Fibonacci Numbers and the Golden Ratio

Total Page:16

File Type:pdf, Size:1020Kb

Fibonacci Numbers and the Golden Ratio Fibonacci Numbers and the Golden Ratio Lecture Notes for Jeffrey R. Chasnov The Hong Kong University of Science and Technology Department of Mathematics Clear Water Bay, Kowloon Hong Kong Copyright ○c 2016-2019 by Jeffrey Robert Chasnov This work is licensed under the Creative Commons Attribution 3.0 Hong Kong License. To view a copy of this license, visit http://creativecommons.org/licenses/by/3.0/hk/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA. Preface View the promotional video on YouTube These are my lecture notes for my online Coursera course, Fibonacci Numbers and the Golden Ratio. These lecture notes are divided into chapters called Lectures, and each Lecture corresponds to a video on Coursera. I have also uploaded the Coursera videos to YouTube, and links are placed at the top of each Lecture. Most of the Lectures also contain problems for students to solve. Less experienced students may find some of these problems difficult. Do not despair! The Lectures can be read and watched, and the material understood and enjoyed without actually solving any problems. But mathematicians do like to solve problems and I have selected those that I found to be interesting. Try some of them, but if you get stuck, full solutions can be read in the Appendix. My aim in writing these lecture notes was to place the mathematics at the level of an advanced high school student. Proof by mathematical induction and matrices, however, may be unfamiliar to a typical high school student and I have provided a short and hopefully readable discussion of these topics in the Appendix. Although all the material presented here can be considered elementary, I suspect that some, if not most, of the material may be unfamiliar to even professional mathematicians since Fibonacci numbers and the golden ratio are topics not usually covered in a University course. So I welcome both young and old, novice and experienced mathematicians to peruse these lecture notes, watch my lecture videos, solve some problems, and enjoy the wonders of the Fibonacci sequence and the golden ratio. For your interest, here are the links to my other online courses. If you are studying differential equations, you may want to browse Differential Equations for Engineers If your interests are matrices and elementary linear algebra, have a look at Matrix Algebra for Engineers And for a course on multivariable calculus, try Vector Calculus for Engineers iii Contents I Fibonacci: It’s as Easy as 1, 1, 2, 3 1 1 The Fibonacci sequence5 2 The Fibonacci sequence redux7 Practice quiz: The Fibonacci numbers9 3 The golden ratio 11 4 Fibonacci numbers and the golden ratio 13 5 Binet’s formula 15 Practice quiz: The golden ratio 19 II Identities, Sums and Rectangles 21 6 The Fibonacci Q-matrix 25 7 Cassini’s identity 29 8 The Fibonacci bamboozlement 31 Practice quiz: The Fibonacci bamboozlement 35 9 Sum of Fibonacci numbers 37 10 Sum of Fibonacci numbers squared 39 Practice quiz: Fibonacci sums 41 11 The golden rectangle 43 12 Spiraling squares 45 III The Most Irrational Number 49 13 The golden spiral 53 v vi CONTENTS 14 An inner golden rectangle 57 15 The Fibonacci spiral 61 Practice quiz: Spirals 63 16 Fibonacci numbers in nature 65 17 Continued fractions 67 18 The golden angle 71 19 The growth of a sunflower 75 Practice quiz: Fibonacci numbers in nature 77 Appendix 78 A Mathematical induction 81 B Matrix algebra 83 B.1 Addition and Multiplication.................................... 83 B.2 Determinants............................................ 84 C Problem and practice quiz solutions 87 Part I Fibonacci: It’s as Easy as 1, 1, 2, 3 1 3 In this week’s lectures, we learn about the Fibonacci numbers, the golden ratio, and their relationship. We conclude the week by deriving the celebrated Binet’s formula, an explicit formula for the Fibonacci numbers in terms of powers of the golden ratio and its reciprical. 