Riemann–Hilbert Correspondence for Unit F-Crystals On

Total Page:16

File Type:pdf, Size:1020Kb

Riemann–Hilbert Correspondence for Unit F-Crystals On R AN IE N R A U L E O S F D T E U L T I ’ I T N S ANNALES DE L’INSTITUT FOURIER Sachio OHKAWA Riemann–Hilbert correspondence for unit F -crystals on embeddable algebraic varieties Tome 68, no 3 (2018), p. 1077-1120. <http://aif.cedram.org/item?id=AIF_2018__68_3_1077_0> © Association des Annales de l’institut Fourier, 2018, Certains droits réservés. Cet article est mis à disposition selon les termes de la licence CREATIVE COMMONS ATTRIBUTION – PAS DE MODIFICATION 3.0 FRANCE. http://creativecommons.org/licenses/by-nd/3.0/fr/ L’accès aux articles de la revue « Annales de l’institut Fourier » (http://aif.cedram.org/), implique l’accord avec les conditions générales d’utilisation (http://aif.cedram.org/legal/). cedram Article mis en ligne dans le cadre du Centre de diffusion des revues académiques de mathématiques http://www.cedram.org/ Ann. Inst. Fourier, Grenoble 68, 3 (2018) 1077-1120 RIEMANN–HILBERT CORRESPONDENCE FOR UNIT F -CRYSTALS ON EMBEDDABLE ALGEBRAIC VARIETIES by Sachio OHKAWA Abstract. — For a separated scheme X of finite type over a perfect field k of characteristic p > 0 which admits an immersion into a proper smooth scheme over the truncated Witt ring Wn, we define the bounded derived category of lo- cally finitely generated unit F -crystals with finite Tor-dimension on X over Wn, independently of the choice of the immersion. Then we prove the anti-equivalence of this category with the bounded derived category of constructible étale sheaves n of Z/p Z-modules with finite Tor-dimension. We also discuss the relationship of t-structures on these derived categories when n = 1. Résumé. — Soit X un schéma séparé de type fini sur un corps parfait k de caractéristique p > 0 et qui admet une immersion vers un schéma propre et lisse sur l’anneau des vecteurs de Witt tronqué Wn. Nous définissons la catégorie dé- rivée bornée des F -cristaux unités localement finiment engendrés sur Wn avec Tor-dimension finie sur X, indépendemment de l’immersion. Nous provons ensuite que cette catégorie est anti-équivalente à la catégorie dérivée bornée des faisceaux n constructibles étales de Z/p Z-modules avec Tor-dimension finie. Nous étudions aussi les relations de t-structures sur ces catégories dérivées lorsque n = 1. 1. Introduction For a complex manifold X, Kashiwara [9] and Mebkhout [12] indepen- dently established an anti-equivalence, which is called the Riemann–Hilbert b correspondence, between the triangulated category Drh(DX) of DX -modules b with regular holonomic cohomologies and that Dc(X, C) of sheaves of C- vector spaces on X with constructible cohomologies. There is a significant property from the point of view of relative cohomology theories that this ! ∗ anti-equivalence respects Grothendieck’s six operations f , f!, f , f∗, RHom L b b and ⊗ defined on Drh(DX ) and Dc(X, C). Keywords: D-modules, Frobenius structure, étale sheaves. 2010 Mathematics Subject Classification: 14F30, 14F10. 1078 Sachio OHKAWA In [4], Emerton and Kisin studied a positive characteristic analogue of the Riemann–Hilbert correspondence. Let k be a perfect field of charac- teristic p > 0. We denote by Wn := Wn(k) the ring of Witt vectors of length n. For a smooth scheme X over Wn, Emerton and Kisin defined the sheaf DF,X of OX -algebras by adjoining to OX the differential op- erators of all orders on X and a “local lift of Frobenius”. By using DF,X , b they introduced the triangulated category Dlfgu(DF,X ) of DX -modules with Frobenius structures with locally finitely generated unit cohomologies and proved the anti-equivalence b ◦ ∼= b n Dlfgu(DF,X ) −→ Dctf (X´et, Z/p Z) b ◦ b between the subcategory Dlfgu(DF,X ) of Dlfgu(DF,X ) consisting of com- plexes of finite Tor dimension over OX and the triangulated category b n n Dctf (X´et, Z/p Z) of étale sheaves of Z/p Z-modules with constructible co- homologies and of finite Tor dimension over Z/pnZ, which they call the Riemann–Hilbert correspondence for unit F -crystals. They also introduced three of Grothendieck’s six operations, which are the direct image f+, the ! L b inverse image f and the tensor product ⊗ on Dlfgu(DF,X ), and proved −1 that their Riemann–Hilbert correspondence exchanges these to f!, f and L b n ⊗ on Dctf (X´et, Z/p Z). Emerton and Kisin established the Riemann–Hilbert correspondence for unit F -crystals only for smooth schemes X over Wn. Since the triangulated b n category Dctf (X´et, Z/p Z) depends only on the mod p reduction of X, it is natural to expect that there exists a definition of the triangulated category b ◦ Dlfgu(DF,X ) and the