Crinoids a Computer Animation and Paper Model by Tau Rho Alpha*, Dorothy L
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Late Cretaceous-Early Palaeogene Echinoderms and the K/T Boundary in the Southeast Netherlands and Northeast Belgium — Part 6: Conclusions
pp 507-580 15-01-2007 14:51 Pagina 505 Late Cretaceous-Early Palaeogene echinoderms and the K/T boundary in the southeast Netherlands and northeast Belgium — Part 6: Conclusions John W.M. Jagt Jagt, J.W.M. Late Cretaceous-Early Palaeogene echinoderms and the K/T boundary in the southeast Netherlands and northeast Belgium — Part 6: Conclusions. — Scripta Geol., 121: 505-577, 8 figs., 9 tables, Leiden, December 2000. John W.M. Jagt, Natuurhistorisch Museum Maastricht, Postbus 882, NL-6200 AW Maastricht, The Netherlands, E-mail: [email protected] Key words: Echinodermata, Late Cretaceous, Early Palaeogene, palaeobiology, K/T boundary, extinc- tion. The palaeobiology of echinoderms occurring in the Meerssen and Geulhem members is discussed and changes in diversity across the K/T boundary are documented. Using literature data on the ecology of extant faunas, the various echinoderm groups are considered. Naturally, such data can only be applied with due caution to fossil forms, whose skeletal morphology is often incompletely known. This holds especially true for asteroids, ophiuroids, and crinoids, which, upon death, rapidly disinte- grate into jumbles of dissociated ossicles. Bioturbation, scavenging, and current winnowing all con- tribute to blurring the picture still further. However, data on extant forms do allow a preliminary sub- division of fossil species into various ecological groups, which are discussed herein. Combining recently published data on K/T boundary sections in Jylland and Sjælland (Denmark) with the pic- ture drawn here for the Maastricht area results in the following best constrained scenario. The demise of the highly diverse latest Maastrichtian echinoderm faunas, typical of shallow-water settings with local palaeorelief and associated unconsolidated bottoms, was rapid, suggestive of a catastrophic event (e.g. -
Phylum Echinodermata Phylum Echinodermata
Phylum Echinodermata Phylum Echinodermata About 7,000 species Strictly marine, mostly benthic. Typical deuterostomes. Phylum Echinodermata Class Crinoidea (sea lilies) Phylum Echinodermata Class Crinoidea Class Asteroidea (sea stars) Phylum Echinodermata Class Crinoidea Class Asteroidea Class Ophiuroidea (brittle stars and basket stars) Phylum Echinodermata Class Crinoidea Class Asteroidea Class Ophiuroidea Class Echinoidea (sea urchins and sand dollars) Phylum Echinodermata Class Crinoidea Class Asteroidea Class Ophiuroidea Class Echinoidea Class Holothuroidea (sea cucumbers) What do Echinoderms look like? Pentamerous radial symmetry. Oral and aboral surfaces. Oral surface has ambulacral grooves associated with tubefeet called podia. What do Echinoderms look like? Oral and aboral surfaces. What do Echinoderms look like? Arms (ambulacra) numbered with reference to the madreporite. Ambulacrum opposite is A then proceed couterclockwise. Ambulara C and D are the bivium, A B and E are the trivium. What do Echinoderms look like? Body wall Epidermis covers entire body. Endoskeleton of ossicles with tubefeet and dermal branchia protruding through and spines and pedicellaria on outside. What do Echinoderms look like? Body wall Ossicles can be fused into a test (urchins and sand dollars). Ossicles spread apart in cucumbers. Ossicles intermediate and variable in seastars. Muscle fibers beneath ossicles. What do Echinoderms look like? Body wall Tubercles and moveable spines on skeletal plates of echinoids. Small muscles attach spines to test. What do Echinoderms look like? Water vascular system Fluid-filled canals for internal transport and locomotion. Fluid similar to sewater but has coelomcytes and organic molecules. Moved through system with cilia. What do Echinoderms look like? Water vascular system Asteroidea: Madreporite on aboral surface. -
Tropical Marine Invertebrates CAS BI 569 Phylum Echinodermata by J
