0.10397 0.8689685 339.9 93.46 -1.8 0.1838 0.58904 0.0021 0.21013 339 63.23 4.3 9.9186 1036.1 0.05452 0.00309 584.8 25.79 3.35906 0.00179 280.3 456.3 0.16883 20.33 50.62 1404.9 0.00052 0.0904987 0.00118 1.1 0.1758 0.0588 602.7 0.00235 1054.7 123.73 0.58935 -0.4 565.9 -0.2 332.888 0.04614 158.32 0.07323 0.00325 1380.7 404.3 0.0749 13.63 0.03848 0.00396 975.589 31.96 1140.7 0.12689 0.01288 0.08483 1690.2 4.81509 860.7 0.00977 24.56 0.16434 5.14 0.36039 0.147490 6.33 154.35 1467.3 0.00126 67.16 23.8 -0.2 0.0765 0.43833 24.98 0.30082 5.77 0.00275 0.04241 0.09157 37.19 645.2 0.87016 563.2 0.00355 406.3 110.35 16.9 66.29 649.7 0.05606 0.00314 55.11 16.68 0.49326 27.58 2.60237 1.1 462.1 0.17582 22.69 0.0046 0.00119 0.06304 13.2 338.9 0.01094 1589.4 278.9 0.0771 0.70519 0.7 454.6 0.02824 1056.2 0.00159 1486.2 0.00992 55.6 0.00354 618.4 0.08978 12.68 0.00365 0.09238 0.17191 -1.2 339.1 480.9 323.79 1689.9 9.5 942.1 0.00285 0.5439 1393 0.00726 0.6707 0.69642 87.3 4.7 1782.6 14.72 0.35487 21.4 2 120.9 0.02988 20.25 56.62 0.003 23.55 11.94 1.38333 49.65 0.00217 318.2 0.19041 4.68756 14.62 380.2 618.5 0.00166 1422.7 0.25073 58.03 0.00342 563.2 6.07 632.4 131.48 40.82 0.07285 405.5 22.15 0.07209 1170.4 0.03074 11.771 1458.4 0.00766 33.05 461.6 -1.6 1277 0.05053 438 0.17886 1546.6 648 0.49956 -0.3 -1.3 561.1 0.20731 0.01013 19.46 59.07 33.11 0.76686 125.76 0.00491 1.73897 1.4 27.98 321.7 1348.4 480.3 27.71 176.34 0.5 0.00132 -1.8 0.70052 50.32 6.19234 463.2 529.7 1752.4 19.56 9.15 0.09624 1446.3 0.00229 281.57 29.65 1.90503 10.54 104.86 1749.3 0.0442 73.44 899 3.13474 320.2 376.3 0.12428 -0.5 648.7 45.39 1043.9 15.28 637.6 0.5517 11 1494.9 2687.4 15.17 0.5114 1 -6.5 241.36 41.26 77.85 470.3 1229.5 0.37464 1.9137 635 392.5 0.22305 0.4 39.58 3.17 558.5 94.23 1020.3 7.2 559.7 18.97 52.7 -1.9 -1 0.03221 1787.5 38.28 470.5 35.21 465.6 68.63 24.59 2055.3 55.62 524.9 0.08269 3.4 1108.1 25.07 358.54 1458.3 312.5 1695.4 7.42 369.1 95.18 635.7 30.7 0 98.7 886.4 27.09 1301.3 454.2 18.82 2584.8 3 62.69 7.04 0.1 239.48 1123.7 17.54 394.1 8.17 541.9 74.16 0.3 19.93 50.15 1022.6 189.05 8.94 31.33 554.2 1.9 441 0.1 109.4 1957.8 536.6 1123.6 1765 18.18 17.79 1442.2 55 18.8 -0.6 -0.9 1.1 2586.4 4.1 881.9 9.79 47.41 36.43 54.85 453.3 18.4 411.4 37.01 25.32 1023.1 0.5 55.7 1060.8 21.53 2003.4 1082.8 578 7.95 -0.5 65.17 1441.3 46.07 3.5 0.9 12.54 130.95 72.2 4.6 1.5 54.78 446.1 25.4 -0.4 1085.9 -0.2 -1.5 21.08 5.5 1.2 28.82 1 0.2 6.1 ______le SDHle - 44LB05 p lb44 lb44 lb44 lb44 lb44 lb44 lb44 lb44 lb44 lb44 lb44 lb44 lb44 lb44 lb44 lb44 lb44 lb44 lb44 lb44 lb44 lb44 lb44 lb44 lb44 lb44 lb44 lb44 lb44 lb44 lb44 lb44 lb44 lb44 lb44 lb44 lb44 lb44 lb44 lb44 lb44 lb44 lb44 lb44 lb44 lb44 lb44 lb44 lb44 lb44 lb44 lb44 lb44

