ApproachesforEnhancingLethalityofBacterialSporesTreatedbyPressureAssisted

ThermalProcessing

Dissertation

PresentedinPartialFulfillmentoftheRequirementsfortheDegreeDoctorofPhilosophy intheGraduateSchooloftheOhioStateUniversity

By

WannasawatRatphitagsanti,M.S.

GraduatePrograminFoodScienceandTechnology

TheOhioStateUniversity

2009

DissertationCommittee: V.M.Balasubramaniam,Advisor AhmedE.Yousef ValenteB.Alvarez LuisE.RodriguezSaona

Copyrightby

WannasawatRatphitagsanti

2009

Abstract

Selected approaches for enhancingpressureassistedthermalprocessing(PATP)

lethalityonbacterialsporeinactivationwereinvestigatedusinghighpressuremicrobial

kinetictestingequipment. amyloliquefaciens TMW2.479sporeswereusedas

the test organisms. Efficacy of pressurization rate and doublepulse treatment in

enhancing PATP lethality was examined. Pressurization rate influenced the PATP

lethalityasafunctionofpressureholdingtime.Duringshortpressureholdingtimes(≤2

min),PATPtreatmentwiththeslowpressurizationrate(3.75MPa/s)providedenhanced

spore reduction over that of fast pressurization rate (18.06 MPa/s). Regardless of the

pressurization rate, after 5min treatment at 105°C600 MPa, 6 log reduction of B.

amyloliquefaciens spores were observed. Doublepulse treatment enhanced PATP

lethality by approximately 2.4 to 4 log CFU/mL, in comparison to single pulse for a

givenpressureholdingtime.

Theefficacyofcombiningorganicacids(acetic,citric,andlactic;100mM,pH

5.0)withPATPtreatmentinenhancing B.amyloliquefaciens inactivationwasstudied.In

combinationwith2minPATPtreatmentat700MPa105°C,aceticandcitricacidswere

foundtoprovidesynergisticeffectoninactivating B.amyloliquefaciens sporesthanthe

sporessuspendedinlacticacidordeionizedwater.Organicacidsincombinationwith

PATPtreatmentalsoinducedsporegermination(33%to80%)asafunctionofpressure ii holdingtimeandtypeoforganicacidused.Combining organic acids with PATP also inhibitedthegrowthandrecoveryoftheremaining survivor population during 28day storageat32°Cinalowacidfoodmodelsystem(carrotpuree,pH5.0).

Biochemical changes in B. amyloliquefaciens spores grown in two different

sporulationmedia(TSAYEandNAYE)asinfluencedbyPATP,highpressureprocessing

(HPP),andthermalprocessing (TP)wereinvestigatedusing Fouriertransforminfrared

spectroscopy(FTIR).FTIRspectraofthebacterialsporeswerenotonlyinfluencedby

theprocessingconditions,butalsobythesporulationmedia.PATPandTPtreatments

acteduponspecifictargetsofcalciumdipicolinate (CaDPA), which were identified by bands at 1381, 1415, and 1442 cm 1. Changes in secondary protein bands were also observedduringPATPandTP.Survivingsporepopulationsof B.amyloliquefaciens after

PATP and TP treatments could be estimated by crossvalidated PLSR models using

spectralregion(9001800cm 1).However,suchadevelopedmodelbasedonsinglepulse

datacouldnotbeusedforpredictingdoublepulselethality especially during 2 nd pulse pressure holding time, possibly due to differences in respective spore inactivation mechanisms.

In conclusion, various physical (pressurization rate, pulsing) and chemical

(organic acid) based approaches can be used for enhancing PATP lethality of highly pressurethermalresistant B.amyloliquefaciens spores.Differentprocessing(PATP,TP) conditionsandsporulationmediacausedchangesinFTIRspectraespeciallyinCaDPA

iii and secondary protein bands. Organic acids, citric and lactic acids in particular, in

combinationwithPATPtreatmentenhancedPATPlethalityandfurtherinhibitedspore

recoveryinthetreatedcarrotpureeduringextendedstorage(upto28days)at32°C.

iv Dedication

Dedicatedtomybelovedfather,mother,andsister

v Acknowledgments

Iwishtoexpressmysincereappreciationandgratitudetowardsmyadviser,Dr.

V.M. (Bala) Balasubramaniam, who has given me the best opportunity and invaluable assetsthroughouthisattentiveandtirelesssupervisionaswellasexcellentsupportsin terms of education, consultation, and funding. All of which have changed my life entirely.Ialsowouldliketoextendmythankfulnesstoeverycommitteemember,Dr.

AhmedE.Yousef,Dr.LuisE.RodriguezSaona,andDr.ValenteB.Alvarez,forbeing anotherforceofencouragementformetocompletemyextensivelaboratoryresearchand dissertation as well as intellectual and worthful discussions, advice, and comments throughoutthecourseofmystudy.

My special thoughts and love would go for my beautiful family. For my dad,

Sawat,whoalwaysunderstandsandgivesmestrengthstoovercomeanyobstaclesitmay arise.Formymom,Chaveewan,whoalwayslistensandcheersmeupwhenmymorale goesdown.Formybelovedtheoneandonlysister,Wassawan,whoisalwaystherefor meeverytimeIneedregardless.Igenuinelycouldnotaskforabetterandsupportive familyinwhichIamgratefulforeverydayofmylife.

Special thanks also go to Supranee Chaiwatpongsakorn and Monchaya

Rattanaprasert for their friendship and support. You have always given me strength whenever I need it. Thank you to all of my friends here in Columbus and from the

vi Department of Food Science and Technology as well aseveryoneinthehighpressure

foodprocessinglabgroup.Ireallyappreciateyourfriendship,whichmakesmystayhere

feellikehome.

Unforgettably,thegenerousandkindfinancialsponsors,theCenterforAdvanced

Processing and Packaging Studies (CAPPS), U.S. Army Natick Soldier Research,

Development & Engineering Center, and Defense Logistics Agency Combat Rations

Network for Technology Implementation (CORANET), which have created this potentialityandmadeeverypossibilityatthefirstplace.

vii Vita

October13,1980………………………....Born–Bangkok,Thailand

2001……………………………………....B.S.AgroIndustrialProductDevelopment (1 st classhonors),KasetsartUniversity, Bangkok,Thailand 20022004………………………………..GraduateResearchAssistant,Departmentof FoodScience,UniversityofMissouri 2004……………………………………....M.S.FoodScience,UniversityofMissouri 2005topresent…………………………...GraduateResearchAssociate,Departmentof FoodScienceandTechnology,TheOhioState University Publications

RatphitagsantiW.,AhnJ.,BalasubramaniamV.M.,andYousefA.E.2009.Influenceof pressurizationrateandpressurepulsingontheinactivationof Bacillus amyloliquefaciens sporesduringpressureassistedthermalprocessing.Journalof FoodProtection.72(4):775782.

RatphitagsantiW.,DeLamoCastellviS.,andBalasubramaniamV.M.2009.Bacterial sporeinactivationbypressureassistedthermalprocessing:challengesinfindinga suitablebiologicalindicatorforprocessvalidation,p.413450. In M. Gơmezand J.Moldenhauer(eds.),Biologicalindicatorsforsterilizationprocesses.Davis HealthcareInternationalPublishing,RiverGrove,USA. FieldsofStudy

MajorField:FoodScienceandTechnology

viii TableofContents

Abstract...... ii

Dedication...... v

Acknowledgments...... vi

Vita...... viii

ListofTables ...... xi

ListofFigures...... xiii

Chapters:

1.Introduction...... 1

2. Bacterial spore inactivation by pressureassisted thermal processing: challenges in findingasuitablebiologicalindicatorforPATPprocessvalidation...... 5 2.1.Introduction ...... 5 2.2.Processengineeringbasics...... 7 2.3.Microbialefficacyofpressuretreatmentonbacterialspores...... 10 2.4.Modelingkineticsofsporeinactivation ...... 22 2.5.Combininghighpressuretemperaturetreatmentwithotherhurdles...... 24 2.6.Validation...... 26 2.7.Conclusionsandfuturedirections...... 27 References ...... 29 3. Influence of pressurization rate and pressure pulsing on the inactivation of Bacillus amyloliquefaciens sporesduringpressureassistedthermalprocessing...... 49 Abstract ...... 49 3.1.Introduction ...... 50 3.2.Materialsandmethods...... 53 3.3.Resultsanddiscussion...... 59 ix 3.4.Conclusions ...... 66 References ...... 67 4.Efficacyofpressureassistedthermalprocessing,incombinationwithorganicacids, against Bacillus amyloliquefaciens spores suspended in deionized water and carrot puree ...... 79 Abstract ...... 79 4.1.Introduction ...... 80 4.2.Materialsandmethods...... 81 4.3.Resultsanddiscussion...... 89 4.4.Conclusions ...... 95 References ...... 96 5. Fouriertransform infrared microspectroscopy and multivariate analysis of Bacillus amyloliquefaciens sporeinactivationduringpressureassistedthermalprocessing ...105 Abstract ...... 105 5.1.Introduction ...... 106 5.2.Materialsandmethods...... 108 5.3.Resultsanddiscussion...... 114 5.4.Conclusions ...... 123 References ...... 124 6.Conclusions...... 141 Bibliography ...... 144 AppendixA:SAScommands ...... 159 AppendixB:MATLABcommandsforpressureandthermaldosages ...... 175 AppendixC:FTIRspectraof Bacillusamyloliquefaciens TMW2.479spores ...... 177 x ListofTables

TablePage

2.1.Temperaturechangesofselectedsubstancesduetocompressionheating...... 40 2.2.Bacterialsporeinactivationinresponsetothecombinedeffectsofhighpressuresand moderatetohightemperatures ...... 41 3.1. Temperature histories at different stages of preprocessing and pressureassisted thermalprocessingat600MPaand105°C ...... 70 3.2. Summary of statistical analysis results regarding the contribution of various processingparameterstothesporelethality(∆logCFU/mL)...... 71 3.3.Thermalandpressuredosageofthelethalregion(T>95°CandP>500MPa)at various pressure holding times and their corresponding log reduction from the singlepulseexperiment...... 72 4.1. Temperature histories at different stages of preprocessing and pressureassisted thermal processing for samples processed at 700 MPa and 105ºC (A) and during thermalprocessingat105ºCand0.1MPa(B) ...... 99 4.2.Percentgerminationinthesurviving Bacillusamyloliquefaciens sporepopulationsin the presence of organic acids after 700 MPa105°C treatment for various pressure holdingtimes ...... 100 4.3. Survivors of Bacillus amyloliquefaciens sporesthatweresuspendedinfoodgrade organic acids, PATP processed for 3 and 5 min at 700 MPa and 105°C, and enumeratedfollowingaheatshocktreatment(80°Cfor15min)...... 101 4.4.Recovery(logMPN/mL)of Bacillus amyloliquefaciens spores,inoculatedincarrot puree, during 28day storage after PATP treatment in combination with organic acids...... 102 5.1.Approximateformulaperliterofmediausedforsporulation ...... 128 5.2. Log reduction of Bacillus amyloliquefaciens TMW 2.479spores after single and doublepulsetreatmentsat3minequivalentpressureholdingtime ...... 129 xi 5.3.DiscriminatingpowervaluesatbandsassociatedtoCaDPAstructuresandlogN/No correspondingtotreatments ...... 130 xii ListofFigures

FigurePage

2.1.PressureandtemperaturecurvesforsamplessubjectedtoPATPcondition(700MPa at105°Cfor5min).Processingtimesincludepreprocesstime( t1),pressurecome uptime(t2),andpressureholdingtime( t3)...... 38 2.2.Structureofanentiredormantspore...... 39 3.1.Comparisonofpressureandtemperaturehistoriesofsporesamplessubjectedtofast pressurization rate during single and doublepulse treatment at PATP conditions (600 MPa at 105°C for 3 min). Singlepulse treatment (A) and doublepulse treatment(B)...... 73 3.2. Bacillusamyloliquefaciens TMW2.479sporesurvivorsindeionizedwatersubjected to600MPaand105°Cwithtwopressurizationrates and three inoculation levels. Pressurization rates: ( ______ ) fast; ( ) slow. Inocula: ( ) 1.1x10 9 CFU/mL;( )1.4x10 8CFU/mL;( )1.3x10 6CFU/mL...... 74 3.3. Spore count when suspensions were subjected to PATP (700 MPa105°C) or TP (105°C0.1 MPa), for 0 and 3 min, and subsequently tested for determining germinated subpopulations. Spore populations: ( ) dormant spores; ( ) germinatedspores...... 75 3.4.Thermaldosage(A)andpressuredosage(B)ofthelethalregion(T>95°CandP> 500MPa)atvariouspressureholdingtimesduring( )singleand( )double pulseexperiments.Sporesurvivalcurve(C)of B.amyloliquefaciens TMW2.479 aftertreatmentwith600MPaand105°Cwith(______ )singleand( ) doublepulses.Pressurizationrates:(18.06MPa/s)fast;(3.75MPa/s)slow...... 76 3.5. Bacillusamyloliquefaciens TMW2.479sporesurvivorsindeionizedwaterprocessed atdifferenttreatmentconditions(singlepulse,105ºC; single pulse, 112ºC; double pulses,105and112ºC)andtwoPATPholdingtimes(1and3min).Pressurization rates:( )fast;( )slow...... 78

xiii 4.1. Bacillus amyloliquefaciens sporesurvivors(logCFU/mL)inoculatedinfoodgrade organicacids(acetic,citric,andlactic)andtreatedat700MPaand105°C.Spores inoculatedindeionizedwater(DIW)servedascontrol.( )Dormantsporesand ( )germinatedspores...... 103 4.2.Recoveryof Bacillus amyloliquefaciens onTrypticasesoyagarsupplementedwith 0.6%yeastextractduringvariousstoragetimesat32°C.Theinoculatedsporecarrot pureesamplesweresubjectedtoPATPtreatment(700MPa105°Cateither5or15 min)andthenstoredat32°Cbeforeenumeration...... 104 5.1. Sample pressure () and temperature( )historiesduringsingle (A)anddoublepulse(B)treatment...... 131 5.2. Soft independent modeling by class analogy on resistant property of untreated Bacillusamyloliquefaciens TMW2.479sporesasinfluencedbydifferentsporulation media (A) and different spore crop preparations using TSAYE as a sporulation medium(B)...... 132 5.3.Softindependentmodelingbyclassanalogyofdifferentclassprojectionsof Bacillus amyloliquefaciens TMW 2.479 spores (NAYE grown) after pressureassisted thermalprocessingat600MPa105°C(A)andthermalprocessingat105°C0.1MPa (B)...... 133 5.4.Discriminationpowerplotinclassificationofpressureassistedthermalprocessing treated Bacillusamyloliquefaciens TMW2.479sporesgrownontwodifferentmedia ...... 134 5.5. Comparison of single (SP) and doublepulse (DP) treatments on Bacillus amyloliquefaciens TMW2.479sporesprocessedatanequivalentholdingtimeof3 min;TSAYEgrownspores(A)andNAYEgrownspores(B) ...... 135 5.6. Discrimination power plot in classification of Bacillus amyloliquefaciens TMW 2.479sporesgrownontwodifferentmediaafterthermal processing at 105°C0.1 MPa...... 136 5.7.Comparisonofdiscriminatingpowerplotof Bacillusamyloliquefaciens TMW2.479 sporesgrownonNAYEat3logreductionafterTP(105°Cat0.1MPafor120min) andPATP(600MPaat105°Cfor5min)treatments...... 137

xiv 5.8. Crossvalidated (leaveoneout) partial least squares regression plots for spore inactivationbypressureassistedthermalprocessing;TSAYEgrownspores(A)and NAYEgrownspores(B) ...... 138 5.9. Crossvalidated (leaveoneout) partial least squares regression plots for spore inactivation by thermal processing; TSAYE grown spores (A) and NAYE grown spores(B)...... 139 5.10. Predicting microbial efficacy of doublepulse PATP treatment for Bacillus amyloliquefaciens TMW2.479sporesurvivorsbasedonsinglepulseFTIRspectra model.PredictedsporesurvivorsbyFTIRspectra( )andmeasuredspore survivorsbystandardplatecount( );TSAYEgrownspores(A)andNAYEgrown spores(B)...... 140

xv Chapter1:Introduction

Duetotheincreasedconsumerdemandforfreshlike,minimallyprocessed,and additivefreefoodproducts,thefoodindustryisinterestedinidentifyingalternativefood technologies for preserving shelfstable lowacid products that can ensure microbial safety without degrading product quality attributes. One of the key challenges during shelfstable lowacid food processing is the inactivation of bacterial spores, which normallyrequireshighertreatmentintensitythanthoserequiredforvegetative.

Amongthetechnologiesbeinginvestigated,pressureassistedthermalprocessing(PATP) generated lot of attention because of its potential to overcome the limitations of the conventional thermalbased preservation methods. The unique advantages of the technology include a rapid temperature increase in treated samples due to heat of compression during pressurization and expansion cooling upon depressurization. This reducesthermalimpactonfinalproductquality.

Milder form of pressure “” treatment involves an application of pressures(300to600MPa)atprocesstemperatures<45ºC.Thiseffectivelyinactivates

variety of vegetative pathogenic and spoilage bacteria, yeasts and molds, and viruses.

Pressure pasteurization has been successfully utilized for preserving variety of

commercial products (e.g., guacamole, salsa, juices,smoothies,delimeat,oysters,and

cookedham)that aredistributedunder refrigeration. Pressure pasteurized products are

1 availableinNorthAmerican,European,andAsianmarkets.

Bacterial spores cannot be inactivated by pressure treatment alone at or near ambient temperatures. Combination of pressure and moderate heat is required for bacterialsporeinactivation.DuringPATP,thepreheatedfoodmaterialissubjectedtoa combinationofelevatedpressure(500to700MPa)andtemperature(90to121°C)fora shortduration( ≤10min).Variousbacterialsporesandthermophilicmicroorganismsare successfully inactivated by the simultaneous application of pressure and heat. Heat sensitiveshelfstableproductssuchassoup,tea, meat entrée can be preserved by this technology. During February 2009, PATP has been approved by Food and Drug

Administration (FDA) for commercial sterilization of mashed potato product. More studies on PATP spore lethality and process uniformity are necessary before PATP treatedproductscanbesuccessfullyintroducedintocommercialmarket.

Likethermalprocessing,duringPATP, Clostridiumbotulinum hasbeenidentified as the primary pathogenic target for sterilization. Since pathogenic spores cannot be utilizedintheindustrialenvironment,studieshaveidentified Bacillusamyloliquefaciens asoneofthemorepressuretemperatureresistantnonpathogenicsporesthatcanbeused astheindicatororganisms.

In general, PATP lethality increases with increasing pressure, temperature, and holdingtime.Incomparisontothermalsterilization,PATPtreatmentexposesthefood productstolimitedthermalexposure(90to121°C)overashortduration.Yet,itisstill desirable to further reduce the severity of the process to preserve freshlike product attributes.VariousapproachesforenhancingPATPsporelethalityaredesired.

2 Similartothermalprocessing,processcomeuptimecanbeanimportantfactor that can influence PATP process lethality. Pressurization rate determines the process comeuptime,whichisprimarilyafunctionofthetargetpressureandthehorsepowerof thepump.Untilnow,thereislimitedinformationavailableontheroleofpressurization rateandpressurepulsingonbacterialsporeinactivationusingPATP.

Useofantimicrobialcompounds(i.e.,nisin,sucroseesters)andacidificationare someofthecommonchemicalbasedapproachesusedinthermalprocessingtoreduce process severity and improve microbial stability. Very limited studies have been conducted to investigate the role of organic acids on enhancing bacterial spore inactivationduringPATP.

While many mechanisms have been proposed on pressure effects for the inactivation of vegetative bacteria and bacterial spore, the knowledge of inactivation mechanismsforbacterialsporesduringcombinedpressurethermalprocessing(especially at PATP conditions) are at infancy. Improved understanding of spore inactivation mechanismwillfacilitatetheintroductionofmicrobiologicallysafe,premiumshelfstable lowacidproducts.

Therefore,theobjectivesofthisdissertationwere:

1.Toexaminetheeffectofpressurizationrateandpressurepulsinginenhancingspore inactivationduringcombinedpressurethermaltreatment.

2. To investigate the efficacy of organic acids in combination with pressurethermal treatmentinenhancingbacterialsporeinactivationandmicrobialstability.

3 3. To elucidate bacterial spore inactivation mechanisms occurring during thermal and pressureassistedthermalprocessing.

4 Chapter2:Bacterialsporeinactivationbypressureassistedthermalprocessing:

ChallengesinfindingasuitablebiologicalindicatorforPATPprocessvalidation

2.1 Introduction

Canninghasbeenthetechnologyofchoiceforcommercialsterilizationofshelf stablelowacidfoods. Eventhoughretortinghasbeen proven safe and reliable, slow heating (and cooling) during the process results in significant temperature gradients within the processed product. The harsher thermal treatment often significantly deterioratesproductqualityandheatsensitiveingredients.Tosatisfyincreasedconsumer demandforfresher,minimallyprocessedfoodproducts,thefoodindustryisinterestedin identifyingalternativetechnologiesthatcanensuremicrobiologicalsafetyinthelowacid foodswithoutcompromisingitsquality.Amongthealternative technologies, pressure assisted thermal processing (PATP) provides a unique opportunity to overcome the limitationsofconventionalthermalprocesses.Thetechnologyhasemergedasoneofthe viablealternativesfortraditionalretortingforproducingcommerciallysterileshelfstable lowacidfoodsatreducedtemperatures.

Industrial applications for high pressure technology were initially developed in the chemical processing, ceramics, and metallurgical industries where it is used, for instance,insheetmetalformingandisostaticpressingofadvancedmaterials.In1899,

Bert Hite observed the delay of microbial spoilage ofmilkbythe applicationofhigh

5 pressureat600MPaandroomtemperaturefor1h(Hite,1899).Hiteandhiscolleagues continuedtheirinvestigationonavarietyoffoods,especiallyfruitsandvegetables(Hite etal.,1914).However,ittookuntil1980’sforthetechnologytobecomecommercially viable in the food industry. During 1980’s, Japanese universities and industries pioneered the commercialization of valueadded pressure pasteurized products such as jam, jelly, juice, etc. Highpressure pasteurization involves an application of elevated pressures(300to600MPa)atprocesstemperatures<45ºC(Cheftel,1995;Smelt,1998;

SanMartínetal.,2002;Balasubramaniam,2003;LauandTurek,2007).Thiseffectively inactivatesvarietyofvegetativepathogenicandspoilagebacteria,yeastsandmolds,and viruses.During2007,theproductionofHPPproductsisestimatedaround150,000tonne peryear.PressurepasteurizationtechnologyhasbeencommercializedinNorthAmerica

(Canada, Mexico, USA), Europe (Germany, Italy, Spain, Portugal, UK), and Asia

(including China, Japan, Korea). Guacamole, salsa, smoothies, deli meat, oysters, and cookedhamareexamplesofcommercialproductsinthemarket(Saizetal .,2008).

Bacterial spores are highly resistance to pressure treatments at ambient temperatures. To achieve commercial sterility of shelfstable lowacid food products, inactivationofbacterialspores,especially Clostridiumbotulinum isrequired.Pressure assisted thermal processing (PATP), also referred as pressureassisted thermal sterilization(PATS)orhighpressurehightemperaturesterilization(HPHT),involvesa combinedapplicationofelevatedpressures (500to 700MPa)andtemperatures(90to

121ºC)forashortdurationtoapreheatedfoodproduct(Anantaetal.,2001;Margoschet al.,2004a;Rajanetal.,2006a;Ahnetal.,2007).Temperatureoftheproductisrapidly

6 increased during compression and the expansion cooling occurs upon depressurization

(Tingetal.,2002).Thislimitstheseverityofthe thermal effect encountered within a conventional retort. Combined pressureheat effect successfully inactivates various bacterialspores.

2.2 Processengineeringbasics

2.2.1 Generalprinciplesgoverningpressureassistedthermalprocessing

Applicationofhighpressuresisgovernedbytwokeyprinciples(Cheftel,1995;

Smelt, 1998). Le Chatelier’s principle states that any phenomenon (phase transition,

changeinmolecularconfiguration,andchemicalreaction)accompaniedbyadecreasein

volume will be enhanced by pressure (Mozhaev et al., 1994; Earnshaw et al., 1995;

Smelt,1998).Secondly,theisostaticprinciplestatesthatpressureisinstantaneouslyand

uniformlytransmittedindependentofsizeandgeometryoffoods(Smelt,1998).

During compression phase of the pressure treatment, product temperature

increasesduetoheatofcompression.Producttemperaturerevertsbacktoitsinitialvalue

upon depressurization. Temperature increase of food materials under pressure is

dependent on factors such as target pressure, product compressibility, and initial

temperature.Theextentofthistemperaturechangecanbeestimatedusingthefollowing

equation(Hooglandetal.,2001;Matseretal.,2004):

dT αT = (2.1)

dP ρCP

where T is temperature (K), P is pressure (Pa), α is volumetric expansion coefficient

3 (1/K), ρ is density (kg/m ), and CP is specific heat (J/kgK). Often, for most materials, 7 above properties under pressure are not readily available. This is the topic of current research.Heatofcompressionvaluesforvariousfoodmaterialscanbeexperimentally determined(Oteroetal.,2000;Rasanayagametal.,2003).

Mostofthefoodmaterialcontainswater.Temperatureofwaterincreasesabout

3ºCforevery100MPapressureincreaseatroomtemperature(25ºC).Ontheotherhand, fatsandoilshaveaheatofcompressionvalueof8to9ºCper100MPa,proteinsand carbohydrates have intermediate heat of compression values (Ting et al., 2002;

Rasanayagam et al., 2003). Table 2.1 presents heat of compression of selected food materials. Itisworthtonotethatwhileheatofcompressionvaluesofwaterisdependent

oninitialtemperature,forfatsandoilsthevaluesarenotinfluencedbyinitialsample

temperature.

2.2.2 Typicalpressureassistedthermalprocessing

Atpresent,PATPisessentiallyabatchprocess.Theprocessstartswithpackaging

thefoodinaflexiblecontainer.Atleastoneinterfaceofthepackageshouldbeflexibleso

thatitreadilyallowsthepressuretransmission(Balasubramaniametal.,2004).Then,the

containerispreheatedtoapreprocessingtemperature( T1 )sothattheproductcanbe

processed ataprocesspressure ( P)andatarget processtemperature( T3 )(Figure2.1).

Preheated samples are loaded into a high pressure chamber filled with a pressure

transmittingfluid.Wateristhecommonlyusedpressuretransmittingfluidinthefood

industry.Glycol,siliconeoil,sodiumbenzoatesolution,ethanolsolution,andcastoroil

are examples of pressure transmitting fluids used in laboratory model high pressure

equipments(Balasubramaniametal.,2004).Thepressuretransmitting fluidwithinthe

8 pressure chamber is also approximately maintained at the same preprocessing

temperature( T1 )asthatoftheproduct.Thesystemisthenpressurizedwhenthesample

temperaturereachesapredeterminedinitialtemperature( T2 ). T2 valuecanbeestimated

from the knowledge of target process temperature ( T3 ), process pressure ( P), heat of compressionvaluesofthefoodmaterial( CH ), andthe extentofheat exchange ( ∆TH) withthesurroundings(Rajanetal.,2006a;Nguyenetal.,2007):

T2 = T3′ − (CH ⋅ P + TH ) (2.2)

Minimized ∆TH can be achieved by a trained equipment operator through a set of preliminary trials (Nguyen et al., 2007). It is important to use an appropriate thermal insulation to reduce heat loss between the sample and the surroundings

(Balasubramaniametal.,2004).