Tropical Marine Invertebrates CAS BI 569 Phylum Echinodermata by J. R. Finnerty Porifera Ctenophora Cnidaria Deuterostomia Ecdysozoa Lophotrochozoa Chordata Arthropoda Annelida Hemichordata Onychophora Mollusca Echinodermata *Nematoda *Platyhelminthes Acoelomorpha Calcispongia Silicispongiae PROTOSTOMIA Phylum Phylum Phylum CHORDATA ECHINODERMATA HEMICHORDATA Blastopore -> anus Radial / equal cleavage Coelom forms by enterocoely ! Protostome = blastopore contributes to the mouth blastopore mouth anus ! Deuterostome = blastopore becomes anus blastopore anus mouth Halocynthia, a tunicate (Urochordata) Coelom Formation Protostomes: Schizocoely Deuterostomes: Enterocoely Enterocoely in a sea star Axocoel (protocoel) Gives rise to small portion of water vascular system. Hydrocoel (mesocoel) Gives rise to water vascular system. Somatocoel (metacoel) Gives rise to lining of adult body cavity. Echinoderm Metamorphosis ECHINODERM FEATURES Water vascular system and tube feet Pentaradial symmetry Coelom formation by enterocoely Water Vascular System Tube Foot Tube Foot Locomotion ECHINODERM DIVERSITY Crinoidea Asteroidea Ophiuroidea Holothuroidea Echinoidea “sea lilies” “sea stars” “brittle stars” “sea cucumbers” “urchins, sand dollars” Group Form & Habit Habitat Ossicles Feeding Special Characteristics Crinoids 5-200 arms, stalked epifaunal Internal skeleton suspension mouth upward; mucous & Of each arm feeders secreting glands on sessile podia Ophiuroids usually 5 thin arms, epifaunal ossicles in arms deposit feeders act and appear like vertebrae -
What Are Echinoderms?
What are Echinoderms? Jon Allen College of William and Mary 5 extant classes of Echinoderms Echinoidea Asteroidea Crinoidea Ophiuroidea Holothuroidea Phylum Echinodermata • General Characteristics • Water Vascular System • Pentameral (five part) Symmetry as adults • Bilateral Symmetry as larvae • Calcareous ossicles form internal skeleton • Mutable connective tissue Water Vascular System WVS Used for Locomotion Ampulla Tube foot • RED indicates muscular contraction Echinoderm Ossicles • CaCO3 ossicles form internal skeleton • Vary widely across classes (cf urchin test with sea cucmbers) • Unique stereom structure: porous structure filled with living tissue Mutable Connective (Collagenous) Tissue • MCT used for feeding in seastars • MCT allows autotomy in Seastars and Bstars • Changes in MCT are under nervous control • Two nerve types present in extracellular matrix: one softens, one hardens • Mechanism unknown: related to [Ca2+] Development and Symmetry Switch in Echinoderms 5 extant classes of Echinoderms Echinoidea Asteroidea Crinoidea Ophiuroidea Holothuroidea Crinoidea • Sea lilies (deep sea) and feather stars (shallow tropical waters) • 625 species • Filter feeders • Generally sessile but can move when agitated • Generally considered primitive among the classes • Far more numerous in fossil record than today Crinoidea • Amazing mobility for such delicate creatures • Most echinoderms are light-averse Phylum Echinodermata: Class Ophiuroidea • Defining Characteristics: – Highly developed arm ossicles form ‘vertebrae’ – 5 pairs of bursal -
Biology of Echinoderms
Echinoderms Branches on the Tree of Life Programs ECHINODERMS Written and photographed by David Denning and Bruce Russell Produced by BioMEDIA ASSOCIATES ©2005 - Running time 16 minutes. Order Toll Free (877) 661-5355 Order by FAX (843) 470-0237 The Phylum Echinodermata consists of about 6,000 living species, all of which are marine. This video program compares the five major classes of living echinoderms in terms of basic functional biology, evolution and ecology using living examples, animations and a few fossil species. Detailed micro- and macro- photography reveal special adaptations of echinoderms and their larval biology. (THUMBNAIL IMAGES IN THIS GUIDE ARE FROM THE VIDEO PROGRAM) Summary of the Program: Introduction - Characteristics of the Class Echinoidea phylum. spine adaptations, pedicellaria, Aristotle‘s lantern, sand dollars, urchin development, Class Asteroidea gastrulation, settlement skeleton, water vascular system, tube feet function, feeding, digestion, Class Holuthuroidea spawning, larval development, diversity symmetry, water vascular system, ossicles, defensive mechanisms, diversity, ecology Class Ophiuroidea regeneration, feeding, diversity Class Crinoidea – Topics ecology, diversity, fossil echinoderms © BioMEDIA ASSOCIATES (1 of 7) Echinoderms ... ... The characteristics that distinguish Phylum Echinodermata are: radial symmetry, internal skeleton, and water-vascular system. Echinoderms appear to be quite different than other ‘advanced’ animal phyla, having radial (spokes of a wheel) symmetry as adults, rather than bilateral (worm-like) symmetry as in other triploblastic (three cell-layer) animals. Viewers of this program will observe that echinoderm radial symmetry is secondary; echinoderms begin as bilateral free-swimming larvae and become radial at the time of metamorphosis. Also, in one echinoderm group, the sea cucumbers, partial bilateral symmetry is retained in the adult stages -- sea cucumbers are somewhat worm–like. -