Sam

313

e± 370 5.75 Ag 1760 28.23 10141676 39.48 35.91 986.1313.7 14.87 316.1 11.73 421.8521.6 6.18 5.33 8.46 989.2402.3700.6 12.49 537.4427.1400.4456.8 6.04 12.87 7.83 6.44 6.49 315.8 6.7 963.9 9.17 23.03 599.6623.3583.6342.2 10.18 11.26 8.42 6.78 1789.43440.61056.32740.8 86.46 19.61 2741.2 44.82 1056.4 21.15 2674.3 23.07 44.84 1746.9 23.09 32.34 1936.41526.31015.3 26.83 3336.1 39.54 1031.8 64.78 1188.11060.2 25.37 1074.51233.5 49.55 1754.9 35.56 31.03 69.32 1045.5 63.36 33.82 1788.8 48.77 1562.8 30.83 33.22 1021.61013.72701.31018.4 30.2 86.68 1199.61074.5 26.11 86.93 24.31 58.11 ) % ( es Ag ) e 1/2 g Pa ( Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Disc. Ratios le MG - MG le 14LB07 123 0.073284 0.072995 0.107656 0.185357 0.0011 0.07316 0.003218 0.07154 0.001689 0.0801 0.17794 0.00296 0.16484 0.07522 0.00323 0.05255 0.3149 0.00193 0.00235 0.532 0.00369 0.16999 0.001 0.00222 0.16528 0.00431 0.00587 1.82441 0.00778 0.00375 1.48482 0.16437 0.20273 0.00269 0.04987 4.72665 0.03357 13.77347 0.00289 1.66772 0.09727 0.00257 0.00191 1.69268 0.12011 0.52747 1.71663 0.11169 1021.6 2.18957 1013.7 0.36007 0.06764 1760 0.07655 2701.3 0.02641 1018.4 0.04203 30.2 86.68 973 28.23 1074.5 26.11 1199.6 86.93 309.6 1055.7 983.6 54.1 1764.8 58.11 2749.9 24.31 1012 236.05 12.85 20.43 986.1 21.14 32.75 1189.9 981 1054.3 313.7 20.66 924.2 2734.3 1772 14.87 13.76 12.07 15.98 996.3 11.73 39.75 36.25 1005.8 1177.7 21.3 1014.8 42.51 -3.6 312.3 3.2 25.51 8.41 -2.2 28.61 -0.3 31.38 0.7 -1.5 0.9 9.4 -1.4 p 101112 0.1049813 0.2943314 0.052715 0.07456 0.0096616 0.18985 0.0037517 0.0552718 0.31993 0.00267 0.05777 0.0016719 0.67385 0.18989 0.0024620 0.07456 0.05025 0.0008521 0.0177 0.17021 0.00182 0.07322 0.0088 0.51201 0.08793 0.0026923 0.06762 0.00101 0.18234 0.00167 0.0025824 0.08428 0.07207 4.66491 0.0066725 0.52302 27.29816 0.10688 0.00144 0.00165 0.0008826 0.16439 0.10284 0.34213 0.00256 0.00142 1.6897927 0.05472 1.32197 13.37142 0.00126 0.0071328 0.57755 0.16855 0.19129 0.06263 0.00191 0.00248 0.5059929 0.49913 0.05819 0.01842 0.00202 0.6619130 0.05434 0.16584 0.25974 0.0554 13.21536 0.00148 0.00242 0.0027531 0.31143 1714 0.0547 3440.6 0.00242 0.00676 1.6807732 0.00784 0.28354 0.05597 0.00145 0.0022633 0.02508 315.7 0.11868 0.0644 0.35939 1056.3 0.00452 1.67614 2.2810134 2740.8 0.00155 0.05408 0.1148 12.72513 0.0042435 0.05376 0.08694 0.00181 160.28 0.09491 19.61 423.1 1.6357436 0.0014 0.07305 0.001 520.9 0.0685 0.04542 4.4566837 0.0018 111.04 2741.2 0.0628 0.00223 0.05271 44.82 0.33525 0.06407 0.00132 4.03336 21.1538 0.0017 0.27524 0.07344 1056.4 0.00202 1789.439 0.03555 3320.7 0.07096 0.34027 0.00239 0.00107 33.6940 0.14219 0.00107 0.07365 0.47482 0.05908 0.9575 0.00433 316.1 67.81 0.72127 23.07 101441 0.13874 1013.3 1380.9 0.27498 2674.3 0.00112 0.07964 2665.242 0.0045 0.00463 0.07469 0.1729 44.84 86.46 0.00411 987.9 33.89 0.5252643 0.05021 0.00094 0.07522 0.01426 0.47378 1746.9 0.00184 421.8 0.00431 0.0486944 0.02147 0.52184 0.0815 0.00145 521.6 14.19 0.6706 35.56 23.0945 2712 6.18 1676 39.48 0.16127 0.00315 0.10735 28.44 5.26055 0.00116 0.00149 0.0165846 0.17305 981.1 3394.2 0.07316 1761 0.43311 0.01759 0.00266 35.3347 0.18676 400.1 0.06007 32.34 3.586 0.01481 0.01038 695.6 0.00415 536.348 5.33 0.18047 0.00269 1004.7 0.07415 1.71778 0.12424 1128.4 2610.1 1004.1 0.00201 0.00274 2706.2 298.8 0.3354949 8.46 30.18 35.91 0.17023 0.06059 0.01476 20.72 0.00255 236.95 0.0026350 428 0.05939 400.1 13.74 0.20041 25.04831 0.00202 989.2 0.00241 0.14942 1.5578651 1747.8 0.29387 59.46 450.8 0.05331 20.51 0.0836 0.00182 0.00331 80.12 54.17 415.7 1.77399 0.02878 1936.4 0.11661 18.35 0.10936 14.91 29.05 13.34 2695.2 13.94 0.00227 1609.2 515.8 2.07658 0.09747 0.00383 374.2 0.09677 1.19826 0.00145 1001.3 0.00432 1.85993 0.12976 4.5 0.17364 -5 71.85 60.65 1526.3 0.00253 12.49 22.24 1.81698 0.06494 0.0022 0.10152 402.3 54.52 1015.3 700.6 0.00187 5.28 537.4 1206.4 0.00173 2659.5 316.2 25.67 26.83 0.05244 4.4 0.09475 999.5 2.00625 21.28 15.32 3.4 0.00173 -0.1 4.52187 0.03527 0.0027 3336.1 0.05452 20.36 69.13 0.00192 956.2 0.09981 0.31954 400.4 1722.9 39.54 1.12995 427.1 984.1 1031.8 0.00143 0.85139 0.26213 19.43 456.8 64.78 24.8 6.04 0.10564 176.29 1188.1 12.87 17.23 0.00111 1888 0.14884 7.83 1640.9 1.3 1.75637 0.3 1060.2 -0.1 25.37 0.80688 0.0045 0.05268 7.7 370 114.25 1074.5 26.46 0.00372 0.76616 0.03658 13.7 1566 49.55 6.49 6.44 1028.1 1233.5 0.4286 315.8 19.9 394.5 27.99 35.56 0.06094 1754.9 6.7 682 551.4 0.03813 22.25 2.9 1.1 31.03 3308.2 4.8412 3.42915 0.02222 1018.4 963.9 69.32 606.1 -0.1 1028.9 5.75 393.8 0.02272 21.77 428.7 -0.1 17.34 63.36 1103.8 1045.5 9.82 33.82 1862.5 9.17 12.66 25.26 4.5 624.7 426.4 0.13733 0.09357 1069.6 40.06 581.5 1013.4 23.03 69 15.06 1546.4 12.12 71.2 365.4 11.04 1015.2 1380.9 1177.5 342 20.15 14.28 48.77 1660.8 293.8 1788.8 1562.8 -0.6 9.88 3310.1 -0.2 13.14 78.94 -0.8 18.22 52.12 953.6 33.08 31.23 1036 10.46 599.6 -0.1 711 1141.1 20.59 1032.2 0.2 103.84 21.54 35.56 21.88 46.71 2.9 30.83 33.22 1067 623.3 -1.4 1051.6 51.51 583.6 23.77 -2.9 17.31 1117.6 -1.4 1.2 10.18 14.83 342.2 12.68 1735 1787.5 1500.7 12.52 0.1 1.1 35.98 11.26 -0.9 8.42 35.68 0.3 1029.5 625.4 7.7 767.7 27.37 6.78 22.01 19.02 600.7 -1 6.1 577.6 22.45 20.06 5 25.11 1792.1 1511.1 362.2 6.1 21.43 12.77 1.4 23.87 21.45 1.1 31.9 16.15 0.2 -0.4 0.1 4.5 -0.1 1018.4 69

Sam

314

e± 551421 10.26 6.47 Ag 413.1347.4312.9559.2 9.06 6.37 7.2 350.4 8.99 294.3 7.32 345.7 12.56 9.98 1747.72885.41796.7 29.37 1989.11192.51135.7 29.62 1079.2 31.44 30.88 85.54 1861.6 44.7 59.74 1177.71046.9 36.17 1282.91149.1 51.52 1203.8 40.07 41.19 1033.6 38.58 1007.71086.3 66.93 1779.8 39.89 16.8 38.8 30.39 ) % ( es Ag ) e 2/2 g Pa ( Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Disc. Ratios le MG - 14LB07 p 525354 0.1069355 0.0586456 0.0551757 0.2074 0.0017459 0.1098460 0.0024 0.12224 0.0015561 0.30313 0.0798262 0.00382 0.07549 0.08924 0.0019265 0.06748 0.0754 0.00417 0.0021566 0.05508 0.51733 0.0035767 0.31575 0.05339 0.00173 0.00782 0.0010768 0.36308 0.11384 4.2485469 0.18835 0.00823 0.00229 0.05275 0.00449 0.0035170 0.19266 0.07922 0.69728 0.00221 0.0052471 0.48995 0.05883 0.17228 0.00231 0.10151 0.004972 14.37252 0.06617 0.0742 0.00332 4.98862 0.0082773 0.05536 0.08359 0.03456 0.002174 0.34033 6.45919 0.01556 0.07809 0.00289 0.00197 0.6979775 0.0015 0.04974 3.11361 0.05359 1747.7 0.14592 0.0010476 1.92293 0.00149 0.08028 0.18614 0.00179 0.005277 0.20667 0.09063 0.05224 553.8 0.00154 1.7625 0.0011778 0.80887 0.07371 2885.4 419 0.16851 0.51329 0.0026679 0.21837 0.40338 0.31058 29.37 0.07075 0.0031 1796.7 0.00279 0.0015280 0.19992 5.34558 0.07602 0.00778 1989.1 0.34227 0.07587 0.00244 0.05586 0.05335 86.97 0.03549 0.00147 0.00329 1192.5 0.20929 0.01851 29.62 0.10882 0.00288 2.19886 60.91 0.00389 1706.8 1081.6 0.70007 31.44 0.04671 0.20059 0.00652 0.17556 0.0012 0.02311 1.73292 30.88 0.00411 1079.2 0.00495 2.63626 0.1692 415.5 85.54 0.00183 0.09156 2687.8 2.07697 551 0.00204 345.4 0.02742 0.18354 194.81 20.63 0.00253 1768.9 1861.6 421 0.05509 0.04662 0.42098 2.15427 0.08635 318.2 0.32411 1996.8 0.00305 59.74 0.05608 0.00712 0.35343 1112.4 136.48 1177.7 34.96 1.74097 1135.7 0.00163 1683.5 560.8 90.95 10.26 22.01 0.02319 36.17 0.00447 0.12362 1046.9 1282.9 1.72333 6.47 136.65 0.05366 1024.7 1.6449 24.8 1149.1 0.04621 2774.6 413.1 26.59 0.39367 51.52 19.64 4.97247 44.7 537.2 1817.4 347.4 71.28 1888.3 1203.8 353.6 0.13217 40.07 41.19 312.9 404.9 0.21167 15.91 2040.4 295.7 0.03898 38.58 1033.6 1436.1 46.1 1100.4 0.11873 9.06 24.74 20.68 1089.1 2.7 559.2 25.03 66.93 6.37 1003.9 107.88 950.1 1273.2 10.61 1095.6 28.13 199.66 1031.8 1174.9 308.47 343.6 7.2 39.89 1779.8 16.86 107.89 8.4 420.7 1876.2 1.8 1225.1 0.5 350.4 13.44 344.1 8.99 108.44 17.39 162.68 27.89 -0.5 15.47 294.3 7.3 -0.5 1042.7 196.62 1180.7 30.39 298.9 -5.5 23.81 32.1 1020.8 21.93 1007.7 13.39 1310.8 538.8 7.32 1086.3 1141.2 29.06 5.5 13.89 345.7 12.56 1809.8 17.49 17.32 1166.4 0.6 24.11 -1.7 16.8 16.38 -0.6 356.7 18.51 38.8 1023.8 307.3 21.78 7.1 9.98 1.7 39.79 4.4 1017.3 0.8 16.57 0.3 17.12 987.6 -2.5 40.26 1814.7 337 -1.9 49.28 81.26 0.9 20.19 -1 0.5 28.4 -6.5 0.9 -1.9 -0.6