4 Lecture 1 The Fibonacci sequence View this lecture on YouTube Fibonacci published in the year 1202 his now famous rabbit puzzle: A man put a male-female pair of newly born rabbits in a field. Rabbits take a month to mature before mating. One month after mating, females give birth to one male-female pair and then mate again. No rabbits die. How many rabbit pairs are there after one year? To solve, we construct Table 1.1. At the start of each month, the number of juvenile pairs, adult pairs, and total number of pairs are shown. At the start of January, one pair of juvenile rabbits is introduced into the population. At the start of February, this pair of rabbits has matured. At the start of March, this pair has given birth to a new pair of juvenile rabbits. And so on. month J F M A M J J A S O N D J juvenile 1 0 1 1 2 3 5 8 13 21 34 55 89 adult 0 1 1 2 3 5 8 13 21 34 55 89 144 total 1 1 2 3 5 8 13 21 34 55 89 144 233 Table 1.1: Fibonacci’s rabbit population. We define the Fibonacci numbers Fn to be the total number of rabbit pairs at the start of the nth month. The number of rabbits pairs at the start of the 13th month, F13 = 233, can be taken as the solution to Fibonacci’s puzzle. Further examination of the Fibonacci numbers listed in Table 1.1, reveals that these numbers satisfy the recursion relation Fn+1 = Fn + Fn−1. (1.1) This recursion relation gives the next Fibonacci number as the sum of the preceeding two numbers. To start the recursion, we need to specify F1 and F2. In Fibonacci’s rabbit problem, the initial month starts with only one rabbit pair so that F1 = 1. And this initial rabbit pair is newborn and takes one month to mature before mating so F2 = 1. The first few Fibonacci numbers, read from the table, are given by 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, . and has become one of the most famous sequences in mathematics. 5 6 LECTURE 1. THE FIBONACCI SEQUENCE Problems for Lecture 1 1. The Fibonacci numbers can be extended to zero and negative indices using the relation Fn = Fn+2 − Fn+1. Determine F0 and find a general formula for F−n in terms of Fn. Prove your result using mathematical induction. 2. The Lucas numbers are closely related to the Fibonacci numbers and satisfy the same recursion relation Ln+1 = Ln + Ln−1, but with starting values L1 = 1 and L2 = 3. Determine the first 12 Lucas numbers. 3. The generalized Fibonacci sequence satisfies fn+1 = fn + fn−1 with starting values f1 = p and f2 = q. Using mathematical induction, prove that fn+2 = Fn p + Fn+1q. (1.2) 4. Prove that Ln = Fn−1 + Fn+1. (1.3) 5. Prove that 1 F = (L − + L + ) . n 5 n 1 n 1 6. The generating function for the Fibonacci sequence is given by the power series ¥ n f (x) = ∑ Fnx . n=1 Assuming the power series converges, prove that x f (x) = . 1 − x − x2 Solutions to the Problems Lecture 2 The Fibonacci sequence redux View this lecture on YouTube We can solve another puzzle that also leads to the Fibonacci sequence: How many ways can one climb a staircase with n steps, taking one or two steps at a time? Any single climb can be represented by a string of ones and twos which sum to n. We define an as the number of different strings that sum to n. In Table 1, we list the possible strings for the first five values of n. It appears that the an’s form the beginning of the Fibonacci sequence. To derive a relationship between an and the Fibonacci numbers, consider the set of strings that sum to n. This set may be divided into two nonoverlapping subsets: those strings that start with one and those strings that start with two. For the subset of strings that start with one, the remaining part of the string must sum to n − 1; for the subset of strings that start with two, the remaining part of the string must sum to n − 2. Therefore, the number of strings that sum to n is equal to the number of strings that sum to n − 1 plus the number of strings that sum to n − 2. The number of strings that sum to n − 1 is given by an−1 and the number of strings that sum to n − 2 is given by an−2, so that an = an−1 + an−2. And from the table we have a1 = 1 = F2 and a2 = 2 = F3, so that an = Fn+1 for all positive integers n. n strings an 1 1 1 2 11, 2 2 3 111, 12, 21 3 4 1111, 112, 121, 211, 22 5 5 11111, 1112, 1121, 1211, 2111, 122, 212, 221 8 Table 2.1: Strings of ones and twos that add up to n. 7 8 LECTURE 2. THE FIBONACCI SEQUENCE REDUX Problems for Lecture 2 1. Consider a string consisting of the first n natural numbers, 123 . n. For each number in the string, allow it to either stay fixed or change places with one of its neighbors. Define an to be the number of different strings that can be formed. Examples for the first four values of n are shown in Table 2.2.