Pressurecomeuptime(t2)isdefinedasthetimerequiredtoincreasethepressure ofthesamplefromanatmosphericpressuretothetarget process pressure (Farkas and

Hoover,2000;Balasubramaniametal.,2004).Itisprincipallyafunctionofthetarget processpressureandthepumphorsepower.Aftertheappropriateprocessingtime(t3t4),

highpressureisreleasedtotheatmosphericpressure.Normally,thepressureholdingtime

(t3t4)doesnotincludethepressurecomeuptime(t2)orthedepressurizationtime(t5)

(Figure 2.1). Then, the processed food material can be removed from the pressure

chamber and immediately cooled. In general, the pressure andtemperaturehistoriesof

the process condition have been rarely reported in the literature. Therefore, it is

undeniablydifficulttocompareresultsofmicrobialinactivationobtainedfromvarious

laboratories.Thefailuretocontroltheprocesstemperatureunderpressurecouldbeone 9 ofthemajorreasonsforthelargevariabilityinthereportedmicrobialinactivationdata fromtheliterature(Balasubramaniametal.,2004).

2.3 Microbialefficacyofpressuretreatmentonbacterialspores

2.3.1 Sporebiology

Oneofthemajorobjectivesofanyfoodprocessingistheinactivationofharmful pathogenic bacteria as well as organisms that cause economic spoilage in processed foods. Sporeforming bacteria such as Alicyclobacillus , Bacillus , Clostridium,

Desulfotomaculum , and Sporolactobacillus spp. often cause food safety or spoilage problems (Setlow and Johnson, 2001). Specially, spores produced by Bacillus (aerobe andfacultativeanaerobe)and Clostridium (strictanaerobe)arethemajorconcernforthe productionofshelfstablelowacidfoodssincetheyaregenerallyfoundinsoilandhave foundtoberesistanttofoodprocessingtreatments(Gould,1999).Sporesareformedin responsetounfavorableenvironmentalconditions,likelywhenthereisnutrientdepletion.

However, spores can germinate and outgrowth again when environment conditions become favorable. During the development of spores, several morphological and biochemicalchangestakeplace.Thesporulationprocesstypicallyinvolvessevenstages.

These include stage I (axial filament), stage II (asymmetric separation), stage III

(engulfment), stage IV (cortex formation), stage V (coat formation), stage VI (spore maturation),andstageVII(releaseofmaturespore)(Piggot,2000;SetlowandJohnson,

2001).Vegetativecellsarestage0.StageIstartswiththepresenceoftwonucleotidesin an axial filament. During stage II, unequal cell division takes place, leading to the

10 formation of a smaller spore compartment, the forespore, separated from the larger mother cell compartment. Then, an endospore is formed through the engulfing of the foresporebythemothercell.Asaresult,therearetwocompletemembranes(innerand outerforesporemembrane)surroundingtheforespore(stageIII).Alargepeptidoglycan structure(cortex)isthenformedbetweentheinnerandouterforesporemembranes,while thegermcellwallisformedbetweenthecortexandtheinnerforesporemembrane(stage

IV). Then, the forespore synthesizes glucose dehydrogenase and small, acidsoluble proteins(SASPs).Whereasthefunctionofglucosedehydrogenaseisunknown,SASPsis reportedtobeinvolvedwithsporeresistanceandDNAprotection(Gould,1999;Setlow and Johnson, 2001; Montville and Matthews, 2005). After the pH in the forespore decreasesby1to1.3units(occurringduringthelatestageIII),thedehydrationprocess begins(Gould,1999;SetlowandJohnson,2001).InthestageIVtostageVtransition, theproteinaceouscoatlayersarelaiddownoutsidetheouterforesporemembrane.These coatsvarysignificantlyfromtospecies.DuringstageVI,thedepositofdivalent cations (Ca 2+ , Mg 2+ , and Mn 2+ ) and pyridine2,6dicarboxylic acid (dipicolinic acid;

DPA)occurs.Afterthecompletesporeformation,thesporeisreleasedbythelysisofthe mothercell(stageVII).Heatresistanceofsporesconsiderablyincreasesduringthelater stages of the core dehydration and the cortex formation (Gould, 1999). Spore core containscompletegenome,ribosomes,cytoplasmicenzymes,DPA,divalentcations,and

SASPsinarelativelylowwatercontentenvironment(0.4to1gofwaterpergofspore dryweight)(SetlowandJohnson,2001;MontvilleandMatthews,2005).Thestructureof adormantsporeisshowninFigure2.2.

11 Thermalresistanceofsporesisgenerallyduetolowwatercontent,mineralization of the core, and relative impermeability of the cortex(Gould,1999;Gould,2006).In addition, physical structure of spores (a thick layer of cortex and proteinaceous spore coats) is also known to protect spores from environmental stresses. Inner forespore membrane serves as a permeability barrier to hydrophilic molecules and to most molecules of >150 molecular weight (Setlow and Johnson, 2001). Moreover, SASPs bound with spore DNA, and DPA associated with divalent ions (mostly Ca 2+ ) are believed to involve in spore stability (Deeth and Datta, 2002). All of these unique characteristicsmakebacterialsporesamongthemostresistantmicroorganismstovarious environmental stresses such as heat, irradiation, desiccation, extreme pH, and toxic chemicals like ethanol or chloroform (Piggot, 2000; Setlow, 2003). Margosch et al.

(2004a)statedthattheabilityofsporestoretainDPAidentifiedtheirresistancetothe combined high pressure and temperature treatments. Spores can convert back to vegetative cells when they are exposed to germinants such as amino acids, sugars, or purinenucleosides(Setlow,2003).Dormantsporesareinducedtothegerminationstep by nutrients and nonnutrient agents. Nutrient germinants bind the receptors in the spore’s inner membrane, which trigger the release of the spore core components like

DPA and divalent cations. Water replaces the inner core components and triggers the hydrolysis of the spore’s cortex by cortexlytic enzymessuchasCwlJandSleBin B. subtilis (Setlow,2003;Moir,2006).Afterthecortexhydrolysis,theexpansionofgerm

cell wall allows full hydration in spore core, continuation of spore metabolism, and

macromolecule synthesis (Setlow and Johnson, 2001). Examples of nonnutrient

12 germinantsincludelysozymes,salts,highpressure, calcium dipicolinate (CaDPA), and cationicsurfactantssuchasdodecylamine(Setlow,2003).ThereleaseofCaDPAfrom onesporemaystimulatethegerminationofotherneighboringspores.

Once spores are mixed with germinants, the germination step begins and continuesevenafterthegerminantsareremoved.Thefirststepisthereleaseofhydrogen ion(H +),monoanddivalentcationsfromthesporecore.Secondly,DPAisreleased.

Dipicolinic acid accounts for about 10% of spore dry weight (Piggot, 2000). It is

normally associated with divalent cations like Ca 2+ . Thirdly, the spore is rehydrated leadingtothedecreaseinsporemoistheatresistance.Thefourthstepisthehydrolysisof peptidoglycansporecortex.Lastly,furtherwateruptakecausesswellingofthesporecore andexpansionofthegermcellwall.Aftergermination,thegerminatedsporedevelops intoagrowingcellandeventuallyresumesnormalcellfunction(Setlow,2003).

2.3.2 Factorsinfluencingsporeinactivation

Unique structural and physiological characteristics of bacterial spores are

responsible for the extreme resistance to environmental factors such as pressure and

temperature.Ithasbeenlongknownthatbacterial sporescansurvivepressuresupto

1,200MPaatambienttemperaturesoverextendedholdingtimes.Thereisnoapparent

correlationbetweenpressureandthermalresistanceofbacterialspores(Nakayamaetal.,

1996;Smeltetal.,2002;Margoschetal.,2004a).Researchersarecurrentlyinvestigating

thecombinedpressurethermalresistanceofvariousbacterialspores(Table2.2).Several

intrinsic and extrinsic factors, and their interactions can influence spore inactivation

during PATP. These include type of the microorganism, species and strains,

13 physicochemicalconditions(e.g.,sporulationtemperature,mediacomposition,mineral

content), process parameters (e.g., pressure, temperature, and pressure holding time),

mode of pressure application (e.g., static or pressure cycling), and food composition

(e.g.,pH,a w,fatcontent,proteincontent).Dependinguponpressuretemperatureregime,

presenceorabsenceofsporegerminationhasbeenreported.Itisfurtherinterestingto

notethatpossiblyduetodifferencesinequipmentdesigncharacteristicsandinadequate

reportingofexperimentalmethodologies,itisdifficulttocompareresultsfromdifferent

laboratorygroups.Approachesthatmayaidinmeaningfulcomparisonofresultsfrom

variouslaboratoriesareprovidedbyBalasubramaniametal.(2004).

2.3.2.1 Sporulationconditions

Difference in sensitivity of bacterial spores among different strains is likely caused by the morphological and physiochemical characteristics of the spores during sporulation.Therigidityofsporecortexandcoataswellascomponentsinsporecorecan influencesporeresistance(WuytackandMichiels,2001;OomesandBrul,2004).Very limited studies have investigated the effect of bacterial sporulation conditions such as temperature, sporulation media composition, pH on the combined pressureheat resistance.Decreasingsporulationtemperatureingeneralisreportedtoincreasepressure resistance of bacterial spores. For the same processconditions(690MPa,60ºC,30s), decreasing sporulation temperature from 37 to 20ºC, decreased B. cereus spore inactivation(from7to4logCFU/mL)(Rasoetal.,1998a).Similarly,thetypeofmineral presentinthesporecanalsoinfluencepressureresistance.Iguraetal.,(2003)reported thatpressureresistanceof B.subtilis sporesincreasedafterdemineralizationwithCa 2+ or

14 Mg 2+ , whereas the resistance did not change when the spores were remineralized with

Mn 2+ orK +.Morestudiesarerequiredtofurtherunderstandtheroleofsporulationand bacterialsporegrowthconditionsonthecombinedpressureheatresistanceofavarietyof bacterialspores,especiallyatelevatedprocessconditions.

2.3.2.2 Processconditions

In general, bacterial spores are inactivated as a function of pressure, process

temperature, and pressure holding time (Rovere et al., 1996; Ananta et al., 2001;

Margoschetal.,2004a,2004b;Kouchmaetal.,2005;Margoschetal.,2006;Patazcaet

al.,2006;Rajanetal.,2006a,2006b;Ahnetal., 2007;Blacketal.,2007b).Bacterial

sporesareoftenresistanttopressuresabove1,000MPaatambienttemperatures(Cheftel,

1995).

However,whencombinedwithheat,sporeinactivationingeneralincreaseswith

increasing pressure, temperature, and pressure holding time. For example, increasing processtemperaturefrom35to55ºC,increased C.botulinum typeEsporesreductionby

approximately4logunitsat827MPaafter5minpressureholdingtime(Reddyetal.,

1999). However, the synergy between heat and pressure diminished at elevated

temperatures, and heat becomes the dominant contributor to the spore inactivation,

especiallyattemperatures≥121ºC(Rajanetal.,2006a;Ahnetal.,2007).

It is further interesting to note that different bacterial spores seem to exhibit

differentlevelsofthecombinedpressurethermalresistanceforthesamepressurecome

up time (Ahn et al., 2007). Margosch et al. (2004a) reported 1.5 log reduction in C.

botulinum TMW2.357,3logreductionin C.thermosaccharolyticum ,>5logreduction

15 in B.subtilis ,and<0.5logreductionin B.amyloliquefaciens afterpressurecomeuptime at600MPaand80ºC.Hayakawaetal.(1998)reportedthatrapiddecompression(1.30to

1.65ms)afteratreatment(200MPaat75ºCfor60min)enhancedsporeinactivationof

G.stearothermophilus IFO12550.

Pressure cycling (also known as pulsed pressurization, oscillatory pulses, or

reciprocal pressurization) has been reported as an effective way to enhance microbial

inactivation(Hayakawaetal.,1994;Palouetal.,1998;Furukawaetal.,2000;Meyeret

al., 2000; San Martín et al., 2002; Furukawa et al., 2003). Spore inactivation during pressurepulsingisgovernedbythetargetpressure,processtemperature,pressureholding

timeduringeachpulse,numberofpulses,andtimeintervalbetweenpulses.Ahnand

Balasubramaniam (2007a) reported that double and triplepulse pressurization were

lethalininactivating C. sporogenes spores,incomparisontoequivalentstaticpressure

treatments. Hayakawa et al. (1994) reported complete inactivation of 10 6 CFU/mL G. stearothermophilus sporepopulationwhen6pulses(5mineach)at600MPaand70°C were used. In the case of B. subtilis and B. licheniformis spores, the first pulse was appliedat800MPaand70ºCfor2min,thenfollowedby800MPaand70ºCor0.1MPa and 70ºC (Margosch et al., 2004b). Comparable results were obtained from both treatments. This could be explained by the release of DPA during treatments. Once spores released > 90% of their DPA content, the inactivation was not influenced by pressure any further (Margosch et al., 2004b). Even though the enhanced spore inactivation was reported with the pulsed pressurization, the increased cost associated withpossibleequipmentwearandtearshouldbeconsidered.

16 2.3.2.3 Influenceoffoodcomposition

Unlikebuffersystems,foodcomposition(suchasfat,carbohydrate,andprotein) canprovideprotectiveeffecttobacterialspores(Rasoetal.,1998b;Garrigaetal.,2004;

SolomonandHoover,2004).Verylimitedstudieshaveinvestigatedtheinfluenceofthe food matrix on spore inactivation during pressure treatments. Ananta et al. (2001) reported that bacterial spores were protected by their surrounding matrix against lethal effectsofpressureandheat.Milkwithvaryingfatconcentration(0,2,and4%)didnot contributetotheprotectiveeffecton B.cereus spores,incomparisontothoseobtained frombuffersolutionsaftertreatmentat690MPa40ºCfor2min(Rasoetal.,1998b).Egg pattieswithcomplexingredientsdidnotprovideprotectiveeffectontheinactivationof

G. stearothermophilus spores when processed at 700 MPa and 105ºC (Rajan et al.,

2006b). Similar observations were reported for the inactivation of C. botulinum nonproteolytictypeBsporessuspendedinphosphatebufferandcrabmeat(Reddyetal.,

2006).Morestudiesareneededtoinvestigatetheinfluenceofvariousfoodconstituents onPATPsporeresistance.

2.3.2.4 ImportanceofpHandwateractivityonsporeinactivation

pH is known to influence microbial inactivation under pressure (Raso et al.,

1998b; Stewart et al ., 2000; Ananta et al., 2001). Application of pressure can cause transientpHshift (Earnshawet al.,1995;Smelt,1998; Smelt et al., 2002). The ionic dissociationofwaterandseveralweakacidsisenhancedunderpressure,therebyshifting thepHofthesolutiontowardstheacidicside(Cheftel,1995).ThedecreaseinpHmay promote protein denaturation and microbial inactivation. Upon depressurization, pH

17 likely shifts back close to its initial value. Due to the challenges associated with the development of insitu pH sensors under pressure, the influence of pH on microbial inactivationduringcombinedpressureheattreatmentlargelyremainsunknown.

Many researchers observed that acidic pH enhanced spore inactivation during pressuretreatments(RobertsandHoover,1996;Rasoetal.,1998b;Knorr,1999;Stewart et al., 2000) while some others found insignificant effect of pH on bacterial spore inactivation(WuytackandMichiels,2001).Varioussporeformingbacteriacannotgrow below pH of 3.7 and spores are typically more resistant to pH slightly above their optimum(Murakamietal.,1998).Inactivationof B.coagulans sporeswashigheratpH4 thanatpH7under400MPaand40 oC(RobertsandHoover,1996).Stewartetal.(2000)

reportedthat C. sporogenes sporeinactivationwasenhancedatpH4.0,comparedtothe sametreatment(404MPafor15min)atpH7.0.Theenhancedsporeinactivationunder acidic environment might be due to the transformation of native spores into Hspores

(ParedesSabja et al., 2007). Acidic pH delays the transport of divalent cations in bacterial spores, leading to heat sensitive Hspores (Wuytack and Michiels, 2001).

Margosch et al. (2004a) reported that DPA release was enhanced when the pH was reducedto4.0orwhenthetemperaturewasincreased.Theinactivationofsporesbylow pHisproducedbyadrasticchangeinthesporepermeabilitybarrier,whichleadstothe lossofDPAandaconcomitanthydrationofthecore(Margoschetal.,2004a).Spore permeabilitybarriersoftheinnermembranearemoresensitivetoionsandprotonswith the application of highpressure, hightemperature, and pressureinduced pH shift

(ParedesSabjaetal.,2007).

18 Wateractivity(a w)alsoinfluencessporeinactivationduringpressuretreatments.

Pressureresistanceofbacterialsporesincreaseswiththeadditionofsugarorsaltdueto the increased spore dehydration (Cheftel, 1995). Raso et al. (1998b) observed the increasedresistanceofbacterialsporestoHPPatlowawwhenanonionicsolute(e.g., sucrose) was present in the suspending solutions. Specially, there was no inactivation obtained at a w 0.92 after the treatment at 690 MPa and 40ºC for 2 min. The authors

explained their observations by the osmotic dehydration of the spore protoplast by

sucroseincreasingthespore’spressureresistance.Invegetativemicroorganisms,lowa w protectsproteinsandwholeorganismsagainstheatandpressure(OxenandKnorr,1993;

Smeltetal.,2002).However,thesurvivinginjuredcellsafterthetreatmentweremore sensitivetoawvaluessuboptimaltotheirgrowth(Smelt,1998;Smeltetal.,2002).

2.3.3 Proposedmechanisticapproachesforpressureinactivationofbacterialspores

Although there have been many proposed mechanisms regarding the effects of pressure on vegetative bacteria inactivation (Cheftel, 1995; Lado and Yousef, 2002;

Smeltetal.,2002),pressureinactivationmechanismsforbacterialsporesarenotwell established. Application of pressure can inactivate bacterial spores with or without germination depending on the pressuretemperature combination used (Ananta et al.,

2001).

Depending upon the target pressuretemperature process conditions utilized, variousresearchershaveproposeddifferentmechanismsforsporeinactivation(Wuytack etal.,1998;Paidhungatetal.,2002;Margoschetal.,2004a,2004b,2006;Blacketal.,

2007b;Subramanianetal.,2007).Highpressurecantriggersporegermination,andthis

19 couldbeoneofthereasonsthathighpressuretreatmentsinactivatesporesasgerminated spores are more sensitive to inactivation treatments (Black et al., 2007b). Proposed approachestoinactivatesporesbyhighpressuretreatmentincludeatwostagestrategy

(Clouston and Wills, 1969; LópezPedemonte et al., 2003), pressure treatment at moderatetemperatures(Millsetal.,1998;Paidhungatetal.,2002;OhandMoon,2003;

Black et al., 2007b), “hit and wait” strategy (Margosch et al., 2004b), and pressure treatments at elevated temperatures or PATP (Ananta et al., 2001; Margosch et al.,

2004b;Rajanetal.,2006a;Ahnetal.,2007).

Thetwostagestrategyinvolvestheuseofinitiallowpressure(60to100MPa) andmildtemperaturetreatment(<30ºC)withanextendedholdingtimefollowedbya shortertreatmentatmoderatepressures(>300MPa)andtemperatures.Duringthefirst stage,lowpressuresandmildtemperaturesinducespore germinationbyactivatingthe nutrientgerminantreceptors(Wuytacketal.,2000;Paidhungatetal.,2002).Oncespores germinate, the outgrowing cells are less resistance to high pressure and subsequently killedduringthesecondstagewithmoderatepressuretreatments.Themainlimitationof thisstrategyisthatasmallfractionofsporesremainungerminated(Saleetal.,1970).If higherpressures (>300MPa)atmildtemperatures(< 30ºC) were directly applied by missingthefirststage,lesssporeinactivationwouldbeobtained(Millsetal.,1998;Raso etal.,1998a).

Pressuretreatments(500to600MPa)appliedatmoderatetemperatures(<60ºC) enhancedsporeinactivation(Millsetal.,1998).Undertheseconditions,DPAisreleased fromthesporecorethroughspecificchannelsintheinnermembraneoronthemembrane

20 itself. This further triggers spore germination (Paidhungat et al., 2002; Black et al.,

2007a).However,somesporeswillslowlycompletethegerminationprocessduetothe potential damaged spore germination system such as the cortex lytic enzyme system

(Wuytacketal.,1998;Anantaetal.,2001;Paidhungatetal.,2002;Blacketal.,2007b).

At elevated temperatures, Ahn and Balasubramaniam (2007b) reported the insignificantnumbersofpressureinducedgerminated B.amyloliquefaciens TMW2.479

Fad82sporesafter700MPa105ºCtreatment.Increasingpressureholdingtimeupto5 min appeared to prolong the lag phase of the surviving spores. PATPinduced spore injury likely occurred rather than PATPinduced spore germination (Ahn and

Balasubramaniam,2007b).ThisisinagreementwithanearlierstudyfromAnantaetal.

(2001).

The“hitandwait”strategy,proposedbyMargoschetal.(2004a),alsoutilizesthe twostagemechanismforsporeinactivation.First,anapplicationofshortpressurepulse

(600to800MPa)athightemperature(>60ºC)releasesatleast90%ofthesporeDPA content.Subsequently,theDPAfreesporesareinactivatedbyheatuponpressurerelease

(Margoschetal.,2004a,2004b).DPAisreleasedmainlybyaphysicochemicalprocess producingsublethalyinjuredDPAfreespores.Thesuccessofthestrategydependsupon

theabilityofthesporestoretainDPAandtheheatresistanceofDPAfreespores.For

example, B subtilis TMW 2.485 and B. amyloliquefaciens TMW 2.479 Fad 82 spores

released96%and58%ofDPA,respectively,after2minofthepressuretreatmentat800

MPa and 80ºC (Margosch et al., 2004b). Furthermore, C. botulinum TMW 2.357, B.

amyloloquefaciens TMW2.479Fad82,andTMW2.482Fad11/2werehighlyresistance

21 tothecombinedpressureheattreatment,duetotheirabilitytoretainDPA,possiblyasa resultofdifferenceinsporecompositionorstructure(Margoschetal.,2004a).

Subramanianetal.(2006,2007)studiedmechanismsofPATPsporeinactivation using FTIR spectroscopy. The authors reported the significant decrease in DPA absorptionbandsduringtheinitialstageofatreatmentat700MPaand121ºC,whereas therewaslittleornochangeofDPAbandsoccurringduringthermalprocessingatthe same temperature. At 121ºC, the bands associated with secondary proteins were significantlychangedduringsporeinactivation.

More mechanistic studies at the molecular level are needed for further strengthening the understanding of the fate of bacterial spores under the combined pressurethermalconditions.Especiallyneededaremorestudiesonsporephysiologyand insights on the pressuretemperature conditions over which spore germination and inactivation can occur. The extent and mechanisms of bacterial injury during high pressuresterilizationmeritfurtherinvestigation.

2.4 Modelingkineticsofsporeinactivation

Microbialkineticstudiesareessentialtoanynewtechnologyinfoodpreservation

since the accurate prediction of microbial inactivationisnecessary(MañasandPagán,

2005).Anymodelsusedforpredictionshouldbesimpleandbuiltonparametersbasedon

thephysiologicalmechanismofinactivation(Smelt etal.,2002).Whilelinearthermal

inactivationkineticshavebeenhistoricallyusedbythefoodindustryovertheyears,both

linear and nonlinear kinetics models have been proposed for PATP. Unlike thermal

22 processing, pressure and temperature are the two major factors governing spore inactivation.Shoulders andtailsaredeviations commonly found in bacterial survivor curves leading to nonlinearity relationship. The activation of dormant spores, the presence of cell clumping, and sublethal injury are causes of shoulders, whereas tails couldarisefromtheoccurrenceofsubpopulationswithdifferentresistance(Heldmanand

Newsome,2003;Tayetal.,2003;MañasandPagán,2005).Ingeneral,tailsaredetected after4to5logreduction(Smeltetal.,2002).Thistailingbehaviorcanalsobefoundin thermal processing, but the effect is more pronounced in HPP and PATP (Patterson,

2005). Many researchers have discovered that typical pressure survivor curves have characteristictailingwithupwardconcavity(ChenandHoover,2004;Rajanetal.,2006a;

Ahn et al., 2007). Researchers used various nonlinear models including the n th order kinetics,theloglogistic,theWeibulldistribution,andthebiphasicmodel(Anantaetal.,

2001;Ardiaetal.,2003;Koutchmaetal.,2005;Rajanetal.,2006a,2006b;Ahnetal.,

2007;AhnandBalasubramaniam,2007b)todescribePATPsporeinactivationkinetics.It isimportanttonotethatdependinguponthetypeofbacterialspore,certainleveloflog reductioncanoccurduringtheprocesscomeuptime.Thisshouldbeconsideredwhen developing kinetic models (Rajan et al., 2006a, 2006b; Ahn et al., 2007). Most microbiologicalkineticsmodelsareempiricalinnature,andshouldnotbeextrapolated beyondtheexperimentalinvestigationrange(HeldmanandNewsome,2003).Itisalso desirablethatthechosenkineticmodeladequatelydescribestheexperimentaldata,andis notmerelyforcedtofittheexperimentaldata(Balasubramaniametal.,2004).

23 2.5 Combininghighpressuretemperaturetreatmentwithotherhurdles

Toachievecommercialsterilityinlowacidfoodsandreduceseverityofprocess condition,varioushurdleconcepts(e.g.,salt,pH,a w,antimicrobialcompounds)canbe

employed. The use of natural antimicrobial compounds during the high pressure

temperature process is of interest to reduce the amount of food additives (Raso and

BarbosaCánovas, 2003). The use of bacteriocins (e.g.,nisin,pediocin)incombination

with pressure to inactivate bacterial spores has been reported (Stewart et al., 2000;

Kalchayanandetal.,2003;Blacketal.,2008).Aconcentrationof500IU/mLnisinand

thetreatment(500MPaat40ºCfor5min,cycledtwice)caused5.7to5.9logreduction

when B.subtili ssporesweresuspendedinphosphatebuffersalineandreconstitutedskim milk, respectively (Black et al., 2008). A combination of nisin, pediocin, and the treatment(345MPaat60ºCfor5min)increasedthestoragetimeofroastbeefinoculated withamixtureoffourclostridialspores( C.sporogenes , C.perfringens , C.tertium ,and

C.laramie )to84daysat4ºC,comparedto42daysat4ºCfrompressuretreatmentalone withoutbacteriocins(Kalchayanandetal.,2003).InanotherstudyofKalchayanandetal.

(2004),thebacteriocinbasedpreservatives(3:7ratioofpediocinandnisin)supplemented with lysozyme or NaEDTA could be used in combined with pressure to inactivate germinated spores during postpressurization storage. In model cheese inoculated with

10 6 CFU/g B. cereus spores, the presence of nisin (1.56 mg/L of milk) efficiently

enhanced spore inactivation while lysozyme (22.4 mg/L of milk) did not provide any

synergisticeffectwithpressure(LópezPedemonteetal.,2003).

