02-Mar:Apr 2020

Total Page:16

File Type:pdf, Size:1020Kb

02-Mar:Apr 2020 Star Gazer News Astronomy News for Bluewater Stargazers Vol 14 No.2 Mar/Apr 2020 Mar/Apr 2020 SGN Contents p 1: From the President; and a home for the dome! p 2: Southern Cross spotted -twice. p 3: Special Feature: What’s going on with Betelgeuse? p 4: Betelgeuse: Comparison images p 5: Betelgeuse: pronunciation and dimming explained? p 6: New aurora type discovered -amateurs helped again! p 7: More about “dune” aurora p 8-10: Quetican Field of View: Iceland: Fire and Ice This month’s feature constellation (see pg 13) is Orion, the p 11: Sky Sights: March/April Hunter. Three articles on Betelgeuse can be found on pg 3 to p 12: Sky Sights: (cont’d) 5. In Orion this winter, note the star α-Orionis (Betelgeuse). Its p 13: Constellation page: Orion p 14: Miscellaneous Page and Classifieds magnitude has noticeably dimmed and it now shines fainter p 15: Image of the Month: Milky Way from Machu Picchu than Bellatrix (magn. 1.64) in Orion’s other shoulder. See pg 4 for more about observing the brightness changes yourself. From the President: The weather gods treated me very perversely over the The charming cartoon above was drawn by astronomy last two weeks of January. Rebecca and I decided to professor George Reed (West Chester University), who take a holiday away from the snow and ice by travelling promoted astronomy in his courses/planetarium programs. I to Peru and Ecuador to visit Machu Picchu and the came across these first when his complete sky charts were Galapagos Islands. This is the low season down there published in May 1980 in Sky&Telescope. They remain my but it also happens to be the rainy time of year (I found favourites. George Reed passed away August 2016. that out after we had booked!). So we packed our rain Coleman Dome Stays in Bruce! gear and anticipating cloudy weather I did not take any of my DSLRs to do any astro imaging. So, guess what? Over the two weeks we were there we got a total of about 2 hours of rain. Most days were either bright and sunny (Peru) or just cloudy and pleasantly warm. The Galapagos were downright hot and very humid. Zeus, (the god of the sky, rain, thunder and lightning) must have been otherwise occupied. In Cusco, Peru, there were nights when the skies were clear and I saw Venus near the crescent Moon on several occasions. Also during an early morning transfer to the airport for a morning flight to Quito, up in the sky was the Southern Cross with α and β-Centauri nearby. (See pg 2). Cusco was the farthest south we got, 13° BAS member Frank W. has rescued the Coleman Dome. below the equator so Orion which is on the celestial Frank plans to refurbish it atop a suitable building to add equator would be past the zenith to the north by that another observatory to his Allenford “complex”. Frank has amount. It was strange to see it lying on its side. Also contacted ObservaDome which built it in the 1970’s for strange was the fact that the first crescent Moon was parts to bring it back up to operating condition. Let Frank sunlit on the east side like a last crescent in northern know if you would like to help out in the rebuild project. It skies. And Venus sank virtually straight down into the would be good experience to see how one of these comes horizon in the west. Lesson learned: Always, always, together. He already has one volunteer -the guy who helped always pack your best camera on trips! take it apart -that was a sad day…) S G N Crux Spotted Mar/Apr 2020 pg 2 Disclaimer: S G N reports on the activities of the Bluewater BAS Executive 2020-2021 Astronomical Society (formerly Bruce County Astronomical President: John Hlynialuk [email protected] Society) but any opinions presented herein are not necessarily V-President: Eric Ingard [email protected] endorsed by BAS. See the BAS website at Secretary: Lorraine Rodgers [email protected] www.bluewaterastronomy.com for up-to-date details relating Treasurer: Cheryl Dawson [email protected] to BAS events. SGN is produced and edited by John Hlynialuk Memb-at-Lrg: Zoë Kessler [email protected] and I am solely responsible for its content. Your original articles, Membership: Marian Ratcliffe [email protected] images, opinions, comments, observing reports, etc., are welcome. I reserve Past Pres: Brett Tatton [email protected] the right to edit for brevity or clarity. Errors or omissions are entirely mine. I will not publish your emails or other materials without your specific permission. No part of this publication shall be reproduced in any form whatsoever without the editor’s