Recommended publications
  • On K-Fibonacci Numbers of Arithmetic Indexes
    Applied Mathematics and Computation 208 (2009) 180–185 Contents lists available at ScienceDirect Applied Mathematics and Computation journal homepage: www.elsevier.com/locate/amc On k-Fibonacci numbers of arithmetic indexes Sergio Falcon *, Angel Plaza Department of Mathematics, University of Las Palmas de Gran Canaria (ULPGC), Campus de Tafira, 35017 Las Palmas de Gran Canaria, Spain article info abstract Keywords: In this paper, we study the sums of k-Fibonacci numbers with indexes in an arithmetic k-Fibonacci numbers sequence, say an þ r for fixed integers a and r. This enables us to give in a straightforward Sequences of partial sums way several formulas for the sums of such numbers. Ó 2008 Elsevier Inc. All rights reserved. 1. Introduction One of the more studied sequences is the Fibonacci sequence [1–3], and it has been generalized in many ways [4–10]. Here, we use the following one-parameter generalization of the Fibonacci sequence. Definition 1. For any integer number k P 1, the kth Fibonacci sequence, say fFk;ngn2N is defined recurrently by Fk;0 ¼ 0; Fk;1 ¼ 1; and Fk;nþ1 ¼ kFk;n þ Fk;nÀ1 for n P 1: Note that for k ¼ 1 the classical Fibonacci sequence is obtained while for k ¼ 2 we obtain the Pell sequence. Some of the properties that the k-Fibonacci numbers verify and that we will need later are summarized below [11–15]: pffiffiffiffiffiffiffiffi pffiffiffiffiffiffiffiffi n n 2 2 r1Àr2 kþ k þ4 kÀ k þ4 [Binet’s formula] Fk;n ¼ r Àr , where r1 ¼ 2 and r2 ¼ 2 . These roots verify r1 þ r2 ¼ k, and r1 Á r2 ¼1 1 2 2 nþ1Àr 2 [Catalan’s identity] Fk;nÀrFk;nþr À Fk;n ¼ðÀ1Þ Fk;r 2 n [Simson’s identity] Fk;nÀ1Fk;nþ1 À Fk;n ¼ðÀ1Þ n [D’Ocagne’s identity] Fk;mFk;nþ1 À Fk;mþ1Fk;n ¼ðÀ1Þ Fk;mÀn [Convolution Product] Fk;nþm ¼ Fk;nþ1Fk;m þ Fk;nFk;mÀ1 In this paper, we study different sums of k-Fibonacci numbers.
    [Show full text]
  • On the Prime Number Subset of the Fibonacci Numbers
    Introduction to Sieves Fibonacci Numbers Fibonacci sequence mod a prime Probability of Fibonacci Primes Matrix Approach On the Prime Number Subset of the Fibonacci Numbers Lacey Fish1 Brandon Reid2 Argen West3 1Department of Mathematics Louisiana State University Baton Rouge, LA 2Department of Mathematics University of Alabama Tuscaloosa, AL 3Department of Mathematics University of Louisiana Lafayette Lafayette, LA Lacey Fish, Brandon Reid, Argen West SMILE Presentations, 2010 LSU, UA, ULL Sieve Theory Introduction to Sieves Fibonacci Numbers Fibonacci sequence mod a prime Probability of Fibonacci Primes Matrix Approach Basic Definitions What is a sieve? What is a sieve? A sieve is a method to count or estimate the size of “sifted sets” of integers. Well, what is a sifted set? A sifted set is made of the remaining numbers after filtering. Lacey Fish, Brandon Reid, Argen West LSU, UA, ULL Sieve Theory Introduction to Sieves Fibonacci Numbers Fibonacci sequence mod a prime Probability of Fibonacci Primes Matrix Approach Basic Definitions What is a sieve? What is a sieve? A sieve is a method to count or estimate the size of “sifted sets” of integers. Well, what is a sifted set? A sifted set is made of the remaining numbers after filtering. Lacey Fish, Brandon Reid, Argen West LSU, UA, ULL Sieve Theory Introduction to Sieves Fibonacci Numbers Fibonacci sequence mod a prime Probability of Fibonacci Primes Matrix Approach Basic Definitions History Two Famous and Useful Sieves Sieve of Eratosthenes Brun’s Sieve Lacey Fish, Brandon Reid, Argen West
    [Show full text]
  • Linguistic Presentation of Objects