24 Acombinationofcitricacid(pH4.0)withatreatmentat400MPaand70ºCfor

30minresultedin6logreductionof B.coagulans sporeswhenthemediacontaining0.8

IU/mLnisin(RobertsandHoover,1996).Otherfoodadditiveslikesucroselaurate(an

emulsifying agent) have also been reported to give an additional effect on spore

inactivationwhenusedwithhighpressureprocessing.Inmilkandbeef,thepresenceof<

1%sucroselauratewiththetreatmentat392MPaand45ºCfor10to15mindecreased B.

cereus and B.coagulans sporesby3.0to5.5logCFU/mL(Sheareretal.,2000).When

0.5%sucroselauratewasaddedtotheagarmediumusedforrecovery,itinhibitedthe

germinationandoutgrowthof C.sporogenes PA3679spores(Stewartetal.,2000).For

B. subtilis 168 spores suspended in McIlvaine citrate phosphate buffer (pH 6.0), a pressure treatment (404 MPa at 45ºC for 15 min) with 0.1% sucrose laurate could eliminateaninitialinoculumof10 6CFU/mL.

Someresearchersinvestigatedthepossibilityofcombingpressuretreatmentwith

irradiationforreducingprocessseverityduringinactivationofbacterialspores.Crawford

etal.,(1996)appliedamilddoseofirradiation(2to6kGy) tofreshchickeninoculated with C. sporogenes spores before pressurization at 689 MPa and 80°C for 20 min.

Enhancedinactivationandincreasedstoragetimewereobserved,whencomparedtothe results from each treatment alone. The positive effect of gamma irradiation prior to pressure treatments was also reported by Sale et al. (1970). The authors found the increased pressure sensitivity of B. coagulans surviving spores after the treatment.

Simultaneousapplicationofpressurizationandirradiationwasfoundtohaveanadditive sporicidaleffect(GouldandJones,1989).Systematicstudiesdocumentingthepotential

25 synergistic (or antagonistic) effects of pressure, temperature, and other combination processesandtheirrespectivekineticofmicrobialinactivationareverylimited,andmore ofsuchstudiesareneeded.

2.6 Validation

US Food, Drug, and Cosmetic Act (FD&C Act) is the basis by which FDA promulgatesspecificregulations.Similartothethermalpasteurizedcounterpart,pressure pasteurized products are distributed under refrigerated conditions. Similarly, they are required to be processed under GMP conditions and processors must ensure relevant commodityspecificregulations(e.g.,juiceHACCP,PasteurizedMilkOrdinance(PMO),

Sea Food HACCP, etc.) be followed. The potential for temperature abuse during refrigerated storage and distribution has to be carefully evaluated and minimized.

Processors must also work with equipment vendors to ensure that any part of the equipment, which may have incidental contact with the food, is made from approved materials.

At the moment, very limited literature is available on validation of pressure sterilizedshelfstablelowacidfoodproducts.SuccessfulPATPvalidationwillrequirea multidisciplinary approach integrating basic microbiological, physical, chemical, and engineering principles to demonstrate the uniformity and sterility of the process.

Commercialsterilityisdefinedin21CFR113as“aprocess,whichrendersaproductfree ofpathogensandspoilageorganismsundernormalconditionsofstorageanddistribution.

Since temperature plays an important role during PATP lethality, FDA’s regulations

26 pertinent to “Thermally processed lowacid foods packaged in hermetically sealed containers”islikelyapplicable(Sizeretal.,2002).Sizeretal.(2002)discussedanumber ofoptionsforvalidationoftheprocessconsistingofestablishingtheprocessasathermal processandusingkineticapproaches.Forexample,theprocessshoulddeliver,atleast, an equivalent spore log reduction as a process that delivers a 12 log reduction of C. botulinum spores which is the pertinent pathogen for lowacid canned foods.

Nonpathogenicsurrogatemicroorganismsusedinthermalinactivationstudiesmaynotbe

suitable for the PATP because the relationship between pressure resistance and heat

resistance of bacterial spores is not clear. Identification of appropriate sporeforming

surrogates to be used as biological indicators during validation of PATP process

conditions in a specific lowacid food matrix is necessary. Margosch et al. (2006)

indicatedthatbasedoncurrentlimitedknowledge,itmaynotbepossibletoidentifya

targetindicatormicroorganismforpressureprocessedlowacidfoodproducts.Moreover,

very limited published information is available on the combined pressurethermal

resistance of various C. botulinum spores.Moreresearchisneededto comparePATP resistance of various pathogenic and nonpathogenic bacterial spores in various food matricesofindustrialinterestundercontrolledprocessconditions.

2.7 Conclusionsandfuturedirections

Currently, the high pressure processing at ambient temperature is not a viable optionforprocessingshelfstablelowacidcannedfoods.Pressurealoneisnotsufficient toinactivatespores;however,pressureincombinationwithmoderatetemperatureseems

27 to be a promising approach for inactivating bacterial spores to produce safe, superior qualityshelfstablelowacidfoods.Adequateattentionshouldbepaidtoproperreporting of type of pressure equipment employed, process parameters, and microbiological methodologiesused,sothatdatafromvariouslaboratories can be critically compared.

Even though current research demonstrated that elevatedpressurein combinationwith temperaturecanbeeffectiveininactivatingavarietyofnonpathogenicbacterialspores, more studies are necessary to document the inactivation of various strains of C. botulinum spores. Kinetic models describing bacterial inactivation under combined pressurethermal conditions in various food matrices are also needed for microbial process evaluation. Furthermore, the identification of suitable surrogate organisms, or

organismsthatareusedinplaceofthepathogenasbiologicalindicatorsoftheadequacy

ofthelethalprocess ,isdesirableforprocessvalidationstudies.Moreresearchisneeded toevaluateprocessuniformityatelevatedpressurethermalconditionsthatcanfacilitate thesuccessfulintroductionofshelfstablelowacidfoods.Combinationsofnonthermal technologieswithhighpressurecouldfurtherreducetheseverityoftheprocesspressure requirements.

28 References

Ahn, J., Balasubramaniam, V.M., and Yousef, A.E. 2007. Inactivation kinetics of selected aerobic and anaerobic bacterial spores by pressureassisted thermal processing.InternationalJournalofFoodMicrobiology.113:321329. Ahn,J.andBalasubramaniam,V.M.2007a.Effectsofinoculumlevelandpressurepulse ontheinactivationof Clostridiumsporogenes sporesbypressureassistedthermal processing.JournalofMicrobiologyandBiotechnology .17:616623.

Ahn, J. and Balasubramaniam, V.M. 2007b. Physiological responses of Bacillus amyloliquefaciens spores to high pressure. Journal of Microbiology and Biotechnology.17:524529.

Ananta, E., Heinz, V., Schlüter, O., and Knorr, D. 2001. Kinetics studies on high pressure inactivation of Bacillus stearothermophilus spores suspended in food matrices.InnovativeFoodScienceandEmergingTechnologies.2:261272.

Ardia,A.,Knorr,D.,Ferrari,G.,andHeinz,V.2003.Kineticstudiesoncombinedhigh pressureandtemperatureinactivationof Alicyclobacillusacidoterrestris sporesin orangejuice.AppliedBiotechnology,FoodScienceandPolicy.1:169173.

Balasubramaniam, V.M. 2003. High pressure food preservation. Encyclopedia of Agricultural,Food,andBiologicalEngineering,NewYork:MarcelDekker,Inc.,pp 490496.

Balasubramaniam, V.M., Ting, E.Y., Stewart, C.M., and Robbins, J.A. 2004. Recommended laboratory practices for conducting highpressure microbial inactivationexperiments.InnovativeFoodScienceandEmergingTechnologies.5: 299306.

Black,E.P.,Setlow,P.,Hocking,A.D.,Stewart,C.M., Kelly, A.L., and Hoover, D.G. 2007a.Responseofsporestohighpressureprocessing.ComprehensiveReviewsin FoodScienceandFoodSafety.6:103119.

Black, E.P, Wei, J., Atluri, S., Cortezzo, D.E., KoziolDube, K., Hoover, D.G., and Setlow,P.2007b.Analysisoffactorsinfluencingtherateofgerminationofspores of Bacillussubtilis byveryhighpressure.JournalofAppliedMicrobiology.102:65 76.

Black, E.P., Linton, M., McCall, R.D., Curran, W., Fitzgerald, G.F., Kelly, A.L., and Patterson, M.F. 2008. The combined effects of high pressure and nisin on 29 germination and inactivation of Bacillus spores in milk. Journal of Applied Microbiology.105:7887.

Chen,H.andHoover,D.G.2004.UseofWeibullmodeltodescribeandpredictpressure inactivation of Listeria monocytogenes Scott A in whole milk. Innovative Food ScienceandEmergingTechnologies.5:269276.

Cheftel,J.C.1995.Review:Highpressure,microbialinactivationandfoodpreservation. FoodScienceandTechnologyInternational.1:7590.

Clouston,J.G.andWills,P.A.1969.Initiationofgerminationandinactivationof Bacillus pumilus sporebyhydrostaticpressure.JournalofBacteriology.97:684–690.

Crawford, Y.J., Murano, E.A., Olson, D.G., and Shenoy, K. 1996. Use of high hydrostaticpressureandirradiationtoeliminate Clostridiumsporogenes sporesin chickenbreast.JournalofFoodProtection.59:711715.

Deeth,H.C.andDatta,N.2002.Alternativetechnologiesforproducingsterilelowacid foodproducts.FoodAustralia.54:273277.

DeHeij,W.B.C.,VanSchepdael,L.J.M.M.,Moezelaar,R.,Hoogland,H.,Master,A.M., andvandenBerg,R.W.2003.Highpressuresterilization:maximizingthebenefits ofadiabaticheating’,FoodTechnology.57:3741.

Earnshaw, R.G., Appleyard, J., and Hurst, R.M. 1995. Understanding physical inactivationprocesses:combinedpreservationopportunitiesusingheat,ultrasound andpressure.InternationalJournalofFoodMicrobiology.28:197219.

Farkas, D.F. and Hoover, D.G. 2000. High pressure processing: Kinetics of microbial inactivationforalternativefoodprocessingtechnologies.JournalofFoodScience Supplement.65:4764.

Furukawa,S.,Nakahara,A.,andHayakawa,I.2000.Effectofreciprocalpressurization ongerminationandkillingofbacterialspores.InternationalJournalofFoodScience andTechnology.35:529532.

Furukawa,S.,Shimoda,M.,andHayakawa,I.2003.Mechanismoftheinactivationof bacterial spores by reciprocal pressurization treatment. Journal of Applied Microbiology.94:836841.

Garriga,M.,Grèbol,N.,Aymerich,M.T.,Monfort,J.M.,andHugas,M.2004.Microbial inactivation after highpressure processing at 600 MPa in commercial meat

30 productsoveritsshelflife.InnovativeFoodScienceandEmergingTechnologies.5: 451457.

Gould,G.W.andJones,M.V.1989.Combinationandsynergisticeffects,p.401–421. In G.W.Gould(ed.),Mechanismsofactionoffoodpreservationprocedures.Elsevier AppliedScience,London.

Gould,G.W.1999.Waterandthebacterialspore:resistance,dormancy,andgermination, p. 301323. In International symposium on the properties of water in foods (7 th : 1998 Helsinki, Finland), Water management in the design and distribution of qualityfoods.TechnomicPub.Co.,Lancaster.

Gould,G.W.2006.HistoryofScience–spores.JournalofAppliedMicrobiology.101: 507513.

Hayakawa,I.,Kanno,T,Yoshiyama,K,andFujio,Y.1994.Oscillatorycomparedwith continuous high pressure sterilization on Bacillus stearothermophilus spores. JournalofFoodScience.59:164167.

Hayakawa, I., Furukawa, S., Midzunaga, A., Horiuchi, H., Nakashima, T., Fujio, Y., Yano, Y., Ishikura, T., and Sasaki, K. 1998. Mechanism of inactivation of heat tolerantsporesof Bacillusstearothermophilus IFO12550byrapiddecompression. JournalofFoodScience.63:371374.

Heldman,D.R.andNewsome,R.L.2003.Kineticmodelsformicrobialsurvivalduring processing.FoodTechnology.57:4046.

Hite, B.H. 1899. The effect of pressure in the preservation of milk. West Virginia UniversityAgriculturalExperimentStation,MorgantownBulletin.58:1535.

Hite,B.H.,Giddings,N.J.,andWeakley,C.E.1914. The effect of pressure on certain microorganisms encountered in the preservation of fruits and vegetables. West VirginiaUniversityAgriculturalExperimentStation,MorgantownBulletin.146:1 67.

Hoogland, H., De Heij, W., and Van Schepdael, L. 2001. High pressure sterilisation: noveltechnology,newproducts,newopportunities.NewFood.3:2126.

Igura,N.,Kamimura,Y.,Islam,M.S.,Shimoda,M.,andHayakawa,I.2003.Effectsof mineralsonresistanceof Bacilllussubtilis sporestoheatandhydrostaticpressure. AppliedandEnvironmentalMicrobiology.69:63076310.

31 Kalchayanand, N, Dunne, C.P., Sikes, A., andRay, B. 2003. Inactivation of bacterial endospores by combined action of hydrostatic pressure and bacteriocins in roast beef.JournalofFoodSafety.23:219231.

Kalchayanand,N,Dunne,C.P.,Sikes,A.,andRay,B.2004.Germinationinductionand inactivationof Clostridium sporesatmediumrangehydrostaticpressuretreatment. InnovativeFoodScienceandEmergingTechnologies.5:277283.

Knorr,D.1999.Novelapproachesinfoodprocessingtechnology:newtechnologiesfor preservingfoodsandmodifyingfunction.CurrentOpinion in Biotechnology. 10: 485491.

Koutchma,T.,Guo,B.,Patazca,E.,andParisi,B.2005.Highpressurehightemperature sterilization:fromkineticanalysistoprocessverification.JournalofFoodProcess Engineering.28:610629.

Lado, B.H. and Yousef, A.E. 2002. Alternative foodpreservation technologies: efficiencyandmechanisms’,MicrobesandInfection.4:433440.

Lau,M.H.andTurek,E.J.2007.Determinationofqualitydifferencesinlowacidfoods sterilized by high pressure versus retorting, p. 195217. In C. Doona and F. Feeherry(eds.),HighPressureProcessingofFoods.BlackwellPublishing,Ames.

LópezPedemonte,T.J.,RoigSagués,A.X.,Trujillo,A.J.,Capellas,M.,andGuamis,B. 2003. Inactivation of spores of Bacillus cereus in cheese by high hydrostatic pressurewiththeadditionofnisinorlysozyme.JournalofDairyScience. 86:3075 3081.

Mañas, P. and Pagán, R. 2005. Microbial inactivation by new technologies of food preservation–Areview.JournalofAppliedMicrobiology.98:13871399.

Margosch,D.,Ehrmann,M.A.,Gänzle,M.G.,andVogel,R.F.2004a.Comparisonof pressure and heat resistance of Clostridium botulinum and other endospores in mashedcarrots.JournalofFoodProtection.67:25302537.

Margosch, D., Gänzle, M.G., Ehrmann, M.A., and Vogel, R.F. 2004b. Pressure inactivationof Bacillus endospores.AppliedandEnvironmentalMicrobiology.70: 73217328.

Margosch,D.,Ehrmann,M.A.,Buckow,R.,Heinz,V.,Vogel,R.F.,andGänzle,M.G. 2006. Highpressuremediated survival of Clostridium botulinum and Bacillus

32 amyloliquefaciens endospores at high temperature. Applied and Environmental Microbiology.72:34763481.

Matser,A.M.,Krebbers,B.,vander Berg,R.W.,andBartelP.V.2004.Advantagesof highpressuresterilisationonqualityoffoodproducts.TrendsinFoodScienceand Technology.15:7985.

Meyer, R.S., Cooper, K.L., Knorr, D., and Lelieveld, H.L.M. 2000. Highpressure sterilizationoffoods.FoodTechnology.54:6772.

Mills,G.,Earnshaw,R.,andPatterson,M.F.1998.Effectsofhighhydrostaticpressure on Clostridiumsporogenes spores.LettersinAppliedMicrobiology.26:227230.

Moir,A.2006.Howdosporesgerminate?JournalofAppliedMicrobiology.101:526 530.

Montville, T.J. and Matthews, K.R. (eds.). 2005. Food microbiology: an introduction. ASMPress.,WashingtonD.C.

Mozhaev,V.V.,Heremans,K.,Frank,J.,Masson,P.,andBalny,C.1994.Exploitingthe effects of high hydrostatic pressure in biotechnological applications. Trends in Biotechnology.12:493501.

Murakami, M., Tedzuka, H., and Yamazaki, K. 1998. Thermal resistance of Alicyclobacillus acidoterrestris spores in different buffers and pH. Food Microbiology.15:577582.

Nakayama,A.,Yano,Y.,Kobayashi,S.,Ishikawa,M.,andSakai,K.1996.Comparison onpressureresistancesofsporeofsix Bacillus strainswiththeirheatresistances. AppliedandEnvironmentalMicrobiology.62:38973900.

Nguyen, L.T., Rastogi, N.K., and Balasubramaniam, V.M. 2007. Evaluation of the instrumental quality of pressureassisted thermally processed carrots. Journal of FoodScience.72:264270. Oh,S.andMoon,M.J.2003.Inactivationof Bacilluscereus sporesbyhighhydrostatic pressureatdifferenttemperatures.JournalofFoodProtection.66:599603.

Oomes,S.J.C.M.andBrul,S.2004.Theeffectofmetalionscommonlypresentinfood ongeneexpressionofsporulating Bacillussubtilis cellsinrelationtosporewetheat resistance.InnovativeFoodScienceandEmergingTechnologies.5:307316.

33 Opstal,I.V.,Bagamboula,C.F.,Vanmuysen,S.C.M.,Wuytack,E.Y.,andMichiels,C.W. 2004. Inactivation of Bacillus cereus spores in milk by mild pressure and heat treatments.InternationalJournalofFoodMicrobiology.92:227234.

Otero, L., MolinaGarcia, A.D., and San, P.D. 2000. Thermal effect in foods during quasiadiabatic pressure treatments. Innovative Food Science and Emerging Technologies.1:119126.

Oxen,P.andKnorr,D.1993.Baroprotectiveeffectsofhighsoluteconcentrationsagainst inactivation of Rhodotorula rubra . LebensmittelWissenschaft Technologie. 26: 220223.

Paidhungat,M,Setlow, B,Daniels,W.B.,Hoover,D, Papafragkou, E, and Setlow, P. 2002.Mechanismsofinductionofgerminationof Bacillussubtilis sporesbyhigh pressure.AppliedandEnvironmentalMicrobiology.68:31723175.

Palou,E., LopezMalo, A.,BarbosaCanovas,G.V.,WeltiChanes, J., Davidson, M.P., andSwanson,B.G.1998.Effectofoscillatoryhighhydrostaticpressuretreatments on Bysochlamysnivea ascosporessuspendedinfruitjuiceconcentrates.Lettersin AppliedMicrobiology.27:375378.

Patazca, E., Koutchma, T., and Ramaswamy, H.S. 2006. Inactivation kinetics of Geobacillusstearothermophilus sporesinwaterusinghighpressureprocessingat elevatedtemperatures.JournalofFoodScience.71:110116.

ParedesSabja,D.,Gonzalez,M.,Sarker,M.R.,andTorres,J.A.2007.Combinedeffects of hydrostatic pressure, temperature, and pH on the inactivation of spores of Clostridium perfringens Type A and Clostridium sporogenes in buffer solutions. JournalofFoodScience.72.202206.

Patterson, M.F. 2005. Microbiology of pressuretreated foods – A review. Journal of AppliedMicrobiology.98:14001409.

Piggot, P.J. 2000. Sporulation, p. 377386. In J. Lederberg (ed.), Encyclopedia of Microbiology,Volume4,2 nd ed.AcademicPress,SanDiego.

Rajan, S., Ahn, J., Balasubramaniam, V.M., and Yousef, A.E. 2006a. Combined pressurethermalinactivationkineticsof Bacillus amyloliquefaciens sporesinegg pattymince.JournalofFoodProtection.69:853860.

Rajan,S.,Pandrangi,S.,Balasubramaniam,V.M.,andYousef,A.E.2006b.Inactivation of Bacillus stearothermophilus sporesin eggpattiesbypressureassistedthermal processing.LebensmittelWissenschaftTechnologie.39:844851. 34 Rasanayagam, V., Balasubramaniam, V.M., Ting, E., Sizer, C.E., Bush, C., and Anderson, C. 2003. Compression heating of selected fatty food materials during highpressureprocessing.JournalofFoodScience.68:254259.

Raso, J., BarbosaCánovas, G.V., and Swanson, B.G. 1998a. Sporulation temperature affects initiation of germination and inactivation by high hydrostatic pressure of Bacilluscereus .JournalofAppliedMicrobiology.85:1724.

Raso, J., GóngoraNieto, M.M., BarbosaCánovas, G.V., and Swanson, B.G. 1998b. Influence of several environmental factors on the initiation of germination and inactivationof Bacilluscereus byhighhydrostaticpressure.InternationalJournalof FoodMicrobiology.44:125132.

Raso, J. and BarbosaCánovas, G.V. 2003. Nonthermal preservation of foods using combinedprocessingtechniques.CriticalReviewsinFoodScienceandNutrition. 43:265285.

Reddy, N.R., Solomon, H.M., Fingerhut, G.A., Rhodehamel, E.J., Balasubramaniam, V.M., and Palaniappan, S. 1999. Inactivation of Clostridium botulinum type E sporesbyhighpressureprocessing.JournalofFoodSafety.19:277288.

Reddy,N.R.,Solomon,H.M.,Tetzloff,R.C.,andRhodehamel,E.J.2003.Inactivationof Clostridium botulinum Type A spores by highpressure processing at elevated temperature.JournalofFoodProtection.66:14021407.

Reddy, N.R., Tetzloff, R.C., Solomon, H.M., and Larkin, J.W. 2006. Inactivation of Clostridiumbotulinum nonproteolytictypeBsporesbyhighpressureprocessingat moderate to elevated high temperatures. Innovative Food Science and Emerging Technologies.7:169175.

Roberts, C.M. and Hoover, D.G. 1996. Sensitivity of Bacillus coagulans spores to combinations of high hydrostatic pressure, heat, acidity and nisin. Journal of AppliedBacteriology.81:363368.

Rovere,P.,Maggi,A.,Scaramuzza,N.,Gola,S.,Miglioli,L.,Carpi,G.,andDall'Aglio, G.1996.Highpressureheattreatments:evaluationofthesterilizingeffectandof thermaldamage.IndustriaConserve.71:473483.

Rovere,P.,Miglioli,L.,Lonneborg,N.G.,Scaramuzza,N.,andGola,S.1998.Modelling andcalculationofthesterilisingeffectinhighpressure heattreatments. Industria Conserve.73:303315.

35 Sáiz,A.H.,Mingo,S.T.,Balda,F.P.,andSamson,C.T. 2008. Advances in design for successfulcommercialhighpressurefoodprocessing.FoodAustralia.60:154156.

Sale,A.J.H.,Gould,G.W.,andHamilton,W.A.1970.Inactivationofbacterialsporesby highhydrostaticpressure.JournalofGeneralMicrobiology.60:323334.

SanMartín,M.F.,BarbosaCanovas,G.V.,andSwanson,B.G.2002.Foodprocessingby highhydrostaticpressure.CriticalReviewsinFoodScienceandNutrition.42:627 645.

Scurrah, K.J., Robertson, R.E., Craven, H.M., Pearce, L.E., and Szabo, E.A. 2006. Inactivation of Bacillus spores in reconstituted skim milk by combined high pressureandheattreatment.JournalofAppliedMicrobiology.101:172–180.

Setlow, P. and Johnson, E.A. 2001. Spores and their significance, p. 3370. In M.P. Doyle,L.R.Beuchat,andT.J.Montville(eds.),FoodMicrobiology:Fundamentals andFrontiers,2 nd ed.ASMPress,WashingtonD.C.

Setlow,P.2003.Sporegermination.CurrentOpinioninMicrobiology.6:550556.

Shearer, A.E.H., Dunne, C.P., Sikes, A., and Hoover, D.G. 2000. Bacterial spore inhibitionandinactivationinfoodsbypressure,chemicalpreservatives,andmild heat.JournalofFoodProtection.63:15031510.

Sizer, C.E., Balasubramaniam, V.M., and Ting, E. 2002. Validation highpressure processforlowacidfoods.FoodTechnology.56:3642.

Smelt,J.P.P.M.1998.Recentadvancesinthemicrobiologyofhighpressureprocessing. TrendsinFoodScienceandTechnology.9:152158.

Smelt,J.P.P.M.,Hellemons,J.C.,Wouters,P.C.,andGerwen,S.J.C.2002.Physiological and mathematical aspects in setting criteria for decontamination of foods by physicalmeans.InternationalJournalofFoodMicrobiology.78:5777.

Solomon, E.B. and Hoover, D.G. 2004. Inactivation of Campylobacter jejuni by high pressurehydrostaticpressure.LettersinAppliedMicrobiology.38:505509.

Stewart,C.M.,Dunne,C.P.,Sikes,A.,andHoover,D.G.2000.Sensitivityofsporesof Bacillus subtilis and Clostridium sporogenes PA 3679 to combinations of high hydrostaticpressureandotherprocessingparameters.InnovativeFoodScienceand EmergingTechnologies.1:4956.

36 Subramanian, A., Ahn, J., Balasubramaniam, V.M., and RodriguezSaona, L. 2006. Determination of spore inactivation during thermal and pressureassisted thermal processingusingFTIRspectroscopy.JournalofAgriculturalandFoodChemistry. 54:1030010306. Subramanian, A., Ahn, J., Balasubramaniam, V.M., and RodriguezSaona, L. 2007. Monitoring biochemical changes in bacterial spore during thermal and pressure assistedthermalprocessingusingFTIRspectroscopy.JournalofAgriculturaland FoodChemistry.55:93119317. Tay,A.,Shellhammer,T.H.,Yousef,A.E.,and,Chism,G.W.2003.Pressuredeathand tailingbehaviorof Listeriamonocytogenes strainshavingdifferentbarotolerances. JournalofFoodProtection.66:20572061.

Ting,E.,Balasubramaniam,V.M.,andRaghubeer,E.2002.Determiningthermaleffects inhighpressureprocessing.FoodTechnology.56:31–35.

Wuytack, E.Y., Boven, S., and Michiels, C.W. 1998. Comparative study of pressure inducedgerminationof Bacillussubtilis sporesatlowandhighpressure.Applied andEnvironmentalMicrobiology.64:32203224.

Wuytack,E.Y.,Soons,J.,Poschet,F.,andMichiels,C.W.2000.Comparativestudyof pressureandnutrientinducedgerminationof Bacillussubtilis spores.Appliedand EnvironmentalMicrobiology.66:257261.

Wuytack,E.Y.,andMichiels,C.W.2001.Astudyontheeffectsofhighpressureand heat on Bacillus subtilis spores at low pH. International Journal of Food Microbiology.64:333341.

37

120 800 T3’ T4 105 700 90 600 T3 T2 75 T5 500 60 400 Sample temperature 45 300 T1 Glycol bath temperature

30 200 Pressure (MPa) Temperature (°C) Pressure 15 100 0 0 0 1 2 3 4 5 6 7 8 9

t1 t2 t3 Treatment time (min)

Figure 2.1. Pressure and temperature curves for samples subjected to PATP condition (700MPaat105°Cfor5min).Processingtimesincludepreprocesstime( t1),pressure comeuptime( t2),andpressureholdingtime( t3).Inthisexample,pressurevesselwas maintainedatthetargetprocesstemperature.

38

Inner spore membrane Outer spore membrane

Coats

Core (DNA, Ca 2+ -DPA, SASP)

Cortex

Exosporium Germ cell wall

Figure2.2.Structureofanentiredormantspore.