A Fossil Crinoid with Four Arms, Mississippian (Lower Carboniferous) of Clitheroe, Lancashire, UK
Swiss Journal of Palaeontology (2018) 137:255–258 https://doi.org/10.1007/s13358-018-0163-z (0123456789().,-volV)(0123456789().,- volV) SHORT CONTRIBUTION A fossil crinoid with four arms, Mississippian (Lower Carboniferous) of Clitheroe, Lancashire, UK 1 2,3 Andrew Tenny • Stephen K. Donovan Received: 16 May 2018 / Accepted: 29 August 2018 / Published online: 17 September 2018 Ó Akademie der Naturwissenschaften Schweiz (SCNAT) 2018 Abstract One of the characteristic features used to define the echinoderms is five-fold symmetry. The monobathrid camerate crinoid genus Amphoracrinus Austin normally has five arms, but an aberrant specimen from Salthill Quarry, Clitheroe, Lancashire (Mississippian, lower Chadian), has only four. The radial plate in the B-ray supports only interbrachial and/or tegminal plates; there never has been an arm in this position. The reason why this arm failed to grow is speculative, but there is no evidence for the common drivers of aberrant growth in crinoids such as borings; rather, a genetic or developmental flaw, or infestation by an unidentified parasite, must be suspected. In the absence of the B-ray arm, the other arms of Am- phoracrinus sp. have arrayed themselves at 90° to each other to make the most efficient feeding structure possible. Keywords Salthill Quarry Á Chadian Á Amphoracrinus Á Symmetry Introduction unexpectedly, the normal five-fold symmetry of some taxa may be modified in some individuals as deformities, such The echinoderms are commonly recognized on the pres- as showing four- or six-fold symmetry, or asymmetries, in, ence of three features: a stereom calcite microstructure to for example, echinoids (Kier 1967, pp. -
Scanning Electron Microscope Study of Microstructure and Regeneration of Upper Pennsylvanian Cladid Crinoid Spines Hannah Smith [email protected]
The University of Akron IdeaExchange@UAkron Williams Honors College, Honors Research The Dr. Gary B. and Pamela S. Williams Honors Projects College Summer 2019 Scanning Electron Microscope Study of Microstructure and Regeneration of Upper Pennsylvanian Cladid Crinoid Spines Hannah Smith [email protected] James Thomka [email protected] Please take a moment to share how this work helps you through this survey. Your feedback will be important as we plan further development of our repository. Follow this and additional works at: https://ideaexchange.uakron.edu/honors_research_projects Part of the Geology Commons, Paleobiology Commons, and the Paleontology Commons Recommended Citation Smith, Hannah and Thomka, James, "Scanning Electron Microscope Study of Microstructure and Regeneration of Upper Pennsylvanian Cladid Crinoid Spines" (2019). Williams Honors College, Honors Research Projects. 998. https://ideaexchange.uakron.edu/honors_research_projects/998 This Dissertation/Thesis is brought to you for free and open access by The Dr. Gary B. and Pamela S. Williams Honors College at IdeaExchange@UAkron, the institutional repository of The nivU ersity of Akron in Akron, Ohio, USA. It has been accepted for inclusion in Williams Honors College, Honors Research Projects by an authorized administrator of IdeaExchange@UAkron. For more information, please contact [email protected], [email protected]. Scanning Electron Microscope Study of Microstructure and Regeneration of Upper Pennsylvanian Cladid Crinoid Spines A Thesis Presented to The University of Akron Honors College In Partial Fulfillment of the Requirements for the Degree Bachelors of Science Hannah K. Smith July, 2019 ABSTRACT The crinoid skeleton is characterized by a complicated, highly porous microstructure known as stereom. Details of stereomic microstructural patterns are directly related to the distribution and composition of connective tissues, which are rarely preserved in fossils. -
Echinodermata: Crinoidea: Comatulida: Himerometridae) from Okinawa-Jima Island, Southwestern Japan