    Zygmunt Ryznar dr emeritus Cracow Poland [email protected] Linguistic presentation of objects (types,structures,relations) Abstract Paper presents phrases for object specification in terms of structure, relations and dynamics. An applied notation provides a very concise (less words more contents) description of object. Keywords object relations, role, object type, object dynamics, geometric presentation Introduction This paper is based on OSL (Object Specification Language) [3] dedicated to present the various structures of objects, their relations and dynamics (events, actions and processes). Jay W.Forrester author of fundamental work "Industrial Dynamics”[4] considers the importance of relations: “the structure of interconnections and the interactions are often far more important than the parts of system”. Notation <!...> comment < > container of (phrase,name...) ≡> link to something external (outside of definition)) <def > </def> start-end of definition <spec> </spec> start-end of specification <beg> <end> start-end of section [..] or {..} 1 list of assigned keywords :[ or :{ structure ^<name> optional item (..) list of items xxxx(..) name of list = value assignment @ mark of special attribute,feature,property @dark unknown, to obtain, to discover :: belongs to : equivalent name (e.g.shortname) # number of |name| executive/operational object ppppXxxx name of item Xxxx with prefix ‘pppp ‘ XXXX basic object UUUU.xxxx xxxx object belonged to UUUU object class & / conjunctions ‘and’ ‘or’ 1 If using Latex editor we suggest [..] brackets
    [Show full text]
  • Fibonacci Number
    Fibonacci number From Wikipedia, the free encyclopedia • Have questions? Find out how to ask questions and get answers. • • Learn more about citing Wikipedia • Jump to: navigation, search A tiling with squares whose sides are successive Fibonacci numbers in length A Fibonacci spiral, created by drawing arcs connecting the opposite corners of squares in the Fibonacci tiling shown above – see golden spiral In mathematics, the Fibonacci numbers form a sequence defined by the following recurrence relation: That is, after two starting values, each number is the sum of the two preceding numbers. The first Fibonacci numbers (sequence A000045 in OEIS), also denoted as Fn, for n = 0, 1, … , are: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368, 75025, 121393, ... (Sometimes this sequence is considered to start at F1 = 1, but in this article it is regarded as beginning with F0=0.) The Fibonacci numbers are named after Leonardo of Pisa, known as Fibonacci, although they had been described earlier in India. [1] [2] • [edit] Origins The Fibonacci numbers first appeared, under the name mātrāmeru (mountain of cadence), in the work of the Sanskrit grammarian Pingala (Chandah-shāstra, the Art of Prosody, 450 or 200 BC). Prosody was important in ancient Indian ritual because of an emphasis on the purity of utterance. The Indian mathematician Virahanka (6th century AD) showed how the Fibonacci sequence arose in the analysis of metres with long and short syllables. Subsequently, the Jain philosopher Hemachandra (c.1150) composed a well-known text on these.
    [Show full text]
  • Triangular Numbers /, 3,6, 10, 15, ", Tn,'" »*"
    TRIANGULAR NUMBERS V.E. HOGGATT, JR., and IVIARJORIE BICKWELL San Jose State University, San Jose, California 9111112 1. INTRODUCTION To Fibonacci is attributed the arithmetic triangle of odd numbers, in which the nth row has n entries, the cen- ter element is n* for even /?, and the row sum is n3. (See Stanley Bezuszka [11].) FIBONACCI'S TRIANGLE SUMS / 1 =:1 3 3 5 8 = 2s 7 9 11 27 = 33 13 15 17 19 64 = 4$ 21 23 25 27 29 125 = 5s We wish to derive some results here concerning the triangular numbers /, 3,6, 10, 15, ", Tn,'" »*". If one o b - serves how they are defined geometrically, 1 3 6 10 • - one easily sees that (1.1) Tn - 1+2+3 + .- +n = n(n±M and (1.2) • Tn+1 = Tn+(n+1) . By noticing that two adjacent arrays form a square, such as 3 + 6 = 9 '.'.?. we are led to 2 (1.3) n = Tn + Tn„7 , which can be verified using (1.1). This also provides an identity for triangular numbers in terms of subscripts which are also triangular numbers, T =T + T (1-4) n Tn Tn-1 • Since every odd number is the difference of two consecutive squares, it is informative to rewrite Fibonacci's tri- angle of odd numbers: 221 222 TRIANGULAR NUMBERS [OCT. FIBONACCI'S TRIANGLE SUMS f^-O2) Tf-T* (2* -I2) (32-22) Ti-Tf (42-32) (52-42) (62-52) Ti-Tl•2 (72-62) (82-72) (9*-82) (Kp-92) Tl-Tl Upon comparing with the first array, it would appear that the difference of the squares of two consecutive tri- angular numbers is a perfect cube.