39

Substance Initialproduct Temperature temperature increase (ºC) (ºC)per100MPa Water 20 2.8 60 3.8 80 4.4 Orangejuice,tomatosalsa,skimmilk 25 2.63.0 Steel 20 0 Salmon 25 3.2 Chickenfat 25 4.5 Cheese(Goudatype) 20 3.4 Water/glycolmix(50:50) a 25 3.74.8 Beeffat 25 6.3 Milkfat 20 8.5 Oliveoil a 25 6.38.7 Soybeanoil a 25 6.29.1 aSubstanceexhibiteddecreasingtemperatureaspressureincreased Source:Tingetal.,2002;DeHeijetal.,2003;Rasanayagametal.,2003;Balasubramaniametal.,2004.

Table2.1. Temperaturechangesofselectedsubstancesduetocompressionheating.

40

Process Other Microorganisms Initial Suspending conditions conditions RelevantResults References inoculum matrices (Pressure,P; (CUTand temperature,T; DT) a holdingtime,t) Alicyclobacillus ~1x10 6 Tomatojuice 392MPa CUT=165s 3logreductionafter392MPa45°Cfor Sheareretal. acidoterrestris N1089 CFU/mL (pH4.5,with 25,45,50,55ºC DT=40s 10minwith0.005%sucroselaurate. (2000) additionof 1015min <1%sucrose Nosporeoutgrowthwhensucroselaurate laurateand conc.increased. <0.1% lauricidin) A.acidoterrestris 4x10 8to Orangejuice 100700MPa CUT=30s Morethan7logreductionafter700MPa Ardiaetal. DMS2498 8x10 8 80,85,90,95°C DT=N/A 80°C(IT)for20min. (2003) CFU/mL (initial temperature;IT) 6logreductionwaspredictedbythen th 050min orderkineticmodelwiththetreatmentof 41 780MPa95°C(IT)for30s. Bacillus 2.0x10 6 Mashed 800MPa CUT=400s 2logreductionafter800MPa80°Cfor Margoschet amyloliquefaciens TMW to carrots(pH 80ºC DT=400s 16min. al.(2004a) 2.479Fad82 4.5x10 8 5.15) 016min CFU/g Amongthesporestested, B. amyloliquefaciens TMW2.479exhibited higherpressureheatresistancethan C. botulinum TMW2.357. B.amyloliquefaciens 2.2x10 7 Mashed 0.1800MPa CUT=400s StrainsofFad11/2,Fad82,Fad77,Fad Margoschet (7strains) to carrots(pH 6080ºC DT=400s 99,andFad108formedhighlypressure al.(2004b) 9.6x10 8 5.15) 016min resistantspores. CFU/g Continued Table2.2.Bacterialsporeinactivationinresponsetothecombinedeffectsofhighpressuresandmoderatetohightemperatures. aPressurecomeuptime(CUT)anddepressirzationtime(DT)isbasedonauthorsprovidedinformationorcalculatedfrominformationprovidedby authors.

Table2.2.continued B.amyloliquefaciens 5.0x10 7 TrisHisbuffer 6001,400MPa CUT<20s Morethan4logreductionafter1,200 Margoschet TMW2.479Fad82 to (pH4.0,5.15 70120ºC DT<20s MPa120ºCfor2min. al.(2006) 4.5x10 8 and6.0) 016min CFU/mL B.amyloliquefaciens ~1x10 8 Eggpatty 0.1700MPa CUT=42s Noorlimitedlogreductionat500MPa, Rajanetal. Fad82 CFU/g mince(pH 95121ºC DT<4s 95105ºCduringCUT. (2006a) 7.25,a w0.99) 015min At121ºC,temperaturewasthedominant factorcontributingtosporeinactivation thanprocesspressure. B.amyloliquefaciens 1.8x10 6 Deionized 0.1700MPa CUT=35s StrainATCC23350and53495were Ahnetal. TMW2.479Fad82, CFU/mL water 105,121ºC DT<1s inactivatedtoundetectablelevelat121ºC (2007) TMW2.482Fad11/2, 05min duringCUT(withorwithout700MPa). ATCC23350,andATCC

42 49763 Pressurecomeuptimesignificantly

impactedsporeinactivationfrom differentstrains. StrainFad82andFad11/2werehighly resistanttopressureheateffects.More than5logreductionwasobtainedafter 700MPa105°Cfor2min. B.amyloliquefaciens ~1x10 2 Deionized 700MPa CUT=35s About5.5logreductionwasobtained Ahnetal. TMW2.479Fad82 to1x10 8 water 105°C DT<1s withhighlevelofinoculum(~10 8 (2007c) CFU/mL 010min CFU/mL)after3min. Thesurvivorswerebelowthedetectable levelatlowerlevelofinoculum(~10 2and 10 4CFU/mL). Continued

Table2.2.continued B.cereus ATCC14579 ~1x10 8 McIlvaine 690MPa CUT=N/A Maximuminactivationwasobtained(5to Rasoetal. CFU/mL citrate 40°C DT=N/A 6.5logreduction)atpH6when B.cereus (1998b) phosphate 2min sporulatedat30and37°C. buffer (pH3.5,4.6, Forthosesporulatedat20°C,inactivation 6.7,and7.8) increasedwhenpHwasdecreased. B.cereus KCTC1012 ~1x10 8 McIlvaine 0.1600MPa CUT=N/A SporessuspendedinpH4.5werehighly OhandMoon to1x10 9 buffer 20,40,60ºC DT=N/A resistanttoinactivationthanthoseinpH (2003) CFU/mL (pH4.5,6.0, 15min 6.0,7.0,and8.0 7.0and8.0) B.cereus LMG6910 6x10 8 UHTskim 100600MPa CUT=360s Morethan6logreductionafter400MPa Opstaletal. CFU/mL milk 3060ºC DT<1s 60°Cfor30min. (2004) 15,30min B.cereus NCFB1771, ~1x10 8 Reconstituted 500MPa CUT=100s Additionof500IU/mLnisinwithtwice Blacketal.

43 NIZOLB1,NIZOLB5, CFU/mL skimmilk 40ºC DT=22.5s cyclesresultedin5.9logreductionof (2008)

andNIZO578 (10%) 5min strainNIZOLB5. B.coagulans 7050 ~1x10 6 Tomatojuice 392MPa CUT=165s Almost5logreductionafter392MPa Sheareretal. CFU/mL (pH4.5,<1% 25,45,50,55ºC DT=40s 45ºCfor10minwith1%sucroselaurate. (2000) sucroselaurate 1015min and<0.1% lauricidin) B.coagulans FRRB2626, ~1x10 6 Reconstituted 600MPa CUT=120s Initialtemperatures(7595ºC)didnot Scurrahetal. FRRB2723,FRRB2735 to1x10 7 skimmilk 25,75,85,95ºC DT<120s enhancesporeinactivationofstrainFRR (2006) CFU/mL (9.5%) (IT) B2735.About3logreductionwas 1min obtainedafter1minat600MPa. B.licheniformis 2.2x10 7 Mashed 0.1800MPa CUT=400s Sporeswereinactivatedtoundetectable Margoschet TMW2.492 to carrots(pH 6080ºC DT=400s levelat80ºCand600or800MPaafter16 al.(2004b) 9.6x10 8 5.15) 016min min. CFU/mL Continued

Table2.2.continued B.licheniformis ~1x10 6 Reconstituted 600MPa CUT=120s Morethan6.3logreductionof B. Scurrahetal. (9strains) to1x10 7 skimmilk 25,75,85,95ºC DT<120s licheniformis NZ25after600MPafor1 (2006) CFU/mL (9.5%) (IT) minatIT95ºC. 1min B.sphaericus NZ12,NZ ~1x10 6 Reconstituted 600MPa CUT=120s B.sphaericus NZ14wasthemost Scurrahetal. 13,NZ14,NZ15 to1x10 7 skimmilk 25,75,85,95ºC DT<120s resistanttothetreatment(600MPa,1 (2006) CFU/mL (9.5%) (IT) min).While1logreductionwasobtained 1min atIT75ºC,morethan5.3logreduction wasobservedatIT95ºC. B.sphaericus NZ14 1.8x10 6 Deionized 0.1700MPa CUT=35s About3.7logreductionwasobserved Ahnetal. CFU/mL water 105,121ºC DT<1s afterCUTat700MPa105ºC.Spores (2007) 05min wereinactivatedtoundetectablelevelfor holdingtimesgreaterthan2min. 6 44 B.subtilis 168 ~1x10 McIlvaine 404MPa CUT=N/A SporessuspendedinbuffersatpH4.0, Stewartetal.

CFU/mL citrate 25,45,70,90ºC DT=N/A and5.0wereinactivatedtoundetectable (2000) phosphate 15,30min levelafter404MPa70ºCfor30min. buffer(pH4.0 7.0) Additionof0.2 Nisinreducedtheoutgrowthofspores, 1.0IU/mLnisin whereassucroselauratedidnot. or0.11.0% sucroselaurate B.subtilis 168 ~1x10 6 2%milkfat 392MPa CUT=165s 5logreductionafter392MPa25°Cfor Sheareretal. CFU/mL (withaddition 25,45,50,55ºC DT=40s 10minwith0.1%sucroselaurate. (2000) of<1% 1015min sucroselaurate 3logreductionafter392MPa45°Cfor and<0.1% 10minwith0.001%lauricidin. lauricidin) Continued

Table2.2.continued B.subtilis (10strains) 2.2x10 7 Mashed 0.1800MPa CUT=400s Forlaboratorystrains,morethan6log Margoschet to carrots(pH 6080°C DT=400s reductionwasobservedafter800MPa al .(2004b) 9.6x10 8 5.15) 064min 70°Cfor1min CFU/g Fromfoodisolatedstrains,about2to4 logreductionwasobservedafter800 MPa70°Cfor16min Clostridiumbotulinum ~1.0x10 5 Sorensen 414827MPa CUT=145s Crabmeatblenddidnotprotectsporesof Reddyetal. typeAstrains(BSA,62 CFU/mL phosphate 60,65,70,75ºC DT<2s C.botulinum againstthetreatmentat827 (2003) A) buffer 030min MPa75ºC.About23logreductionwas (0.067M,pH obtainedfrombothmatricesatthis 7.0)and condition. crabmeat C.botulinum ~1.0x10 5 Sorensen 827MPa CUT=145s Morethan6logreductionofstrains2B, Reddyetal.

45 nonproteolytictypeB CFU/mL phosphate 4075ºC DT<2s 17B,andKAP9Bsuspendedinboth (2006)

strains(2B,17B,KAP8 buffer 030min matriceswasobtainedafter827MPa B,KAP9B) (0.067M,pH 75ºCfor20min. 7.0)and crabmeat C.botulinum typeE ~1.0x10 5 Sorensen 414827MPa CUT=145s Sporesfrombothstrainswereinactivated Reddyetal. strains(Alaskaand CFU/mL phosphate 2560ºC DT<2s toundetectablelevelafter827MPa55ºC (1999) Beluga) buffer 010min for5min. (0.067M,pH 7.0) C.botulinum (proteolytic: 2.0x10 6 Mashed 600MPa CUT=300s Among7strainstested, C.botulinum Margoschet typeA,B,F; to carrots(pH 80ºC DT=300s TMW2.357wasthemostpressure al.(2004a) nonproteolytic:typeB) 4.5x10 8 5.15) 064min resistantstrain.About1.2logreduction CFU/g wasobtainedafter600MPa80°Cfor16 min. Continued

Table2.2.continued C.botulinum proteolytic 5.0x10 7 TrisHisbuffer 6001,400MPa CUT<20s Pressuremediatedsporeprotectionwas Margoschet typeBstrains(TMW to (pH4.0,5.15 70120ºC DT<20s observedat120ºCand800,1,000,or al.(2006) 2.357,REB89) 4.5x10 8 and6.0) 016min 1,200MPa. CFU/mL Superdormantsporessurvivedconditions upto1,400MPaand120ºC. C.sporogenes NCIMB ~1.0x10 6 Distilledwater 200600MPa CUT=180s Lessthan1logreductionafter600MPa Millsetal. 8053 CFU/mL 4060ºC DT=120s 60ºCfor30min.About67.7%ofspore (1998) 30min populationwasgerminatedatthis condition. C.sporogenes PA3679 1.0x10 6 Meatbroth 4001,200MPa CUT=N/A 1.3logreductionwasobtainedafter1,200 Rovereetal. (ATCC7955) to 90110ºC DT=N/A MPa90°Cfor5min,while2.8log (1998) 3.0x10 6 060min reductionwasobservedafter500MPa CFU/mL 100ºCfor20min.

46 6

C.sporogenes ATCC ~1x10 McIlvaine 404MPa CUT=N/A SporesuspensionatpH4.0provided6 Stewartetal. 7955(PA3679) CFU/mL citrate 25,45,70,90ºC DT=N/A logreductionafter404MPa70ºCfor15 (2000) phosphate 15,30min min,whilelessthan0.5logreductionwas buffer obtainedwiththoseatpH6.0and7.0. (pH4.07.0) C.sporogenes PA3679 ~1.0x10 6 Scrambledegg 688MPa CUT=N/A 6logreductionwasobtainedafter688 Koutchmaet CFU/mL patties 105121ºC DT=N/A MPa121ºCfor3min. al.(2005) 05min C.sporogenes ATCC 1.2x10 7 Deionized 0.1700MPa CUT=35s About3.3and6.3logreductionwas Ahnetal. 7955 CFU/mL water 105,121ºC DT<1s obtainedafterCUTof700MPaat105and (2007) 05min 121°C,respectively. C.sporogenes ATCC 1.0x10 4, Deionized 700MPa CUT=35s At700MPa105ºCfor1min,3.8to6.3 Ahnand 7955 1.0x10 6, water 105ºC DT<1s logreductionwasreported. Balasubrama 1.0x10 8 05min niam(2007a) CFU/mL Continued

Table2.2.continued C.sporogenes ATCC ~5x10 6 0.1Mcitric 550650MPa CUT=90s Acidiccondition(pH4.75)effectively ParedesSabja 3584,ATCC7955 CFU/mL (pH4.75,6.5) 5575ºC DT<20s enhancedsporeinactivationwhen etal.(2007) andPBS(pH 15,30min combinedwith650MPa75ºCfor30min 7.4) resultingin5.8logreduction. C.perfringens typeA(4 ~5x10 6 0.1Mcitric 550650MPa CUT=90s About5.1and2.8logreductionwas ParedesSabja Pcpe isolatesand5Ccpe CFU/mL (pH4.75,6.5) 5575ºC DT<20s obtainedfromPcpe andCcpe isolates etal.(2007) isolates) andPBS(pH 15,30min (pH4.75),respectively,aftertreatedat 7.4) 650MPa75ºCfor30min. Geobacillus ~1x10 6 1mg/mLof 0.11,000MPa CUT=N/A Morethan3.8logreductionafter800 Hayakawaet stearothermophilus CFU/mL Bovineserum 20,60,and70ºC DT<1s MPa60ºCfor60min. al.(1994) IFO12550 albumin, 2060min ovalbumin, andβ lactoglobulin 7 47 G.stearothermophilus ~1x10 Mashed 0.1600MPa CUT=100s Morethan6logreductionofG . Anantaetal.

ATCC7953 CFU/g broccoliand 60120ºC DT=N/A stearothermophilus suspendedinmashed (2001) cocoamass 0160min broccoliafter600MPa120ºCfor20min. Almost6logreductionof G. stearothermophilus suspendedincocoa massafter600MPa90ºCfor60min. Protectiveeffectoffatfromcocoamass yieldedlimitedsporeinactivation. G.stearothermophilus ~1x10 6 Eggpatties 400700MPa, CUT=144s About4logreductionwasobservedafter Rajanetal. ATCC7953 CFU/g 105ºC DT=N/A 700MPa105ºCfor5min,whereas1.2 (2006b) 05min logreductionwasobtainedat0.1MPa 121ºCafter15min.PATPtreatmentdid nothaveanyprotectiveeffect. Continued

Table2.2.continued Thermoanaerobacterium 2.0x10 6 Mashed 800MPa CUT=400s T.thermosaccharolyticu msporeswere Margoschet thermosaccharolyticu m to carrots(pH 80ºC DT=400s moreheatresistantbutlesspressure al.(2004a) TMW2.299 4.5x10 8 5.15) 016min resistantthansporesof C.botulinum and CFU/g B.amyloliquefaciens . T.thermosaccharolyticu m 1.2x10 7 Deionized 0.1700MPa CUT=35s 5logreductionof T. Ahnetal. ATCC27384 CFU/mL water 105,121ºC DT<1s thermosaccharolyticu mwasobservedat (2007) 05min 700MPa105°Cfor5min,whileno survivorsof C.sporogenes weredetected underthesamecondition. 48

Chapter3:Influenceofpressurizationrateandpressurepulsingontheinactivationof

Bacillusamyloliquefaciens sporesduringpressureassistedthermalprocessing

Abstract

Pressureassisted thermal processing (PATP) is an emerging sterilization technologywhereacombinationofpressure(500to700MPa)andtemperature(90to

121°C)areusedtoinactivatebacterialspores.Theobjectiveofthisstudywastoexamine theroleofpressurizationrateandpressurepulsinginenhancingsporeinactivationduring

PATP.Bacillusamyloliquefaciens TMW2.479Fad82sporesuspensionswereprepared indeionizedwateratthreeinoculumlevels(~1.1x109,1.4x10 8,and1.3x10 6CFU/mL),

treated at two pressurization rates (18.06 and 3.75 MPa/s), and held at 600 MPa and

105°C for 0, 0.5, 1, 2, 3, and 5 min. Experiments were carried out using custom

fabricated highpressure microbial kinetic testing equipment. Single and double pulses

withequivalentpressureholdingtimes(1to3min) were investigated using the spore

suspension containing ~1.4x10 8 CFU/mL. Spore survivors were enumerated by pour platingusingTrypticasesoyagarafterincubationat32°Cfor48h.Duringshortpressure holding times ( ≤ 2 min), PATP treatment with the slow pressurization rate provided enhanced spore reduction than that of the fast pressurization rate. However,

49 thesedifferencesdiminishedwithextendedpressureholdingtimes.After5minpressure holdingtime, B.amyloliquefaciens sporesdecreasedabout6logCFU/mLregardlessof pressurizationrateandinoculumlevel.DoublepulsetreatmentenhancedPATPlethality byapproximately2.4to4logCFU/mLincomparisontosinglepulseforagivenpressure

holding time. In conclusion, pressure pulsing considerably increases the efficacy of

PATP treatment. Contribution of pressurization rate to PATP lethality varies with

durationofpressureholding.

3.1 Introduction

Pressureassistedthermalprocessing(PATP)isoneoftheemergingtechnologies

forprocessingshelfstablelowacidfoods.DuringPATP,thefoodmaterialissubjected

toacombinationofelevatedpressure(500to700MPa)andtemperature(90to121°C)

foraspecifiedholdingtime.Theuniqueadvantagesofthistechnologyincludearapid

increaseinthetemperatureoftreatedfoodsamplesandtheexpansioncoolingofproducts

upondepressurization(Rajanetal.,2006).Consequently,PATPbetterpreservesproduct

attributes such as color, flavor, texture, and nutritional values when compared to

conventionalthermalprocessing.

A number of previous studies demonstrated the role of process pressure,

temperature, and holding time on spore inactivation (Margosch et al., 2004a, 2004b,

2006;Ahnetal.,2007;AhnandBalasubramaniam,2007;Blacketal.,2007),butvery

limitedinformationisavailableontheroleofpressurizationrateonsporeinactivation.

Similar to thermal processing, the total treatment time during PATP includes both

50 pressure comeup time and pressure holding time. The time required to increase the pressureofthesamplefromatmosphericpressuretothetargetprocesspressureisoften describedaspressurecomeuptime(FarkasandHoover,2000;Balasubramaniametal.,

2004).Theprocesscomeuptimeisprimarilyafunctionofthetargetpressureandthe pumphorsepower.Ingeneral, the pressurizationrateofthehighpressureequipmentis

fixedandnormallygovernedbyequipmentdesignparameters.Typicalcomeuptimein

commercialscalehighpressureequipmentfallsintherangeof130to240sforreaching

600to700MPapressure.Excessivelylongercomeuptimes(>180s)canincreasethe

totalprocesstimeandreducetheprocessthroughput.Variationincomeuptimemayalso

affecttheinactivationkineticsofmicroorganisms.Therefore,consistencyandawareness

ofpressurizationanddepressurizationratesareimportantinPATPprocessdevelopment.

The role of the pressurization and depressurization rate on vegetative bacteria inactivationduringhighpressurepasteurizationhasbeenstudiedpreviously(Hayakawa etal.,1998;Nomaetal.,2002;Rademacheretal.,2002;Chapleauetal.,2006).Possibly due to variation in experimental setup and process conditions used by various researchers, often contradictory and inconclusive trends were reported. Smelt (1998) hypothesizedthataslowpressurizationratemightinduceastressresponsethatwould renderpressurizationlesseffective,whileafasterpressurizationratemightcontributeto higherinactivation.Authorfurtherobservedthatthepresenceorabsenceofgasvacuoles canaltertheresults.Hayakawaetal.(1998)reportedthatrapiddecompression(1.30to

1.65 ms) enhanced microbial lethality of Bacillus stearothermophilus spores. Rapid depressurization (1 ms) was more effective than slow decompression (> 30 s) in

51 inactivatingvegetativebacteriaandinloweringtreatmentpressurerequirements(Noma etal.,2002).Inactivationof Listeriainnocua bypressurewassimilarwhenthebacterium

was subjected to either a fast pressurization (500 MPa/min) followed by a slow

depressurization(100MPa/min)oraslowpressurization(100MPa/min)followedbya

fasterdepressurization(500MPa/min)(Rademacheretal.,2002).

Pressure pulsing, also referred to as oscillatory pressurization, pressure cycle process, or noncontinuous pressurization, is another approach to enhance microbial

lethality(Hayakawaetal.,1994;FarkasandHoover,2000;Furukawaetal.,2000;Meyer

et al., 2000; LopezCaballero et al., 2000; Furukawa et al., 2003; Shao et al., 2007).

LopezCaballeroetal.(2000)reportedthatatwopulse(400MPaat7°Cintwo5min pulse)processproducednoapparentadvantageoverasinglepulseinreducingoyster’s microbiota. Pressure pulsing was effective in pectin methyl esterase inactivation in orangejuice(BasakandRamaswamy,2001).Chapleauetal.(2006)statedthatpressure holding time is a more important parameter than pressure pulsing for inactivation of

Salmonella Typhimurium and Listeria monocytogenes. Repeated pressure cycles enhanced spore inactivation, presumably by a pressureinduced germination and subsequentinactivationofgerminatedspore(Smelt,1998).Mildpressuretreatments(50 to500MPa,at25to60°C)inducedsporegerminationthroughtheactivationofspore’s nutrientreceptors(Smelt,1998;Wuytacketal.,2000;Blacketal.,2007).Hayakawaet al. (1994) reported six pulses at 400 MPa and 70°C for 5 min reduced B. stearothermophilus sporesby4logCFU/mL.Withtheexceptionofafew studies, in many earlier pulsing investigations, temperature during pulsing was not reported.

52

Systematicstudies,therefore,areneededtodocumenttheinfluenceofpressurizationrate andpressurepulsingonsporeinactivationundercontrolledpressurethermalconditions.

The objectives of this study were to examine the effect of pressurization rate on enhancing PATP spore inactivation. Additionally, the combined efficacy of pressurizationrateandpressurepulsingonsporelethalitywasalsoinvestigated.

3.2 Materialsandmethods

3.2.1 Sporepreparation

Bacillusamyloliquefaciens TMW2.479Fad82spores(M.Gänzle,Lehrstuhlfür

Technische Mikrobiologie, Technische Universität München, Freising, Germany) were usedinthestudyduetotheirhighpressurethermalresistance(Margoschetal.,2004b,

2006;Rajanetal.,2006).Culturesweregrownintrypticasesoybrothsupplementedwith

0.1% yeast extract (TSBYE; BD Diagnostic Systems, Sparks, MD) with aerobic incubationat32°Cfor24h.AfterthesecondtransferinTSBYE,thecultureswereused for spore production. Portions (100 l) of B. amyloliquefaciens culture were spread platedonTrypticasesoyagar(TSA;BDDiagnosticSystems)supplementedwith10ppm

. MnSO 4 H2O (Fisher Scientific, Pittsburgh, PA). The inoculated plates were then

aerobicallyincubatedat32°Cfor1014days.Thesporeswereharvestedafter95%ofthe populationwassporulated.Thiswasverifiedbyusingaphasecontrastmicroscopy.The

surfaceofinoculatedplateswas floodedwith10mLofsteriledistilledwater andthe

sporeswerescrapedwithasterileglassspreader.Thesporesuspensionwaswashedfive

timesbydifferentialcentrifugationthatrangedfrom2,000to8,000x gfor20mineachat

53

4°C.Sporepelletswereresuspendedinsteriledeionizedwatertoobtainapproximately

10 9spores/mL.Thesuspensionwassonicatedfor10minusingasonicator(SM275HT,

Crest,ETLTestingLaboratory,Cortland,NY)andheatedat80°Cfor10mintodestroy anyremainingvegetativecells.Thesporesuspensionwasstoredinarefrigeratorat4°C untilused.

3.2.2 Highpressuremicrobialkinetictester

Sporesweretreatedinahighpressuremicrobialkinetictester(pressuretestunit

PT1,AvureTechnologyInc.,Kent,WA)asdescribedpreviously(Rajanetal.,2006).

Anintensifier(M340A,FlowInternational,Kent,WA)wasusedtogeneratethedesired pressure. A 54mL stainless steel pressure chamber was immersed in a temperature controlledbathtomaintainthedesiredprocesstemperaturecondition(keptat105°Cfor this study). Propylene glycol (57556, Avatar Corporation, University Park, IL) was usedastheheatingmediuminthetemperaturecontrolledbath.Fast(18.06MPa/s)and slow(3.75MPa/s)pressurizationrateswereachievedbysuitablyadjustingtheamountof air supply to the hydraulic pump (model PO45/45OGPM120, Interface Devices,

Milford,CT)usinganeedlevalve.Thedepressurizationrateduringthestudywasfixed

(~2s).Thesampletemperature,bathtemperature,andchamberpressurewererecorded every 1 s with a Ktype thermocouple sensor (model KMQSS04OU7, Omega

Engineering, Stamford, CT) and a pressure transducer (model 3399 093 006, Tecsis,

Frankfurt, Germany). A data acquisition computer equipped with relevant hardware

(DaqBoard/2000 16bit, 200 kHz PCI card, DBK 81 sevenchannel thermocouple

54 expansion card, and DBK 203 expansion card; IOTech, Cleveland, OH) and software

(DasyLab7.00.04;NationalInstrumentsCorp.,Austin,TX)wasusedtorecordthedata.