Riemann–Hilbert correspondence depending only on the mod p reduction of X. Also, there should be the Riemann–Hilbert correspondence for algebraic varieties over k which are not smoothly liftable to Wn. The purpose of this article is to generalize the Emerton–Kisin theory to the case of Wn-embeddable algebraic varieties over k. Here we say a separated k-scheme X of finite type is Wn-embeddable if there exists a proper smooth Wn-scheme P and an immersion X,→ P such that the diagram X / P (1.1) Spec k / Spec Wn is commutative. A quasi projective variety over k is a typical example of Wn-embeddable variety and thus Wn-embeddable varieties form a suffi- ciently wide class of algebraic varieties in some sense. ANNALES DE L’INSTITUT FOURIER RIEMANN–HILBERT CORRESPONDENCE 1079 The first problem is to define a reasonable D-module category for Wn- embeddable algebraic varieties over k. Our construction is based on Kashi- wara’s theorem which roughly asserts that, for any closed immersion X,→ P of smooth algebraic varieties, the category of D-modules on P supported on X is naturally equivalent to the category of D-modules on X. Using the characteristic p > 0 analogue of Kashiwara’s theorem due to Emerton– Kisin [4, Prop. 15.5.3], we show that, when we are given the diagram (1.1), b ◦ the full triangulated subcategory of Dlfgu(DF,P ) consisting of complexes supported on X does not depend on the choice of immersion X,→ P b ◦ (Corollary 4.6). We denote this full subcategory by Dlfgu(X/Wn) . Then we show the Riemann–Hilbert correspondence b ◦ ∼= b n Dlfgu(X/Wn) −→ Dctf (X´et, Z/p Z) for any Wn-embeddable k-scheme X (Theorem 4.12). As in the case of [4], we can naturally introduce three of Grothendieck’s six operations, that is, direct and inverse images and tensor products. We then prove that the Riemann–Hilbert correspondence respects these operations (Theorem 4.14). A striking consequence of the Riemann–Hilbert correspondence over com- plex numbers is that one can introduce an exotic t-structure on the topo- logical side called the perverse t-structure, which corresponds to the stan- dard t-structure on the D-module side. For an algebraic variety X over b k, Gabber introduced in [5] the perverse t-structure on Dc(X´et, Z/pZ), which we call Gabber’s perverse t-structure. In the case when X is smooth over k, Emerton and Kisin showed that the standard t-structure on the D-module side corresponds to Gabber’s perverse t-structure. In this paper, we generalize it to the case of k-embeddable k-schemes. In the complex situation, conversely, a t-structure on the D-module side corresponding to the standard t-structure on the topological side is explicitly described by Kashiwara in [10]. In this paper, we construct the analogue of Kashiwara’s b t-structure on Dlfgu(X/k) and discuss the relationship of it and the stan- b dard t-structure on Dc(X´et, Z/pZ). The content of each section is as follows: In the second section, we re- call several notions, terminologies and cohomological operations on DF,P - modules from [4] which we often use in this paper. We also recall the statement of the Riemann–Hilbert correspondence for unit F -crystals of Emerton–Kisin (Theorem 2.3). In the third section, we define the local co- homology functor RΓZ for DF,P -modules and prove compatibilities with RΓZ and other operations for DF,P -modules, which are essential tools to b ◦ define and study the triangulated category Dlfgu(X/Wn) for any Wn- embeddable k-scheme X. In subsection 4.1, we introduce the category TOME 68 (2018), FASCICULE 3 1080 Sachio OHKAWA b ◦ Dlfgu(X/Wn) for any Wn-embeddable k-scheme X and in subsection 4.2, b ◦ we construct three of Grothendieck’s six operations on Dlfgu(X/Wn) . Our arguments in these subsections are heavily inspired by that of Caro in [2]. In subsection 4.3, we prove the Riemann–Hilbert correspondence for unit F -crystals on Wn-embeddable k-schemes, which is our main result. In the b fifth section, we discuss several properties on Dlfgu(X/k) (in the case n = 1) related to t-structures. In subsection 5.1, we introduce the standard t- b structure on Dlfgu(X/k) depending on the choice of the immersion X,→ P . We prove that the standard t-structure corresponds to Gabber’s perverse t-structure via the Riemann–Hilbert correspondence. As a consequence, we know that the definition of the standard t-structure is independent of the choice of X,→ P (Theorem 5.5). In subsection 5.2, we define the abelian b category µlfgu,X as the heart of the standard t-structure on Dlfgu(X/k), b b and prove that the natural functor D (µlfgu,X ) → Dlfgu(X/k) is an equiv- alence of triangulated categories (Theorem 5.6), which can be regarded as an analogue of Beilinson’s theorem.
