Appendix a Set Theory

Total Page:16

File Type:pdf, Size:1020Kb

Appendix a Set Theory Appendix A Set Theory A.1 Sets The purpose of this appendix is to introduce some of the basic ideas and terminologies from set theory which are essential to our present work. In this naive treatment, we do not intend to give a complete and precise analysis of set theory, which belongs to the foundations of mathematics and to mathematical logic. Rather, we shall deal with sets on an intuitive basis. We remark that this usage can be formally justified. Intuitively, a set is a collection of objects called members of the set. The terms “collection” and “family” are used as synonyms for “set”. If an object x is a member of a set X, we write x ∈ X to express this fact. Implicit in the idea of a set is the notion that a given object either belongs or does not belong to the set. The statement “x is not a member of X” is indicated by x ∈/ X. The objects which make up a set are usually called the elements or points of the set. Given two sets A and X, we say that A is a subset of X if every element of A is also an element of X. In this case, we write A ⊆ X (read A is contained in X)or X ⊇ A (read X contains A). The sets A and X are said to be equal, written A = X, if A ⊆ X and X ⊆ A. We call A a proper subset of X (written A ⊂ X)ifA ⊆ X but A = X.Theempty or null set which has no element is denoted by ∅.Wehave the inclusion ∅ ⊆ X for every set X. The set whose only element is x is called a singleton, denoted by {x}. Note that ∅ ={∅}.IfP (x) is a statement about elements in X, that is either true or false for a given element of X, then the subset of all the x ∈ X for which P (x) is true is denoted by {x ∈ X | P (x)} or {x ∈ X : P (x)}. In a particular mathematical discussion, there is usually a set which consists of all primary elements under consideration. This set is referred to as the “universe”. To avoid any logical difficulties, all the sets we consider in this section are assumed to be subsets of the universe X. The difference of two sets A and B, denoted by A − B,istheset{x ∈ A | x ∈/ B}.If B ⊆ A,thecomplement of B in A is A − B. Notice that the complement operation is defined only when one set is contained in the other, whereas the difference operation does not have such a restriction. The union of two sets A and B is the set A ∪ B = © Springer Nature Singapore Pte Ltd. 2019 411 T. B. Singh, Introduction to Topology, https://doi.org/10.1007/978-981-13-6954-4 412 Appendix A: Set Theory {x | x belongs to at least one ofA, B}.Theintersection of two sets A and B is the set A ∩ B ={x | xbelongs to both A and B}. When A ∩ B = ∅,thesetsA and B are called disjoint; otherwise we say that they intersect. Proposition A.1.1 (a) X − (X − A) = A. (b) B ⊆ A ⇔ X − A ⊆ X − B. (c) A = B ⇔ X − A = X − B. Proposition A.1.2 A ∪ A = A ∩ A. Proposition A.1.3 A ∪ B = B ∪ A, A ∩ B = B ∩ A. Proposition A.1.4 A ⊆ B ⇔ A = A ∩ B ⇔ B = A ∪ B. Proposition A.1.5 (a) A ∪ (B ∪ C) = (A ∪ B) ∪ C. (b) A ∩ (B ∩ C) = (A ∩ B) ∩ C. Proposition A.1.6 (a) A ∩ (B ∪ C) = (A ∩ B) ∪ (∩C). (b) A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C). Proposition A.1.7 (a) A − B = A ∩ (X − B). X − (A ∪ B) = (X − A) ∩ (X − B) (b) (De Morgan’s laws). X − (A ∩ B) = (X − A) ∪ (X − B) (c) (A − B) ∪ (B − A) = (A ∪ B) − (A ∩ B). (d) If X = A ∪ B and A ∩ B = ∅, then B = X − A. Let J be a nonempty set, and suppose that a set A j is given for each j ∈ J. Then the collection of sets {A j | j ∈ J}, also written as {A j } j∈J , is called an indexed family of sets, and J is called an indexing set for the family. The union of an indexed family {A j | j ∈ J} of subsets of a set X is the set A j ={x ∈ X | x ∈ A j for some j in J}, j∈J and the intersection is the set A j ={x ∈ X | x ∈ A j for every j in J}. j∈J { | ∈ } The union of the sets A j is also denoted by A j j J , and their intersection by { | ∈ } A j j J . If there is no ambiguity about the indexing set, we simply use A j ={ ,..., } > for the union and A j for the intersection. If J 1 n , n 0 an integer, then n ,..., n we write j=1 A j for the union of A1 An, and j=1 A j for their intersection. Observe that any nonempty collection C of sets can be considered an indexed family of sets by “self-indexing”: The indexing set is C itself and one assigns to each S ∈ C the set S. Accordingly, the foregoing definitions become Appendix A: Set Theory 413 {S : S ∈ C } = {x | x ∈ S for some S in C } and {S : S ∈ C } = {x | x ∈ S for every S in C }. If we allow the collection C to be the empty set, then, by convention, {S : S ∈ C } = ∅ and {S : S ∈ C } = X, the specified universe