3.2.3 Samplepreparationforpressureassistedthermalprocessing

Sporesuspensionsof B.amyloliquefaciens (0.2mL)andsteriledeionizedwater

(1.8mL)wereasepticallytransferredintoapouch(5x2.5cm,polyethylenebags,01

00257,FisherScientific).Finalconcentrationsinsuspensionswere1.1x10 9,1.4x10 8,and

1.3x10 6 spores per mL. The sample pouches were then heatsealed using impulse heat sealer (American International Electric, Whittier, CA) and the sample content was manuallymixedthoroughly.Thepackagedpoucheswere kept (< 1 h) in an icewater bath(4°C)untilPATPprocessed.PriortoPATPtreatment,thesporecontainingpouch wasplacedinsidea10mLpolypropylenesyringe(model309604,Becton,Dickinsonand

Company,FranklinLakes,NJ),whichservedassampleholder.Afterloadingthepouch insidethesampleholder,~8mLofwaterwasusedtofilltheremainderoftheholderto ensurethattheimmediatevicinityofthesamplepouchhadsimilarheatofcompression characteristicsasthatofsporesuspension.Inaddition,thesampleholderwaswrapped withtwolayersofinsulatingmaterial(SportsTape,CVS ®PharmacyInc.,Woonsocket,

RI)tominimizeheatexchangewiththeenvironmentduringPATPtreatment(Nguyenet

al., 2007). The syringe containing the sample pouch was then preheated to the pre processingtemperature( T1=58°C;Figure3.1.A)inawaterbath(Isotemp928,Fisher

Scientific). Afterpreheatingfor2min,thesyringewasthenimmediatelyloadedintothe

microbialkinetictesterpressurechamberandthevesselwasclosed.Sampletemperature

history was continuously monitored (Figure 3.1). The pressurization started when the

55

sampletemperaturereachedthepredeterminedvalueT2(Figure3.1.A).Thistemperature

was estimated based on a trialand error experimental approach using the following

relationship(Rajanetal.,2006;Nguyenetal.,2007):

T2 = T3′ − (CH ⋅ P + TH ) (3.1)

’ where T3 isthetargettemperature, CH istheheatofcompressionvalueofthesample

(definedastemperatureincreaseper100MPaduringsamplepressurization),and ∆Pis the process pressure. The spore suspensions are assumed to have the same heat of compressionasthatofwater(Rasanayagametal.,2003).∆THisthetemperaturegainby

thetestsampleduringloadingwithinthepressurechamberaswellaspressurization.A

trainedequipmentoperatoreffectivelycontrolledandminimizedthe ∆THvaluesthrough asetofpreliminaryexperiments(Nguyenetal.,2007).

3.2.4 Experimentalapproach

Experimentswereconductedtostudytheinfluenceofthepressurizationrate(fast,

18.06 MPa/s; slow, 3.75 MPa/s) on the inactivation of B. amyloliquefaciens spores processedat105°Cand600MPaforvariouspressureholdingtimes(0,0.5,1,2,3,and5 min) and spore inoculum levels (1.1x10 9, 1.4x10 8, and 1.3x10 6 CFU/mL). For

experiments comparing the microbial efficacy of single and doublepulse, inoculum

level was kept at 1.4x10 8 CFU/mL. Single and doublepulse experiments were conductedat600MPaand105°Cforselectedequivalentpressureholdingtimes(1and3 min).Inallcases,pressureholdingtimesdidnotincludethepressurecomeuptimeor thedepressurizationtime.Duringpressurepulsingexperiments,thetimeintervalbetween thefirstandsecondpulse(t pause )waschosenas60s(Figure3.1.B).Thistimeinterval

56 allowedtheresearcherstoensurethatthesamplewasdepressurizedduringfirstpulseand tostartthepressurizationcycleforthesecondpulseataconsistenttemperature(Table

3.1.B). Afterdepressurization,thesamplewasimmediatelycooledinanicewaterbath.

The untreated control sample was used for the determination of initial inoculum. All sporesuspensions(treatedanduntreated)wereanalyzedforthetotalviablesporecount within2hafterthetreatment.Eachexperimentwasrepeatedatleastthreetimes.

3.2.5 Enumerationofsurvivors

The surface of each pouch was sanitized with 70% ethanol before being aseptically opened. After mixing the pouch content thoroughly, 1 mL of the sample

contentwasseriallydilutedin0.1%peptonewater.The1mLaliquotsoftheappropriate

dilutionswerepourplatedinduplicateusingTSAplates,whichwerethenincubatedat

32°Cfor48hforenumerationofsporesurvivors.Colonieswerecountedonadarkfield

Quebec colony counter (Leica Microsystems, Richmond Hill, Ontario, Canada). The

detectionlimitofthesporeenumerationtechniquewas10CFU/mL.

3.2.6 Integrationofpressureandtemperaturetime

ToevaluaterelativesignificanceofpressuretemperatureprofilesduringPATPtreatment,

t2 t2 areasunderpressuretime( ∫ P dt )andtemperaturetime( ∫T dt )plotswerecalculated. t1 t1

Theseareasrepresentthemagnitudeofpressureandthermaldosagesreceivedbythetest samplesduringthetreatment.Accordingtoanearlierstudy(Rajanetal.,2006),lethality of B.amyloliquefaciens sporeswaslikelytooccurwhenpressuresandtemperatureswere

keptabovethesethresholdlevels:(P(t)>500MPa;T(t)>95°C).Belowthisthreshold, limited or insignificant spore inactivation occurred. Accordingly, lethal areas 57

t2 t2 ( ∫[P(t) − 500] dt and ∫[T (t) − 95] dt ) were calculated over various pressureholding

t1 t1

times. Areas were calculated by the trapezoidal rule (with linear interpolation) using

MATLABversion7.1(TheMathWorks,Inc.,Natick,MA).Thelowerandupperlimits

ofintegration( t1and t2)correspondstothetimeintervalwhenthetemperatureorpressure

valuesreachspecifictargetprocessvalues( P=500MPa; T=95°C).

3.2.7 Statisticalanalysis

Alldatawereanalyzed withtheStatisticalAnalysisSystemsoftware (SAS9.1,

SAS Institute Inc., Cary, NC). The independent variables included inoculum level ( Ii;

9 8 6 1.1x10 , 1.4x10 , and 1.3x10 CFU/mL), pressurization rate ( PR j; fast and slow), pressureholdingtime( tk;0,0.5,1,2,3,and5min),ortypeofpressuretreatment( Pi; singleanddoublepulse).Thedecreaseinsporepopulation(∆logCFU/mL)inresponse to the process treatment was the dependent variable ( Yijk ). The following statistical

modelswereanalyzedusingthegenerallinearmodel(GLM)procedure.

Yijk = + I i + PRj + tk + ε ijk (3.2)

Yijk = + Pi + PR j + tk + ε ijk (3.3)

where ε ijkistheerrorterm.Meancomparisonfortreatmenteffectswereevaluatedwith theTukeytestata5%significantlevel( P= 0.05).

58

3.3 Resultsanddiscussion

3.3.1 Pressureandtemperaturehistoriesduringfastandslowpressurizationrate

A typical temperature history during preprocessing and pressure processing is

showninFigure3.1andTable3.1Inbothcases,thesporesuspensionswerepreheatedto

the same initial preprocess temperature ( T1=57.4°C, Table 3.1). After loading spore pouchesintothepressurechamber,theslowpressurizationratesampleswereadjustedto

65.4°Cwhereasthefastpressurizationsampleswereheatedto70.6°C.Thisdiscrepancy

was necessary to achieve equal processing temperatures for both treatments during pressureholding.However,oncethetargetpressurewasreached,thetemperatureofthe

samplesincreasedslightlyforanother20sbeforethetargettemperaturewasmaintained.

This observation was in agreement with that of Nguyen et al. (2007). Since process

temperatureisanintegralpartoftheinactivationofbacterialsporesduringPATP(Ting

etal.,2002;Reddyetal.,2003;Margoschetal.,2004b;Rajanetal.,2006),thetarget

temperatureshouldbewellcontrolledduringtheholdingtimes.

Compressionordecompressionofthefoodmaterialchanges its internal energy

and alters temperature distribution within the pressure chamber (Pehl and Delgado,

1999).Theextentoftemperaturegradientwithinthepressurechamberisinfluencedby parameterssuchaschambermaterialandgeometry,typeoffoodmaterial,compression

ordecompressionrate,andinitialtemperatureoftheproduct(Rademacheretal.,2002;

Tingetal.,2002).Fromathermodynamicperspective,twoextremeprocessesdescribe

the thermal effects at high pressure (Rademacher et al., 2002). First, the isothermal processinvolvesaninfinitelyslowpressurizationstep(dp/dt→0).Thesecondprocess,

59 the adiabatic process, involves rapid pressurization rate (dp/dt → ∞). However, conducting experiments under both of those conditions can be challenging and may require complex equipment and process control. The real process will usually fall somewherebetweenthesetwolimits.

Duringdoublepulseexperiments,pressureholdingtimeforeachpulsewaskept

as half of the pressure holding time during singlepulse experiments. Pressure

temperature histories during pulsing experiments were similar to singlepulse

experimentsasdescribedpreviously.Thetimeintervalbetweendoublepulses(t pause )was

keptas60satatmosphericpressure.However,itwasexperimentallydifficulttocontrol

temperatureduringthesecondpulse.Sincetheexternalglycolbathandpressurevessel

wasmaintainedat105°C(tominimizeheatlossduringextendedpressureholdingtimes),

thesamplecontinuedtogainheatenergyduringthetimeintervalbetweentwopulsesas

well as during the second pulse comeup time. Thus, temperature of the sample just beforepressurizationof thesecondpulse wasapproximately 7779°C, resulting in the processtemperature( T3to T4)duringthesecondpulseof111113°C(Table3.1.B and

Figure3.1.B).Thisincreaseintemperatureofthesecondpulsewasnotexpectedwhen planningtheexperimentsofpressurepulsing.Therefore,toaddresstheinfluenceofthis

additionalincreaseintemperature,thesinglepulseexperimentat112°Cwasconducted

tocompareitscontributiontothetreatments(i.e.,singlepulseat105°Canddoublepulses

at 105 and 112°C). It was important to note that this additional lethal temperature

exposure during the pressure pause and second pulse should be considered when

evaluatinganypotentialbenefitsofdoublepulseonsporeinactivation.

60

3.3.2 Effectofpressurizationrateonsporeinactivation

Figure 3.2 highlights the effect of the pressurization rate on viability of B. amyloliquefaciens suspended in deionized water. In general, viable spore population decreasedwithincreasedpressureholdingtime.Inoculumlevel,pressurizationrate,and pressure holding time significantly influenced the inactivation of B. amyloliquefaciens spores( P<0.05)(Table3.2).

The estimated D 105°C value of B. amyloliquefaciens spores was 24.2±0.3 min.

Similarly,apreviousstudyshowednegligibleinactivationofthesesporesat105°Cfor5 min holding time (Rajan et al., 2006). Current study showed considerable spore inactivationwhenthethermaltreatmentat105°Cwascombinedwithpressure.However, degreeoflethalityenhancementwasaffectedbypressurizationrate(Table3.2andFigure

3.2). Theslowpressurizationrateresultedinhighersporeinactivationthanthatofthefast pressurizationratewheninactivationwasmeasuredimmediatelyafterpressurecomeup time( P<0.05).Thistrendwasobservedinallthreeinoculumlevelstested(Figure3.2).

During slower pressurization rates, spores have been exposed to a lethal temperature

region(T>95°C)foralongertimethanunderfaster pressurization rates (Table 3.3).

This prolonged thermal exposure under pressure undoubtedly caused the enhanced

lethality. Samples processed using the slow pressurization rate continued to show

enhanced lethality up to 2 min ofpressure holding time. Subsequently, the difference between microbial efficacies of the pressurization rates diminished for all inoculum

levels,specificallyafter5minholdingtime.At1.1x10 9CFU/mLinoculumandafter5 minofpressureholding,thefastpressurizationratereduced B. amyloliquefaciens spores

61 by5.4logCFU/mL,whereasapproximately6.1logCFU/mLwasinactivatedwiththe slow pressurization rate. The interaction effect between inoculums level and pressurization rate was not significant ( P = 0.35 ). Regardless of pressurization rate, treating the spores with 600 MPa for 5 min pressure holding time inactivated approximately6.5logCFU/mLinthesporesuspensioncontaining1.4x10 8CFU/mL, whereasnosurvivorsweredetectedinthesuspensioncontaining1.3x10 6CFU/mL.

Sporesof B. amyloliquefaciens TMW2.479haveanabilitytoretaindipicolinic

acid (DPA) content during pressure treatments, thus making this bacterium highly pressureresistant(Margoschetal.,2006).Itislikelythattheheatpressurecombinations

testedinthisstudyhelpedthereleaseofDPA,thuscausedsubstantiallethalitytothese

spores. Once spores release more than 90% of their DPA content, further spore

inactivationbypressurediminishes(Margoschetal.,2004b;Subramanianetal.,2007),

whichmightexplainthedecreaseinlethalitywithalongerpressureholdingtime(Figure

3.2). Subramanian et al. (2007) observed significant changes of several absorbance

signalsfrom B. amyloliquefaciens TMW2.479duringthepressurecomeuptimeof700

MPaand121ºC.Thosepeakswereattributedtocalicumdipicolinate(1281,1378,and

1440cm 1)andDPA(1568cm 1).Moreover,therewasacompletelossofsignalsfrom

the DPArelated bands after the comeup time, indicating the release of most DPA

relatedcompoundsfromthesporecores(Subramanianetal.,2007).

Chapleau et al. (2006) correlated the efficiency of highpressure treatment with microbialreductionbyusingbarometricpower(BP),whichwasestimatedfromthearea underthepressuretimecurve.Theauthorsobservedthehighestmicrobialinactivationof

62

S. Typhimurium and L.monocytogenes whentheslowestpressurization(1MPa/s)and depressurization (5 MPa/s) were applied; these correspond to the highest BP. In the present study, the areas under the curve of temperaturetime and pressuretime were calculatedandtermedasthermalandpressuredosages.Thelethalregion(T>95°Cand

P>500MPa)onlyofpressureandtemperaturehistorieswasselectedfortheestimation ofthermalandpressuredosagessincetherewasnoorlimitedsporeinactivationbelow thisthreshold(Rajanetal.,2006).Thesethermalandpressuredosagesseemtocorrelate well with spore inactivation from various PATP treatments. Increasing the pressure holdingtimeordecreasingthepressurizationrateproduced large thermal and pressure dosages, and spore inactivation correspondingly increased (Table 3.3). Linear relationshipofboththermalandpressuredosagewasobtainedwithlogreductionofthe initialsporepopulationcontaining1.1x10 9CFU/mL,whereasthosefrom1.4x10 8and

1.3x10 6CFU/mLdisplayedthelinearrelationshipupuntil2minpressureholdingtime

followedbyadecreaseinsporeinactivation(Table3.3).

3.3.3 Roleofpressurepulsinginenhancingsporeinactivation

It may be hypothesized that pulsed pressure during PATP causes spore

germinationduringthefirstpulsefollowedbyinactivation of germinated spores upon

subsequent pulsing. Moderate pressure treatment (50 to 300 MPa) at 25 to 50°C is

knowntocausesporegermination(Smelt,1998;Wuytacketal.,1998;Wuytacketal.,

2000;Blacketal.,2007)butnoinformationisavailableindicatingthistransformation

could occur during PATP application. An experiment was conducted to determine if

germination of B. amyloliquefaciens spores occurs during PATP (Figure 3.3). Spores

63 thathavebeentreatedwithheat(105°C)withorwithoutpressure(700MPa)weretested forgermination.Subsequently,treatmentsurvivorswereenumeratingbeforeandaftera heatshockat80°Cfor10mintokillgerminatedspores(Wuytacketal.,1998;Wuytack etal.,2000).NosporegerminationwasevidentduringPATPorthethermaltreatment alone(Figure3.3).

Theinfluenceofsingleanddoublepulsetreatmentat105°Cand600MPaon

spore inactivation is presented in Figure 3.4. Doublepulse pressurization was more

effective ( P < 0.05) in inactivating bacterial spores than singlepulse, with an added substantialreductionwithaslowpressurizationrate.Afastpressurizationratewith0min pressureholdingtime reduced0.5 and1.0log CFU/mL for single and double pulses,

respectively (Figure 3.4.C). Log survivors from the slow pressurization rate with or

without pulsing were statistically different, where 1.3 and 5.7 log CFU/mL were

inactivatedfromsingleanddoublepulses,respectively,afterthepressurecomeuptime

(P < 0.05). Pressure holding time played a major role in spore inactivation for both

singleanddoublepulsetreatmentsthatemployedthefastpressurizationrate.However,

theimportanceofpressureholdingtimediminishedforthedoublepulsetreatmentthat

employed the slow pressurization rate (Figure 3.4.C). Treatment of spore suspensions

withthefirstpulsefor1.5min,whichwasfollowedbythesecondpulseforanother1.5

min, inactivated spores to undetectable level irrespective of pressurization rates. In

general,doublepulsesenhancedPATPlethalitybyapproximately2.4to4logCFU/mL

whencomparedtoasinglepulseatanequivalentpressureholdingtime.Theincreased

lethalityofdoublepulsescouldbeexplainedbythelargevaluesofthermalandpressure

64 dosages(Figure3.4.Aand3.4.B).Enhancedlethalitywasalsonoticedwhenusingthe slowpressurizationrate.

Thedoublepulsealongwithslowpressurizationrateprovidedasynergisticeffect on spore inactivation. To further verify this observation, an additional singlepulse experimentat600MPaand112°Cwasperformed.Theeffectoftreatments(singlepulse at105°C,singlepulseat112°C,anddoublepulsesat105and112°C)werestatistically different(Table3.2.B).Asexpected,furtherincreasingtheprocesstemperaturefrom105 to112°Cenhancedsporeinactivation.About1.9x10 1and1.2x10 1CFU/mLofspores survived after treatment at 600 MPa and 112°C for 3 min using a fast and slow pressurization rate, respectively (Figure 3.5). However, spore survivors were not detectablebydirectplatingfromadoublepulseexperimentconductedat600MPa,105 and112°Cfor3minholdingtime,regardlessofpressurizationrates.Thissuggeststhat increasing the temperature alone from 105 to 112°C, without pressure pulsing, is not sufficienttoenhancePATPsporeinactivation(Figure3.5).

Currently, the mechanism of spore inactivation is actively investigated. Lethal treatment can alter physiological state of bacterial spores. This may include structural changes,e.g.,alternationsinsporecortexandmembranes,andfunctionalmodifications, e.g.,abilityofthesporestorecoverbyculturingonmicrobiologicalmedia.Mathysetal.

(2007)reportedthatcombinedpressure(upto600MPa)andheat(upto77 oC)modified

B.licheniformis sporephysiologythroughgerminationandsporecortexhydrolysis,and physically compromised spore’s inner membrane. PATP conditions employed in the

currentstudydidnotyieldsignificantgerminationin B.amyloliquefaciens spores(Figure

65

3.3).However,itappearsthatthefirstpulsesensitizedthesporestotheremainderofthe lethaltreatment.Itisalsolikelythatthehightemperatureduringthepausetimeinterval betweenpressurepulses(~78°C)andthesecondpulsecomeuptimecontributedtothis sensitization.Althoughitisnotapparentinthisstudy,sporeinjurymaybeproposedas the cause of this sensitization. Detailed mechanistic studies are needed to explain the enhancedmicrobiallethalityduringpulsedpressurization,comparedtothesinglepulse treatment.

3.4 Conclusions

Withinarangeofexperimentalconditionsinthisstudy(600MPa,105°C,forup to 2min pressure holding time), the slow (compared to fast) pressurization rate was effective in enhancing the inactivation of B. amyloliquefaciens spore. Extending the pressure holding times diminished the influence of pressurization rate on spore inactivation. Regardless of the pressurization rate studied, the doublepulse treatment enhanced PATP lethality by additional 2.4 to 4 log reduction, when compared to the equivalenttreatmenttimefromthesinglepulse.Themosteffectivesporicidaltreatments in the study were associated with slow pressurization rate and double pulsing. The enhancedsporeinactivationshouldbeweighedagainsttheincreasedcostassociatedwith potential equipment wear due to the severe process conditions encountered during doublepulsetreatment.

66

References

Ahn, J., Balasubramaniam, V.M., and Yousef, A.E. 2007. Inactivation kinetics of selected aerobic and anaerobic bacterial spores by pressureassisted thermal processing.InternationalJournalofFoodMicrobiology.113:321329. Ahn, J. and Balasubramaniam, V.M. 2007. Physiological responses of Bacillus amyloliquefaciens spores to high pressure. Journal of Microbiology and Biotechnology.17:524529. Balasubramaniam, V.M., Ting, E.Y., Stewart, C.M., and Robbins, J.A. 2004. Recommended laboratory practices for conducting highpressure microbial inactivationexperiments.InnovativeFoodScienceandEmergingTechnologies.5: 299306. Basak, S. and Ramaswamy, H.S. 2001. Pulsed high pressure inactivation of pectin methyl esterase in single strength and concentrated orange juices . Canadian BiosystemsEngineering.43:3.253.29. Black, E.P, Wei, J., Atluri, S., Cortezzo, D.E., KoziolDube, K., Hoover, D.G., and Setlow,P.2007.Analysisoffactorsinfluencingtherateofgerminationofsporesof Bacillussubtilis byveryhighpressure.JournalofAppliedMicrobiology.102:65 76. Chapleau,N.,Ritz,M.,Delépine,S.,Jugiau,F.,Fedeighi,M.,anddeLamballerie,M. 2006. Influence of kinetic parameters of high pressure processing on bacterial inactivationinabuffersystem.InternationalJournalofFoodMicrobiology.106: 324330. Farkas, D. and Hoover, D. 2000. High pressure processing: Kinetics of microbial inactivationforalternativefoodprocessingtechnologies.JournalofFoodScience Supplement.65:4764. Furukawa,S.,Nakahara,A.,andHayakawa,I.2000.Effectofreciprocalpressurization on germination and killing of bacterial spores. International Journal of Food ScienceandTechnology.35:529532. Furukawa,S.,Shimoda,M.,andHayakawa,I.2003.Mechanismoftheinactivationof bacterial spores by reciprocal pressurization treatment. Journal of Applied Microbiology.94:836841. Hayakawa, I., Furukawa, S., Midzunaga, A., Horiuchi, H., Nakashima, T., Fujio, Y., Yano, Y., Ishikura, T., and Sasaki, K. 1998. Mechanism of inactivation of heat

67

tolerantsporesof Bacillusstearothermophilus IFO12550byrapiddecompression. JournalofFoodScience.63:371374. Hayakawa,I.,Kanno,T.,Yoshiyama,K.,andFujio,Y.1994.Oscillatorycomparedwith continuous high pressure sterilization on Bacillus stearothermophilus spores. JournalofFoodScience.59:164167. LopezCaballero,M.E.,PerezMateos,M.,Montero,P.,andBorderias,A.J.2000.Oyster preservationbyhighpressuretreatment.JournalofFoodProtection.63:196201. Margosch,D.,Ehrmann,M.A.,Buckow,R.,Heinz,V.,Vogel,R.F.,andGänzle,M.G. 2006. Highpressuremediated survival of Clostridium botulinum and Bacillus amyloliquefaciens endospores at high temperature. Applied and Environmental Microbiology.72:34763481. Margosch, D., Ehrmann, M.A., Gänzle, M.G., and Vogel, R.F. 2004a. Comparison of pressure and heat resistance of Clostridium botulinum and other endospores in mashedcarrots.JournalofFoodProtection.67:25302537. Margosch, D., Gänzle, M.G., Ehrmann, M.A., and Vogel, R.F. 2004b. Pressure inactivationof Bacillus endospores.AppliedandEnvironmentalMicrobiology.70: 73217328. Mathys, A., Chapman, B., Bull, M., Heinz, V., and Knorr, D. 2007. Flow cytometric assessmentof Bacillus sporeresponsetohighpressureandheat.InnovativeFood ScienceandEmergingTechnologies.8:519527. Meyer, R.S., Cooper, K.L., Knorr, D., and Lelieveld, H.L.M. 2000. Highpressure sterilizationoffoods.FoodTechnology.54:6772. Nguyen, L.T., Rastogi, N.K., and Balasubramaniam, V.M. 2007. Evaluation of the instrumental quality of pressureassisted thermally processed carrots. Journal of FoodScience.72:264270. Noma,S.,Shimoda,M.,andHayakaya,I.2002.Inactivation of vegetative bacteria by rapiddecompressiontreatment.JournalofFoodScience.67:34083411. Pehl, M. and Delgado, A. 1999. An insitu technique to visualize temperature and velocityfieldsinliquidbiotechnicalsubstancesathighpressure,p.519528. In H. Ludwig(ed.),Advancesinhighpressurebioscienceandbiotechnology.Springer Verlag,Heidelberg,Germany.

68

Rademacher, B., Werner, F., and Pehl, M. 2002. Effect of pressurizing ramp on the inactivation of Listeria innocua considering thermofluiddynamical processes. InnovativeFoodScienceandEmergingTechnologies .3:1924. Rajan,S.,Ahn,J.,Balasubramaniam,V.M.,andYousef,A.E.2006.Combinedpressure thermal inactivation kinetics of Bacillus amyloliquefaciens spores in egg patty mince.JournalofFoodProtection.69:853860. Rasanayagam, V., Balasubramaniam, V.M., Ting, E., Sizer, C.E., Bush, C., and Anderson, C. 2003. Compression heating of selected fatty food materials during highpressureprocessing.JournalofFoodScience.68:254259. Reddy,N.R.,Solomon,H.M.,Tetzloff,R.C.,andRhodehamel,E.J.2003.Inactivationof Clostridium botulinum Type A spores by highpressure processing at elevated temperature.JournalofFoodProtection.66:14021407. Shao, Y., Ramaswamy, H.S., and Zhu, S. 2007. Highpressure destruction kinetics of spoilage and pathogenic bacteria in raw milk cheese. Journal of Food Process Engineering.30:357374. Smelt,J.P.P.M.1998.Recentadvancesinthemicrobiologyofhighpressureprocessing. TrendsinFoodScienceandTechnology.9:152158. Subramanian, A., Ahn, J., Balasubramaniam, V.M., and RodriguezSaona, L. 2007. Monitoring biochemical changes in bacterial spore during thermal and pressure assistedthermalprocessingusingFTIRspectroscopy.JournalofAgriculturaland FoodChemistry.55:93119317. Ting,E.,Balasubramaniam,V.M.,andRaghubeer,E.2002.Determiningthermaleffects inhighpressureprocessing.FoodTechnology.56:31–35. Wuytack, E.Y., Boven, S., and Michiels, C.W. 1998. Comparative study of pressure inducedgerminationof Bacillussubtilis sporesatlowandhighpressures.Applied andEnvironmentalMicrobiology.64:32203224. Wuytack,E.Y.,Soons,J.,Poschet,F.,andMichiels,C.W.2000.Comparativestudyof pressureandnutrientinducedgerminationof Bacillussubtilis spores.Appliedand EnvironmentalMicrobiology.66:257261.

69

Temperatureatdifferentstagesduringprocessing(°C)a Timerequiredatdifferentstages ofpreprocessing(s) Pressurization Pre Immediately Immediately Pressure Depressurization Preprocess Pressure Pause b c rate(MPa/s) process before after holding (T5) (t1) comeup time (T1) pressurization pressurization (T3~T4) time( t2) between (T2) (T3) pulses (tpause ) (A)Singlepulse Fast(18.06) 57.7±0.5 70.6±0.4 103.8±0.5 105.4±0.5 79.2±0.8 236±6.0 33±1.0 Slow(3.75) 57.1±0.9 65.4±0.8 105.2±0.6 105.5±0.4 79.0±0.9 188±7.0 160±2.0 (B)Doublepulse Fast(18.06) st 70 1 pulse 58.0±0.6 70.2±0.7 103.0±0.5 105.2±0.3 79.6±0.9 236±6.0 33±1.0 62±1.0 nd 2 pulse 78.9±0.4 108.6±0.7 110.8±0.8 82.4±0.5 33±1.0 Slow(3.75) 1st pulse 57.6±0.2 64.7±0.3 105.1±0.5 105.5±0.4 79.5±0.5 188±7.0 160±2.0 69±2.0 2nd pulse 77.0±0.5 111.9±0.4 112.4±1.0 81.6±0.8 160±2.0 aGlycolbathtemperaturewasmaintainedat105.5°C. bDepressurizationtime(<2s)isnotincluded. c t1isthesumofpreheatingtimeforthesampleinthewaterbath,andtimespentinthepressurechamberjustbeforethecommencementofpressurization.