consent. However, the Sky Calendar and Feature Constellation pages are free to copy for non-commercial use. Feel free to forward this issue in its entirety to friends. Email comments and/or submissions to [email protected] Southern Cross spotted The first time I saw Crux was in 2011 on a trip to do astronomy in Chile. (Image at bottom). A lot of planning went into that sighting, but the second time I spotted Crux was totally by accident. On Jan 27, Rebecca and I were waiting for an early morning transfer to the Cusco airport after our visit to Machu Picchu and the hotel where we waited for the cab happened to have an open air courtyard. Up in the sky was the Southern Cross with alpha and beta-Centauri neatly framed by the two-story structure. At 4:58 am Crux was about 42° in elevation. (Image right). The only camera I brought was a Canon point-and-shoot but it did have a long exposure setting. I captured both Crux and to its left the two brightest stars in Centaurus. Dawn was breaking so it is not the best shot I have ever taken. The image lower right taken with a proper DSLR on a tracking mount shows what the area looks like from a dark sky site (Chile, 2011). Image right: Southern Cross on Apr. 1, 2011 from San Pedro de Atacama. The fifth star of the asterism, the “base runner” is visible between “2nd and 3rd base”. Lower right of frame is the eta- Carina Nebula; the “star” in upper left is actually the globular cluster omega- Centauri, which was labelled a star by early mappers. The dark patch below Crux is the Coalsack Nebula. The Incas say that the god Ataguchu, in a fit of temper, kicked the Milky Way and a fragment flew off, forming the Small Magellanic Cloud leaving the black mark of the Coalsack behind. Beware of Inca gods in a bad mood! In this shot alpha and beta Centauri are left of photo. Canon 50D, 118 s exposure at ISO 2000, f/4.5 at 38 mm focal length (17-85 mm zoom). Image piggy back Polaris mount. S G N What’s Happening to Betelgeuse? Mar/Apr 2020 pg 3 ! Betelgeuse Fades from 0.5 to 1.66 Magnitude! Universe Today reports that Betelgeuse keeps getting dimmer and dimmer and everyone is wondering what exactly that means. The star will go supernova at the end of its life, but that's not projected to happen for tens of thousands of years or so. So what's causing the dimming? Villanova University astronomers Edward Guinan and Richard Wasatonic were the first to report Betelgeuse's recent dimming and in a new post on The Astronomer's Telegram, they report a further dimming of Betelgeuse. They also point out that although the star is still dimming, its rate is slowing. Betelgeuse is a red supergiant star in the constellation Orion. It left the main sequence about one million years ago and has been a red supergiant for about 40,000 years. It's a core- collapse SN II progenitor, which means that eventually, Betelgeuse will burn enough of its hydrogen that its core will collapse, and it will explode as a supernova. It's a semi- regular variable star, with cycle of about 420 days long, and another of about five or six years. A third cycle is shorter; about 100 to 180 days. Though most of its fluctuations are predictable and follow these cycles, some of them are not, like the current dimming. This artist’s visualization shows Astronomers have been monitoring Betelgeuse for a long time. Visual estimates of the star go back about 180 years, Betelgeuse as it was revealed by new and since the 1920s, the American Association of Variable observation techniques with ESO's Star Observers (AAVSO) have taken more systematic Very Large Telescope. These measurements. About 40 years of photometric measurements observations led to the sharpest-ever by Villanova University astronomers show the star is as dim looks at the star. (Image credit: ESO/L. as it's ever been. Calçada) According to Guinan and Wasatonic's post on Astronomer's Telegram, Betelgeuse's temperature has dropped by 100 Kelvin since September 2019, and its luminosity has dropped by nearly 25 percent in the same time frame. According to all happen, they just don't know when. Whatever the cause, we of those measurements, the star's radius has grown by about know the eventual end: a supernova explosion. 9 percent. This swelling is expected as Betelgeuse ages. Whether this dimming is directly related to the approaching Betelgeuse is close in astronomical terms, only about 650 cataclysmic death of this unstable star is unknown. As Guinan light-years away, and that makes it the only star other than our and Wasatonic say on Astronomer's Telegram, "Betelgeuse Sun on which we can see surface details.