Recommended publications
  • Derived Categories. Winter 2008/09
    Derived categories. Winter 2008/09 Igor V. Dolgachev May 5, 2009 ii Contents 1 Derived categories 1 1.1 Abelian categories .......................... 1 1.2 Derived categories .......................... 9 1.3 Derived functors ........................... 24 1.4 Spectral sequences .......................... 38 1.5 Exercises ............................... 44 2 Derived McKay correspondence 47 2.1 Derived category of coherent sheaves ................ 47 2.2 Fourier-Mukai Transform ...................... 59 2.3 Equivariant derived categories .................... 75 2.4 The Bridgeland-King-Reid Theorem ................ 86 2.5 Exercises ............................... 100 3 Reconstruction Theorems 105 3.1 Bondal-Orlov Theorem ........................ 105 3.2 Spherical objects ........................... 113 3.3 Semi-orthogonal decomposition ................... 121 3.4 Tilting objects ............................ 128 3.5 Exercises ............................... 131 iii iv CONTENTS Lecture 1 Derived categories 1.1 Abelian categories We assume that the reader is familiar with the concepts of categories and func- tors. We will assume that all categories are small, i.e. the class of objects Ob(C) in a category C is a set. A small category can be defined by two sets Mor(C) and Ob(C) together with two maps s, t : Mor(C) → Ob(C) defined by the source and the target of a morphism. There is a section e : Ob(C) → Mor(C) for both maps defined by the identity morphism. We identify Ob(C) with its image under e. The composition of morphisms is a map c : Mor(C) ×s,t Mor(C) → Mor(C). There are obvious properties of the maps (s, t, e, c) expressing the axioms of associativity and the identity of a category. For any A, B ∈ Ob(C) we denote −1 −1 by MorC(A, B) the subset s (A) ∩ t (B) and we denote by idA the element e(A) ∈ MorC(A, A).
    [Show full text]
  • Representations of Semisimple Lie Algebras in Prime Characteristic and the Noncommutative Springer Resolution
    Annals of Mathematics 178 (2013), 835{919 http://dx.doi.org/10.4007/annals.2013.178.3.2 Representations of semisimple Lie algebras in prime characteristic and the noncommutative Springer resolution By Roman Bezrukavnikov and Ivan Mirkovic´ To Joseph Bernstein with admiration and gratitude Abstract We prove most of Lusztig's conjectures on the canonical basis in homol- ogy of a Springer fiber. The conjectures predict that this basis controls numerics of representations of the Lie algebra of a semisimple algebraic group over an algebraically closed field of positive characteristic. We check this for almost all characteristics. To this end we construct a noncom- mutative resolution of the nilpotent cone which is derived equivalent to the Springer resolution. On the one hand, this noncommutative resolution is closely related to the positive characteristic derived localization equiva- lences obtained earlier by the present authors and Rumynin. On the other hand, it is compatible with the t-structure arising from an equivalence with the derived category of perverse sheaves on the affine flag variety of the Langlands dual group. This equivalence established by Arkhipov and the first author fits the framework of local geometric Langlands duality. The latter compatibility allows one to apply Frobenius purity theorem to deduce the desired properties of the basis. We expect the noncommutative counterpart of the Springer resolution to be of independent interest from the perspectives of algebraic geometry and geometric Langlands duality. Contents 0. Introduction 837 0.1. Notations and conventions 841 1. t-structures on cotangent bundles of flag varieties: statements and preliminaries 842 R.B.