Sam

315

e± 383 6.94 690 15.23 Ag 261.5419.3517.3 2.99 21.46 10.53 255.8660.5 10.35 639.3 24.59 463.1 24.72 435.7421.1 8.22 330.4 4.16 19.32 239.5534.8 5.61 768.8372.7 7.6 15.77 267.2 10.45 313.8 8.97 5.56 385.5243.7 7.54 384.5 15.21 5.12 7.18 2696.71165.81507.3 18.4 1045.71175.3 40.85 49.33 1733.8 25.28 1118.8 33.17 1830.91373.5 52.71 1411.1 33.02 1044.7 44.81 1360.2 81.81 1982.4 38.39 24.99 1716.7 62.35 1083.8 49.33 1455.7 23.27 1727.4 79.33 17.38 1457.4 78.37 2027.7 36.87 1087.5 25.93 1383.11026.7 46.83 1361.6 90.32 30.32 1238.2 87.49 1089.2 42.22 12.91 ) % ( es Ag ) e 1/2 g Pa ( Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Disc. Ratios 123 0.051494 0.055315 0.184846 0.057587 0.00162 0.078758 0.00793 0.093969 0.00207 0.06249 0.00314 0.07471 0.0414 0.00165 0.07913 0.0672 0.00249 0.5042 0.0035 0.08356 0.00432 0.00048 0.19746 0.00134 0.00355 0.2513 0.0041 0.11297 0.00177 0.17611 0.28312 0.002 0.20442 0.52468 0.00341 12.26984 0.70236 0.00263 0.00461 0.0096 0.00167 0.08731 1.99504 3.18442 0.40974 0.04706 1.06882 1.71765 262.8 0.06819 2.1463 424.7 0.16383 2696.7 0.0818 513.5 0.16327 0.06102 1165.8 70.56 1507.3 291.7 18.4 1060.8 690.9 115.77 1175.3 40.85 261.5 49.33 419.3 2631.8 112.16 517.3 115.2 33.17 1161.7 1445.2 2.99 21.46 1045.7 17.58 10.53 690 1199 10.74 17.56 25.28 253.1 428.3 2625.3 540.2 15.23 1113.8 8.91 1453.4 58.15 31.35 1015.1 7.6 28.07 23.12 738.2 39.75 1163.9 1.3 2.9 61 0.5 -0.8 0.4 40.15 4.6 19.69 1.5 0.1 -2.2 le ML - ML 66LB06le 101112 0.0513213 0.0613914 0.1061215 0.0769116 0.00589 0.1119217 0.00633 0.061118 0.00311 0.0875919 0.00129 0.08933 0.0404820 0.00281 0.07403 0.1078921 0.05662 0.00643 0.3008522 0.00383 0.08699 0.1878223 0.00182 0.00167 0.12178 0.3312624 0.00436 0.00423 0.0556325 0.10425 0.00266 0.00484 0.10513 0.2163826 0.00288 0.00148 0.30652 0.24162 0.05527 0.00343 0.07557 0.0048 0.77302 0.1759328 0.00144 0.05318 5.07446 0.00423 0.0744929 0.00135 0.00483 0.09144 1.90556 0.03817 0.236730 0.00251 0.10575 0.34901 0.09798 0.0069231 5.13074 0.00307 0.00456 0.09574 0.06992 0.352832 0.00137 0.9477 0.05106 0.0026 2.96777 0.30938 0.0512733 0.00084 0.05796 2.93382 255.3 0.003934 0.00464 0.00597 0.28334 0.09152 0.06751 1.67564 0.17574 652.835 0.00499 0.00069 0.06638 0.58665 0.13111 0.24476 1733.836 0.05259 0.00481 0.00221 0.12492 1118.8 0.25373 0.1115537 0.00482 0.05406 2.65288 5.82659 0.31329 0.15803 1830.938 0.00179 0.00316 244 0.07861 0.0032 0.53649 0.23093 207.12 0.0330139 0.05158 0.0023 1373.5 642.6 4.51011 0.00092 0.03785 52.7140 0.00185 0.07572 1411.1 0.0012 33.02 0.08651 0.15853 0.4002741 0.00402 0.00737 0.08803 1042.2 1.89637 0.25935 0.01654 44.81 0.4660742 0.00542 0.00638 0.05255 660.5 255.8 0.12342 47643 0.38859 0.12667 0.00327 0.00122 0.08559 81.81 1695.5 211.28 0.381944 3.21973 1109.5 0.00266 1360.2 0.0018 1982.4 38.39 0.0741 3.80851 0.05952 0.1227845 0.00427 0.06747 0.00264 114.51 0.08705 1844.5 3.28021 0.23834 437.246 0.00379 0.02119 0.05415 1716.7 24.59 0.24284 0.00183 0.04231 10.3547 1262.7 0.00479 0.05476 639.3 0.05098 101.32 24.01 0.81924 0.00346 0.3458748 1395.1 0.18624 0.00148 8.05 0.05423 62.35 1083.8 49.33 0.00566 3.30828 1044.7 0.24323 0.3354649 0.00407 0.00659 0.08289 412 23.24 0.04988 0.02399 56.43 1.18379 0.00582 336.4 0.05429 0.0009 23.27 1455.7 581.5 0.2546 271.5 463.1 6.38814 25.58 0.00299 0.086 0.07409 1727.4 24.72 0.40959 0.00207 1831.8 0.12563 1369.5 13.03 1929.9 0.17264 0.00274 0.00599 1542.7 79.33 2.31046 24.99 0.24252 1083 0.00634 0.00123 0.0575 0.06163 1841.2 243.6 259.32 435.7 1737.6 0.00278 106.81 0.23475 0.2999 56.11 0.00683 0.03853 0.03416 29.67 17.38 1.97842 58.97 0.00209 1399.4 1457.4 78.37 8.22 527.9 3.43865 0.00551 0.06145 0.27856 676.9 20.34 28.53 1043.6 0.00577 1390.7 94.98 0.36652 0.21176 17.92 999.3 46.93 0.0025 421.1 818.5 0.06121 0.02047 203.29 330.4 2027.7 -1.2 2.84391 10.89 0.00082 0.07757 -0.2 4.16 1457.7 62.64 0.18408 373.5 0.34532 2.5 1.97461 1756.9 0.00118 1162.3 36.87 68.35 3.72372 172.75 28.79 468.7 17.34 1339.4 1315.4 0.00794 1950.4 0.029 0.9 -0.9 59.97 0.44004 0.00114 0.31023 239.5 0.25867 19.32 70.75 1087.5 25.93 267 0.00237 1732.8 0.25735 5.61 8.9 1383.1 158.88 0.38774 6.17 436.1 0.4721 36.16 1486.5 0.5 130.85 1.3 534.8 44.07 2.39662 59.54 21.12 33.41 -0.3 1079.8 0.05423 309.4 0.41923 0.01621 1328.8 2085.2 1.99257 22.74 768.8 1044.1 46.83 388.5 7.6 0.02778 139.19 372.7 1361.6 90.32 10.93 1378.1 0.33101 333.3 -0.8 13.53 1461.9 1594.5 3.1 2.8 15.77 43.04 0.02439 1476.4 377 155.54 239.9 104.67 0.09584 -1.4 16.13 46.73 146.87 1101 10.45 267.2 1403.5 380.6 0.4 1266.7 87.49 13.18 34.32 73.03 8.97 15.5 220.7 1483 4 383.1 79.58 607.6 1462.1 313.8 1043.9 129.68 225.5 1026.7 -2.3 2030.6 -0.2 31.06 1399.8 109.21 142.46 11.25 793.1 5.56 -2 1.8 1215.5 19.6 14.6 348.6 29.61 110.62 35.12 48 243.7 55.9 7.54 385.5 30.32 32.26 1238.2 384.5 26.74 29.94 85.44 1513.3 1108.2 1.7 -2.2 266.3 24.61 383 -1.4 1367.2 1542.7 -3.3 1089.2 5.12 1106.9 15.21 317.1 -20.6 6.4 42.22 78.99 26.44 1576.5 7.18 0.2 15.99 81.95 6.94 12.91 87.85 21.54 -1.6 -1.4 233.6 370.3 83.35 1241.6 94.98 -0.1 1162.3 392.6 -11.2 1.8 -1.5 355.5 1113 13.07 -3.1 98.95 38.24 19.16 130.85 1328.8 -1.6 -2.3 17.45 2.5 32.52 -1.1 -4.7 0 104.67 p