Recommended publications
  • SEPTEMBER 2014 OT H E D Ebn V E R S E R V ESEPTEMBERR 2014
    THE DENVER OBSERVER SEPTEMBER 2014 OT h e D eBn v e r S E R V ESEPTEMBERR 2014 FROM THE INSIDE LOOKING OUT Calendar Taken on July 25th in San Luis State Park near the Great Sand Dunes in Colorado, Jeff made this image of the Milky Way during an overnight camping stop on the way to Santa Fe, NM. It was taken with a Canon 2............................. First quarter moon 60D camera, an EFS 15-85 lens, using an iOptron SkyTracker. It is a single frame, with no stacking or dark/ 8.......................................... Full moon bias frames, at ISO 1600 for two minutes. Visible in this south-facing photograph is Sagittarius, and the 14............ Aldebaran 1.4˚ south of moon Dark Horse Nebula inside of the Milky Way. He processed the image in Adobe Lightroom. Image © Jeff Tropeano 15............................ Last quarter moon 22........................... Autumnal Equinox 24........................................ New moon Inside the Observer SEPTEMBER SKIES by Dennis Cochran ygnus the Swan dives onto center stage this other famous deep-sky object is the Veil Nebula, President’s Message....................... 2 C month, almost overhead. Leading the descent also known as the Cygnus Loop, a supernova rem- is the nose of the swan, the star known as nant so large that its separate arcs were known Society Directory.......................... 2 Albireo, a beautiful multi-colored double. One and named before it was found to be one wide Schedule of Events......................... 2 wonders if Albireo has any planets from which to wisp that came out of a single star. The Veil is see the pair up-close.
    [Show full text]
  • Winter Observing Notes
    Wynyard Planetarium & Observatory Winter Observing Notes Wynyard Planetarium & Observatory PUBLIC OBSERVING – Winter Tour of the Sky with the Naked Eye NGC 457 CASSIOPEIA eta Cas Look for Notice how the constellations 5 the ‘W’ swing around Polaris during shape the night Is Dubhe yellowish compared 2 Polaris to Merak? Dubhe 3 Merak URSA MINOR Kochab 1 Is Kochab orange Pherkad compared to Polaris? THE PLOUGH 4 Mizar Alcor Figure 1: Sketch of the northern sky in winter. North 1. On leaving the planetarium, turn around and look northwards over the roof of the building. To your right is a group of stars like the outline of a saucepan standing up on it’s handle. This is the Plough (also called the Big Dipper) and is part of the constellation Ursa Major, the Great Bear. The top two stars are called the Pointers. Check with binoculars. Not all stars are white. The colour shows that Dubhe is cooler than Merak in the same way that red-hot is cooler than white-hot. 2. Use the Pointers to guide you to the left, to the next bright star. This is Polaris, the Pole (or North) Star. Note that it is not the brightest star in the sky, a common misconception. Below and to the right are two prominent but fainter stars. These are Kochab and Pherkad, the Guardians of the Pole. Look carefully and you will notice that Kochab is slightly orange when compared to Polaris. Check with binoculars. © Rob Peeling, CaDAS, 2007 version 2.0 Wynyard Planetarium & Observatory PUBLIC OBSERVING – Winter Polaris, Kochab and Pherkad mark the constellation Ursa Minor, the Little Bear.