of the discourse. Proposition A.1.8 Let A j ,j∈ J, be a family of subsets of a set X. Then we have − = − − = − (a) X j A j j X A j , and X j A j j X A j . ⊂ ⊆ ⊇ (b) If K J, then k∈K Ak j∈J A j and k∈K Ak j∈J A j . A.2 Functions With each two objects x, y, there corresponds a new object (x, y), called their ordered pair. This is another primitive notion that we will use without a formal definition. Ordered pairs are subject to the condition: (x, y) = x , y ⇔ x = x and y = y . Accordingly, (x, y) = (y, x) ⇔ x = y. The first (resp. second) element of an ordered pair is called the first (resp. second) coordinate. Given two sets X1 and X2, their Cartesian product X1 × X2 is defined to be the set of all ordered pairs (x1, x2), where x j ∈ X j for j = 1, 2. Thus X1 × X2 ={(x1, x2) | x j ∈ X j for every j = 1, 2}.Note that X1 × X2 = ∅ if and only if X1 = ∅ or X2 = ∅. When both X1 and X2 are nonempty, X1 × X2 = X2 × X1 ⇔ X1 = X2. Let X and Y be two sets. A function f from the set X to Y (written f : X → Y ) is a subset of X × Y with the following property: for each x ∈ X, there is one and only one y ∈ Y such that (x, y) ∈ f. A function is also referred to as a mapping (or briefly, a map). We write y = f (x) to denote (x, y) ∈ f, and say that y is the image of x under f or the value of f at x. We also say that f maps (or carries) x into y or f sends (or takes) x to y. A function f from X to Y is usually defined by specifying its value at each x ∈ X, and if the value at a typical point x ∈ X is f (x), we write x → f (x) to give f . We refer to X as the domain, and Y as the codomain of f.The set f (X) ={f (x) | x ∈ X}, also denoted by im( f ), is referred to as the range of f. The identity function on X, which sends every element of X to itself, is denoted by 1 or 1X .Amapc : X → Y which sends every element of X to a single element of Y is called a constant function. Notice that the range of a constant function consists of just one element. If A ⊂ X, the function i : A → X, a → a, is called the inclusion map of A into X.If f : X → Y and A ⊂ X, then the restriction of f to A is the function f |A : A → Y defined by ( f |A) (a) = f (a) ∀ a ∈ A. The other way around, if A ⊂ X and g : A → Y is a function, then an extension of g over X is a function G : X → Y such that G|A = g. The inclusion map i : A → X is the restriction of the identity map 1 on X to A. { | ∈ } Proposition A.2.1 Let X be a set and A j j J a family of subsets of X with X = A j . If, for each j ∈ J, fj : A j → Y is a function such that f j | A j ∩ Ak = 414 Appendix A: Set Theory fk | A j ∩ Ak for all j, k ∈ J, then there exists a unique function F : X → Ywhich extends each f j . Proof Given x ∈ X, there exists an index j ∈ J such that x ∈ A j . We put F (x) = f j (x) if x ∈ A j .Ifx ∈ A j ∩ Ak , then f j (x) = fk (x), by our hypothesis. Thus F (x) is uniquely determined by x, and we have a single-valued function F : X → Y .Itis clearly an extension of each f j .
Recommended publications
  • GTI Diagonalization
    GTI Diagonalization A. Ada, K. Sutner Carnegie Mellon University Fall 2017 1 Comments Cardinality Infinite Cardinality Diagonalization Personal Quirk 1 3 “Theoretical Computer Science (TCS)” sounds distracting–computers are just a small part of the story. I prefer Theory of Computation (ToC) and will refer to that a lot. ToC: computability theory complexity theory proof theory type theory/set theory physical realizability Personal Quirk 2 4 To my mind, the exact relationship between physics and computation is an absolutely fascinating open problem. It is obvious that the standard laws of physics support computation (ignoring resource bounds). There even are people (Landauer 1996) who claim . this amounts to an assertion that mathematics and com- puter science are a part of physics. I think that is total nonsense, but note that Landauer was no chump: in fact, he was an excellent physicists who determined the thermodynamical cost of computation and realized that reversible computation carries no cost. At any rate . Note the caveat: “ignoring resource bounds.” Just to be clear: it is not hard to set up computations that quickly overpower the whole (observable) physical universe. Even a simple recursion like this one will do. A(0, y) = y+ A(x+, 0) = A(x, 1) A(x+, y+) = A(x, A(x+, y)) This is the famous Ackermann function, and I don’t believe its study is part of physics. And there are much worse examples. But the really hard problem is going in the opposite direction: no one knows how to axiomatize physics in its entirety, so one cannot prove that all physical processes are computable.