Sam

316

4 e± 469 4.71 Ag 491.1498.9222.4382.5958.1 8.49 6.29 992.2 2.49 358.7 5.78 26.17 14.66 520.5 6.17 24.85 486.5 7.67 246.6625.2 3.43 21.22 1000.6 44.58 1301.61398.71151.11491.4 38.56 1386.3 29.78 1227.1 46.03 40.16 1437.11018.7 47.25 1646.1 41.97 1011.1 79.17 1478.3 14.05 53.46 21.81 52.75 1764.21766.71606.71482.1 34.07 1015.7 21.92 1041.1 35.51 42.2 42.88 12.3 ) % ( es Ag ) e 2/2 g Pa ( Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Disc. Ratios le ML - ML 66LB06 le 585960 0.0571561 0.0570962 0.0506963 0.0737 0.0028464 0.05415 0.0020365 0.07109 0.0016366 0.0562567 0.07522 0.00816 0.07917 0.0022468 0.05369 0.08046 0.0047469 0.08703 0.035170 0.0015 0.08697 0.16791 0.00142 0.0026171 0.07816 0.06112 0.00105 0.0025572 0.09317 0.16024 0.0055973 0.05799 0.0004 0.07547 0.0041674 0.08817 0.65754 0.00808 0.16639 0.00095 0.0018475 0.08123 0.61092 0.05721 0.0047176 0.07543 0.002 0.22375 0.0073777 0.09055 0.25314 0.00079 0.03996 0.24231 1.40928 0.00265 0.0022178 0.06909 0.46384 0.02632 0.18848 0.00101 0.0017679 0.10119 1.42002 0.00732 0.0036380 0.07283 0.00888 0.24813 0.0841 0.23625 0.00574 0.00385 0.6058 0.05704 496.8 1.67807 0.02242 0.22452 0.00246 0.0021 0.09254 494.3 0.43788 0.14029 0.19597 0.00297 3.78323 0.14871 0.00276 0.00404 226.9 3.28665 0.02017 0.09329 0.00418 0.24038 1033.1 0.00281 0.00262 377.2 106.34 0.02401 0.17119 2.05481 0.00204 0.00261 0.53414 0.26625 77.03 960 0.00326 3.03459 0.33195 0.16981 0.57987 1074.4 0.0051 461.3 208.91 72.55 2.9656 0.0784 0.08168 0.00255 491.1 358.1 0.24565 89.74 2.2325 0.00414 1361.2 0.12328 498.9 1.838 0.08872 0.00396 130.54 1359.7 1000.6 3.17946 0.14347 68.06 1.56661 222.4 0.00128 58.48 1151.1 0.08512 0.0036 103.03 8.49 3.86717 382.5 118.95 1491.4 1.86259 0.14679 958.1 6.29 0.28175 89.43 529 1386.3 44.58 0.0866 0.63879 992.2 0.23852 1227.1 46.03 469 2.49 3.01499 358.7 1301.6 0.1757 5.78 513.1 40.16 1080 1437.1 1398.7 26.17 0.03644 484.1 257.09 47.25 901.5 892.9 1646.1 14.66 0.1625 1113.1 41.97 38.56 229.1 6.17 4.71 1009.2 24.48 1428.8 386.9 79.17 29.78 93.63 492.4 16.59 897.4 520.5 1305.7 99.57 1478.3 71.71 53.46 11.38 1153.6 1000.3 1.2 1589.2 108.64 7.2 14.25 368.8 480.9 15.55 1388.6 893.7 1477.9 58.86 -1 98.67 14.81 3.4 24.85 35.37 1018.7 1521.8 52.75 10.98 1133.9 113.39 1011.1 -1.4 16.95 1416.4 12.75 2 78.63 26.5 0.2 486.5 18.3 1398.9 8.3 464.4 14.05 27.15 21.08 4.8 1416 1191.3 21.81 -0.2 31.02 -1.7 -3.2 36.74 1452.2 3.6 57.02 7.67 1059.1 26.74 1606.9 957.1 18.62 4.7 1067.9 68.45 6.4 52.52 1.7 49.76 6.5 34.26 501.6 62.32 1411.4 3.8 18.5 -14.1 8.5 22.58 -0.2 41.1 1.2 4.7 1080 93.63 505152 0.0511353 0.107954 0.1080555 0.06095 0.0020256 0.0990757 0.09195 0.00204 0.0013 0.07306 0.00541 0.07637 0.039 0.00191 0.30265 0.00589 0.30728 0.00158 0.10185 0.00213 0.2857 0.00055 0.00323 0.25849 0.00203 0.16694 0.00363 0.17527 0.27185 0.00299 4.49798 0.00824 4.57939 0.00166 0.85808 0.00225 0.01167 0.18155 4.097 3.76821 0.11372 0.10052 1.6975 1.7793 246.6 0.54759 1764.2 0.17099 1766.7 0.05788 637.4 0.07968 1466.2 1606.7 88.67 34.07 1015.7 21.92 180.32 1104.7 117.19 1704.4 246.6 35.51 1727.3 42.88 625.2 54.79 1482.1 15.98 1620 3.43 995.2 10 21.22 1041.1 42.2 1730.6 15.01 244.2 9.19 12.34 1745.5 629.1 33.53 1586 1653.7 9.32 20.7 54.93 1007.6 1037.9 3.9 116.61 34.06 0 21.79 29.11 2.5 2 -1.2 -0.9 2.2 6.2 p