    [Show full text]
  • Topics in Noncommutative Algebraic Geometry, Homological Algebra and K-Theory
    Topics in Noncommutative Algebraic Geometry, Homological Algebra and K-Theory Introduction This text is based on my lectures delivered at the School on Algebraic K-Theory and Applications which took place at the International Center for Theoretical Physics (ICTP) in Trieste during the last two weeks of May of 2007. It might be regarded as an introduction to some basic facts of noncommutative algebraic geometry and the related chapters of homological algebra and (as a part of it) a non-conventional version of higher K-theory of noncommutative 'spaces'. Arguments are mostly replaced by sketches of the main steps, or references to complete proofs, which makes the text an easier reading than the ample accounts on different topics discussed here indicated in the bibliography. Lecture 1 is dedicated to the first notions of noncommutative algebraic geometry { preliminaries on 'spaces' represented by categories and morphisms of 'spaces' represented by (isomorphism classes of) functors. We introduce continuous, affine, and locally affine morphisms which lead to definitions of noncommutative schemes and more general locally affine 'spaces'. The notion of a noncommutative scheme is illustrated with important examples related to quantized enveloping algebras: the quantum base affine spaces and flag varieties and the associated quantum D-schemes represented by the categories of (twisted) quantum D-modules introduced in [LR] (see also [T]). Noncommutative projective 'spaces' introduced in [KR1] and more general Grassmannians and flag varieties studied in [KR3] are examples of smooth locally affine noncommutative 'spaces' which are not schemes. In Lecture 2, we recover some fragments of geometry behind the pseudo-geometric picture outlined in the first lecture.
    [Show full text]
  • 4. Coherent Sheaves Definition 4.1. If (X,O X) Is a Locally Ringed Space
    4. Coherent Sheaves Definition 4.1. If (X; OX ) is a locally ringed space, then we say that an OX -module F is locally free if there is an open affine cover fUig of X such that FjUi is isomorphic to a direct sum of copies of OUi . If the number of copies r is finite and constant, then F is called locally free of rank r (aka a vector bundle). If F is locally free of rank one then we way say that F is invertible (aka a line bundle). The group of all invertible sheaves under tensor product, denoted Pic(X), is called the Picard group of X. A sheaf of ideals I is any OX -submodule of OX . Definition 4.2. Let X = Spec A be an affine scheme and let M be an A-module. M~ is the sheaf which assigns to every open subset U ⊂ X, the set of functions a s: U −! Mp; p2U which can be locally represented at p as a=g, a 2 M, g 2 R, p 2= Ug ⊂ U. Lemma 4.3. Let A be a ring and let M be an A-module. Let X = Spec A. ~ (1) M is a OX -module. ~ (2) If p 2 X then Mp is isomorphic to Mp. ~ (3) If f 2 A then M(Uf ) is isomorphic to Mf . Proof. (1) is clear and the rest is proved mutatis mutandis as for the structure sheaf. Definition 4.4. An OX -module F on a scheme X is called quasi- coherent if there is an open cover fUi = Spec Aig by affines and ~ isomorphisms FjUi ' Mi, where Mi is an Ai-module.