Two new records of Heterometra comatulids (Echinodermata: Title Crinoidea: Comatulida: Himerometridae) from Okinawa-jima Island, southwestern Japan Author(s) Obuchi, Masami Citation Fauna Ryukyuana, 13: 1-9 Issue Date 2014-07-25 URL http://hdl.handle.net/20.500.12000/38630 Rights Fauna Ryukyuana ISSN 2187-6657 http://w3.u-ryukyu.ac.jp/naruse/lab/Fauna_Ryukyuana.html Two new records of Heterometra comatulids (Echinodermata: Crinoidea: Comatulida: Himerometridae) from Okinawa-jima Island, southwestern Japan Masami Obuchi Biological Institute on Kuroshio. 680 Nishidomari, Otsuki-cho, Kochi 788-0333, Japan. E-mail: [email protected] Abstract: Two himerometrid comatulids from collected from a different environment: Okinawa-jima Island are reported as new to the Heterometra quinduplicava (Carpenter, 1888) from Japanese crinoid fauna. Heterometra quinduplicava a sandy bottom environment (Oura Bay), and (Carpenter, 1888) was found on a shallow sandy Heterometra sarae AH Clark, 1941, from a coral bottom of a closed bay, which was previously reef at a more exposed area. We report on these considered as an unsuitable habitat for comatulids. new records for the Japanese comatulid fauna. The specimens on hand are much larger than previously known specimens, and differ in the Materials and Methods extent of carination on proximal pinnules. Heterometra sarae AH Clark, 1941, was collected General terminology for description mainly follows from a coral reef area. These records extend the Messing (1997) and Rankin & Messing (2008). geographic ranges of both species northward. Following Kogo (1998), comparative lengths of pinnules are represented using inequality signs. The Introduction terms for ecological notes follows Meyer & Macurda (1980). Abbreviations are as follows: The genus Heterometra AH Clark, 1909, is the R: radius; length from center of centrodorsal to largest genus in the order Comatulida, and includes longest arm tip, measured to the nearest 5 mm. -
Reconstructions of Late Ordovician Crinoids and Bryozoans from the Decorah Shale, Upper Mississippi Valley Sibo Wang Senior Inte
Reconstructions of Late Ordovician crinoids and bryozoans from the Decorah Shale, Upper Mississippi Valley Sibo Wang Senior Integrative Exercise March 10, 2010 Submitted in partial fulfillment of the requirements for a Bachelor of Arts degree from Carleton College, Northfield, Minnesota TABLE OF CONTENTS ABSTRACT INTRODUCTION ........................................................................................................ 01 GEOLOGIC SETTING ................................................................................................ 03 Late Ordovician world ................................................................................. 03 Southern Minnesota and the Decorah Shale ............................................... 03 Benthic community ....................................................................................... 05 Marine conditions ........................................................................................ 05 CRINOIDS ................................................................................................................. 06 General background and fossil record ........................................................ 06 Anatomy ....................................................................................................... 07 Decorah Shale crinoids ................................................................................10 BRYOZOANS ............................................................................................................. 10 General background and -
The Role of Chemical Signals on the Feeding Behavior of the Crown-Of-Thorns Seastar, Acanthaster Planci (Linnaeus, 1758)
THE ROLE OF CHEMICAL SIGNALS ON THE FEEDING BEHAVIOR OF THE CROWN-OF-THORNS SEASTAR, ACANTHASTER PLANCI (LINNAEUS, 1758) BY CIEMON FRANK CABALLES A thesis submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE IN BIOLOGY UNIVERSITY OF GUAM SEPTEMBER, 2009 AN ABSTRACT OF THE THESIS of Ciemon Frank Caballes for the Master of Science in Biology presented 25 September, 2009. Title: The Role of Chemical Signals on the Feeding Behavior of the Crown-of- Thorns Seastar, Acanthaster planci (Linnaeus, 1758) Approved: ______________________________________________________________ Peter J. Schupp, Chairman, Thesis Committee Coral reefs are among the world’s most diverse and productive ecosystems, but at the same time also one of the most threatened. Increasing anthropogenic pressure has limited the resilience of reefs to natural disturbances, such as outbreaks of