Sam

317

e± Ag ) % ( es Ag Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Disc. Ratios le FP1 -le 34LB06 p 123 0.050164 0.050185 0.050516 0.050267 0.00925 0.049969 0.00534 0.04993 0.00168 0.04982 0.00405 0.03091 0.11204 0.00434 0.03205 0.00421 0.03528 0.00924 0.00125 0.03119 0.00131 0.00085 0.03179 0.03064 0.0004 0.21157 0.00063 0.03145 0.24091 0.32518 0.0008 0.00072 0.25477 0.21937 0.00111 0.03923 0.00217 0.02608 0.22736 0.21296 0.00885 0.19253 0.01789 4.99456 202.6 0.02019 0.01825 203.1 0.03576 218.6 0.12288 206.8 379.61 193.2 229.82 191.6 186.6 196.3 1832.8 75.3 176.59 203.4 190.35 185.12 7.82 198 223.5 382.55 21.02 5.34 201.8 194.5 199.6 2.49 3.97 1815 194.9 4.97 4.47 219.2 6.95 10.57 230.4 201.4 32.88 208 21.34 196 178.8 1818.4 7.16 3.2 14.9 -0.2 16.7 15.28 30.45 20.81 -2.3 4.3 196.3 -4.5 -1.5 203.4 -7.1 1.1 223.5 198 201.8 194.5 7.82 199.6 1832.8 5.34 2.49 3.97 4.97 4.47 21.02 6.95 101112 0.0938813 0.0500614 0.0837815 0.0501416 0.00227 0.0499717 0.00313 0.0500518 0.00324 0.0861419 0.00409 0.26269 0.1137220 0.00261 0.03172 0.0505621 0.00256 0.21164 0.0502422 0.00347 0.00316 0.03025 0.0503123 0.00167 0.00058 0.03095 0.1821124 0.01012 0.00355 0.03116 0.1083725 0.00327 3.27223 0.22835 0.1125526 0.0008 0.00473 0.22582 0.00047 0.0498227 0.3266 0.00048 0.05277 0.0024 2.463828 0.0328 0.00151 0.00357 0.03166 0.0506530 0.1398 0.20524 0.00143 0.20811 0.03256 0.08001 0.0144331 0.00269 0.20382 0.05046 0.004232 0.00146 0.14787 0.4968 2.71034 0.00067 0.31202 0.05009 0.007334 0.01709 0.01286 0.00066 0.32339 0.0110535 0.0506 4.78785 1505.8 0.00241 0.05274 197.6 0.0106 0.20428 0.00817 0.00475 0.23282 0.032 0.00241 0.04992 0.16181 1287.3 0.04999 0.00738 0.22365 0.00234 0.03323 0.04987 0.14306 201.5 0.19214 193.4 45.03 0.00348 0.04104 12.07618 0.00403 4.54732 0.03226 139.14 0.01561 0.00083 0.00185 197.5 0.00314 4.90823 1341.4 0.00212 0.03052 0.02116 73.59 1503.6 0.00247 0.0031 1859.7 201.3 0.46524 0.0319 178.9 0.00113 117.09 0.12787 0.0515 0.20779 0.37123 1237.6 0.24108 0.00118 221 0.13019 206.3 0.0303 114.62 16.12 75.93 2.27824 209.5 0.03004 192.1 196.5 3.64 0.00075 0.24158 26.29 2672.1 0.00098 0.01785 18.87 0.05353 0.19906 1772.1 197.8 0.06214 1325.8 0.00053 1840.9 406.94 1474.5 144.1 0.00047 0.105 1821.9 2.91 0.21467 204.24 0.03947 5 0.36469 206.7 18.73 1261.5 21.63 2.99 0.0296 0.2098 186.7 318.9 200.9 25.2 208 224.8 0.21469 206.5 13.08 22.89 33.23 0.01517 0.02879 1197.3 2600 216.2 192 1750.7 1331.3 11.96 43.35 0.01343 189.5 1806.2 188.4 185.07 4.2 287.35 0.01353 199.4 9.09 4.14 500.31 1782.8 0.2 222.4 20.45 11.83 317.7 58.28 203.1 314.5 337.16 11.41 44.28 210.7 -1.9 4.2 9.29 191.4 14.4 189.2 8.94 188.7 212.5 204.9 310 1132.9 25.1 204.7 2610.3 151.49 11.34 5.16 1739.7 13.25 164.4 1505.8 1803.7 1.3 -1.6 140.09 13.37 193.8 4.7 202.5 138.53 -0.2 201.3 1287.3 7.04 12.86 17.56 34.6 2.3 323.7 36.13 320.6 23.41 191.7 192.4 219.3 22.37 190.8 7.4 1205.6 45.03 4.67 1341.4 2.7 196.5 1.5 219.7 6 192.1 6 3.3 197.8 73.59 3.32 1.4 39.64 3.64 1859.7 2.95 15.01 2.2 50.84 32.52 197.5 184.3 32.28 75.93 1.4 200.9 206.5 193.4 315.7 -8.9 2.91 6.4 197.5 2672.1 1772.1 2.99 26.29 1840.9 208 5.9 5 12.68 25.06 5.4 11.27 21.42 11.31 314.5 203.1 210.7 4.14 21.63 4.2 9.1 2.9 25.2 1197.3 22.89 9.09 -0.5 -1.9 204.7 -0.9 11.34 5.16 13.25 202.5 193.8 58.28 192.4 323.7 190.8 7.04 4.67 7.4 3.32 2.95 6