    [Show full text]
  • Twelve Simple Algorithms to Compute Fibonacci Numbers Arxiv
    Twelve Simple Algorithms to Compute Fibonacci Numbers Ali Dasdan KD Consulting Saratoga, CA, USA [email protected] April 16, 2018 Abstract The Fibonacci numbers are a sequence of integers in which every number after the first two, 0 and 1, is the sum of the two preceding numbers. These numbers are well known and algorithms to compute them are so easy that they are often used in introductory algorithms courses. In this paper, we present twelve of these well-known algo- rithms and some of their properties. These algorithms, though very simple, illustrate multiple concepts from the algorithms field, so we highlight them. We also present the results of a small-scale experi- mental comparison of their runtimes on a personal laptop. Finally, we provide a list of homework questions for the students. We hope that this paper can serve as a useful resource for the students learning the basics of algorithms. arXiv:1803.07199v2 [cs.DS] 13 Apr 2018 1 Introduction The Fibonacci numbers are a sequence Fn of integers in which every num- ber after the first two, 0 and 1, is the sum of the two preceding num- bers: 0; 1; 1; 2; 3; 5; 8; 13; 21; ::. More formally, they are defined by the re- currence relation Fn = Fn−1 + Fn−2, n ≥ 2 with the base values F0 = 0 and F1 = 1 [1, 5, 7, 8]. 1 The formal definition of this sequence directly maps to an algorithm to compute the nth Fibonacci number Fn. However, there are many other ways of computing the nth Fibonacci number.
    [Show full text]
  • Study of Spiral Transition Curves As Related to the Visual Quality of Highway Alignment
    A STUDY OF SPIRAL TRANSITION CURVES AS RELA'^^ED TO THE VISUAL QUALITY OF HIGHWAY ALIGNMENT JERRY SHELDON MURPHY B, S., Kansas State University, 1968 A MJvSTER'S THESIS submitted in partial fulfillment of the requirements for the degree MASTER OF SCIENCE Department of Civil Engineering KANSAS STATE UNIVERSITY Manhattan, Kansas 1969 Approved by P^ajQT Professor TV- / / ^ / TABLE OF CONTENTS <2, 2^ INTRODUCTION 1 LITERATURE SEARCH 3 PURPOSE 5 SCOPE 6 • METHOD OF SOLUTION 7 RESULTS 18 RECOMMENDATIONS FOR FURTHER RESEARCH 27 CONCLUSION 33 REFERENCES 34 APPENDIX 36 LIST OF TABLES TABLE 1, Geonetry of Locations Studied 17 TABLE 2, Rates of Change of Slope Versus Curve Ratings 31 LIST OF FIGURES FIGURE 1. Definition of Sight Distance and Display Angle 8 FIGURE 2. Perspective Coordinate Transformation 9 FIGURE 3. Spiral Curve Calculation Equations 12 FIGURE 4. Flow Chart 14 FIGURE 5, Photograph and Perspective of Selected Location 15 FIGURE 6. Effect of Spiral Curves at Small Display Angles 19 A, No Spiral (Circular Curve) B, Completely Spiralized FIGURE 7. Effects of Spiral Curves (DA = .015 Radians, SD = 1000 Feet, D = l** and A = 10*) 20 Plate 1 A. No Spiral (Circular Curve) B, Spiral Length = 250 Feet FIGURE 8. Effects of Spiral Curves (DA = ,015 Radians, SD = 1000 Feet, D = 1° and A = 10°) 21 Plate 2 A. Spiral Length = 500 Feet B. Spiral Length = 1000 Feet (Conpletely Spiralized) FIGURE 9. Effects of Display Angle (D = 2°, A = 10°, Ig = 500 feet, = SD 500 feet) 23 Plate 1 A. Display Angle = .007 Radian B. Display Angle = .027 Radiaji FIGURE 10.