Table3.1.Temperaturehistoriesatdifferentstagesofpreprocessingandpressureassistedthermalprocessingat600MPaand

105°C.

Parameter a Probability (A) Inactivation of different spore concentrations by selected processingvariables Inoculumlevel( Ii) <0.0001 Pressurizationrate( PRj) <0.0001 Holdingtime( tk) <0.0001 InoculumlevelxPressurizationrate( I*PR ) 0.3513 InoculumlevelxHoldingtime( I*t) <0.0001 PressurizationratexHoldingtime( PR *t) <0.0001 InoculumlevelxPressurizationratexHoldingtime( I*PR *t) 0.0029 (B)Inactivationofspores(1.4x10 8CFU/mL)bypulsedpressure andotherprocessingvariables

71 Pressurepulsing( Pi) <0.0001 Pressurizationrate( PRj) <0.0001 Holdingtime( tk) <0.0001 PressurepulsingxPressurization rate(P*PR) 0.2317 PressurepulsingxHoldingtime (P*t) 0.0001 PressurizationratexHoldingtime( PR *t) <0.0001 PressurepulsingxPressurizationratexHoldingtime( P*PR *t) 0.0028 ainfluenceofindividualprocessingparameterandtheirinteractionterms.

Table 3.2. Summary of statistical analysis results regarding the contribution of various processing parameters to the spore lethality(∆logCFU/mL).

Pressurization Pressure Thermaldosage Pressuredosage Inoculum Inoculum Inoculum rate(MPa/s) holdingtime (°C .s) (MPa .s) level level level (min) (1.1.x10 9 (1.4x10 8 (1.3x10 6 CFU/mL) CFU/mL) CFU/mL) Correspondinglogreduction(logCFU/mL) Fast(18.06) 0 117±12 1041±119 0.5±0.2 0.6±0.1 0.6±0.2 0.5 370±16 4013±266 0.9±0.3 1.5±0.1 1.2±0.1 1 669±38 6954±20 1.4±0.5 2.4±0.2 2.0±0.4 2 1420±77 13621±189 2.8±0.2 3.9±0.4 4.1±0.3 3 2034±71 19265±249 3.7±0.5 5.2±0.5 4.9±0.2 5 3189±75 32973±1359 5.4±0.6 6.8±0.1 5.1±0.1 Slow(3.75) 0 667±79 5202±587 1.1±0.2 2.6±0.3 2.0±0.1 0.5 898±71 8080±83 1.4±0.1 2.9±0.5 2.2±0.2 72 1 1158±157 10744±338 2.5±0.6 3.4±0.3 3.2±0.3 2 1949±56 17006±614 3.4±0.1 4.6±0.1 4.5±0.2 3 2596±134 23479±300 4.6±0.3 5.8±0.3 5.1±0.1 5 3803±161 36361±274 6.1±0.4 6.6±0.1 5.1±0.1

Table3.3.Thermalandpressuredosageofthelethalregion(T>95°CandP>500MPa)atvariouspressureholdingtimesand theircorrespondinglog reductionfromthesinglepulseexperiment.Datapresented aremean±standarddeviationofthree independentreplications.

(A)

120 700 T3’ T4 105 600 T 90 3 500 T2 75 T5 400 60 300 45 T1 Sample temperature Glycol bath temperature 200

30 Pressure (MPa) Temperature (°C) Pressure 15 100 0 0 0 1 2 3 4 5 6 7 8

t1 t2 t3 Treatment time (min) (B)

120 700 T13’ T14 T24 105 600

90 T23 T 500 T12 13 75 400 T15 T 60 T22 25 300 45 T11 200

30 Pressure (MPa) Temperature (°C) 15 100 0 0 0 1 2 3 4 5 6 7 8 910 t 11 t12 t13 tpause t22 t23 Treatment time (min)

Figure3.1.Comparisonofpressureandtemperaturehistoriesofsporesamplessubjected tofastpressurizationrateduringsingleanddoublepulsetreatmentatPATPconditions (600MPaat105°Cfor3min).Singlepulsetreatment(A)anddoublepulsetreatment (B).

73

10 9 8 7 6 5 4 3

Survivor (log CFU/ml) (log Survivor 2 1 0 -3 -2 -1 0 1 2 3 4 5 Come-up time Presssure hold time (min)

Figure 3.2. Bacillus amyloliquefaciens TMW2.479sporesurvivorsindeionizedwater subjected to 600 MPa and 105°C with two pressurization rates and three inoculation levels.Pressurizationrates:( ______ )fast;()slow.Inocula:( )1.1x109 CFU/mL;( )1.4x10 8CFU/mL;( )1.3x10 6CFU/mL.Thehorizontaldottedline indicatesthedetectionlimit(<10CFU/mL).

74

9 8 7 6 5 4 3 2 Survivor (Log CFU/ml) (LogSurvivor 1 0 TP- TP- 0 min 0 min 3 min 0 min 3 PATP- PATP- control

Untreated Untreated

Figure3.3.SporecountwhensuspensionsweresubjectedtoPATP(700MPa105°C)or TP (105°C0.1 MPa), for 0 and 3 min, and subsequently tested for determining germinatedsubpopulations.Sporepopulations:( )dormantspores;( )germinated spores.Thehorizontaldottedlineindicatesthedetectionlimit(<10CFU/mL).

75

Figure3.4.Thermaldosage(A),pressuredosage(B)ofthelethalregion(T>95°CandP >500MPa)atvariouspressureholdingtimesduring( )singleand( )doublepulse experiments. Spore survival curve (C) of B. amyloliquefaciens TMW 2.479 after treatmentwith600MPaand105°Cwith( ______ ) singleand( )double pulses. Pressurization rates: (18.06 MPa/s) fast; (3.75 MPa/s) slow. ac Mean (log CFU/mL)±standarddeviation:differentsuperscriptwithintreatment(singleordouble pulses) represents significant difference among means ( P < 0.05). AC Mean (log CFU/mL) ± standard deviation: different superscript within time represents significant differenceamongmeans( P< 0.05).Theinitialpopulationwas1.4x10 8CFU/mL.The horizontal dotted line indicates the detection limit (< 10 CFU/mL). The asterisk ( *) representssporecountsunderdetectablelevel.

76

Fastrate(18.06MPa/s) Slowrate(3.75MPa/s)

(A)

4000 4000 3000 3000

2000 2000

1000 1000

Thermaldosage (°C.s) Thermal dosage(°C.s) 0 0 0 1 3 0 1 3 Pressure hold time (min) Pressure hold time (min)

(B)

30000 30000

20000 20000

10000 10000

0 Pressure dosage (MPa.s) Pressure

Pressure dosage (MPa.s) Pressure 0 0 1 3 0 1 3 Pressure hold time (min) Pressure hold time (min)

(C)

8 8 a A a A 7 b A 7 6 6 a B b A 5 5 4 b B c A 4 c A 3 3 a B 2 2 c B * b B * b B * 1 1 Survivor (log Survivor CFU/ml) Survivor (log Survivor CFU/ml) 0 0 0 1 2 3 0 1 2 3 Pressure hold time (min) Presure hold time (min)

Figure3.4.

77

9 a a 8 7 b 6 c 5 d 4 de d ef 3 fg g 2 g g* g* g* 1 Survivor (Log CFU/ml) 0 1 min 1 min 3 min 1 min 3 min 1 min 3

Non-treated Single pulse Single pulse Double pulse (105°C) (112°C) (105°C, 112°C)

Figure 3.5. Bacillus amyloliquefaciens TMW2.479sporesurvivorsindeionizedwater processed at different treatment conditions (single pulse, 105ºC; single pulse, 112ºC; doublepulse,105and112ºC)andtwoPATPholdingtimes(1and3min).Pressurization rates:( )fast;( )slow. agMean(logCFU/mL)±standarddeviation:different superscriptwithintreatmentrepresentssignificantdifferenceamongmeans( P< 0.05). Controldemonstratestheinitialpopulationat1.4x10 8CFU/mL.Thehorizontaldotted lineindicatesthedetectionlimit(<10CFU/mL).Theasterisk( *)representssporecounts underdetectablelevel.

78

Chapter4:Efficacy ofpressureassistedthermalprocessing,incombinationwithorganic

acids,against Bacillusamyloliquefaciens sporessuspendedindeionizedwaterandcarrot

puree

Abstract

Effect of organic acids (acetic, citric, and lactic; 100 mM, pH 5.0) on spore

inactivationbypressureassistedthermalprocessing(PATP;700MPaand105°C),high pressureprocessing(HPP;700MPaand35°C)andthermalprocessing(TP;105°Cand

0.1MPa)wasinvestigated. Bacillusamyloliquefaciens sporeswereinoculatedintosterile

organic acid solutions to obtain a final concentration of 1.3 x10 8 CFU/mL. B. amyloliquefaciens sporeswereinactivatedtoundetectablelevelswithorwithoutorganic

acids after 3min PATP holding time. At a shorter PATP treatment time (~ 2 min),

inactivation was greater when spores were suspendedincitricandaceticacidsthanin

lacticacidordeionizedwater.PresenceoforganicacidsduringPATPresultedin33%to

80%germinationinthepopulationofsporesthatsurvivedthetreatment.Incontrastto

PATP,neitherHPPnorTP,forupto5minholdingtime with or without addition of

organicacids,wassporicidal.Inaseparatesetofexperiments,carrotpureewastested,as

alowacidfoodmatrix,tostudysporerecoveryduringextendedstoragefollowingPATP.

Resultsshowedthatorganicacidswereeffectiveininhibitingsporerecoveryintreated

79 carrotpureeduringextendedstorage(upto28days)at32°C.Inconclusion,additionof someorganicacidsprovidedsignificantlethalityenhancement( P< 0.05)duringPATP

treatmentsandsuppressedsporerecoveryinthetreatedcarrotpuree.

4.1 Introduction

Pressureassisted thermal processing (PATP) provides an opportunity for food processors to produce commercially sterile shelfstable lowacid foods at modest treatmentconditions.Theprocessinvolvessimultaneousapplicationofpressures(500to

700 MPa) and temperatures (90 to 121°C) to a preheated food product over a short holdingtime.Oneoftheuniqueadvantagesofthetechnologyistheabilitytoincrease producttemperaturequasiinstantaneouslywiththeheatofcompression.Thisreducesthe severity of the thermal effect such as that encountered during conventional thermal processing. The technology has potential applications in processing valueadded heat sensitivelowacidproductssuchassoups,eggproducts,coffee,tea,andmashedpotatoes

(Balasubramaniametal.,2008).

SeveralauthorshaveinvestigatedPATPefficacyagainstbacterialspores(Ananta

etal.,2001;CléryBarraudetal.,2004;Margoschetal.,2006;Rajanetal.,2006;Ahnet

al.,2007;Mathysetal.,2007;ParedesSabjaetal.,2007;Zhuetal.,2008;Bulletal.,

2009).Itisdesirabletoreducetheseverityofthepressurethermaltreatmenttominimize process impact on product quality. Reducing process severity will also make the

technology commercially attractive to the food industry for processing various shelf

stable,lowacidfoods.

80

Traditionalthermalprocessingtechniquessuchascanninguseacidificationasa

meansofreducingprocessseverityandextendingproductshelflife . Acetic,citric,and lactic acids are weak organic acids that can be used as food additives in most foods withoutanyspecificlimitations(Casadeietal.,2000).Influenceoftheseacidulantson microbialinactivationmostlydependsontheacid’sdissociationconstant(K a)andpHof themedium.Moreover,theinhibitoryeffectsofvarioustypesoforganicacidscouldbe substantially dissimilar due to the variation in the numbers of carboxyl and hydroxyl groups, and double bonds in their molecular structures (Hsiao and Siebert, 1999).

Leguerinel and Mafart (2001) reported the effectiveness of different organic acids in loweringtheheatresistanceof B.cereus spores.Sporesof Paenibacilluspolymyxa were found to be susceptibleto the undissociated form of lactic acid during heat treatment

(Casadei et al., 2000). To select appropriate organic acids, pH of the food should be comparableorlowerthanorganicacid’spK avalues. Theobjectivesofthisstudywereto investigatethefeasibilityofenhancingtheefficacyofPATPincombinationwithselected organicacidsagainstbacterialsporesandtoexplorethepotentialofextendingproduct shelflifebythecombinedtreatment.

4.2 Materialsandmethods

4.2.1 Bacterialstrainandpreparationofspores

Bacillus amyloliquefaciens TMW 2.479 Fad 82 culture was obtained from M.

Gänzle(DepartmentofAgricultural,FoodandNutritionalScience,UniversityofAlberta,

Edmonton, Alberta, Canada). The culture was activated in trypticase soy broth

81 supplemented with 0.6% yeast extract (TSBYE; Becton, Dickinson and Company,

Sparks,MD)andaerobicallyincubatedat32°Cfor24h.Aftertwotransfers,100lof vegetativecellswasspreadplatedontrypticasesoyagarsupplementedwith0.6%yeast

. extract (TSAYE; Becton, Dickinson and Company) and 10 ppm MnSO 4 H2O (Fisher

Scientific, Pittsburgh, PA). The inoculated plates were incubated at 32°C for 14 days.

Sporeswerecollectedbyfloodingtheplateswithcoldsteriledeionizedwaterandwashed

five times by differential centrifugation (2,000 to 8,000 x g, 20 min, 4°C). The spore pelletswerethenresuspendedinsteriledeionizedwatertoobtain~10 9spores/mL.The suspension was sonicated for 10 min (SM275HT, Crest, ETL Testing Laboratory,

Cortland,NY).Heattreatment(80°Cfor15min)wasappliedtodestroyanyremaining vegetativecells.Thesporesuspensionindeionizedwaterwasstoredat4°Cuntilused.

4.2.2 Organicacids

Foodgrade acetic acid (glacial, FCC; Spectrum ®, Fisher Scientific), citric acid

(anhydrouspowder,FCC;Tate&Lyle,Decatur,IL),andlacticacid(FCC88;Purac ®,

Lincolnshire,IL)werepreparedtoafinalconcentrationof100mM.Organicacids(100

mM)werealsopreparedfromchemicalgradematerial:aceticacid(glacial,ACS;Fisher

Scientific), citric acid (Acros Organics, Morris Plains, NJ), and lactic acid (Acros

Organics).ThepHvaluesofthesolutionsweremeasuredusingapHmeter(Accumet ® model15,FisherScientific).AfinalpHvalueof5.0wasachievedbyanadditionof1N to 5N sodium hydroxide (Fisher Scientific) to various organic acid solutions. All solutions were filtersterilized with a 0.22 mporesize membrane filter (Fisher

Scientific).

82

4.2.3 Preparingsporesforprocessing

Priortothetreatments,thesporesuspensionwassonicatedfor10mintoprevent clumping.Aliquots(0.2mL)of B.amyloliquefaciens sporesuspensionand1.8mLof sterileorganicacidsolution(acetic,citric, and lactic;100mM,pH5.0, anddeionized water;pH6.8)wereasepticallytransferredintoasterilepouch(5x2.5cm,polyethylene bags,0100257,FisherScientific)toobtain~1.3x10 8CFU/mL.Thepoucheswerethen

heatsealedusinganimpulseheatsealer(AmericanInternationalElectric,Whittier,CA),

whileminimizingoccludedairasmuchaspracticallypossible.Allinoculatedpouches

werestoredupto2hinanicewaterbath(4°C)beforetreatment.

4.2.4 Pressureassistedthermalprocessingandhighpressureprocessing

Highpressuremicrobialkinetictester(PT1,AvureTechnologiesInc.,Kent,WA)

was used in this study. The unit is equipped with an intensifier (M340 A, Flow

International,Kent,WA)thatcangeneratepressuresupto700MPa.A54mLstainless

steelpressurechamberwasimmersedinatemperaturecontrolledbath.Propyleneglycol

(HoughtonSafe620TY,HoughtonInternationalInc.,ValleyForge,PA)wasusedasthe

heattransfermediuminthetemperaturecontrolledbath.Theglycolwasalsousedasthe pressuretransmittingmediumwithinhighpressureprocessor.ForPATPapplications,the

temperatureoftheexternalglycolbathwassetat105°C(targetprocesstemperature)to

minimizeanylossduringthetest.Thehighpressureprocessorhadapressurizationrate

of14.3MPa/s,whiledepressurizationoccurredwithin2sforalltreatments.Thesample

temperature,bathtemperature,andchamberpressurewererecordedeverysecondwitha

Ktype thermocouple sensor (model KMQSS04OU7, Omega Engineering, Stamford,

83

CT)andpressuretransducer(model3399093006,Tecsis,Frankfurt,Germany)usinga dataacquisitioncomputer.

Forvariouscombinedpressureheattreatmentexperiments,thepouchwasplaced inside a sample holder which was made of a 10mL polypropylene syringe (model

309604, Becton, Dickinson and Company) wrapped with two layers of insulating material(SportsTape,CVS ®PharmacyInc.,Woonsocket,RI).Thevoidvolumeinthe

syringe was filled with ~8 mL of water to ensure that the spore suspension and the

syringewaterinthevicinityofthesampleexperience similar thermal response during processing. Insulating syringe also helped to minimize the heat exchange between the

syringecontainingthesporesampleandthesurroundingglycolbath,whichhashigher

heatofcompressionthanthatofwater.Thesyringecontainingthepouchwaspreheated

atanempiricallydeterminedpreprocessingtemperature( T1~54.6ºC;Table4.1.A)ina

waterbath(Isotemp928,FisherScientific)for2min.Thesyringewasthenimmediately

loadedintothepressurechamber.Thepressuretemperaturehistoriesinthevicinityofthe

samplewithinthesyringewererecorded.Afterreachingthepredeterminedtemperature,

T2 (Table 4.1.A), the pressurization process started. The T2 was estimated using the

followingrelationship:

T2 = T3 − (CH ⋅ P + TH ) (4.1)

where T3isthedesiredtargettemperature(°C), CH istheheatofcompressionvalueof water (temperature increase in °C per 100 MPa pressurization), and ∆P is the process pressure(MPa). ∆THisthetemperaturegainedbythetestsampleduringloadingwithin thepressurechamberaswellaspressurization(Nguyenetal.,2007).

84

TestsamplesweretreatedatvariousPATP(700MPa105°Cfor0,1,2,3,and5 min)andHPP(700MPa35ºCfor0,2,and5min)conditions.Thepressureholdingtime did not include the pressure comeup time or the depressurization time. After depressurization, the spore suspension was immediately removed from the pressure chamberandcooledinanicewaterbath(4°C)topreventfurtherinactivation.Surviving

B.amyloliquefaciens populationswereenumeratedasdescribedinalatersectionwithin3 hafterthetreatments.Allexperimentswereindependentlyrepeatedatleastthreetimes.

4.2.5 Thermalprocessing

Thermal processing (TP) experiments were carried out at 105°C and 0.1 MPa

usinga35Lcirculatingoilbath(NESLABEX35DigitalOne,ThermoFisherScientific

Inc.,Waltham,MA).Thermalprocess experimentsutilized customfabricated thermal

deathtimedisks(TDTdisk;18mmdiameter,4.5mmheight)assampleholders(Jinet

al.,2008).ThesampletemperaturewasmonitoredandrecordedbyinsertingaKtype

thermocouple (Omega Engineering) attached to a data logger (IOtech Inc., Cleveland,

OH)intoaTDTdiskcontainingsteriledeionizedwaterwithoutspores.Twooilbaths

were used to manipulate thermal preprocessing time to that of PATP (Nguyen et al.,

2007).Temperatureofthefirstoilbathwasmaintainedat113±1ºC.Oncethesample

temperaturereached~100°C,allTDTdiskswereshiftedtothesecondoilbathwhich

was maintained at 105°C. At specific holding times, the disk was removed from the

secondoilbathandimmediatelyimmersedintoanicewaterbath(4°C)toavoidfurther

inactivation. Temperature histories were automatically recorded by the data logger.

Comeuptimeofthesamplestoreach105°C wasapproximately 1.2 min and it took

85 about 3 min to bring the thermalprocessing temperature from 105°C to 4°C (Table

4.1.B).Surviving B.amyloliquefaciens populationswereenumeratedwithin3hafterthe treatments.Allexperimentswereindependentlyrepeatedatleastthreetimes.

4.2.6 Enumerationofsurvivorsandsporegermination

After treatments, 1mL of the treated spore suspension was serially diluted in sterilized0.1%peptonewater.The1mLaliquotsoftheappropriatedilutionswerethen pourplatedonduplicateTSAYE.Portionofthetreatedsampleswerealsoheatshocked at80°Cfor15mintokillgerminatedandsensitizedsporesoccurringduringthePATP treatments.Coloniesofsurvivorswerecountedafterincubationat32°Cfor48h.

Heat sensitivity was used as a criterion for spore germination (Wuytack et al.,

2000;VanOpstal,etal.,2004;Blacketal.,2008).Thepercentageofsporegermination wasestimatedusingequation4.2fromtheknowledgeofthetotalsurvivingpopulation after PATP (N PATP ) and the number of dormant spores survived PATP treatment followedbyaheatshock(N PATP+HT )at80°Cfor15min.

(N − N ) %SporeGermination= PATP PATP+HT ×100 (4.2)

N PATP

4.2.7 Mostproablenumber(MPN)technique

WhenthetreatmentwithPATPinactivatedbacterialsporestoundetectablelevel bytheplatingmethod(≤10CFU/mL),survivorpopulationwasestimatedusingtheMPN

technique (FDA, 2001). Briefly, sample pouches were aseptically cut open and its

contents were serially diluted in sterilized 0.1% peptone water and inoculated into 9

TSBYEtubesat3x0.1,3x0.01,and3x0.001mL inocula. Samples processed in

deionizedwaterwereusedasthecontrol.TheinoculatedMPNtubeswereincubatedat 86

32°Cupto15daystoallowthepressureheatinjuredsporestorecover,germinate,and grow.Allinoculatedtubesweremonitoredfor turbidity. The turbid tubes (indicating growth)werethenstreakedontoTSAplatestoconfirmthepurityofcultureandobserve typical B.amyloliquefaciens coloniesafterincubationat32°Cfor48h.

4.2.8 MicrobialstabilityofPATPprocessedcarrotpuree

ThecombinedeffectofPATPandorganicacidwastestedusinginoculatedcarrot puree (Gerber ®, Fremont, MI) at pH 5.4. Through a separate set of preliminary

experiments, it was found that untreated carrot puree supported the growth of the B.

amyloliquefaciens spores.Spores inoculatedintocarrotpureeatlowlevels(~10 2and10 3

CFU/mL)wereabletogrowto>10 7CFU/mLafter2daysofstorageat32°C.

Aliquotsoforganicacids(0.18mL,1M)wereaddedtothesterilecarrotpuree

(1.62 mL) and thoroughly mixed to obtain a final concentration of 100 mM. When

addingacidsolutionstothecarrotpuree,itspHdroppedto3.3to2.8.ThepHofthe

carrotpureeorganicacidmixturewasthenadjustedtopH5.0byusing1Nto5Nsodium

hydroxide.Carrotpureeorganicacidsolution(1.8mL)and B.amyloliquefaciens spores

(0.2mL)weremixedandpackagedasdescribedearlier.

Various carrot puree samples inoculated with B. amyloliquefaciens spores were processedat700MPaand105°Cfor5and15min.Treatedpoucheswerestoredat32°C

upto28days.Samplepoucheswerewithdrawnat0,2,7,14,21,and28daysofstorage.

Duringeachwithdrawal,sampleswereenumeratedusingbothplatecountandtheMPN

techniqueasfollows.PATPtreatedsamples(2mL)weremixedwith18mLofsterilized

0.1%peptonewater.Thesampleswerethenhomogenizedinastomacher(SewardLab

87

Stomacher,Norfolk,UK)at230rpmfor2.5min.Portionsofprocessedsampleswere alsoheatshockedat80ºCfor15mintoinactiveany germinated or sensitized spores.

After serial dilution, 0.1 mL aliquots of appropriate dilutions were spreadplated on duplicateTSAYEplates.Enumerationwascarriedoutafterincubationat32°Cforupto

72 h. The MPN analysis (similar to that described earlier) was also carried out for estimatingsurvivingsporesthatwerenotrecoveredbytheplatecounttechnique.

4.2.9 Statisticalanalysis

DataanalysiswasperformedusingtheStatisticalAnalysisSystemsoftware(SAS

9.1,SASInstituteInc,Cary,NC).Theindependentvariablesweresuspensionmedium

(i.e., deionized water, acetic, citric, and lactic acid) and pressure holding times (i.e.,

untreated,0,1,2,3,and5min).Thesporesurvivors(logCFU/mL)inresponsetothe

combinedpressureheatprocesstreatmentservedasthedependentvariable( Yijk )andthe experimentalreplicationswerealsoincludedasablockingfactor( βi)intheanalysis.The

following statistical model was used to analyze the data by the general linear model

(GLM)procedureofSAS.

Yijk = + βi + S j + Tk + STjk + ε ijk (4.3) where Yijk isthedependentvariable, βiistheblockingfactor, Sjisthesuspensionmedium,

Tk is the holding time, ST jk is the interaction term between suspension medium and holding time, and εijk is the error term. Mean comparison were evaluated with the

StudentNewman,Keuls(SNK)testata5%significantlevel( P=0.05).

88

4.3 Resultsanddiscussion

Chemicalandfoodgradeorganicacids,includingcitric(pK a=4.75),lactic(pK a

=3.88),andacetic(pK a=4.76),at100mMlevelandpH5.0,weretestedincombination

withPATP.Preliminaryexperimentsverifiedthatadditionoforganicacidstothespore

suspension (without TP or PATP treatment) did not cause any statistically significant

inactivationorgermination.Further,foragivenprocesscondition,microbialefficacyof

chemicalandfoodgradeorganicacidswerenotstatisticallydifferent(datanotshown).

Therefore,subsequentstudieswerecarriedoutusingfoodgradeorganicacidsonly.

4.3.1 Influence of organic acids on enhancing spore inactivation during pressure

assistedthermalprocessing

Figure4.1comparesthesporesurvivorsafterPATP treatments in combination withorganicacidsforvarioustreatmenttimes.Duringthepressurecomeuptime(~48 s), up to 0.4 log reduction was observed (Figure 4.1). Under the conditions of the experiments, the spores suspended in deionized water did not show any significant germination ( P > 0.05) over a 5min pressure holding time; spores enumerated immediatelyafterPATPtreatmentsweresimilarincountstothosefurthersubjectedto the heat shock at 80°C for 15 min. Increasing pressure holding time increased B. amyloliquefaciens inactivation. For example, pressure holding time of 1 and 2 min resulted in 4.0 and 5.8 log reduction, respectively. Bacillus amyloliquefaciens spores

were ultimately inactivated to below the detection level (≤ 10 CFU/mL) after 3min pressureholdingtime.