Sam

318

e± Ag ) % ( es Ag ) e 1/2 g Pa ( Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Disc. Ratios 123 0.114244 0.050475 0.049996 0.188917 0.00143 0.049838 0.00417 0.050429 0.00334 0.10882 0.00701 0.3409 0.0502 0.00672 0.03337 0.11217 0.03105 0.0051 0.00379 0.00239 0.52913 0.00088 0.02946 0.01262 0.00076 0.0031 0.03314 0.0148 0.31942 5.51858 0.00121 0.24677 0.03159 0.21056 0.00115 0.00621 0.32418 13.47585 0.19816 0.00264 0.1613 0.02147 0.0052 0.21291 0.0147 3.7758 1.59541 0.23775 0.02736 1867.9 216.9 5.16131 0.02232 194.3 0.26449 2732.7 187.1 0.063 22.4 180.63 0.32111 214.3 1779.7 148.27 59.79 286.36 211.6 204.3 1891 1834.9 218.41 197.1 2737.8 62.23 187.2 5.46 11.49 210.2 497.9 49.21 62.37 4.78 1786.9 7.59 1810.1 200.5 7.19 1903.5 30.35 224 2713.6 194 25.32 183.6 16.48 25.12 1587.6 196 111.91 17.49 12.33 1846.3 216.6 23.18 -1.4 56.23 -0.2 2.5 18.68 -1.5 52.92 -0.1 51.69 1867.9 -0.5 2732.7 1.9 211.6 1.6 197.1 187.2 1.9 1779.7 22.4 59.79 210.2 5.46 1834.9 4.78 200.5 7.59 62.23 7.19 49.21 16.48 le FP2 - FP2 le 29LB06 101112 0.050313 0.0502114 0.1135915 0.1740316 0.14207 0.0046317 0.00791 0.0500218 0.00446 0.1158219 0.01232 0.05056 0.0334520 0.00392 0.03132 0.0501121 0.01114 0.33315 0.0501322 0.00381 0.00106 0.47699 0.09842 0.0017923 0.01233 0.41909 0.0501 0.007524 0.03091 0.0037 0.05132 0.0243726 0.00299 0.34045 0.24282 0.05032 0.0075727 0.23501 0.00125 0.03185 0.05264 0.0021428 4.97899 0.05007 0.00858 0.00653 0.0313629 8.53034 0.01685 0.03147 0.04994 0.0026930 9.17228 0.00649 0.27156 0.02361 0.16789 0.0389331 0.21471 0.00996 0.00079 0.05039 0.00064 0.0311532 6.67579 0.00985 0.04024 0.49951 0.05039 0.00179 1.6270533 0.01351 0.1864 0.03271 0.0505 0.7551434 208.9 0.00543 0.00159 0.05176 0.05016 0.22078 204.6 0.00396 0.0491435 0.20483 0.00663 0.03187 0.05091 0.00111 1857.6 0.5807836 3.69275 0.00895 0.03202 2596.8 0.05006 0.0031337 0.48454 0.04662 2252.6 0.05021 0.22762 0.01347 0.0018338 0.02197 0.3611 200.6 0.03345 0.05041 195.9 329.14 0.00266 0.017 0.0127839 0.21542 0.01908 1892.7 0.05036 0.0332 0.01071 69.3440 0.35879 0.02447 113.41 0.0907 0.04999 0.00139 0.0328341 0.22062 220.7 0.01089 0.03195 46.82 0.04054 0.05277 212.1 198.842 0.19568 0.00744 0.00185 0.03457 0.12919 0.05097 201.1 448.85 0.02851 1853.643 200.2 2514.1 9.50035 0.00875 0.00254 0.03259 0.05063 58.1 0.00293 1594.4 0.0741244 0.22608 0.00392 0.03208 2256.3 0.07449 0.00414 0.0450245 199.5 483.84 0.00229 11.17 6.63 0.03312 0.22105 0.05059 196.3 0.00491 0.05415 106.3546 255.1 0.02579 36.26 0.03406 0.05074 0.24509 209.9 132.93 0.00227 0.81861 1888.847 0.24055 162.86 0.01666 0.03066 0.11063 313.2 34.39 0.00159 23.59 0.0310448 0.23726 0.00156 202.1 0.05124 0.05063 198.5 0.0020850 0.16923 355.52 0.01007 13.37 0.03645 0.04093 214.3 0.05043 192.2 199.7 0.00086 2289.2 220.751 618.43 0.00496 199.1 31.39 1815.8 0.2041 0.03267 0.06914 2536.8 0.04997 273.83 0.00084 0.10781 1548.753 0.21038 0.00692 0.18017 0.05023 213.1 16.78 381.29 0.00437 2355.3 0.0925854 0.24677 0.00767 197.8 0.05028 0.0339 402.52 0.00308 0.08399 0.20959 212.9 0.01042 254.3 0.03411 4.02 197.5 531.11 207.5 0.0502 4.92 173.35 0.0017 32.01 217.9 0.00686 2069.4 0.3759 0.32038 9.08 53.25 0.04566 19.29 84.83 0.12543 202.6 325.3 0.03219 0.31995 0.00863 0.00224 0.03509 236.6 278.65 202.3 0.00105 9.92 0.04531 173.6 0.21591 75.38 0.01201 0.03313 24.56 203.2 0.01176 0.01734 198 366.49 0.03046 6.95 1.84381 0.00882 0.00193 2547 189.2 3.8 41.08 204.9 522.74 0.00657 19.17 2.9 202.6 0.03351 0.01887 0.23379 76.83 -1.6 213.9 787.09 1569.8 212.1 0.00194 0.2 0.17017 0.23676 11.42 0.03223 211.5 691.29 0.07362 0.0014 5.24749 16.62 210.5 -0.2 208.2 194.4 39.9 0.00201 0.02992 0.20382 208.2 313 857.77 0.37132 0.06326 46.52 202.8 0.00226 198.1 0.20289 318.9 -0.2 438.1 2514.1 8.69 0.04873 311.3 10.77 239.4 219.1 0.2 310.1 14.14 0.02425 198.8 19.62 212.1 0.00176 1857.6 202.4 0.20304 224.2 11.53 359.43 0.01193 0.82429 0.21672 206.7 181.5 2252.6 15.86 172.6 1054.4 0.03217 33.53 0.23613 8.6 18.3 2387.6 203.6 0.04306 222.2 25.82 96.38 95.79 23.82 0.22022 210 875.61 196.3 215.9 0.7 106.35 229 55.39 5.97955 0.6 1892.7 3.2 207 0.02897 1809.9 622.65 11.17 30.66 69.34 0.03899 202.8 37.45 194.7 6.63 223.9 0.05864 222.6 45.99 14.16 41.8 46.82 0.9 214.6 322.1 230.8 79.16 202.1 218.9 404.87 12.98 0.04041 216.2 0.3 9.89 207.3 1.2 0.81747 193.8 109.48 210.99 199.7 -4 13.37 205.6 1594.4 199.1 5.37 -1.9 158.7 25.71 58.1 1067.9 34.04 316.34 208 -5.8 27.16 214.9 5.14 188.6 56.38 419.22 -0.5 197.8 1791.6 204.2 19.24 2034.9 216.2 223.9 88.24 16.78 75.98 193.9 254.3 290.64 207.5 356.32 222.3 9.28 325.3 23.59 193.2 0.5 4.02 13.99 202.3 72.94 210.1 1.1 4.92 57.42 476.02 281.9 203.2 4.5 38.51 6.56 363.53 193.4 2536.8 324 89.91 198.5 -0.1 212.5 9.92 12.02 36.9 7.5 27.01 24.56 12.11 1061.2 204.5 6.95 -4.5 213.3 14.56 212.1 19.17 1860.4 210.5 2035.6 190 11.42 130.91 8.77 12.55 0.6 208.2 16.62 215.8 53.25 61.48 13.93 202.8 188.4 -2.1 14.12 1.9 219.1 187.6 22.59 56.09 -0.2 11.02 206.7 133.97 40.1 3.7 8.69 11.53 187.7 199.2 203.6 19.91 7.7 15.86 -1 27.13 215.9 215.2 18.3 -1.4 1972.9 25.82 210 36.35 1.2 194.7 202.1 3.3 30.66 230.8 24.45 32.54 5.7 14.16 207.3 0.7 322.1 48.17 118.93 1054.4 12.98 2.1 1791.6 33.62 9.89 5.37 214.9 -3.4 0.2 27.16 216.2 19.24 222.3 1.7 0 5.14 41.8 210.1 7.1 57.42 212.5 13.99 193.4 6.56 204.5 12.02 2034.9 12.11 190 12.55 8.77 14.12 89.91 11.02 p

Sam

319

e± Ag ) % ( es Ag ) e 2/2 g Pa ( Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Disc. Ratios le FP2le - 29LB06 555657 0.0502159 0.0536260 0.0506961 0.0500162 0.00851 0.050263 0.00874 0.1239865 0.01746 0.0509366 0.01282 0.11496 0.034467 0.05589 0.11012 0.0082568 0.00503 0.03579 0.0500869 0.01459 0.00206 0.03004 0.05019 0.0032971 0.00335 0.05036 0.00331 0.0313172 0.00917 0.35212 0.11568 0.0026673 0.00798 0.03657 0.05011 0.2259274 0.48812 0.00738 0.00169 0.32841 0.05005 0.0085877 0.22539 0.00916 0.32308 0.0503 0.0033979 0.00574 0.03132 0.12203 0.17 0.0053480 0.00769 0.04024 0.14716 0.21414 0.0322 0.01541 6.54252 0.00382 0.0923 0.05048 0.0315 0.00173 0.22832 0.0798 0.04987 0.00415 0.3353 0.00317 0.00169 5.1656 0.0317 4.91437 0.00411 204.5 0.00166 0.03078 0.04421 0.03661 0.64134 0.22386 0.00765 355.1 0.00971 0.03114 0.06822 0.01085 226.7 0.00176 0.34621 0.21641 0.00081 0.42034 0.32789 0.22086 0.96878 195.4 204.4 351.93 0.00094 0.03157 2014.2 6.97481 0.00486 0.03758 331.58 0.02974 0.22978 237.8 0.00692 0.21322 646.29 0.0335 0.00152 1879.3 218.1 0.04177 1801.3 0.21889 0.00214 6.73267 507.19 342.22 350.6 0.90497 70.24 198.9 8.40379 226.7 0.03734 553.48 0.01755 0.21346 203.6 12.82 0.22106 211.6 51.6 190.8 144.32 198.7 0.01952 1944.7 20.08 1890.5 0.39465 332.81 20.61 231.5 0.58672 200.2 197.4 0.03386 1804.7 1830.7 309.43 16.64 10.59 40.91 0.05025 206.8 374.47 1986.1 209 198.8 86.66 403.6 21.08 2313.1 206.4 321.97 75.09 216.9 168.33 25.89 204.3 199.9 188.9 2051.6 159.4 10.83 197 1864 45.53 33.33 180.8 201.2 47.17 208.8 62.98 195.4 10.56 1804.7 66.12 317.15 10.38 1847 1916.5 440.24 46.89 86.34 197.7 38.37 205.1 10.97 -6.8 2262 30.62 5.04 200.4 1.3 56.39 166.32 198.9 23.29 188.9 202.6 0 2108.2 5.87 54 31.42 2.4 4 31.18 218.1 210 9.47 2.8 196.2 -0.2 2.7 13.4 350.6 2076.9 27.96 34.74 115.22 226.7 2275.6 201 0.1 190.8 2014.2 3 196.5 12.82 198.7 30.83 14.69 1804.7 202.8 231.5 51.82 -0.3 20.08 5.6 1.6 63.35 20.61 16.26 198.8 70.24 -0.5 16.64 1879.3 28.33 10.59 1 75.09 41.79 204.3 4 21.08 199.9 1890.5 2.6 5.5 7.7 201.2 10.83 51.6 195.4 0 1986.1 10.56 86.66 10.38 2313.1 197.7 200.4 10.97 188.9 45.53 5.04 47.17 5.87 9.47 13.4 p