    [Show full text]
  • Bitopological Duality for Distributive Lattices and Heyting Algebras
    BITOPOLOGICAL DUALITY FOR DISTRIBUTIVE LATTICES AND HEYTING ALGEBRAS GURAM BEZHANISHVILI, NICK BEZHANISHVILI, DAVID GABELAIA, ALEXANDER KURZ Abstract. We introduce pairwise Stone spaces as a natural bitopological generalization of Stone spaces—the duals of Boolean algebras—and show that they are exactly the bitopolog- ical duals of bounded distributive lattices. The category PStone of pairwise Stone spaces is isomorphic to the category Spec of spectral spaces and to the category Pries of Priestley spaces. In fact, the isomorphism of Spec and Pries is most naturally seen through PStone by first establishing that Pries is isomorphic to PStone, and then showing that PStone is isomorphic to Spec. We provide the bitopological and spectral descriptions of many algebraic concepts important for the study of distributive lattices. We also give new bitopo- logical and spectral dualities for Heyting algebras, thus providing two new alternatives to Esakia’s duality. 1. Introduction It is widely considered that the beginning of duality theory was Stone’s groundbreaking work in the mid 30s on the dual equivalence of the category Bool of Boolean algebras and Boolean algebra homomorphism and the category Stone of compact Hausdorff zero- dimensional spaces, which became known as Stone spaces, and continuous functions. In 1937 Stone [33] extended this to the dual equivalence of the category DLat of bounded distributive lattices and bounded lattice homomorphisms and the category Spec of what later became known as spectral spaces and spectral maps. Spectral spaces provide a generalization of Stone 1 spaces. Unlike Stone spaces, spectral spaces are not Hausdorff (not even T1) , and as a result, are more difficult to work with.
    [Show full text]
  • Cardinality of Accumulation Points of Infinite Sets 1 Introduction
    International Mathematical Forum, Vol. 11, 2016, no. 11, 539 - 546 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/imf.2016.6224 Cardinality of Accumulation Points of Infinite Sets A. Kalapodi CTI Diophantus, Computer Technological Institute & Press University Campus of Patras, 26504 Patras, Greece Copyright c 2016 A. Kalapodi. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract One of the fundamental theorems in real analysis is the Bolzano- Weierstrass property according to which every bounded infinite set of real numbers has an accumulation point. Since this theorem essentially asserts the completeness of the real numbers, the notion of accumulation point becomes substantial. This work provides an efficient number of examples which cover every possible case in the study of accumulation points, classifying the different sizes of the derived set A0 and of the sets A \ A0, A0 n A, for an infinite set A. Mathematics Subject Classification: 97E60, 97I30 Keywords: accumulation point; derived set; countable set; uncountable set 1 Introduction The \accumulation point" is a mathematical notion due to Cantor ([2]) and although it is fundamental in real analysis, it is also important in other areas of pure mathematics, such as the study of metric or topological spaces. Following the usual notation for a metric space (X; d), we denote by V (x0;") = fx 2 X j d(x; x0) < "g the open sphere of center x0 and radius " and by D(x0;") the set V (x0;") n fx0g.