    [Show full text]
  • Educator's Guide: Orion
    Legends of the Night Sky Orion Educator’s Guide Grades K - 8 Written By: Dr. Phil Wymer, Ph.D. & Art Klinger Legends of the Night Sky: Orion Educator’s Guide Table of Contents Introduction………………………………………………………………....3 Constellations; General Overview……………………………………..4 Orion…………………………………………………………………………..22 Scorpius……………………………………………………………………….36 Canis Major…………………………………………………………………..45 Canis Minor…………………………………………………………………..52 Lesson Plans………………………………………………………………….56 Coloring Book…………………………………………………………………….….57 Hand Angles……………………………………………………………………….…64 Constellation Research..…………………………………………………….……71 When and Where to View Orion…………………………………….……..…77 Angles For Locating Orion..…………………………………………...……….78 Overhead Projector Punch Out of Orion……………………………………82 Where on Earth is: Thrace, Lemnos, and Crete?.............................83 Appendix………………………………………………………………………86 Copyright©2003, Audio Visual Imagineering, Inc. 2 Legends of the Night Sky: Orion Educator’s Guide Introduction It is our belief that “Legends of the Night sky: Orion” is the best multi-grade (K – 8), multi-disciplinary education package on the market today. It consists of a humorous 24-minute show and educator’s package. The Orion Educator’s Guide is designed for Planetarians, Teachers, and parents. The information is researched, organized, and laid out so that the educator need not spend hours coming up with lesson plans or labs. This has already been accomplished by certified educators. The guide is written to alleviate the fear of space and the night sky (that many elementary and middle school teachers have) when it comes to that section of the science lesson plan. It is an excellent tool that allows the parents to be a part of the learning experience. The guide is devised in such a way that there are plenty of visuals to assist the educator and student in finding the Winter constellations.
    [Show full text]
  • List of Easy Double Stars for Winter and Spring  = Easy  = Not Too Difficult  = Difficult but Possible
    List of Easy Double Stars for Winter and Spring = easy = not too difficult = difficult but possible 1. Sigma Cassiopeiae (STF 3049). 23 hr 59.0 min +55 deg 45 min This system is tight but very beautiful. Use a high magnification (150x or more). Primary: 5.2, yellow or white Seconary: 7.2 (3.0″), blue 2. Eta Cassiopeiae (Achird, STF 60). 00 hr 49.1 min +57 deg 49 min This is a multiple system with many stars, but I will restrict myself to the brightest one here. Primary: 3.5, yellow. Secondary: 7.4 (13.2″), purple or brown 3. 65 Piscium (STF 61). 00 hr 49.9 min +27 deg 43 min Primary: 6.3, yellow Secondary: 6.3 (4.1″), yellow 4. Psi-1 Piscium (STF 88). 01 hr 05.7 min +21 deg 28 min This double forms a T-shaped asterism with Psi-2, Psi-3 and Chi Piscium. Psi-1 is the uppermost of the four. Primary: 5.3, yellow or white Secondary: 5.5 (29.7), yellow or white 5. Zeta Piscium (STF 100). 01 hr 13.7 min +07 deg 35 min Primary: 5.2, white or yellow Secondary: 6.3, white or lilac (or blue) 6. Gamma Arietis (Mesarthim, STF 180). 01 hr 53.5 min +19 deg 18 min “The Ram’s Eyes” Primary: 4.5, white Secondary: 4.6 (7.5″), white 7. Lambda Arietis (H 5 12). 01 hr 57.9 min +23 deg 36 min Primary: 4.8, white or yellow Secondary: 6.7 (37.1″), silver-white or blue 8.
    [Show full text]
  • Photo of the Year by PAS Member Barry Simon Next PAS General
    PAS-Times The newsletter of the Pontchartrain Astronomy Society January 2019 visit us online www.astronola.org Volume 60, Issue 1 Photo of the Year Next PAS General Meeting by PAS member Barry Simon Summer Milky Way with Friday, Jan. 19th,2019 at 7:30pm Dark Horse Nebula, UNO Science Bldg. Room 1001 Rho Ophiuchus Nebulosity, M4 and Antares PAS Times Volume 60, Issue 1 Page 2 President’s Message outreach for the public. We will try to PAS Officers for 2019 By: Bill Johnson address several basic skills for the beginners, and a few advanced topics for the our Greetings to all and welcome to 2019! seasoned members. If you have a topic you President: Happy New year to all the PAS members would like to see covered at one of our Bill Johnson and friends. meetings, or if you would like to present a [email protected] subject, please contact an officer and we will Yes, we are now in a New Year, with lots of do our best to address it for you. 1st Vice-President: promise for good things to come. New Year’s Mike Danielson resolutions may include losing weight, giving As a final request to start of the new year, Program Chairman up smoking, and a host of other bad habits I’m asking all members to commit to attending [email protected] that we all seem to have for one reason or one more event than you did last year. One another. My resolution is to get out just a more meeting, one more outreach, one more little more than last year and do some event.