Sam

320

6.68 7.36 44.7 4.81 3.54 29.29 43.91 12.68 61.41 12.33 36.62 11.58 4 4 4 4 5 5 4 4 4 4 4 4 e± Ag 197 133 1009 37.68 2743 54.03 658. 185.8 5.04 303. 340. 185. 182.8423. 199. 2.19 200. 359.3168.8 3.11 2.84 1069.81668.31757.51101.9 75.45 1110.71800.7 76.49 81.28 52.12 2593.91998. 38.49 41.85 30.54 1871.91866.91796.91330.51015. 1971.2 66.52 2575.1 33.83 2288.7 33.52 1427.5 44.97 1096.8 29.84 1884.9 33.43 1459.7 43.94 1885.7 37.73 46.9 29.17 25.9 34.11 1719.81825.8 25.41 25.16 1829.81265.92727.6 29.06 1902.1 49.45 1397. 39.45 19.81 1694.81740.22698.91604.31014.3 32.15 63.82 46.12 30.27 33.73 1783.62127.72697.9 37 32.18 27.25 ) % ( es g A ) e 1/2 g Pa ( Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Disc. Ratios le LS -le 25LB06 123 0.10532 0.11161 0.04968 0.00147 0.00156 0.00586 0.30212 0.32258 0.02917 0.00228 0.00248 0.00107 4.72041 4.7975 0.21448 0.13153 0.13301 0.02592 1719.8 1825.8 180.2 25.41 25.16 253.46 1701.8 1802.3 185.4 11.3 12.07 6.68 1770.9 1784.5 197.3 23.35 23.29 21.67 1.2 1.5 -2.9 456 0.050297 0.11186 0.08286 0.05375 0.00517 0.00181 0.00214 0.03158 0.00125 0.33348 0.21666 0.00118 0.05732 0.00299 0.00264 0.22451 0.00051 5.09348 2.56615 0.43414 0.02402 0.17437 0.11341 0.01188 208.4 1829.8 1265.9 360.3 222.2 29.06 49.45 51.83 200.5 1855.2 1264.2 359.3 14.48 7.36 14 3.11 1835 205.7 1291 366.1 29.06 19.92 32.29 8.41 -1.6 3.9 0.1 0.3 89 0.04931 0.18833 0.00284 0.00457 0.02653 0.49806 0.00045 0.00876 0.1808 14.97973 1.16187 0.0107 2727.6 162.4 39.45 129.44 2605.5 168.8 37.7 2.84 2814 168.8 73.83 9.2 5.4 -4 p 131415 0.121216 0.0750517 0.0615618 0.10241 0.0030319 0.10661 0.0028920 0.07626 0.0030821 0.08582 0.36115 0.00435 0.1783822 0.07659 0.0105 0.1075523 0.11008 0.00202 0.2830224 0.00534 0.04978 0.0027826 0.003 0.13268 0.31342 0.00149 0.00218 0.18719 0.17373 0.00257 0.00662 6.34627 0.23269 0.12287 0.00411 0.19299 0.01656 0.96654 1.9408 0.00499 0.00231 0.32188 3.83285 0.00322 0.00377 0.02924 0.37725 0.00314 0.00177 0.18205 4.512 1.97929 0.06406 0.00419 0.47855 0.11471 2.98147 0.32313 0.00081 0.35712 2.05806 0.00394 4.75606 1974 0.08416 0.0057536 0.94997 0.19599 0.17908 0.00537 658.9 1069.837 4.07471 1668.3 0.06498 11.1564238 0.11449 0.23521 43.9139 6.42622 0.11418 1101.9 0.01668 103.79 1742.2 75.4540 0.10985 76.49 0.30395 133441 0.5669 0.08566 1110.7 0.0043242 1987.6 0.07305 1800.7 0.00216 52.12 0.38157 170.3243 658.5 1058.1 0.12101 0.00205 184.8 1606.644 0.3244 61.41 0.17178 2133.8 0.00202 38.49 0.3060745 0.14508 2593.9 0.00134 41.85 1757.5 0.31611 1106.146 25.28 1998.4 0.00205 0.0901 181.38 0.2339747 0.00746 0.07607 0.00348 16.43 64.31 12.68 0.00372 1348.6 0.17471 1137.548 33.28 0.05243 0.00376 30.54 0.00377 0.34305 1798.949 0.11532 0.00312 44.7 5.5883 0.4752650 81.28 12.54 2024.9 4.96387 0.0018 185.8 0.09163 0.00181 0.00183 1078.1 0.4213 4.83726 0.11537 1095.3 0.00721 0.00389 686.7 19.69 1599.7 2.70659 2521 9.55 0.05329 0.00189 0.00714 0.24277 0.18661 20.45 1.76411 1968.5 0.00126 0.48826 0.18765 1733.2 0.04819 1108.5 0.00754 6.02889 0.00221 52.14 0.17936 5.04 0.33223 10.63678 21.5 0.00117 0.00289 0.10849 0.00238 1402.9 39.61 0.24334 33.07 67.89 0.04552 0.00188 8.65341 25.06 1135 0.33444 1777.2 1871.9 1866.9 0.20888 0.00362 25.5 0.05422 0.56999 3.08734 2.09038 28.68 1796.9 0.00223 175 -0.8 0.35519 181.7 1330.5 1649.3 0.00417 0.59967 45.67 5.25444 1015.4 66.52 1.2 33.83 0.00058 2536.3 0.1 4.2 3.01592 41.49 1971.2 0.10649 33.52 0.07811 21.58 2035.9 2575.1 5.03561 44.97 0.05161 -0.4 0.38991 36.62 0.16387 14.17 60.82 1811.2 2288.7 1721.4 -1 29.84 0.05875 -1.2 1770.7 33.43 47.35 1427.5 1096.8 0.19305 1355.3 0.1 -2.6 52.17 0.00921 304.3 43.94 1038 1884.9 1901.3 18.34 53.6 36.3 -0.5 1459.7 2506.6 37.73 46.9 18.46 1885.7 286.17 3.4 16.3 2266.4 29.17 341.2 1.7 25.9 10.02 1401.1 1813.2 18.69 1914.3 34.11 31.18 1103 1791.4 303.4 1849.2 48.78 1330.3 34.18 1404.1 1032.4 1859.9 14.98 1980 31.95 2491.9 2133.8 75.25 12.91 11.58 31.2 340.4 17.5 2302.2 29.72 11.56 1429.6 16.72 20.13 49.74 8.9 30.17 1145.7 3.7 308.6 64.31 3.54 1861.5 1.7 63.08 -2.1 1411.7 1825.3 26.45 -2.4 25.66 3.2 4.1 38.67 334.3 26.6 1.2 14.85 32.48 2.1 -0.6 0.3 6.73 2.2 4.2 1.6 0.2 101112 0.07282 0.11643 0.08869 0.00137 0.00129 0.00137 0.16994 0.34757 0.23424 0.00145 0.00204 0.0018 1.72528 5.66587 2.8792927 0.049528 0.1217929 0.103930 0.07736 0.1064931 0.190132 1009 0.18508 1902.1 0.0018333 0.09894 0.00379 1397.434 0.07301 0.0063735 0.04969 0.28887 0.00525 19.81 37.68 0.30906 0.05538 0.00162 29.29 0.04996 0.52304 0.00123 0.52028 0.00262 0.00613 0.0014 0.29178 1011.8 1923 0.00138 0.16805 0.01284 1356.7 0.01052 4.07676 0.0097 0.02876 4.4068 0.00308 0.06789 12.19226 0.00167 14.3125 0.03141 7.99 0.13351 9.78 0.00035 4.22304 0.0008 9.39 0.32788 1.76257 1.22241 0.00197 1.29783 0.19815 0.12253 0.50924 1694.8 1018 1926.2 0.04063 0.26498 1740.2 1376.5 2743 0.00569 2698.951 32.15 0.01431 1604.352 63.82 0.05437 1014.3 18.55 18.4453 54.03 20.25 0.10906 46.12 180.7 0.13222 1635.9 30.27 427.3 0.18496 1736.1 33.73 193.1 0.00224 2712.1 2700.4 -1.3 -0.3 0.00246 64.44 1650.4 3.2 0.00308 54.23 13.12 0.31711 1001.3 398.18 30.2 0.3879 54.33 0.49778 44.62 182.8 0.00412 15.37 423.4 1649.7 199.4 0.00491 9.2 0.00625 1713.6 5.03916 2619.3 2770.6 2.19 6.9781 1678.5 13.9872 4.81 12.33 26.7 0.21278 1031.8 61.58 94.09 86.06 0.28889 0.63355 183.6 23.82 417.9 238.7 1783.6 3.9 14.93 0.3 2127.7 2697.9 1.4 -0.1 -3.3 4.82 37 43.64 9.63 32.18 27.25 1.4 1775.6 -1.2 2113.1 2604.3 -3.3 0.9 20.14 22.81 26.9 1825.9 2108.6 2748.8 35.78 36.77 42.92 0.5 0.8 4.2