    [Show full text]
  • Lecture 18: April 15 Direct Images and Coherence. Last Time, We Defined
    89 Lecture 18: April 15 Direct images and coherence. Last time, we defined the direct image functor (for right D-modules) as the composition L op DX Y op Rf op b ⌦ ! b 1 ⇤ b D (DX ) D (f − DY ) D (DY ) f+ where f : X Y is any morphism between nonsingular algebraic varieties. We also ! showed that g+ f+ ⇠= (g f)+. Today, our first◦ task is to◦ prove that direct images preserve quasi-coherence and, in the case when f is proper, coherence. The definition of the derived category b op D (DX )didnot include any quasi-coherence assumptions. We are going to denote b op b op by Dqc(DX ) the full subcategory of D (DX ), consisting of those complexes of right DX -modules whose cohomology sheaves are quasi-coherent as OX -modules. Recall that we included the condition of quasi-coherence into our definition of algebraic b op D-modules in Lecture 10. Similarly, we denote by Dcoh (DX ) the full subcategory b op of D (DX ), consisting of those complexes of right DX -modules whose cohomology sheaves are coherent DX -modules (and therefore quasi-coherent OX -modules). This b op category is of course contained in Dqc(DX ). Theorem 18.1. Let f : X Y be a morphism between nonsingular algebraic ! b op b op varieties. Then the functor f+ takes Dqc(DX ) into Dqc(DY ). When f is proper, b op b op it also takes Dcoh (DX ) into Dcoh (DY ). We are going to deduce this from the analogous result for OX -modules. Recall that if F is a quasi-coherent OX -module, then the higher direct image sheaves j R f F are again quasi-coherent OY -modules.
    [Show full text]
  • THE FUNDAMENTAL THEOREMS of HIGHER K-THEORY We Now Restrict Our Attention to Exact Categories and Waldhausen Categories, Where T
    CHAPTER V THE FUNDAMENTAL THEOREMS OF HIGHER K-THEORY We now restrict our attention to exact categories and Waldhausen categories, where the extra structure enables us to use the following types of comparison the- orems: Additivity (1.2), Cofinality (2.3), Approximation (2.4), Resolution (3.1), Devissage (4.1), and Localization (2.1, 2.5, 5.1 and 7.3). These are the extensions to higher K-theory of the corresponding theorems of chapter II. The highlight of this chapter is the so-called “Fundamental Theorem” of K-theory (6.3 and 8.2), comparing K(R) to K(R[t]) and K(R[t,t−1]), and its analogue (6.13.2 and 8.3) for schemes. §1. The Additivity theorem If F ′ → F → F ′′ is a sequence of exact functors F ′,F,F ′′ : B→C between two exact categories (or Waldhausen categories), the Additivity Theorem tells us when ′ ′′ the induced maps K(B) → K(C) satisfy F∗ = F∗ + F∗ . To state it, we need to introduce the notion of a short exact sequence of functors, which was mentioned briefly in II(9.1.8). Definition 1.1. (a) If B and C are exact categories, we say that a sequence F ′ → F → F ′′ of exact functors and natural transformations from B to C is a short exact sequence of exact functors, and write F ′ ֌ F ։ F ′′, if 0 → F ′(B) → F (B) → F ′′(B) → 0 is an exact sequence in C for every B ∈B. (b) If B and C are Waldhausen categories, we say that F ′ ֌ F ։ F ′′ is a short exact sequence, or a cofibration sequence of exact functors if each F ′(B) ֌ F (B) ։ F ′′(B) is a cofibration sequence and if for every cofibration A ֌ B in B, the evident ′ map F (A) ∪F ′(A) F (B) ֌ F (B) is a cofibration in C.
    [Show full text]
  • A CATEGORICAL INTRODUCTION to SHEAVES Contents 1
    A CATEGORICAL INTRODUCTION TO SHEAVES DAPING WENG Abstract. Sheaf is a very useful notion when defining and computing many different cohomology theories over topological spaces. There are several ways to build up sheaf theory with different axioms; however, some of the axioms are a little bit hard to remember. In this paper, we are going to present a \natural" approach from a categorical viewpoint, with some remarks of applications of sheaf theory at the end. Some familiarity with basic category notions is assumed for the readers. Contents 1. Motivation1 2. Definitions and Constructions2 2.1. Presheaf2 2.2. Sheaf 4 3. Sheafification5 3.1. Direct Limit and Stalks5 3.2. Sheafification in Action8 3.3. Sheafification as an Adjoint Functor 12 4. Exact Sequence 15 5. Induced Sheaf 18 5.1. Direct Image 18 5.2. Inverse Image 18 5.3. Adjunction 20 6. A Brief Introduction to Sheaf Cohomology 21 Conclusion and Acknowlegdment 23 References 23 1. Motivation In many occasions, we may be interested in algebraic structures defined over local neigh- borhoods. For example, a theory of cohomology of a topological space often concerns with sets of maps from a local neighborhood to some abelian groups, which possesses a natural Z-module struture. Another example is line bundles (either real or complex): since R or C are themselves rings, the set of sections over a local neighborhood forms an R or C-module. To analyze this local algebraic information, mathematians came up with the notion of sheaves, which accommodate local and global data in a natural way. However, there are many fashion of introducing sheaves; Tennison [2] and Bredon [1] have done it in two very different styles in their seperate books, though both of which bear the name \Sheaf Theory".