crown-of- thorns seastar, Acanthaster planci. A. planci is a corallivore known to inflict large-scale coral mortality at high population densities and continues to be a reef management problem despite previous control efforts. There has been no active control of A. planci populations on Guam since the 1970’s despite recent surveys showing that A. planci outbreaks continue to damage large areas of reef and is one of the primary sources of coral mortality around Guam. Large aggregations of up to 522 individuals/ha of reef were observed to feed mainly on Acroporids, especially encrusting Montipora and branching Acropora. Preferential feeding by A. planci, even at moderate densities, causes differential mortality among coral species, which can exert a major influence on community structure. Despite this, the underlying mechanisms involved in this feeding behavior are still poorly understood. -
An Early Cretaceous Astropectinid (Echinodermata, Asteroidea)
Andean Geology 41 (1): 210-223. January, 2014 Andean Geology doi: 10.5027/andgeoV41n1-a0810.5027/andgeoV40n2-a?? formerly Revista Geológica de Chile www.andeangeology.cl An Early Cretaceous astropectinid (Echinodermata, Asteroidea) from Patagonia (Argentina): A new species and the oldest record of the family for the Southern Hemisphere Diana E. Fernández1, Damián E. Pérez2, Leticia Luci1, Martín A. Carrizo2 1 Instituto de Estudios Andinos Don Pablo Groeber (IDEAN-CONICET), Departamento de Ciencias Geológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Pabellón 2, Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, Argentina. [email protected]; [email protected] 2 Museo de Ciencias Naturales Bernardino Rivadavia, Ángel Gallardo 470, Ciudad Autónoma de Buenos Aires, Argentina. [email protected]; [email protected] ABSTRACT. Asterozoans are free living, star-shaped echinoderms which are important components of benthic marine faunas worldwide. Their fossil record is, however, poor and fragmentary, probably due to dissarticulation of ossicles. In particular, fossil asteroids are infrequent in South America. A new species of starfish is reported from the early Valanginian of the Mulichinco Formation, Neuquén Basin, in the context of a shallow-water, storm-dominated shoreface environment. The specimen belongs to the Astropectinidae, and was assigned to a new species within the genus Tethyaster Sladen, T. antares sp. nov., characterized by a R:r ratio of 2.43:1, rectangular marginals wider in the interbrachial angles, infero- marginals (28 pairs along a median arc) with slightly convex profile and flat spines (one per ossicle in the interbrachials and two per ossicle in the arms). -
Crinoids and Make Their Own Model to Easily See How They Live and How They Often Break Apart at the End of Their Life Cycle
Youth and Education in Science (YES) Lesson Title Make Your Own Crinoid Model Grades K-6 Length Expected duration (45 minutes) Topics Geology, Oceanography, Fossils Materials Needed 2 pipe cleaners per crinoid (cutting directions to follow) 1 piece of felt, 8.5 x 11 or smaller (sea floor) o-shaped cereal (stalk segments) Small feathers (filter-feeding arms) NGSS Alignment 3-LS4-1, Biological Evolution: Unity and Diversity Overview Students learn about marine animals called crinoids and make their own model to easily see how they live and how they often break apart at the end of their life cycle. Depending on the age of the students, teachers can pre-cut the pipe cleaners. Students add o-shaped cereal to the pipe cleaners to represent the individual stalk segments and feathers to the top to represent the filter-feeding arms. U.S. Department of Interior U.S. Geological Survey Related Links www.usgs.gov/education, https://pubs.er.usgs.gov/publication/fs20183054 Vocabulary Crinoid, Tests, Stalk, Calcium Carbonate, Plankton, Phylum Echinodermata, Pentameral, Radial, Fossils, Geologic, Ordovician, Teacher Background Crinoids, also known as sea lilies, are marine organisms that live in shallow, marine environments. Most crinoids are sessile, meaning that they attach to a hard surface and do not move during their adult stage. Crinoid tests (skeletons) are made up of a stalk (stem) of stacked calcium carbonate (CaCO3) discs. These tests often break apart at the end of their life cycle and are preserved in the fossil record. Its feather-like, radial arms filter-feed plankton (floating plants and animals) from the water and guide the food into its mouth at the top of the stem.