Sam

321

5 53.94 42.54 26.68 5 5 5 e± Ag 2702 47.33 28871554 25.32 72.12 367.3761.8 5.36 19.29 273.3 2.99 1267.11884.41689.71789.21831.2 29.14 1825.1 35.01 35.6 21.882267.62755.6 54.62 1820.7 33.362839. 25.75 28.52 29.98 1817. 1821.71849.31857. 1217.8 46.43 49.68 84. 2571.82702.11805.71828.71037.2 31.72 34.68 66.27 60.12 60.51 ) % ( es Ag ) e 2/2 g Pa ( Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Pb207/Pb206 ± Pb206/U238 ± Pb207/U235 ± Disc. Ratios le LSle - 25LB06 p 5960 0.08131 0.08287 0.00601 0.00408 0.23597 0.21721 0.00781 0.0055 2.9271 2.69691 0.41932 0.24278 1229 1266.2 138.53 93.33 1365.7 1267.1 40.73 29.14 1388.9 1327.6 108.42 66.68 -12.3 -0.1 1229 138.53 616263 0.1152964 0.1036165 0.1093966 0.18543 0.0022767 0.11194 0.0020268 0.11157 0.0013269 0.34859 0.05392 0.0054170 0.29634 0.00344 0.064171 0.31999 0.14331 0.00208 0.0044472 0.52179 0.19156 0.00189 0.00362 0.33912 0.1113 0.00274 0.00414 0.34155 6.03951 0.20164 0.00216 0.01161 0.05864 4.25131 0.00336 0.00628 4.82967 0.12544 0.00186 0.0041 0.40693 13.40692 0.00333 0.00088 0.25622 0.50426 5.53436 0.1572 0.00337 0.32214 5.19445 0.07645 0.0043 0.53977 0.42805 1.26018 0.00664 1884.4 1.09217 0.39337 0.00351 0.00679 8.14597 13.04583 1689.7 0.19328 1789.2 0.01698 2702 4.73759 35.01 14.57644 0.09671 1831.2 0.25107 0.60907 35.6 21.88 1825.1 367.7 47.33 1927.9 0.63373 0.1432 54.62 745 2267.6 1673.1 2755.6 1789.7 33.36 76.89 2706.8 2839.5 1882.5 21.24 1820.7 130.88 25.75 28.52 1894.1 17.98 13.38 367.3 26.68 49.19 29.98 1981.6 30.22 761.8 2200.9 2632.1 19.72 1790.1 1684 2782.5 1800.2 2708.7 5.36 1905.9 36.96 19.69 28.48 19.29 1851.7 13.31 28.42 30.4 17.1 361.8 88.82 2247.4 61.13 749.6 2683 -2.7 31.68 2788 1773.9 0 -0.2 1.1 12.07 27.87 -3.2 46.94 44.03 -4.4 41.31 25.34 0.1 3.5 -2.4 5.5 2.5 1.3 54 0.1111 0.00336 0.32264 0.00596 5.05257 0.33844 1817.5 53.94 1802.6 29.05 1828.2 56.78 0.9 555657 0.1113658 0.11307 0.11358 0.08085 0.00289 0.00316 0.00271 0.31206 0.00358 0.3313 0.33246 0.00499 0.21133 0.00564 0.00499 4.98037 0.00458 5.15055 5.3079 2.47362 0.281773 0.3194974 0.27662 0.1966575 0.2076276 1821.7 0.0963277 1849.3 0.1714478 1857.5 0.18544 0.00327 1217.879 46.43 0.11349 0.0037980 49.68 0.11179 0.00329 42.54 0.07384 0.00394 0.535 84.5 0.2745 0.05186 0.00808 1750.9 0.47224 0.00378 1844.7 0.52656 0.00226 0.00639 1850.3 0.32328 0.00583 0.00123 1235.9 0.0066 0.32945 0.00845 24.51 0.17417 14.7667 27.29 0.0136 0.04331 3.6091 12.09306 0.00666 24.12 13.54448 0.00268 24.35 0.00048 0.5843 5.5213 1816 5.42304 0.30114 0.62889 1844.5 1.76688 0.84535 1870.1 0.30372 1264.4 0.96117 0.42062 2887 2571.8 0.08365 1554 47.83 2702.1 52.74 0.0078 44.53 57.48 1828.7 31.72 25.32 1856 34.68 72.12 1037.2 4.4 0.3 279.4 60.12 0.4 123.29 2493.4 2762.5 2726.9 60.51 -1.6 1563.6 53.54 1835.7 1805.7 28.91 26.85 1035 29.48 35.7 273.3 32.27 66.27 2611.6 2800.3 1551.5 2718.4 14.7 2.99 1888.5 1903.9 48.77 37.63 66.34 1033.4 59.02 269.3 149.66 66.49 3.7 5.3 -0.7 30.7 -1.1 3.1 6.08 -0.4 0.2 2.2

Sam

322

323 Ar-Ar detrital muscovite geochronology: Sample 40LB05 – Frances Lake map area; FLR1 detrital zircon sample locality

40LB05 FRL1 locality Laser Isotope Ratios Power(%) 40Ar/39Ar 38Ar/39Ar 37Ar/39Ar 36Ar/39Ar Cl/K %40Ar atm f 39Ar 40Ar*/39ArK Age 2 66.755 ± 0.111 0.111±1.118 1.661 ± 0.147 0.274 ± 0.350 0.004 0 6.75 17.997 ± 41.531 298.30 ± 634.49 2.5 23.478 ± 0.020 0.023 ± 0.449 0.137 ± 0.130 0.028 ± 0.231 0 0 94 18.576 ± 1.998 307.13 ± 30.37 3 184.244 ± 0.300 0.217 ± 1.522 5.472 ± 0.325 0.603 ± 0.425 0.515 -0.56 0.1 18.339 ± 40989.649 303.53 ± 624415.25 4 199.953 ± 0.358 0.886 ± 0.507 7.152 ± 0.374 1.087 ± 0.522 -0.348 0.06 0.1 113.527 ± 735.828 1367.70 ± 6214.40

Total/Average 17.866 ± 0.013 0.025 ± 0.392 0.000 ± 58847.858 -0.000±4540.956 0.043 100 17.836± 2.230

J = 0.009991±0.000008

Volume 39ArK = 0.85

Plateau age = 307 ± 30 Ma Integrated age = 295.85 ± 68.24 Ma Volumes are 1E-13 cm3 NPT Neutron flux monitors: 28.02 Ma FCs (Renne et al., 1998) Isotope production ratios: (40Ar/39Ar)K=0.0302±0.00006, (37Ar/39Ar)Ca=1416.4±0.5, (36Ar/39Ar)Ca=0.3952±0.0004, Ca/K=1.83±0.01(37ArCa/39ArK).

Run Date: 19-Sep-06 TU-1491

Sm-Nd isotope geochemistry: Samples 38 and 47LB05 – Frances and Watson Lake map areas; FLR1 and SDH detrital zircon sample locations, respectively

147 144 143 144 Sample No. Lithology Strat. Age (Ma) Sm (ppm) Nd (ppm) Sm/ Nd Nd/ Nd εNd(t) TDM (Ga) 38LB05 sh. 230 7.2 35.3 0.128 0.512102 ± 7 -7.99 1.9 47LB05 sh. 230 7.3 38.6 0.1187 0.512110 ± 6 -7.56 1.72

38LB05 - FRL1 locality; 47LB05 - SDH locality

324