    [Show full text]
  • DUALITY for SCHEMES 0DWE Contents 1. Introduction 2 2
    DUALITY FOR SCHEMES 0DWE Contents 1. Introduction 2 2. Dualizing complexes on schemes 2 3. Right adjoint of pushforward 5 4. Right adjoint of pushforward and restriction to opens 8 5. Right adjoint of pushforward and base change, I 11 6. Right adjoint of pushforward and base change, II 16 7. Right adjoint of pushforward and trace maps 19 8. Right adjoint of pushforward and pullback 21 9. Right adjoint of pushforward for closed immersions 23 10. Right adjoint of pushforward for closed immersions and base change 26 11. Right adjoint of pushforward for finite morphisms 27 12. Right adjoint of pushforward for proper flat morphisms 29 13. Right adjoint of pushforward for perfect proper morphisms 33 14. Right adjoint of pushforward for effective Cartier divisors 34 15. Right adjoint of pushforward in examples 35 16. Upper shriek functors 39 17. Properties of upper shriek functors 46 18. Base change for upper shriek 50 19. A duality theory 52 20. Glueing dualizing complexes 52 21. Dimension functions 58 22. Dualizing modules 60 23. Cohen-Macaulay schemes 62 24. Gorenstein schemes 63 25. Gorenstein morphisms 64 26. More on dualizing complexes 69 27. Duality for proper schemes over fields 69 28. Relative dualizing complexes 72 29. The fundamental class of an lci morphism 77 30. Extension by zero for coherent modules 78 31. Preliminaries to compactly supported cohomology 84 32. Compactly supported cohomology for coherent modules 87 33. Duality for compactly supported cohomology 91 34. Lichtenbaum’s theorem 94 35. Other chapters 95 References 96 This is a chapter of the Stacks Project, version fac02ecd, compiled on Sep 14, 2021.
    [Show full text]
  • Lecture (8).Pdf
    MIT OpenCourseWare http://ocw.mit.edu 18.726 Algebraic Geometry Spring 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 18.726: Algebraic Geometry (K.S. Kedlaya, MIT, Spring 2009) More properties of morphisms (updated 5 Mar 09) Note that finite presentation is not discussed in EGA 1; see EGA 4.1 instead. 1 More about separated morphisms Lemma. The composition of closed immersions is a closed immersion. Proof. Let f : X ! Y and g : Y ! Z be closed immersions. Since the property of being a closed immersion is local on the base, we may assume Z = Spec(A) is affine. Then Y = Spec(B) for B a quotient of A, so X = Spec(C) for C a quotient of B. Hence C is a quotient of A, proving the claim. (A similar argument shows that a composition of finite morphisms is finite.) Lemma. (a) Any closed immersion is separated. (b) A composition of separated morphisms is separated. (c) Separatedness is stable under base change. (d) A product of separated morphisms is separated. (e) If f : X ! Y and g : Y ! Z are morphisms, g � f is separated, and g is separated, then f is separated. (f) If f : X ! Y is separated, then fred : Xred ! Yred is separated. Proof. We know (a) because closed immersions are affine and affine morphisms are separated. We know (c) from the previous handout. Parts (d)-(f) follow once we also have (b); see exercises. It remains to prove (b). Let f : X ! Y and g : Y ! Z be separated morphisms.
