Journal of Nonlinear Mathematical Physics Volume 10, Supplement 2 (2003), 231–237 SIDE V Analysis of Non-Linear Recurrence Relations for the Recurrence Coefficients of Generalized Charlier Polynomials Walter VAN ASSCHE † and Mama FOUPOUAGNIGNI ‡ † Katholieke Universiteit Leuven, Department of Mathematics, Celestijnenlaan 200 B, B-3001 Leuven, Belgium E-mail:
[email protected] ‡ University of Yaounde, Advanced School of Education, Department of Mathematics, P.O. Box 47, Yaounde, Cameroon E-mail:
[email protected] This paper is part of the Proceedings of SIDE V; Giens, June 21-26, 2002 Abstract The recurrence coefficients of generalized Charlier polynomials satisfy a system of non- linear recurrence relations. We simplify the recurrence relations, show that they are related to certain discrete Painlev´e equations, and analyze the asymptotic behaviour. 1 Introduction Orthogonal polynomials on the real line always satisfy a three-term recurrence relation. For monic polynomials Pn this is of the form Pn+1(x)=(x − βn)Pn(x) − γnPn−1(x), (1.1) with initial values P0 = 1 and P−1 = 0. For the orthonormal polynomials pn the recurrence relation is xpn(x)=an+1pn+1(x)+bnpn(x)+anpn−1(x), (1.2) 2 where an = γn and bn = βn. The recurrence coefficients are given by the integrals 2 an = xpn(x)pn−1(x) dµ(x),bn = xpn(x) dµ(x) and can also be expressed in terms of determinants containing the moments of the orthog- onality measure µ [11]. For classical orthogonal polynomials one knows these recurrence coefficients explicitly, but when one uses non-classical weights, then often one does not Copyright c 2003 by W Van Assche and M Foupouagnigni 232 W Van Assche and M Foupouagnigni know the recurrence coefficients explicitly.