    [Show full text]
  • Symposium on Telescope Science
    Proceedings for the 26th Annual Conference of the Society for Astronomical Sciences Symposium on Telescope Science Editors: Brian D. Warner Jerry Foote David A. Kenyon Dale Mais May 22-24, 2007 Northwoods Resort, Big Bear Lake, CA Reprints of Papers Distribution of reprints of papers by any author of a given paper, either before or after the publication of the proceedings is allowed under the following guidelines. 1. The copyright remains with the author(s). 2. Under no circumstances may anyone other than the author(s) of a paper distribute a reprint without the express written permission of all author(s) of the paper. 3. Limited excerpts may be used in a review of the reprint as long as the inclusion of the excerpts is NOT used to make or imply an endorsement by the Society for Astronomical Sciences of any product or service. Notice The preceding “Reprint of Papers” supersedes the one that appeared in the original print version Disclaimer The acceptance of a paper for the SAS proceedings can not be used to imply or infer an endorsement by the Society for Astronomical Sciences of any product, service, or method mentioned in the paper. Published by the Society for Astronomical Sciences, Inc. First printed: May 2007 ISBN: 0-9714693-6-9 Table of Contents Table of Contents PREFACE 7 CONFERENCE SPONSORS 9 Submitted Papers THE OLIN EGGEN PROJECT ARNE HENDEN 13 AMATEUR AND PROFESSIONAL ASTRONOMER COLLABORATION EXOPLANET RESEARCH PROGRAMS AND TECHNIQUES RON BISSINGER 17 EXOPLANET OBSERVING TIPS BRUCE L. GARY 23 STUDY OF CEPHEID VARIABLES AS A JOINT SPECTROSCOPY PROJECT THOMAS C.
    [Show full text]
  • E. E. Barnard and His Dark Nebula!
    Visible throughout our galaxy are clouds of interstellar matter, thin but widespread wisps of gas and dust. Some of the stars near nebulae are often very massive and their high-energy radiation can excite the gas of the nebula to shine; such nebula is called emission nebula. If the stars are dimmer or further away, their light is reflected by the dust in the nebula and can be seen as reflection nebula. Some nebulae are only visible by the absorption of the light from objects behind them. These are called dark nebula Edward Emerson Barnard was a professor of astronomy at the University of Chicago Yerkes Observatory. As a pioneer in astrophotography, he cataloged a series of dark nebula of the Milky Way. Through this work of studying the structure of the Milky Way, Barnard discovered that certain dark regions of our galaxy are actually clouds of gas and dust that obscured the more distant stars in the background. Today, we’re going to look-back on his life and accomplishments. We’ll also review several of my observations of his dark nebula. Barnard’s Early Years: A: Childhood, Work, and Stargazing Edward Emerson Barnard was born on December 16th, 1857 in Nashville Tennessee, at the cusp of the Civil War. His mother, Elizabeth, (at the age of 42), had moved the family from Cincinnati to Nashville a few months prior to Edward’s birth, when his father, Reuben Barnard had passed away. The family lived in near poverty, with Elizabeth as the sole provider working several small jobs, the most profitable being that of her making wax flowers, which she had a skill at creating.