    [Show full text]
  • The Six Grothendieck Operations on O-Minimal Sheaves
    THE SIX GROTHENDIECK OPERATIONS ON O-MINIMAL SHEAVES MARIO´ J. EDMUNDO AND LUCA PRELLI Abstract. In this paper we develop the formalism of the Grothendieck six operations on o-minimal sheaves. The Grothendieck formalism allows us to obtain o-minimal versions of: (i) derived projection formula; (ii) universal coefficient formula; (iii) derived base change formula; (iv) K¨unnethformula; (v) local and global Verdier duality. 1. Introduction The study of o-minimal structures ([16]) is the analytic part of model theory which deals with theories of ordered, hence topological, structures satisfying cer- tain tameness properties. It generalizes piecewise linear geometry ([16, Chapter 1, x7]), semi-algebraic geometry ([4]) and globally sub-analytic geometry ([36], also called finitely sub-analytic in [15]) and it is claimed to be the formalization of Grothendieck's notion of tame topology (topologie mod´er´ee).See [16] and [18]. The most striking successes of this model-theoretic point of view of sub-analytic geometry include, on the one hand, an understanding of the behavior at infinity of certain important classes of sub-analytic sets as in Wilkie's ([55]) as pointed out by Bierstone and Milman [3], and on the other hand, the recent, somehow surprising, first unconditional proof of the Andr´e-Oortconjecture for mixed Shimura varieties expressible as products of curves by Pila [45] following previous work also using o-minimality by Pila and Zanier ([46]), Pila and Wilkie ([47]) and Peterzil and Starchenko ([43]). The goal of this paper is to contribute
    [Show full text]
  • Talk 3: Review of Constructible Sheaves and Operations on Sheaves
    Talk 3: Review of constructible sheaves and operations on sheaves Good resources for the material presented today include [KS13], [Dim04], [Ive86], and [NZ09]. 3.1 Constructible sheaves Throughout this section, X will be a closed, real analytic manifold of dimension n, unless otherwise noted. As indicated by the name, constructible sheaves are those that we can build from very simple pieces using relatively simple methods. We start with the simplest possible sheaf (of C-modules) on X, which is the constant sheaf CX . This is the sheafification of Id CX (U) = C; (V,! U) 7! (C −! C) for open sets V ⊂ U ⊂ X. Notice that for any other sheaf F on X we have an obvious map CX × F ! F; defined by the fact that F(U) is a C-module for each U ⊂ X. This motivates the notation mod(CX ) for sheaves on X. Also note that we have a constant sheaf MX 2 mod(CX ) for each M 2 mod(C). Next, we allow ourselves to patch constant sheaves together, perhaps with monodromy. A locally constant sheaf is a sheaf F 2 mod(CX ) such that each x 2 X admits an open neighborhood U ⊂ X for which FjU is a constant sheaf. Example 4. Let π : Y ! X be a finite-sheeted covering space with fiber F . We define a sheaf F by assigning F(U) = ChΓ(π : Y ! U)i; with the obvious restriction maps. Given x 2 X, we can choose an open neighborhood U ⊂ X such that π−1(U) ' U, so Γ(π : Y ! U) ' F .
    [Show full text]
  • Higher Direct Images of Sheaves
    Section 3.8 - Higher Direct Images of Sheaves Daniel Murfet October 5, 2006 i In this note we study the higher direct image functors R f∗(−) and the higher coinverse image functors Rif !(−) which will play a role in our study of Serre duality. The main theorem is the i proof that if F is quasi-coherent then so is R f∗(F ), which we prove first for noetherian schemes and then more generally for quasi-compact quasi-separated schemes. Most proofs are from either Hartshorne’s book [1] or Kempf’s paper [2], with some elaborations. Contents 1 Definition 1 2 Module Structure 3 3 Direct Image and Quasi-coherence 6 4 Higher Coinverse Image 8 5 Direct Image and Quasi-coherence (General case) 10 5.1 Localisations of Sheaves ................................. 10 5.2 Localisation as Restriction (Invertible sheaves) .................... 13 5.3 Localisation as Restriction ................................ 15 5.4 The Proof ......................................... 17 6 Uniqueness of Cohomology 20 1 Definition Definition 1. Let f : X −→ Y be a continuous map of topological spaces. Then we define the i higher direct image functors R f∗ : Ab(X) −→ Ab(Y ) to be the right derived functors of the direct image functor f∗ for i ≥ 0. Since f∗ is left exact there is a canonical natural equivalence 0 ∼ R f∗ = f∗. For any short exact sequence of sheaves of abelian groups on X 0 −→ F 0 −→ F −→ F 00 −→ 0 there is a long exact sequence of sheaves of abelian groups on Y 0 00 1 0 0 / f∗(F ) / f∗(F ) / f∗(F ) / R f∗(F ) / ··· i 00 i+1 0 i+1 i+1 00 ··· / R f∗(F ) / R f∗(F ) / R f∗(F ) / R f∗(F ) / ··· Remark 1.
    [Show full text]