    [Show full text]
  • Chapter 7 Separation Properties
    Chapter VII Separation Axioms 1. Introduction “Separation” refers here to whether or not objects like points or disjoint closed sets can be enclosed in disjoint open sets; “separation properties” have nothing to do with the idea of “separated sets” that appeared in our discussion of connectedness in Chapter 5 in spite of the similarity of terminology.. We have already met some simple separation properties of spaces: the XßX!"and X # (Hausdorff) properties. In this chapter, we look at these and others in more depth. As “more separation” is added to spaces, they generally become nicer and nicer especially when “separation” is combined with other properties. For example, we will see that “enough separation” and “a nice base” guarantees that a space is metrizable. “Separation axioms” translates the German term Trennungsaxiome used in the older literature. Therefore the standard separation axioms were historically named XXXX!"#$, , , , and X %, each stronger than its predecessors in the list. Once these were common terminology, another separation axiom was discovered to be useful and “interpolated” into the list: XÞ"" It turns out that the X spaces (also called $$## Tychonoff spaces) are an extremely well-behaved class of spaces with some very nice properties. 2. The Basics Definition 2.1 A topological space \ is called a 1) X! space if, whenever BÁC−\, there either exists an open set Y with B−Y, CÂY or there exists an open set ZC−ZBÂZwith , 2) X" space if, whenever BÁC−\, there exists an open set Ywith B−YßCÂZ and there exists an open set ZBÂYßC−Zwith 3) XBÁC−\Y# space (or, Hausdorff space) if, whenever , there exist disjoint open sets and Z\ in such that B−YC−Z and .
    [Show full text]
  • 17 Axiom of Choice
    Math 361 Axiom of Choice 17 Axiom of Choice De¯nition 17.1. Let be a nonempty set of nonempty sets. Then a choice function for is a function f sucFh that f(S) S for all S . F 2 2 F Example 17.2. Let = (N)r . Then we can de¯ne a choice function f by F P f;g f(S) = the least element of S: Example 17.3. Let = (Z)r . Then we can de¯ne a choice function f by F P f;g f(S) = ²n where n = min z z S and, if n = 0, ² = min z= z z = n; z S . fj j j 2 g 6 f j j j j j 2 g Example 17.4. Let = (Q)r . Then we can de¯ne a choice function f as follows. F P f;g Let g : Q N be an injection. Then ! f(S) = q where g(q) = min g(r) r S . f j 2 g Example 17.5. Let = (R)r . Then it is impossible to explicitly de¯ne a choice function for . F P f;g F Axiom 17.6 (Axiom of Choice (AC)). For every set of nonempty sets, there exists a function f such that f(S) S for all S . F 2 2 F We say that f is a choice function for . F Theorem 17.7 (AC). If A; B are non-empty sets, then the following are equivalent: (a) A B ¹ (b) There exists a surjection g : B A. ! Proof. (a) (b) Suppose that A B.
    [Show full text]
  • MAT 3500/4500 SUGGESTED SOLUTION Problem 1 Let Y Be a Topological Space. Let X Be a Non-Empty Set and Let F
    MAT 3500/4500 SUGGESTED SOLUTION Problem 1 Let Y be a topological space. Let X be a non-empty set and let f : X ! Y be a surjective map. a) Consider the collection τ of all subsets U of X such that U = f −1(V ) where V is open in Y . Show that τ is a topology on X. Also show that a subset A ⊂ X is connected in this topology if and only if f(A) is a connected subset of Y . Solution: We have X = f −1(Y ) and ? = f −1(?) so X and ? are in τ. Consider S −1 −1 S fVi j i 2 Ig with each Vi open in Y . Then f (Vi) = f ( (Vi), and since i2I i2I S Vi is open in Y , τ is closed under arbitrary unions. Let Vj; j = 1; : : : n, be open i2I n n n T −1 −1 T T sets in Y . Then f (Vj) = f ( Vj), and since Vj is open in Y , τ is closed j=1 j=1 j=1 under finite intersections. Together this shows that τ is a topology on X. It is clear from the definition of τ that f becomes continuous when X is given the topology τ. So if A is connected in τ, f(A) becomes connected in Y . −1 −1 Now let U1 = f (V1) and U2 = f (V2) be sets in τ with V1 and V2 open sets in Y . Let A ⊂ X with A \U1 \U2 = ?, A ⊂ U1 [U2. Then we must have f(A)\V1 \V2 = −1 −1 −1 ?.