    [Show full text]
  • Watch This Space for July 2014
    Watch this Space for July 2014 Planet Watch Moon Phases The Planets on view this month are: New Moon First Quarter Not visible this month 26 / 07 / 14 05 / 07 / 14 Mercury: Venus: At mag - 3.8 rises at 3am and is low in the Full Moon Last Quarter dawn twilight Mars: In Virgo at mag +0.4, sets around midnight 12 / 07 / 14 19 / 07 / 14 Jupiter: Not visible this month Saturn: In Libra at mag +0.6, sets around 1am The Sun Uranus: In Pisces at mag +5.8, rises around midnight Rises: 05:08, 15th July, Sets: 21:12 Neptune: In Aquarius at mag +7.8, rises around 11pm Constellation of the Month Ophiuchus — The Serpent Bearer 11th in size of the 88 constellations, Ophiuchus is a large but generally faint con- stellation. It is associated with the figure of Asclepius, the famous healer in Greek mythology, whose snake-entwined staff remains a symbol of medicine today. Notable stars: Oph - (Rasalhague) Brightest star in the constellation at mag 2.1. A very fast rotating star (89% of breakup speed) its equatorial radius is 20% larger than its polar radius, resulting in a polar temperature 2000K higher than at the equator. Barnard’s Star Mag 9.5 is the fourth closest star to our sun at 6 ly distance. It has the largest proper motion known at 10.3” per year and will be closest to the Sun at about 3.75l y by the year 9,800. Constellation map credit: Torsten Bronger Some Interesting Objects: Ophiuchus contains 39 NGC objects, including 22 globular clus- ters (7 of which are Messier objects) and 3 planetary nebulae.
    [Show full text]
  • Stars a Long Preamble...How Do We Name the Stars?
    We have always divided the sky up into “patterns” or constellations Stars • But remember: The stars that make up Orion are random lights in the sky • They do not represent a mythical figure! They do not represent a mythic figure! Peter Watson Credit & Copyright: Matthew Spinelli A long preamble...how do we name the stars? • Subsequently stars named with Greek letters, in order of brightness • The brightest stars have names that derive from (usually) Arabic: e.g. Ursa Major • α-Orionis = Betelgeuse • β-Orionis = Rigel • (Unfortunately, Rigel is brighter than Betelgeuse, since it is much hotter & radiates mainly in UV! • so system refers to visual • Now we mostly use catalogs: the best known is Messier (pr Messié) Now most objects are referred to by catalogue numbers: • A catalog of objects that e.g. BD + 59° 1915 is 1915th star classified in Bonner aren’t comets Durchmesterung • M1 = Crab nebula New General Catalog has ∼ 10000 galaxies • M3 = Globular cluster so NGC 224 = M31 So what’s the system? • M31 = Andromeda galaxy • M45 = Pleiades cluster • M51 = Spiral galaxy Credit© P. Gitto • M57 = Ring nebula Brightness/Magnitude α Canis Majoris There is NO system α CMa 9 Canis Majoris for naming objects in 9 CMa • Easiest observation about stars is that some HD 48915, are brighter than others. HR 2491 the heavens BD -16°1591 GCTP 1577.00 A/B, • Hipparchus defined brightest to be of first the same object can GJ 244 A/B magnitude, down to the dimmest of sixth LHS 219 magnitude. have several names! ADS 5423 e.g Sirius (Dog Star) is also LTT 2638 • A first mag.
    [Show full text]
  • Α. I. First Astronomer to Suggest That the Earth Is Not the Center of The
    Α. i. first astronomer to suggest that the Earth is not the center of the Universe? [1] - 2 1.Galileo 2.Aristarchus 3.Copernicus 4.Cassini 5.Zhang Heng 6.al-Biruni 7.Kepler 8.Brahe 9.Aryabhatta ii. The obliquity of the ecliptic in degrees. (one decimal) [3] - 234 iii. The first known and brightest quasar is 3C__. [3] - 273 iv. A relativistic jet moves at 0.83c. If no Doppler shift is observed, how many degrees is the angle between the jet and the line of sight, assuming that the source has negligible velocity? (integer) [3] - 122 v. This nebula is NGC__. [4] – 7000 vi. Choose the names of the layers A, B and C of the Jovian atmosphere, beginning from Layer A. [3] - 195 1.Troposphere 2.Magnetosphere 3.Ionosphere 4.Ozone layer 5.Thermosphere 6.Lithosphere 7.Chromosphere 8.Photosphere 9. Stratosphere B. i. How many AU is one parsec? (integer) [6] - 206265 ii. Jupiter-Sun-Trojan Asteroids angle (degrees). (integer) [2] - 60 iii. This nebula is M__. [2] - 57 th o iv. On the 25 of August, at a latitude of φ>0 and longitude λL =37 W (time zone = GMT – 2hrs), we observe a star with Declination (δ) such that φ+δ=90, and Right Ascension α=67.5ο. What is the local civil time at the hh:mm during the lower culmination of the star? It is given that at 00:00hrs on the 24th of August, hour angle of vernal equinox is 21h 58m. [4] - 1857 v. During a Meteor Shower, in a radius of 100km, an observer counted 600 meteors/min.