    [Show full text]
  • Construction Surveying Curves
    Construction Surveying Curves Three(3) Continuing Education Hours Course #LS1003 Approved Continuing Education for Licensed Professional Engineers EZ-pdh.com Ezekiel Enterprises, LLC 301 Mission Dr. Unit 571 New Smyrna Beach, FL 32170 800-433-1487 [email protected] Construction Surveying Curves Ezekiel Enterprises, LLC Course Description: The Construction Surveying Curves course satisfies three (3) hours of professional development. The course is designed as a distance learning course focused on the process required for a surveyor to establish curves. Objectives: The primary objective of this course is enable the student to understand practical methods to locate points along curves using variety of methods. Grading: Students must achieve a minimum score of 70% on the online quiz to pass this course. The quiz may be taken as many times as necessary to successful pass and complete the course. Ezekiel Enterprises, LLC Section I. Simple Horizontal Curves CURVE POINTS Simple The simple curve is an arc of a circle. It is the most By studying this course the surveyor learns to locate commonly used. The radius of the circle determines points using angles and distances. In construction the “sharpness” or “flatness” of the curve. The larger surveying, the surveyor must often establish the line of the radius, the “flatter” the curve. a curve for road layout or some other construction. The surveyor can establish curves of short radius, Compound usually less than one tape length, by holding one end Surveyors often have to use a compound curve because of the tape at the center of the circle and swinging the of the terrain.
    [Show full text]
  • Continued Fractions: Introduction and Applications
    PROCEEDINGS OF THE ROMAN NUMBER THEORY ASSOCIATION Volume 2, Number 1, March 2017, pages 61-81 Michel Waldschmidt Continued Fractions: Introduction and Applications written by Carlo Sanna The continued fraction expansion of a real number x is a very efficient process for finding the best rational approximations of x. Moreover, continued fractions are a very versatile tool for solving problems related with movements involving two different periods. This situation occurs both in theoretical questions of number theory, complex analysis, dy- namical systems... as well as in more practical questions related with calendars, gears, music... We will see some of these applications. 1 The algorithm of continued fractions Given a real number x, there exist an unique integer bxc, called the integral part of x, and an unique real fxg 2 [0; 1[, called the fractional part of x, such that x = bxc + fxg: If x is not an integer, then fxg , 0 and setting x1 := 1=fxg we have 1 x = bxc + : x1 61 Again, if x1 is not an integer, then fx1g , 0 and setting x2 := 1=fx1g we get 1 x = bxc + : 1 bx1c + x2 This process stops if for some i it occurs fxi g = 0, otherwise it continues forever. Writing a0 := bxc and ai = bxic for i ≥ 1, we obtain the so- called continued fraction expansion of x: 1 x = a + ; 0 1 a + 1 1 a2 + : : a3 + : which from now on we will write with the more succinct notation x = [a0; a1; a2; a3;:::]: The integers a0; a1;::: are called partial quotients of the continued fraction of x, while the rational numbers pk := [a0; a1; a2;:::; ak] qk are called convergents.