    [Show full text]
  • METRIC SPACES and SOME BASIC TOPOLOGY
    Chapter 3 METRIC SPACES and SOME BASIC TOPOLOGY Thus far, our focus has been on studying, reviewing, and/or developing an under- standing and ability to make use of properties of U U1. The next goal is to generalize our work to Un and, eventually, to study functions on Un. 3.1 Euclidean n-space The set Un is an extension of the concept of the Cartesian product of two sets that was studied in MAT108. For completeness, we include the following De¿nition 3.1.1 Let S and T be sets. The Cartesian product of S and T , denoted by S T,is p q : p + S F q + T . The Cartesian product of any ¿nite number of sets S1 S2 SN , denoted by S1 S2 SN ,is j b ck p1 p2 pN : 1 j j + M F 1 n j n N " p j + S j . The object p1 p2pN is called an N-tuple. Our primary interest is going to be the case where each set is the set of real numbers. 73 74 CHAPTER 3. METRIC SPACES AND SOME BASIC TOPOLOGY De¿nition 3.1.2 Real n-space,denotedUn, is the set all ordered n-tuples of real numbers i.e., n U x1 x2 xn : x1 x2 xn + U . Un U U U U Thus, _ ^] `, the Cartesian product of with itself n times. nofthem Remark 3.1.3 From MAT108, recall the de¿nition of an ordered pair: a b a a b . def This de¿nition leads to the more familiar statement that a b c d if and only if a bandc d.
    [Show full text]
  • Cantor and Continuity
    Cantor and Continuity Akihiro Kanamori May 1, 2018 Georg Cantor (1845-1919), with his seminal work on sets and number, brought forth a new field of inquiry, set theory, and ushered in a way of proceeding in mathematics, one at base infinitary, topological, and combinatorial. While this was the thrust, his work at the beginning was embedded in issues and concerns of real analysis and contributed fundamentally to its 19th Century rigorization, a development turning on limits and continuity. And a continuing engagement with limits and continuity would be very much part of Cantor's mathematical journey, even as dramatically new conceptualizations emerged. Evolutionary accounts of Cantor's work mostly underscore his progressive ascent through set- theoretic constructs to transfinite number, this as the storied beginnings of set theory. In this article, we consider Cantor's work with a steady focus on con- tinuity, putting it first into the context of rigorization and then pursuing the increasingly set-theoretic constructs leading to its further elucidations. Beyond providing a narrative through the historical record about Cantor's progress, we will bring out three aspectual motifs bearing on the history and na- ture of mathematics. First, with Cantor the first mathematician to be engaged with limits and continuity through progressive activity over many years, one can see how incipiently metaphysical conceptualizations can become systemati- cally transmuted through mathematical formulations and results so that one can chart progress on the understanding of concepts. Second, with counterweight put on Cantor's early career, one can see the drive of mathematical necessity pressing through Cantor's work toward extensional mathematics, the increasing objectification of concepts compelled, and compelled only by, his mathematical investigation of aspects of continuity and culminating in the transfinite numbers and set theory.
    [Show full text]
  • Worksheet: Cardinality, Countable and Uncountable Sets
    Math 347 Worksheet: Cardinality A.J. Hildebrand Worksheet: Cardinality, Countable and Uncountable Sets • Key Tool: Bijections. • Definition: Let A and B be sets. A bijection from A to B is a function f : A ! B that is both injective and surjective. • Properties of bijections: ∗ Compositions: The composition of bijections is a bijection. ∗ Inverse functions: The inverse function of a bijection is a bijection. ∗ Symmetry: The \bijection" relation is symmetric: If there is a bijection f from A to B, then there is also a bijection g from B to A, given by the inverse of f. • Key Definitions. • Cardinality: Two sets A and B are said to have the same cardinality if there exists a bijection from A to B. • Finite sets: A set is called finite if it is empty or has the same cardinality as the set f1; 2; : : : ; ng for some n 2 N; it is called infinite otherwise. • Countable sets: A set A is called countable (or countably infinite) if it has the same cardinality as N, i.e., if there exists a bijection between A and N. Equivalently, a set A is countable if it can be enumerated in a sequence, i.e., if all of its elements can be listed as an infinite sequence a1; a2;::: . NOTE: The above definition of \countable" is the one given in the text, and it is reserved for infinite sets. Thus finite sets are not countable according to this definition. • Uncountable sets: A set is called uncountable if it is infinite and not countable. • Two famous results with memorable proofs.