89

Amongtheorganicacidstested,aceticandcitricacids(100mM)werefoundto be effective in enhancing spore inactivation even at the shorter holding time (2 min)

(Figure4.1).Withintherangeoftheexperimentalconditionstested,lacticacid(100mM)

didnotenhancePATPlethality(P> 0.05 ).Itprovidedsimilarinactivationasthecontrol

(i.e.,sporessuspendedindeionizedwater).Increasingconcentrationsofthecitric,lactic,

andaceticacidsupto200mMduringPATPprovidedsimilarlethalityasthatof100mM

(datanotshown).

Combining the organic acids (100 mM) with pressure (700 MPa and 35°C) or

thermal (105°C and 0.1 MPa) treatments did not enhance B. amyloliquefaciens spore

inactivation.A5minpressuretreatmentat700MPa35°Ccausedsporeactivationupto

0.3logCFU/mL.Similarly, about0.10.4logCFU/mL spore activation was observed

afterheattreatmentat105°C0.1MPaupto5min.

The sporicidal efficacy of organic acids during thermal processing is well

documented(Casadeietal.,2000;LeguerinelandMafart,2001;MoussaBoudjemaaet

al.,2006),buttheirefficacyduringPATPisnotknown.Theefficacyoforganicacids

during thermal processing was attributed to acidulant type and concentration, pH and

compositionofthemedium,inoculumlevel,andbacterialstrains(LeguerinelandMafart,

2001; MoussaBoudjemaa et al., 2006). Palop et al. (1997) found that citric acid was

moreeffectiveagainst B.coagulans whileheatingat100°Cfor10s,whereaslacticacid

wasmoresporicidalwiththelongerheatingtimes(≥2min).Withintherangeofthe

experimentalconditions,combinationofPATPwithaceticorcitricacidsappearstoyield

90 moresporicidaleffectthandoesthePATPtreatmentofsporesindeionizedwater(Figure

4.1).

4.3.2 Germinationofsurvivingpopulationof B.amyloliquefaciens sporesafter

pressureassistedthermalprocessinginthepresenceoforganicacids

In general, the organic acids tested induced germination among the surviving population of B. amyloliquefaciens spores after PATP treatment (Figure 4.1). The

magnitudeofgerminationvariedwiththetypeoforganicacidandpressureholdingtime.

Acetic acid induced germination of 38% (0 min) to 80% (2 min) of surviving spore population, whereas citric acid caused 44% (after 0 min) and 75% (after 2 min) of

survivingsporepopulationtogerminate(Table4.2).Forlacticacid,sporegermination

wasdetectedat0and1min(33to64%),butthelevel of spore germination was not

detectableat2minpressureholdingtime.

Anumberofearlierresearchersreportedthatmoderatepressure(100to400MPa)

induced germination in bacterial spores, such as those of B. subtilis and B. cereus , at

moderate process temperature (25 to 60°C) (Wuytack et al., 2000; Van Opstal et al.,

2004). At 100300 MPa, germination was induced through the activation of spore’s

nutrient receptors even without the presence of nutrients (Paidhungat et al., 2002). At

higher pressure levels (400 to 800 MPa), the release of dipicolinic acid (DPA) was

initiated, which lead to the later steps in spore germination (Wuytack et al., 1998;

Paidhungat et al., 2002). Black et al. (2008) observed about 4 log CFU/mL of

germinationfrom B.subtilis sporessuspendedinmilkaftertreatedat500MPa40°Cfor

5minandabout85%ofDPAwasreleased.InourearlierstudiesonB.amyloliquefaciens

91 spores(aswellasthecurrentstudy),sporessuspendedindeionizedwaterdidnotproduce anydetectablesporegerminationaftertreatmentsat600700MPaat105°Cforabout5 minpressureholdingtime(Ratphitagsantietal.,2009).Itappearsthatadditionoforganic acidsfacilitatedthegerminationinPATPtreated B.amyloliquefaciens spores.

When pH values before and after PATP treatments were compared, all organic acid investigated in this study had similar pH values (~ pH 5.0). Pressureinduced transientpHshifthasbeenreportedintheliterature. Forexample,Min(2008)used a realtimeinsitupHmeasurementtechniqueandobservedthatcitric(pH4.55,570mM) andphosphoricacids(pH6.90,58mM)whentreatedunderpressure(400MPaat25 oC)

transientlyshiftedtheirpHtowardsacidicsideby0.57and1.24pHunits,respectively.

Upon depressurization, pH values returned close to initial values. Similarly, Paredes

Sabjaetal.(2007)theoreticallypredicteda0.7pHunitsshifttowardsacidicconditions

forcitricacid(initialpH4.75)whensubjectedtothe650MPatreatment.Thepressure

inducedpHshiftdirectlyimpactsthedissociationconstant(pK a)ofanacidwhichcould beexplainedbytherearrangementofwatermolecules.Whenincreasingpressure,water

moleculesarealignedintoacompactstructureandcondensedlayersareformedaround

thechargedions.Thisleadstothedissociationofunchargedacids(HA)intoadditional

H+andA ions(Neumanetal.,1973;EľyanovandHamann,1975;ParedesSabjaetal.,

2007).Sinceionizationoccursunderpressureprocessing,thebeneficialinfluenceofthe undissociatedacidformsasanantimicrobialentitybecomelesseffective(Earnshawet al.,1995).Onthecontrary,itwasalsoreportedthattheundissociatedformsoforganic acidsmightbemoreactiveunderpressure(Smelt,1998).

92

TemporaryexposuretolowerpHvaluesunderpressurepossiblysensitizedspores

toPATP.Nativesporesmighttransformintodemineralizedforms(alsoreferredtoasH

spores)whenhighpressureinducedionizationoccurs(MarquisandBender,1985;

ParedesSabjaetal.,2007).ThetransientpHshiftmightimpactsporeinnermembrane byincreasingtheirpermeabilitybarriers,leadingtothedecreaseinresistanceofsporesto

thermalandpressuretreatments(ParedesSabjaetal.,2007).Verylimiteddataare

currentlypublishedonpressuretemperatureinducedpHshift;techniquesforestimating

thetransientpHshiftunderpressurearestillunderdevelopment.Foodsmaycontain

numberoforganicandaminoacidsthatcanactasbufferingagentsandeachwith

differentpKavalues.Thus,thenetpHshifteffectofvariousorganicacidconstituents presentinthefoodduringpressurizationisnotknown.Moreresearchisneededto

understandthetransientpHshiftunderpressureanditsimpactontheprocessedfood.

4.3.3 Microbialstabilityduringstorage

Table4.3presentstheMPNresultsof B.amyloliquefaciens sporessuspendedin deionizedwaterandvariousorganicacidsolutions(100mM)whenthesesuspensionsare treatedwith700MPa105 oCfor3and5minholdingtimesandstoredupto15daysat

32°C.Duringthisstorageperiod,greaternumbersofviablesporesweregenerally

recoveredfromsporesinoculatedindeionizedwaterthanthosefromorganicacid

solutions.Forexample,afterPATPfor3minand15daysofstorage,viablesporeswere

2.4,1.2,0.63,and0.50logMPN/mLindeionizedwater,acetic,citric,andlacticacids,

respectively.PATPtreatedsporesinacidsolutions,after5minpressureholdingtimeas

wellasthoseindeionizedwateryielded<10 1MPN/mLviablesporepopulations.

93

Intheabsenceoforganicacids,treatmentofcarrotpureeat700MPa105°Cfor5

or15mininactivated B.amyloliquefaciens sporestotheundetectableleveloftheplate

countmethod(<10 2CFU/mL).Subsequentstorageofthesuspensionsubjectedtothe5

min PATP at 32°C for 7 days and beyond resulted in significant growth of B.

amyloliquefaciens (>7logCFU/mL)(Figure4.2).Thisindicatedpossiblerepairingand recoveryofinjuredpopulationinthepresenceofnutrientrichfoodmatrixoverstorage timewhenorganicacidswerenotpresent.However,therewasnorecoveryofsurviving sporeswhenpressureholdingincreasedfrom5minto15min;sporepopulationlevel remainedbelowthedetectionlimitover28daysofstorageat32°C.Whensporesof B. coagulans wereprocessedat100°Cforlessthan2min,sporesunderwentrepairfromthe

associated thermal injury (Palop et al., 1997). Valero et al. (2003) also observed the

growthof B.cereus sporesinvegetablebasedproducts(e.g.carrotbroth,zucchinibroth, andcarrotpuree)overstoragetimesatnormal(≤8°C)orelevated(1216°C)refrigerated temperatures. In the current study, adding organic acids to inoculated carrot puree inhibitedsporerecoveryduring28daysstorageat32°C(Table4.4.Aand4.4.B).Based on these results, organic acids appear quite effective in inhibiting the recovery of the spore population that survived PATP treatment of carrot puree. Further research is needed to establish the effectiveness of PATPorganicacidcombinationsonvarietyof lowacidfoodmatrices.

94

4.4 Conclusions

Organic acids, particularly citric and acetic acids reduced the resistance of B. amyloliquefaciens sporestothecombinedpressurethermal(700MPa105°Cfor2min) treatment. Organic acids also facilitated the germination of the remaining surviving populationafterPATPtreatment.HPP(700MPa35°C)andTP(105°C0.1MPa),with or without organic acids, did not cause detectable spore inactivation or germination.

Organic acids tested in this study were effective in preventing the recovery of the remainingpopulationofPATPtreated B.amyloliquefaciens sporesthatwereinoculated ina modellowacidfood(carrotpuree)andstoredupto28daysat32°C.Inconclusion, the use of organic acids in combination of with pressurethermal treatment may be a useful approach for enhancing spore inactivation during treatment and extending microbialshelflifeoftheprocessedproducts.Moreresearchisneededtounderstandthe interactionbetweenvariousorganicacidsandthenaturalfoodconstituentsduringpost

PATPtreatment.

95

References

Ahn, J., Balasubramaniam, V.M., and Yousef, A.E. 2007. Inactivation kinetics of selected aerobic and anaerobic bacterial spores by pressureassisted thermal processing.InternationalJournalofFoodMicrobiology.113:321329. Ananta,E.,Heinz,V.,Schlüter,O.,andKnorr,D.2001.Kineticstudiesonhighpressure inactivation of Bacillus stearothermophilus spores suspended in food matrices. InnovativeFoodScienceandEmergingTechnologies.2:261272. Balasubramaniam, V.M., Farkas, D., and Turek, E.J. 2008. Preserving foods through highpressureprocessing.FoodTechnology.62:3238. Black, E.P., Linton, M., McCall, R.D., Curran, W., Fitzgerald, G.F., Kelly, A.L., and Patterson, M.F. 2008. The combined effects of high pressure and nisin on germination and inactivation of Bacillus spores in milk. Journal of Applied Microbiology.105:7887. Bull, M.K., Olivier, S.A., Diepenbeek, R.J. van, Kormelink, F., Chapman, B. 2009. Synergisticinactivation ofsporesofproteolytic Clostridium botulinum strains by highpressureandheatisstrainandproductdependent.AppliedandEnvironmental Microbiology.75:434445 Casadei, M.A., Ingram, R., Skinner, R.J., and Gaze, J.E. 2000. Heat resistance of Paenibacillus polymyxa in relation to pH and acidulants. Journal of applied microbiology.89:801806. CléryBarraud, C., Gaubert, A., Masson, P., and Vidal, D. 2004. Combined effects of high hydrostatic pressure and temperature for inactivation of Bacillus anthracis spores.AppliedandEnvironmentalMicrobiology.70:635637. Earnshaw, R.G., Appleyard, J., and Hurst, R.M. 1995. Understanding physical inactivationprocesses:combinedpreservationopportunitiesusingheat,ultrasound andpressure.InternationalJournalofFoodMicrobiology. 28:197219. Eľyanov, B.S. and Hamann, S.D. 1975. Some quantitative relationships for ionization reactionsathighpressures.AustralianJournalofChemistry.28:945954. FDA: Most probable number from serial dilutions. Bacteriological analytical manual online [Internet]. 8th edition. Gaithersburg, MD: AOAC International; c2001 [Accessed2009June19].Availablefrom: http://www.fda.gov/Food/ScienceResearch/LaboratoryMethods/BacteriologicalAna lyticalManualBAM/ucm109656.htm

96

Hsiao,C.P.andSiebert,K.J.1999.Modelingtheinhibitoryeffectsoforganicacidson bacteria.InternationalJournalofFoodMicrobiology.47:189201. Jin, T., Zhang, H., Boyd, G., and Tang, J. 2008. Thermal resistance of Salmonella enteritidis and Escherichiacoli K12inliquideggdeterminedbythermaldeathtime disks.JournalofFoodEngineering.84:608614. Leguerinel,I.,andMafart,P.2001.ModelingtheinfluenceofpHandorganicacidtypes on thermal inactivation of Bacillus cereus spores. International Journal of Food Microbiology.63:2934. Margosch,D.,Ehrmann,M.A.,Buckow,R.,Heinz,V.,Vogel,R.F.,andGänzle,M.G. 2006. Highpressuremediated survival of Clostridium botulinum and Bacillus amyloliquefaciens endospores at high temperature. Applied and Environmental Microbiology.72:34763481. Marquis, R.E., and Bender, G.R. 1985. Mineralization and heat resistance of bacterial spores.JournalofBacteriology.161:789791. Mathys, A., Chapman, B., Bull, M., Heinz, V., and Knorr, D. 2007. Flow cytometric assessmentof Bacillus sporeresponsetohighpressureandheat.InnovativeFood ScienceandEmergingTechnologies.8:519527. MinS.2008.Propertiesoffoodandbuffersolutionsduringhighpressureprocessing:in situmeasurementofdensity,compressibility,electricalconductivityandreaction volume.[DPhildissertation].Columbus,OH:OhioStateUniv.153p.Available from:OhioLINKElectronicThesesandDissertationsCenter,Columbus,OH.

MoussaBoudjemaa,B.,Gonzalez,J.,andLopez,M.2006. Heat resistance of Bacillus cereus sporesincarrotextractacidifiedwithdifferentacidulants.FoodControl.17: 819824. NeumanJr,R.C.,Kauzmann,W.,andZipp,A.1973.Pressuredependenceofweakacid ionizationinaqueousbuffers.TheJournalofPhysicalChemistry.77:26872691. Nguyen, L. T., Rastogi, N.K., and Balasubramaniam, V.M. 2007. Evaluation of the instrumental quality of pressureassisted thermally processed carrots. Journal of FoodScience.72:264270. Paidhungat,M.,Setlow,B.,Daniels,W.B.,Hoover,D.,Papafragkou,E.,andSetlow,P. 2002.Mechanismsofinductionofgerminationof Bacillus subtilis sporebyhigh pressure.AppliedandEnvironmentalMicrobiology.68:31723175.

97

Palop, A., Marco, A., Raso, J., Sala, F.J., and Condón, S. 1997. Survival of heated Bacillus coagulans spores in a medium acidified with lactic or citric acid. InternationalJournalofFoodMicrobiology.38:2530. ParedesSabja,D.,Gonzalez,M.,Sarker,M.R.,andTorres,J.A.2007.Combinedeffects of hydrostatic pressure, temperature, and pH on the inactivation of spores of Clostridium perfringens Type A and Clostridium sporogenes in buffer solutions. JournalofFoodScience.72:202206. Rajan,S.,Ahn,J.,Balasubramaniam,V.M.,andYousef,A.E.2006.Combinedpressure thermal inactivation kinetics of Bacillus amyloliquefaciens spores in egg patty mince.JournalofFoodProtection.69:853860. Ratphitagsanti,W.,Ahn,J.,Balasubramaniam,V.M.,andYousef,A.E.2009.Influence of pressurization rate and pressure pulsing on the inactivation of Bacillus amyloliquefaciens spores during pressureassisted thermal processing. Journal of FoodProtection.72:775782. Smelt,J.P.P.M.1998.Recentadvancesinthemicrobiologyofhighpressureprocessing. TrendsinFoodScienceandTechnology. 9:152158. Valero,M.,Fernández,P.S.,andSalmerón,M.C.2003.InfluenceofpHandtemperature ongrowthof Bacilluscereus invegetablesubstrates.InternationalJournalofFood Microbiology.82:7179. VanOpstal,I.,Bagamboula,C.F.,Vanmuysen,S.C.M.,Wuytack,E.Y.,Michiels,C.W. 2004. Inactivation of Bacillus cereus spores in milk by mild pressure and heat treatments.InternationalJournalofFoodMicrobiology.92:227234. Wuytack, E.Y., Boven, S., and Michiels, C.W. 1998. Comparative study of pressure inducedgerminationof Bacillussubtilis sporesatlowandhighpressures.Applied andEnvironmentalMicrobiology.64:32203224. Wuytack,E.Y.,Soons,J.,Poschet,F.,andMichiels,C.W.2000.Comparativestudyof pressureandnutrientinducedgerminationof Bacillussubtilis spores.Appliedand EnvironmentalMicrobiology.66:257261. Zhu, S., Naim, F., Marcotte, M., Ramaswamy, H., Shao, Y. 2008. Highpressure destruction kinetics of Clostridium sporogenes spores in ground beef at elevated temperatures.InternationalJournalofFoodMicrobiology.126:8692.

98

(A) Holdingtime Comeuptime Preprocess Immediately Immediately Pressure Depressurization b (min) (min) (T 1,ºC) before after holding (T 5,ºC) a pressurization pressurization (T 3~T 4,ºC) (T 2,ºC) (T 3,ºC) 0 0.8±0.02 c 54.3±1.0 66.3±0.2 105.3±0.2 84.1±0.5 1 0.8±0.02 54.8±0.9 61.8±0.5 101.4±0.8 104.6±0.7 76.5±0.3 2 0.8±0.02 54.9±0.2 62.1±0.9 101.8±1.0 105.5±1.1 78.8±0.3 3 0.8±0.05 54.7±0.6 61.5±0.1 100.9±0.6 105.2±0.4 76.6±0.2 5 0.8±0.04 55.4±1.4 62.1±0.6 101.9±0.3 105.7±0.5 76.0±0.5 aExternalglycolbathsurroundingthepressurechamberwasmaintainedat105ºC. bDepressurizationtimeoccurredwithin2s. cDatapresentedaremeans±standarddeviationofthreeindependenttrials. 99 (B) Holdingtime Comeup Preprocess Immediately Thermal Cooldown Cooldown (min) time(min) (T 1,ºC) beforethermal holding temperature time(min) d treatment (T 3~T 4,ºC) (T 5,ºC) (T 2,ºC) 0 1.2±0.1 b 57.2±1.1 72.2±0.7 105.3±0.1 5.9±1.4 2.9±0.3 2 1.2±0.2 58.2±0.5 67.0±1.1 105.4±0.1 4.8±0.5 3.0±0.4 5 1.2±0.2 56.1±0.1 66.6±0.3 105.3±0.2 7.1±1.3 2.8±0.4 bDatapresentedaremeans±standarddeviationofthreeindependenttrials. dTemperatureofoilbathwasmaintainedat105°C. Table 4.1. Temperature histories at different stages of preprocessing and pressureassisted thermal processing for samples processedat700MPaand105ºC(A)andduringthermalprocessingat105ºCand0.1MPa(B).

Holdingtime Sporegermination(%) (min) Aceticacid Citricacid Lacticacid 0 38±2.0a 44±7.3 33±2.6 1 60±29 74±8.3 64±27 2 80±8.4 75±8.3 Ndb aDatapresentedaremeans±standarddeviationfromatleasttwoindependenttrials. bNd=notdetectable.

Table 4.2. Percent germination in the surviving Bacillus amyloliquefaciens spore populationsinthepresenceoforganicacidsafter700MPa105°Ctreatmentforvarious pressureholdingtimes.

100

Treatment LogMPN/mL * 2days 5days 10days 15days PATPfor3min: Deionizedwater 2.1±0.27 Aa 2.4±0.29 Aa 2.4±0.20 Aa 2.4±0.20 Aa Aceticacid 0.90±0.50 Ba 1.0±0.36 Ba 1.0±0.36 Ba 1.2±0.29 Ba Citricacid 0.63±0.20 Ba 0.63±0.20 Ba 0.63±0.20 Ba 0.63±0.20 Ba Lacticacid <0.48 ** Ba <0.48 ** Ba 0.50±0.05 Ba 0.50±0.05 Ba PATPfor5min: Deionizedwater 0.79±0.47 Ba 0.92±0.42 Ba 0.92±0.42 Ba 0.92±0.42 Ba Aceticacid 0.96±0.45 Ba 0.96±0.45 Ba 0.96±0.45 Ba 0.96±0.45 Ba Citricacid 0.69±0.31 Ba 0.69±0.31 Ba 0.69±0.31 Ba 0.69±0.31 Ba Lacticacid <0.48 **Ba <0.48 **Ba <0.48 **Ba <0.48 **Ba *MPNtubeswereincubatedat32°C.Recoveryofinjuredsporeswasmonitoredthroughout15days. ** Numbersarebelowmethod’sdetectionlimit(≤0.48logMPN/mL). ABMeans±SD:differentsuperscriptwithinacolumnrepresentssignificantdifferenceamongsuspension media(P< 0.05). aMeans±SD:differentsuperscriptwithinarowrepresentssignificantdifferenceamongincubationtimes (P< 0.05).

Table4.3.Survivorsof Bacillus amyloliquefaciens sporesthatweresuspendedinfood grade organic acids, PATPprocessed for 3 and 5 min at 700 MPa and 105°C, and enumeratedfollowingaheatshocktreatment(80°Cfor15min).

101

(A)700MPa105°C5min

Storage AfterPATPtreatment AfterPATPtreatmentfollowing (days) (Germinated+Dormantspores) heatshock(Dormantsporesonly) Citricacid Lacticacid Citricacid Lacticacid 0 1.2±0.12 AB 0.90±0.44 AB 1.3±0.33 AB 0.80±0.49 AB 2 1.6±0.40 AB 1.5±0.66 AB 1.5±0.14 AB 1.8±0.41 AB 7 1.9±0.30 AB 1.7±0.62 AB 2.2±0.50 A 1.8±0.37 AB 14 0.50±0.04 B 1.1±0.72 AB 1.4±0.52 AB 2.0±0.54 A 21 0.48 **B 1.1±0.77 AB 2.1±0.78 AB 2.2±0.36 A 28 1.1±0.54 AB 0.75±0.34 AB 1.7±0.79 AB 0.94±0.81 AB

(B)700MPa105°C15min

Storage AfterPATPtreatment AfterPATPtreatmentfollowing (days) (Germinated+Dormantspores) heatshock(Dormantsporesonly) Citric Lactic Citric Lactic 0 0.93±0.06 C 0.99±0.05 BC 1.2±0.60 BC 1.2±0.58 ABC 2 1.7±0.64 ABC 1.5±0.73 ABC 2.0±0.38 ABC 2.5±0.14 AB 7 1.5±0.78 ABC 1.8±0.41 ABC 2.7±0.33 A 2.0±0.87 ABC 14 0.64±0.28 C 0.66±0.26 C 1.7±0.65 ABC 1.5±0.66 ABC 21 0.96±0.20 BC 1.0±0.84 BC 0.84±0.35 C 1.1±0.77 BC 28 1.1±0.26 BC 0.64±0.28 C 1.3±0.82 ABC 0.98±0.19 BC * Treatedsampleswerestoredat32°C,MPNtubeswereincubatedfor5daysat32°C. **Numbersarebelowmethod’sdetectionlimit(≤0.48logMPN/mL). ACMeans±SD:differentsuperscriptrepresentssignificantdifferenceamongmeans( P< 0.05).

Table4.4.Recovery(logMPN/mL)of Bacillus amyloliquefaciens spores,inoculatedin carrot puree, during 28day storage after PATP treatmentincombinationwithorganic acids.

102

9 a a a a a a a * a 8

7

6

5 cd * d d * 4 e * f

Survivors (log CFU/ml) (log Survivors 3 f g * 2 g *

h h h h h h h h 1

0 5min 5min 5min 5min 0min 1min 2min 3min 0min 1min 2min 3min 0min 1min 2min 3min 0min 1min 2min 3min untreated untreated untreated untreated

DIW Acetic acid Citric acid Lactic acid

Figure4.1.Bacillus amyloliquefaciens sporesurvivors(logCFU/mL)inoculatedinfood gradeorganicacids(acetic,citric,andlactic)andtreatedat700MPaand105°C.Spores inoculated in deionized water served as control. ( ) Dormant spores and ( ) germinatedspores.Initialinoculawere8.1±0.05 log CFU/mL. The horizontal dotted lineindicatesthedetectionlimit(10CFU/mL).Different letters represents significant difference among means at P < 0.05. An asterisk (*) indicates statistically significant sporegermination.

103

9

8

7

(log CFU/ml) (log 6

5

4

3 Bacillus amyloliquefaciens Bacillus

2 Recovered Recovered 1

0 0 2 7 14 21 28 Storage (days)

Figure4.2. Recoveryof Bacillus amyloliquefaciens onTrypticasesoyagarsupplemented with0.6%yeastextractduringvariousstoragetimesat32°C.Theinoculatedsporecarrot pureesamplesweresubjectedtoPATPtreatment(700MPa105°Cateither5or15min) and then stored at 32°C before enumeration. (PATP 5 min); (method’s detectionlimit=100CFU/mL)PATP15mintreatedsamplesremainedunderdetection limitthroughoutstoragetime.

104

Chapter5:Fouriertransforminfraredmicrospectroscopyandmultivariateanalysisof

Bacillus amyloliquefaciens sporeinactivationduringpressureassistedthermalprocessing

Abstract

Changesinsporecompositionof Bacillus amyloliquefaciens grown in different

sporulation media (TSAYE and NAYE) as influenced by pressureassisted thermal processing(PATP),highpressureprocessing(HPP),andthermalprocessing(TP)were

investigated using Fouriertransform infrared spectroscopy (FTIR). Additional

experiments were carried out to compare and contrast the biochemical changes during

singleanddoublepulsePATPtreatmentswithequivalentholdingtimes.FTIRspectra

discriminated spore samples grown in two sporulation media as well as treated by

differentprocessingtechniques(PATP,HPP,andTP).PATPandTPtreatmentscaused

majorchangesincalciumdipicolinate(CaDPA)structuresasdeterminedbyFTIRbands

at 1381, 1415, and 1442 cm 1. These bands corresponds to the contribution of COO

vibrationofCaDPAchelate,theinteractionofCa 2+ withCOO group,andpyridinering vibrationofDPA(dipicolinicacid),respectively.Ratioofpeakheightsat1381cm 1 and

1442cm 1indicatedthehigheramountofCaDPAreleasebythedoublepulsetreatment.

Inaddition,impactonamidebands(15401650cm 1)ofproteinweredetectedinTPand

PATPtreatedsamples.WhileFTIRspectrawereabletopredictmicrobiologicallethality 105 for PATP (singlepulse) and TP treatments, it did not predict lethality changes during doublepulsePATPtreatment.Thismaybepossiblyduetodifferencesinmechanismof inactivationduringsingleanddoublepulsetreatment.