    [Show full text]
  • Input for Carnival of Math: Number 115, October 2014
    Input for Carnival of Math: Number 115, October 2014 I visited Singapore in 1996 and the people were very kind to me. So I though this might be a little payback for their kindness. Good Luck. David Brooks The “Mathematical Association of America” (http://maanumberaday.blogspot.com/2009/11/115.html ) notes that: 115 = 5 x 23. 115 = 23 x (2 + 3). 115 has a unique representation as a sum of three squares: 3 2 + 5 2 + 9 2 = 115. 115 is the smallest three-digit integer, abc , such that ( abc )/( a*b*c) is prime : 115/5 = 23. STS-115 was a space shuttle mission to the International Space Station flown by the space shuttle Atlantis on Sept. 9, 2006. The “Online Encyclopedia of Integer Sequences” (http://www.oeis.org) notes that 115 is a tridecagonal (or 13-gonal) number. Also, 115 is the number of rooted trees with 8 vertices (or nodes). If you do a search for 115 on the OEIS website you will find out that there are 7,041 integer sequences that contain the number 115. The website “Positive Integers” (http://www.positiveintegers.org/115) notes that 115 is a palindromic and repdigit number when written in base 22 (5522). The website “Number Gossip” (http://www.numbergossip.com) notes that: 115 is the smallest three-digit integer, abc, such that (abc)/(a*b*c) is prime. It also notes that 115 is a composite, deficient, lucky, odd odious and square-free number. The website “Numbers Aplenty” (http://www.numbersaplenty.com/115) notes that: It has 4 divisors, whose sum is σ = 144.
    [Show full text]
  • The Ordered Distribution of Natural Numbers on the Square Root Spiral
    The Ordered Distribution of Natural Numbers on the Square Root Spiral - Harry K. Hahn - Ludwig-Erhard-Str. 10 D-76275 Et Germanytlingen, Germany ------------------------------ mathematical analysis by - Kay Schoenberger - Humboldt-University Berlin ----------------------------- 20. June 2007 Abstract : Natural numbers divisible by the same prime factor lie on defined spiral graphs which are running through the “Square Root Spiral“ ( also named as “Spiral of Theodorus” or “Wurzel Spirale“ or “Einstein Spiral” ). Prime Numbers also clearly accumulate on such spiral graphs. And the square numbers 4, 9, 16, 25, 36 … form a highly three-symmetrical system of three spiral graphs, which divide the square-root-spiral into three equal areas. A mathematical analysis shows that these spiral graphs are defined by quadratic polynomials. The Square Root Spiral is a geometrical structure which is based on the three basic constants: 1, sqrt2 and π (pi) , and the continuous application of the Pythagorean Theorem of the right angled triangle. Fibonacci number sequences also play a part in the structure of the Square Root Spiral. Fibonacci Numbers divide the Square Root Spiral into areas and angle sectors with constant proportions. These proportions are linked to the “golden mean” ( golden section ), which behaves as a self-avoiding-walk- constant in the lattice-like structure of the square root spiral. Contents of the general section Page 1 Introduction to the Square Root Spiral 2 2 Mathematical description of the Square Root Spiral 4 3 The distribution
    [Show full text]
  • Golden Ratio: a Subtle Regulator in Our Body and Cardiovascular System?
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/306051060 Golden Ratio: A subtle regulator in our body and cardiovascular system? Article in International journal of cardiology · August 2016 DOI: 10.1016/j.ijcard.2016.08.147 CITATIONS READS 8 266 3 authors, including: Selcuk Ozturk Ertan Yetkin Ankara University Istinye University, LIV Hospital 56 PUBLICATIONS 121 CITATIONS 227 PUBLICATIONS 3,259 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: microbiology View project golden ratio View project All content following this page was uploaded by Ertan Yetkin on 23 August 2019. The user has requested enhancement of the downloaded file. International Journal of Cardiology 223 (2016) 143–145 Contents lists available at ScienceDirect International Journal of Cardiology journal homepage: www.elsevier.com/locate/ijcard Review Golden ratio: A subtle regulator in our body and cardiovascular system? Selcuk Ozturk a, Kenan Yalta b, Ertan Yetkin c,⁎ a Abant Izzet Baysal University, Faculty of Medicine, Department of Cardiology, Bolu, Turkey b Trakya University, Faculty of Medicine, Department of Cardiology, Edirne, Turkey c Yenisehir Hospital, Division of Cardiology, Mersin, Turkey article info abstract Article history: Golden ratio, which is an irrational number and also named as the Greek letter Phi (φ), is defined as the ratio be- Received 13 July 2016 tween two lines of unequal length, where the ratio of the lengths of the shorter to the longer is the same as the Accepted 7 August 2016 ratio between the lengths of the longer and the sum of the lengths.
    [Show full text]