    [Show full text]
  • Introductory Topics in the Mathematical Theory of Continuum Mechanics - R J Knops and R
    CONTINUUM MECHANICS - Introductory Topics In The Mathematical Theory Of Continuum Mechanics - R J Knops and R. Quintanilla INTRODUCTORY TOPICS IN THE MATHEMATICAL THEORY OF CONTINUUM MECHANICS R J Knops School of Mathematical and Computer Sciences, Heriot-Watt University, UK R. Quintanilla Department of Applied Mathematics II, UPC Terrassa, Spain Keywords: Classical and non-classical continuum thermomechanics, well- and ill- posedness; non-linear, linear, linearized, initial and boundary value problems, existence, uniqueness, dynamic and spatial stability, continuous data dependence. Contents I. GENERAL PRINCIPLES 1. Introduction 2. The well-posed problem II. BASIC CONTINUUM MECHANICS 3. Introduction 4. Material description 5. Spatial description 6. Constitutive theories III. EXAMPLE: HEAT CONDUCTION 7. Introduction. Existence and uniqueness 8. Continuous dependence. Stability 9. Backward heat equation. Ill-posed problems 10. Non-linear heat conduction 11. Infinite thermal wave speeds IV. CLASSICAL THEORIES 12. Introduction 13. Thermoviscous flow. Navier-Stokes Fluid 14. Linearized and linear elastostatics 15. Linearized Elastodynamics 16. LinearizedUNESCO and linear thermoelastostatics – EOLSS 17. Linearized and linear thermoelastodynamics 18. Viscoelasticity 19. Non-linear Elasticity 20. Non-linearSAMPLE thermoelasticity and thermoviscoelasticity CHAPTERS V. NON-CLASSICAL THEORIES 21. Introduction 22. Isothermal models 23. Thermal Models Glossary Bibliography Biographical sketches ©Encyclopedia of Life Support Systems (EOLSS) CONTINUUM MECHANICS - Introductory Topics In The Mathematical Theory Of Continuum Mechanics - R J Knops and R. Quintanilla Summary Qualitative properties of well-posedness and ill-posedness are examined for problems in the equilibrium and dynamic classical non-linear theories of Navier-Stokes fluid flow and elasticity. These serve as prototypes of more general theories, some of which are also discussed. The article is reasonably self-contained.
    [Show full text]
  • Topology ­ Jon­Paul Cox ­ Connected Spaces May 11, 2016
    Topology ­ Jon­Paul Cox ­ Connected Spaces May 11, 2016 Connected Spaces Jon­Paul Cox 5/11/16 6th Period Topology Parallels Between Calculus and Topology Intermediate Value Theorem If is continuous and if r is a real number between f(a) and f(b), then there exists an element such that f(c) = r. Maximum Value Theorem If is continuous, then there exists an element such that for every . Uniform Continuity Theorem If is continuous, then given > 0, there exists > 0 such that for every pair of numbers , of [a,b] for which . 1 Topology ­ Jon­Paul Cox ­ Connected Spaces May 11, 2016 Parallels Between Calculus and Topology Intermediate Value Theorem If is continuous and if r is a real number between f(a) and f(b), then there exists an element such that f(c) = r. Connected Spaces A space can be "separated" if it can be broken up into two disjoint, open parts. Otherwise it is connected. If the set is not separated, it is connected, and vice versa. 2 Topology ­ Jon­Paul Cox ­ Connected Spaces May 11, 2016 Connected Spaces Let X be a topological space. A separation of X is a pair of disjoint, nonempty open sets of X whose union is X. E.g. Connected Spaces A space is connected if and only if the only subsets of X that are both open and closed in X are and X itself. 3 Topology ­ Jon­Paul Cox ­ Connected Spaces May 11, 2016 Subspace Topology Let X be a topological space with topology . If Y is a subset of X (I.E.
    [Show full text]
  • The Set of All Countable Ordinals: an Inquiry Into Its Construction, Properties, and a Proof Concerning Hereditary Subcompactness
    W&M ScholarWorks Undergraduate Honors Theses Theses, Dissertations, & Master Projects 5-2009 The Set of All Countable Ordinals: An Inquiry into Its Construction, Properties, and a Proof Concerning Hereditary Subcompactness Jacob Hill College of William and Mary Follow this and additional works at: https://scholarworks.wm.edu/honorstheses Part of the Mathematics Commons Recommended Citation Hill, Jacob, "The Set of All Countable Ordinals: An Inquiry into Its Construction, Properties, and a Proof Concerning Hereditary Subcompactness" (2009). Undergraduate Honors Theses. Paper 255. https://scholarworks.wm.edu/honorstheses/255 This Honors Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Undergraduate Honors Theses by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. The Set of All Countable Ordinals: An Inquiry into Its Construction, Properties, and a Proof Concerning Hereditary Subcompactness A thesis submitted in partial fulfillment of the requirement for the degree of Bachelor of Science with Honors in Mathematics from the College of William and Mary in Virginia, by Jacob Hill Accepted for ____________________________ (Honors, High Honors, or Highest Honors) _______________________________________ Director, Professor David Lutzer _________________________________________ Professor Vladimir Bolotnikov _________________________________________ Professor George Rublein _________________________________________
    [Show full text]