    [Show full text]
  • 2. Descriptive Astronomy (“Astronomy Without a Telescope”)
    •How do we locate stars in the heavens? •What stars are visible from a given location? 2. Descriptive Astronomy •Where is the sun in the sky at any given time? (Astronomy Without a Telescope) •Where are you on the Earth? http://www.star.ucl.ac.uk/~idh/apod/ In 1930 the International Astronomical Union (IAU) ruled the heavens off into 88 legal, precise constellations. Every star, galaxy, etc., is a member of one of these constellations. Many stars are named according to their constellation and relative brightness (Bayer 1603). Sirius Centauri, -Canis see http://calgary.rasc.ca/constellation.htm#list Majoris, -Orionis An asterism is two stars that appear http://www.google.com/sky/ Betelgeuse To be close in the sky but actually arent http://www.seds.org/messier/ (1758 – 1782) Brief History E.g., ORION Some of the current constellations can be traced back to the inhabitants of the Euphrates valley, from whom they were handed down through the Greeks and Arabs. Few pictorial records of the ancient constellation figures have survived, but in the Almagest AD 150, Ptolemy catalogued the positions of 1,022 of the brightest stars both in terms of celestial latitude and longitude, and of their places in 48 constellations. The Ptolemaic constellations left a blank area centered not on the present south pole but on a point which, because of precession, would have been the south pole c. 2800 BC, a fact that is consistent with the belief that the constellation system had its origin about 5,000 Betelgeuse and Rigel are M42 = Orion nebula M43 = DeMairans nebula years ago.
    [Show full text]
  • Gallery Exhibition Catalog
    SOFIA and the Infrared Universe Visually striking and scientifically impactful images of SOFIA science Gallery Exhibition Catalog NASA Ames Research Center • Building 232 Stratospheric Observatory for Infrared Astronomy (SOFIA) Artist Concept 1 Artist’s impression California artist Lynette Cook created an impressionistic montage that includes the SOFIA aircraft set against the types of cosmic phenomena that SOFIA observes, including a star-forming region, the Orion Nebula, comets, a supernova, a variety of biogenic molecules, a protoplanetary disk, Jupiter-like extrasolar planets likely to have moons, and various galax- ies, including the Milky Way. SOFIA’s instruments — cameras, spectrometers and polarimeters — operate at near-, mid- and far-infrared wavelengths, each suited to studying a particular phenomenon. Flying into the stratosphere at 38,000–45,000 feet puts SOFIA above 99 percent of Earth’s infrared-blocking atmosphere, letting astronomers study the solar system and beyond in ways that are not possible from the ground. SOFIA is an 80/20 partnership of NASA and the German Aerospace Center (DLR). Copyright 2000 Lynette Cook. All rights reserved. 2 SOFIA observes the solar system and beyond, gathering data to investigate fundamental astrophys- ical phenomena such as star birth and death, formation of new solar systems, organic compounds in space, nebulae and the ecosystems of galaxies, celestial magnetic fields, black holes at the center of galaxies, and planets, comets and asteroids in our solar system. SOFIA investigates the physical, chemical, and dynamical processes at work in the formation of stars and planets. These data help us understand how massive stars form in various environments. It also investigates astrochemistry, including the chem- ical composition of the gaseous and solid-state material out of which new planets form.
    [Show full text]