5.1 Introduction

Consumersdemandminimallyprocessedshelfstablelowacidfoods,withbetter

color,texture,appearance,nutritionalvalues,withminimalornopreservatives.During

traditionalthermalprocessing,theproductisheatedbyconductionorconvectionprocess

andtheseverityofthermaltreatmentadverselydegradeproductqualityanddestroyheat

sensitive ingredients. The food industry is investigating alternative sterilization

technologiesthatcanmeetconsumerdemandforminimallyprocessedsafelowacidfood products.Amongthealternativesterilizationtechnologiesinvestigated,pressureassisted

thermalprocessing(PATP)gainedindustrialinterestintherecentyears.Ithasapotential

for manufacturing shelfstable lowacid foods such as soups, mashed potatoes, coffee,

andtea(Balasubramaniametal.,2008).InFebruary2009,itsapplicationforsterilization

oflowacidshelfstableproductswasapprovedbyU.S.FoodandDrugAdministration

(FDA) (Anonymous, 2009). The process preserves lowacid foods by using a

combinationofpressure(500to700MPa)andtemperature(90to121ºC)overashort

holdingtime(<10min).Oneoftheuniqueadvantagesofthistechnologyisitsabilityto providerapidanduniformtemperatureincreaseinthetreatedfoodasaresultfromheat

of compression. Expansion cooling also occurs upon depressurization. This limits

severityofthermaleffectandprovidessuperiorproductquality.

106

Applicationofpressuretreatmentatambienttemperature effectively inactivates

variety of vegetative pathogenic and spoilage microorganisms. On the other hand, pressureincombinationwithheatisneededforbacterialsporeinactivation.Numberof

earlierstudiesdocumentedtheeffectivenessofPATPoninactivationofvariousbacterial

spores including Bacillus subtilis , B. amyloliquefaciens , Clostridium botulinum , C. sporogenes , and Geobacillus stearothermophilus (Margoschet al.,2006;Reddy et al.,

2006;Ahnetal.,2007;Zhuetal.,2008;Akhtaretal.,2009;Bulletal.,2009).Pressure pulsingorcyclingreportedtofurtherenhancesporeinactivation(Hayakawaetal.,1994;

Meyer et al., 2000). Ratphitagsanti et al. (2009) reported that spore inactivation of B. amyloliquefaciens TMW 2.479 Fad 82 was enhanced by 2 to 4 log CFU/mL when doublepulsetreatmentwasemployedoversinglepulsetreatmentat600MPa105ºCfor equivalent holding times. Very limited studies have been conducted to evaluate the mechanisticfactorscontributingtoenhancedlethalityduringdoublepulsetreatment.

Advances in FTIR spectroscopic instrumentation and multivariate analysis providecapabilityforrapiddetection,identification,andcharacterizationofspoilageand pathogenicmicroorganisms.FTIRspectroscopyallowsthesimultaneousdatacollection from all frequencies, thus improving its sensitivity. Other advantages of FTIR spectroscopyincludesimplicity,rapidity,andhighthroughput(Naumann2000).Specific spectralpatternsbasedonchemicalandbiologicalcompositionofsamplesareobtained and these unique biochemical fingerprints are the key for discrimination and identificationamongdifferentbiologicalspecimen.TheFTIRmicrospectroscopy(FTIR coupled with microscope) is effective to detect, identify, and classify various

107 microorganismsatstrainlevels(Perkinsetal.,2005;Schizaetal.,2005;NgoThiand

Naumann,2007; Brookeetal.,2008).Subramanianet al. (2006) employed attenuated totalreflectance(ATR)IRspectroscopyasananalyticaltooltopredicttheviablespore countsafterthermalandPATPtreatmentswithcorrelationcoefficient(r)of>0.99and standard errors of crossvalidation (10 0.2 – 10 0.5 CFU/mL). The authors also found correlationbetweenPATPsporeresistanceandcalciumdipicolinate(CaDPA)contentof the spores when five different bacterial strains were investigated (Subramanian et al.,

2007).

The objective of this study was to employ ATRFTIR microspectroscopy to differentiatebiochemicalchangesofbacterialsporesduringtheinactivationbypressure assisted thermal processing (especially single and doublepulse treatments), high pressureprocessing,andthermalprocessing.

5.2 Materialsandmethods

5.2.1 Sporeproduction

Cultureof B.amyloliquefaciens TMW2.479Fad82wasprovidedbyM.Gänzle

(Department of Agricultural, Food and Nutritional Science, University of Alberta,

Edmonton,Alberta,Canada).Activationandisolationofthebacterialculturewasdone bythe3phasestreakplatemethodonTrypticasesoyagarsupplementedwith0.6%yeast

extract (TSAYE; Becton, Dickinson and Company, Sparks, MD). The plate was then

incubated in an aerobic condition at 32°C for 24 h. An isolated single colony was

selectedandtransferredtoatesttubecontainingTrypticasesoybrothsupplementedwith

108

0.6% yeast extract(TSBYE;Becton,Dickinson andCompany). The spore crops were grownintwodifferentsporulationmedia(Table5.1).Thefirstbatchofthesporecrop waspreparedbyspreadplatingthe100Lportionsof B.amyloliquefaciens cultureon

. TSAYEsupplementedwith10ppmMnSO 4 H2O(FisherScientific,Pittsburgh,PA)(Ahn etal.,2007;Ratphitagsantietal.,2009).Thesecondsporecropwasgrownonnutrient agarsupplementedwith0.6%yeastextract(NAYE;Becton,Dickinson andCompany)

. and10ppmMnSO 4 H2O(adaptedfromMazasetal.,1995andCazemieretal.,2001).

The inoculated plates on TSAYE were aerobically incubated at 32°C for 1014 days,

whereas those on NAYE were incubated for 35 days to obtain 95% sporulated population. The sporulation was verified by using a phasecontrast microscopy. The

surfaceofinoculatedplateswasfloodedwith10mLofcoldsteriledeionizedwaterand

the spores were scraped with disposable plastic spreaders. The spore suspension was

washedfivetimesbydifferentialcentrifugationthatrangedfrom2,000to8,000x gfor

20mineachat4°C.Sporepelletswereresuspendedinsteriledeionizedwatertoobtain

~10 9 spores/mL inocula. The suspension was sonicated for 10 min (SM275HT, Crest,

ETLTestingLaboratory,Cortland,NY)followingbyheattreatmentat80°Cfor15min todestroyanyremainingvegetativecells.Bothsporesuspensionswerestoredina4°C refrigerator.

5.2.2 SamplepreparationforPATP,HPP,orTPtreatment

ForPATPandHPPexperiments,sporesuspensions(0.2mL)wereinoculatedin deionizedwater(1.8mL)andpackagedinsterilepolyethylenepouches(5cmx2.5cm,

0100257,FisherScientific)atinoculumlevelsof~1.6x10 8CFU/mLforTSAYEcrop

109 and ~2.5x10 8 CFU/mL for NAYE crop. The pouches were then heatsealed by an

impulse heat sealer (American International Electric, Whittier, CA). After manually

mixed the sample content, all pouches were submersed into an icewater bath (4°C).

Samplesweretreatedwithin2hafterpreparation.

SamplepreparationforTPexperimentsweredonebyasepticallytransferred0.2

mLsporesuspensionof B.amyloliquefaciens and1.8mLsteriledeionizedwaterintoan

aluminumTDTtube to obtain the final spore concentration of ~2.3x10 8 and ~3.4x10 8

CFU/mL for TSAYE and NAYE crops, respectively. All aluminumTDTtubes

containingthesporesuspensionwerekeptinanicewaterbath(4°C)upto2hbefore

thermaltreatments.

5.2.3 Combinedpressurethermaltreatment

Combinedpressurethermalexperimentswereconductedusingamicrobialkinetic tester (PT1 test unit, Avure Technology Inc., Kent, WA). The spore samples were treatedtovariouscombinedpressurethermaltreatmentconditionsbyadaptingpublished methodsreportedearlier(Ahnetal.,2007;Ratphitagsantietal.,2009).Thecomeuptime of the PT1 unit was 0.7 ± 0.1 min. The sample pouch was placed inside a 10mL polypropylenesyringe(model309604,Becton,DickinsonandCompany)wrappedwith insulatingmaterial(SportsTape,CVS ®PharmacyInc.,Woonsocket,RI).Therestofthe syringewasfilledwith~8mLofwater toensureuniformtemperaturewithinthesyringe

duringtreatment.

ForPATPtreatments,thesyringecontainingsporesamplewasheatedtoapre processingtemperatureof58ºCusingwaterbath(Isotemp928,Fisher Scientific)for2

110 min.PreheatedsyringewasimmediatelyloadedintothePT1unit.Thepressurechamber wassuspendedinpropyleneglycol(HoughtoSafe620TY,HoughtonInternationalInc.,

Troy, MI) bath (maintained at 105.5°C). The propylene glycol was also used as the pressuretransmittingfluidwithinthePT1unit.PATP experiments were conducted at

600 MPa105°C up to 8 min pressure holding times. Additional experiments were conductedtocomparethemicrobialefficacyofsingleanddoublepulsetreatmentsatan equivalentpressureholdingtimeof3min.Duringdoublepulsetreatment,sampleswere takenformicrobialandFTIRanalysesaftervariousstages(C 1,D 1, B2,C 2,andD 2;Figure

5.1.B).Sporesamplepouchessubjectedtopressurethermaltreatmentwereimmediately immersedintoanicewaterbathtocoolthesamples.Microbialanalysiswasconducted onthesamedayofexperiments,whileFTIRsampleswerekeptinarefrigeratorupto24 hbeforetheanalysis.

Highpressureprocessingexperiments(600MPa35°Cupto70minholdingtime) were also performed by using a similar approach to that of PATP samples. The pre processing temperature for HPP spore samples was 4.9 ± 0.8 oC. An untreated spore

suspensionofeachsporecropwasusedascontrols.

5.2.4 Thermaltreatment

Thermal inactivation of spores was conducted at 105°C0.1 MPa using a 35L

heating bath circulator (NESLAB EX35 Digital One, Thermo Fisher Scientific Inc.,

Waltham,MA).Bathoil(Temperaturerange:7to176°C,O220,FisherScientific)was

usedastheheatingfluid.ThealuminumTDTtubescontainingsporesampleswerepre

heatedfor2minat58°Cwaterbathbeforefurthersubjectedto105°Coilbath.Sample

111 temperaturewasmonitoredbyinsertingaKtypethermocoupleattachedtoadatalogger into a control aluminum cell containing sterile deionized water without spores. The thermalcomeuptimetoreach105°Cwas2.3min.Thetubeswereremovedfromtheoil bath after the comeup time and different holding times (up to 240 min) and then immediatelyimmersedintoanicewaterbath.Standardplatecountmethodwasusedto enumeratesporessurvivingthethermaltreatmentaswellasuntreatedsporesuspensions onthesamedayofprocessing.SamplesforFTIRanalysiswerekeptinarefrigeratorand theFTIRanalysiswascarriedoutwithin24hafterthermaltreatments.

5.2.5 Enumerationofsporesurvivors

Spore samples grown on different sporulation media (TSAYE and NAYE supplemented with 10 ppm MnSO 4) and processed by various treatments were

enumerated as follows. Sample contents (1 mL) were seriallydilutedin0.1%peptone

waterandthenspreadplatedinduplicateonTSAYE.Afterincubationat32°Cupto72

h,theviablecountofsporesurvivorswereenumerated.

5.2.6 Fouriertransforminfraredmicrospectroscopy

FTIRanalysisoftreatedsporesampleswasmodified from Subramanian et al.

(2006)andMännigetal.(2008).Aliquots(500L)werecentrifugedat13,000rpmand

4°Cfor4.5min.Afterremovingthesupernatant,thesporepelletwaswashedwith100

Lsteriledeionizedwaterandrecentrifugedatthesamecondition.Thepelletwasthen

resuspended with 5 L sterile deionized water, applied onto hydrophobic Neogrid

membrane filters (HGMFs; Neogen Corporation, Lansing, MI). The membrane filters

withdepositedsporeswerethenvacuumdriedtoformathinfilm.Infraredspectroscopic

112 studieswerecarriedoutbyusinganExcalibur3500GXFTIRmicroscopyspectrometer

(Varian,PaloAlto,CA)inAttenuatedTotalReflectance(ATR)mode.Thespectrawere collectedfromthewavenumbersof4000to700cm 1 (midinfrared)regionwithatotalof

128 scans at a resolution of 8 cm 1. The FTIR spectrometer was equipped with a

PERMAGLOWmidIR source, anextendedrangeKBrbeamsplitter,andadeuterated

triglycine sulfate detector. Aliquots from each treated sample were applied onto three

individual spots on the membrane and two measurements were taken at different

locationsoneachspot.AtleasttwotofiveindependentreplicationsofPATP,HPP,and

TPtreatmentswerecarriedoutresultingin1230spectrapersamplepertreatmenttime

(sixspectraperreplication).

5.2.7 Multivariateanalyses

Pirouette ® (version 3.11, Infometrix Inc., Woodville, WA) comprehensive chemometrics modeling software was employed to transform the spectra to their 2 nd

derivativesusingaSavitzkyGolaypolynomialfilter(fivepointwindow),meancentered,

and vectorlength normalized. Classification analysis of samples processed at various conditions was further analyzed using principal component analysis algorithm (soft independentmodelingbyclassanalogy;SIMCA).Principalcomponentanalysisextracts informationfromthedatasetontofewdimensions,whichareaccountedformaximum possible variance (Mark, 2001). The spectral wavenumbers and their associated functionalgroupsresponsiblefortheclassificationofthesporescouldbeidentifiedusing the discriminating power plot based on the measure of variable importance by minimizingthedifferencebetweensampleswithinclustersandmaximizingthosefrom

113 different clusters (Dunn and Wold, 1995). Correlation between specific spectral information(900–1800cm 1region)andsporesurvivors(obtainingfromthestandard plate count) were determined using partial least squares regression (PLSR), which

utilizedlargenumberofdependentvariablestopredicttheviablesporessurvivingthe

treatments.Anonlineariterativepartialleastsquares(NIPALS)algorithmwasemployed.

PLSR with crossvalidation (iterative recalculation of the model omitting a different

samplepointeachtime)wasusedtotestforthemodelsensitivity.

5.2.8 Statisticalanalysis

StatisticalAnalysisSystemsoftware(SAS9.1,SASInstituteInc.,Cary,NC)was usedfordataanalysis.Independentvariablesweretreatment(PATPsingleanddouble pulse,TP,andHPP),holdingtime,andsporulationmedia(TSAYEandNAYE),whereas log reduction (∆ log CFU/mL) in response to the treatments served as the dependent variable. The data was analyzed by the SAS program with the general linear model

(GLM)procedure.ThemeancomparisonwereevaluatedwiththeTukey’stestata5% significantlevel( P= 0.05).

5.3 Resultsanddiscussion

5.3.1 PressureandtemperaturehistoryduringPATPpulsingtreatmentsandspore

inactivation

Figure 5.1 provides sample pressure and temperature history of single and

doublepulsetreatmentat600MPa105°Cfor3minholdingtime.Processtemperatureof

thesinglepulsetreatmentwaswellmaintainedat105°Castheexternalglycolbathwas

114 heatedtothesametemperature.Eventhoughbothsingle anddoublepulsetreatments hadanequivalenttimeof3minunderpressure,doublepulsetreatmenthadhighertotal treatmenttime(~5.4min)whichincludedthepausetimebetweentwopulses(1min)as wellasanadditionalpressurizationtimeforthe2nd pulse(0.7min).Thislongertreatment timeduringdoublepulsemayalsoleadtohigherprocesstemperaturevaluesduringthe

2nd pulse. For example, during the 1st pulse holding time (1.5 min), the process temperature(105.5±0.4°C)wasmaintained.Upondepressurizationofthe1 st pulse,the

temperaturedroppedto~77°C.Subsequentlyduringthepausetimebetweenpulses(D 1

B2), spore sample temperature increased to ~78°C due to heat transfer from the surrounding glycol bath which was kept at 105.5°C. This resulted in higher process

nd temperatureof112±0.9°Cduringthe2 pulseholdingtime(C 2D2).Itisfurtherworth

to note that the temperature history obtained during the doublepulse treatment likely

further influenced by pressure equipment design parameters (such as chamber volume, pressurizationrate,chamberinsulationcharacteristics,etc.).Thecurrentstudyutilizeda pressurechambervolumeof~20mLandhadrelatively faster pressurization rate (~14

MPa/s). Accordingly, care must be taken in extrapolating the results of this study to

largerpilotscaleequipments.

Attheequivalent3minholdingtime,enhancedsporeinactivationwereobserved

inthedoublepulsetreatment(Table5.2).SporesgrownfromTSAYEandNAYEmedia providedadditional2.6logreductionfromthedoublepulsetreatmentthanthatfromthe

singlepulsePATPtreatment(600MPaat105°Cfor3min).Itisworthtonotethatthe

majorityofthesporeinactivationduringdoublepulsetreatment(Table 5.2)tookplace

115 during the 2 nd pulseholdingtimewherethesporesweresubjectedto600MPa112°C

treatmentfor1.5min.

5.3.2 Combinedpressurethermalresistanceinfluencedbysporulationmedia

Amongthetwosporulationmedia,differencesinspore resistant property were

observed.SporecropsgrownonNAYEproducedhigherPATPandTPresistantspores.

D105°C0.1MPa valuesofthesporecropgrownonTSAYEandNAYEwere28.1±1.2min and36.8±1.5min,respectively.Similarly,DvaluesofPATPtreatedsporesgrownon

TSAYEandNAYEmediawere1.0±0.1minand1.4±0.2minat600MPa105°C.

Ithasbeenwelldocumentedthatsporulationmediaimpactsporeheatresistance

(Cazemier et al., 2001; Mah et al., 2008). Figure 5.2.A shows that FTIR could differentiate the two spore crops based on their resistant properties as influenced by different sporulation media. The corresponding peaks differentiating the properties amongthesetwosporecropswerefoundat1388and1577cm 1fromthediscriminating powerplot(datanotshown).Thesebandsare associatedtothestretchingbandsofCOO

groupofCaDPAchelateandtheCNvibrationsofthepyridinering,respectively.The

discriminating power is a measure of variable importance (i.e., IR frequency), which

contributes to the development of the SIMCA pattern recognition and classification

(DunnandWold,1995).DifferentlevelsofCaDPAchelate might be inherited in the

sporecoresduringsporulation.Moreover,FTIRcouldalsobeusedtoensureconsistency

and reliability of pressurethermal resistance of each new spore crop. Differences in

resistant property among TSAYE grown spores from various spore crop preparations

116 wereobserved(Figure5.2.B).Thismayfacilitatetheevaluationofprocessresistanceof theuntreatedsporecropsbeforebeingtreated.

5.3.3 Classificationofbacterialsporestreatedbythermalandpressureassistedthermal

processing

Hydrophobicgridmembranefilters(HGMFs)overlaidonaselectivemediumwas previouslyusedtoisolateasinglecolonyof Salmonella serovars(Männigetal.,2008).In

this current study, a protocol was developed for the classification of bacterial spores

treated by various processing methods by combining hydrophobic grid membrane

filtration with infrared spectroscopy (Subramanian et al., 2006). Use of the HGMFs

enableddirectspectroscopicobservationofthe biochemical changes in treated spores.

Themembraneconfinedsporeswithinthebarriersofthegrid,whilevacuumdryinghelps

to limit the interference from water absorption bands.Thissamplepreparationmethod

wassimpleandimprovedsignalintensity.

Figure5.3.Aand5.3.BprovidesasampleSIMCAmodelillustratingconsecutive changesinPATPandTPtreatedbacterialspores.FTIRspectroscopywasclearlyableto discriminate changes in untreated spore samples against that of PATP or TP treated samples. In TP treated samples, the biochemical changes gradually occurred over 240 minholdingtime(Figure5.3.B).Basedoninterclassdistance(≤3),thetreatedsamples withsimilarchangesinbiochemicalpropertiesweregroupedtogetherresultingvarious distinct clusters (Figure 5.3.A and 5.3.B). Interclass distances are Euclidian distances betweencentersofclusters,whichcouldbeusedasanindicatorinSIMCAclassification model(KvalheimandKarstang,1992).Ingeneral,largeinterclassdistances(above3)

117 demonstrate well separation among the classes. PATP resulted in rapid spore inactivationoverashorttime.Similarityinbiochemicalcompositionofthetreatedspores wasobservedafter2minPATPtreatmentasindicatedbythesameclustercontainingthe treatedsamplesfrom28minholdingtimes(Figure5.3.A).Asexpected,pressurealone

(600MPa35 oC,upto70min)didnotclearlydistinguishtheuntreatedandtreatedspore

samples into groups since B. amyloliquefaciens spores were not inactivated at this

condition(datanotshown).

5.3.4 BiochemicalchangesassociatedwithPATPtreatedspores

The spectral wavenumbers and the associated functional groups that were

responsiblefortheclassificationofthesporesinSIMCAclassprojectionswereidentified

using the discriminating power plot (Figure 5.4). The higher the value of the

discriminatingpower,thegreateristheinfluenceofthatwavenumberinclassifyingthe

samplesthatareinthemodel(Lavine,2000).Incomparisontountreatedcontrol,PATP

causedpredominantchangesintheregionof1384,1415,1446cm 1 inbothTSAYEand

NAYE grown spores. The identified bands represent changes in dipicolinic acid

(pyridine2,6dicarboxylic acid; DPA) structure, especially the contribution of COO

vibrationofCaDPAchelate(1384cm 1),theCOO stretchingvibrationinthepresenceof

Ca 2+ (1415 cm 1), and the DPA pyridine ring vibration (14421446 cm 1) (Byler and

Farrell,1989;Cheungetal.,1999;Goodacreetal.,2000;Perkinsetal.,2005).DPAis alwayschelatedwithdivalentcations,especiallycalciumionsina1:1ratioasCaDPA.

Thisuniquecomponentisonlypresentinbacterialsporesanditrepresentsabout510% ofthedryweightof Bacillus spores(Setlowetal.,2006).

118

Highly resistant PATPtreated NAYE grown spores showed additional discriminatingpowerpeaksat1350cm 1 (absorptionduetolipids)and1577cm 1 (CN

vibrationsoftheDPApyridineringorCOO groupofacidicaminoacidresiduesofspore proteins)(Cheungetal.,1999;Wolfangeletal.,1999;Sahuetal.,2006)(Figure5.4).

NAYEgrownsporesalsocausedchangesintheproteinregion,specificallyat1635cm 1

(amide I of βpleated sheet of secondary proteins), 1543 cm 1 (amide II involved

stretchingvibrationofCNgroups),and1273cm 1(amideIIIbandofproteinsorCaDPA band)(HelmandNaumann,1995;Cheungetal.,1999;Schizaetal.,2005).

Table5.3presentsdiscriminatingpowervaluesatselectedCaDPAbands(~1377

1384, ~14111415, and ~14381446 cm 1) and the corresponding log reduction of bacterial spores grown in different sporulation media during PATP, TP, and HPP. In

general,discriminatingpowervaluesincreasedwithincreaseinholdingtimes,withinthe

sametreatmentconditionandsporulationmedia.Althoughthisobservationappearedto

holdgoodinmostcases,thevariationinthebandintensityduringholdingtimeswasalso

observed. This might be due to the heterogeneity of spore populations as well as

variabilityinpressurethermalhistoriesduringPATPandTPreplications.

5.3.5 ContrastbetweensingleanddoublepulsePATPtreatments

Figure5.5comparesthediscriminatingpowerinclassificationofbacterialspores

grown in TSAYE and NAYE media and subjected to single and doublepulse PATP

treatments. In general, regardless of the growth media, both single and doublepulse

treatments showed similar changes on the bands associated to CaDPA chelate, in particularat13771381,1411,and14351442cm 1(Figure5.5).However,singlepulse

119 treatment produced significantly higher discriminating power values than doublepulse treatment.AccordingtoCheungetal.(1999),theratioofpeakheightsatwavenumbers

1379 and 1443 cm 1 could be used as an indicator of the CaDPA levels in bacterial spores.Thehighertheratio,themoretheCaDPAexistsinthespores.Presenceofhigh levelsofCaDPAchelate,therelativelylowcontentofcorewater,andthesaturationof sporeDNAwithagroupofsmallacidsolubleproteins(SASPs)playmajorrolesinspore resistanceproperties(SetlowandSetlow,1995).Specifically, the DNAα/βtype SASP complexwastheprimarycontributortosporethermalstabilities,whiledivalentcations

(Ca 2+ ,Mn 2+ ,Mg 2+ )andDPAprovidesynergisticeffectonstabilityprotectingthespore

DNAagainstheat(Setlowetal.,2006).Bothsporulationmediademonstratedhigherratio ofpeakheightassociatedtoCOO vibrationofCaDPA(~13771381cm 1)andpyridine

ringvibration(~14351442cm 1)inthesinglepulsetreatment.Thepeakratiosofsingle

anddoublepulsetreatmentswere3.0and2.5forTSAYEgrownspores,aswellas1.5

and1.2forNAYEgrownspores,respectively.TheratiosuggestedlessCaDPArelease

fromthesinglepulsetreatmentthanthatofthedoublepulse treatment, indicating less

lethalityattheequivalentholdingtime.

5.3.6 BiochemicalchangesassociatedwithTPtreatedspores

At 105°C0.1 MPa, it took more than 70 min to obtain any measurable spore

inactivation(1.12.5logreduction)inbothsporecrops.After180minholdingtimeat

105°C,TSAYEgrownsporeswereinactivatedtoundetectablelevelandNAYEgrown

spores had about 4.7 log reduction. FTIR analysis of the TP spores indicated that

discrimination was largely influenced by the similar bands observed from the PATP

120 treatment,specificallyat1384,1411,and1442cm 1 (Figure5.6).Biochemicalchanges amongparticularsamplescouldbegraduallymonitored(datanotshown).Threedistinct groups of PATP treated samples were classified based on their interclass distance.

Samples were grouped together when the interclass distance was lower than 3.

Differencesobservedbetweentheuntreatedcontrolandthe1 st groupoftreatedsamples

(0,2,5min)wasmainlyassociatedwiththeinteractionoftheCa 2+ withCOO groups and the stretching of COO group of CaDPA chelate (1419 and 1381 cm 1). When comparingchangesbetweenthe1 st group(0,2,5min)andthe2 nd group(30,70,120 min),itwasevidentthatbandsassociatedwithclusteringofsampleswererelatedtothe

DPA pyridine ring vibration (~ 1446 cm 1), which became very prominent for the discriminationofthe2 nd group(30,70,120min)fromthe3 rd group(180,240min)(data notshown).

Figure 5.7 demonstrates the influence of specific PATP and TP treatments that yield comparable 3 log reduction to B. amyloliquefaciens TMW 2.479 spores (NAYE grown).Itrequiredatleast120minat105°C0.1MPatoachieve~3logreduction,while

5 minholding time PATP treatment (600 MPa105°C) provided similar result. Both

PATPandTPspecificallyacteduponCaDPAchelate(1276,1373,1411,and1612cm 1) and its pyridine ring (1438 and 1573 cm 1) (Figure 5.7). FTIR results supported that

thereweresimilarchangeshappeninginthestructurallevelofDPAandCaDPAamong

thetwotreatmentsatthesamelethality.However,thebandsobtainedfromPATPwere

clearlymuchhigherindiscriminatingpowervalues(~45,000arbitraryunits)thanthat

121 fromTPtreatment(~14,000arbitraryunits).Thisindicatedthatthebiochemicalchanges ofbacterialsporestakingplaceduringPATPwasatthegreaterintensitythanTP.

5.3.7 QuantificationofsporesurvivorsfrominfraredspectraandvalidationofPLSR

models

Survivingsporepopulationsof B.amyloliquefaciens TMW2.479afterPATPand

TPtreatmentscouldbeestimatedbycrossvalidatedPLSRmodelsusingspectralregion

(900 to 1800 cm 1) (Figure 5.8 5.9). The leaveoneout cross validation generally

removesonesamplefromthetrainingset,performedPLSRontheremainingsamples.

Then,itpredictsthelogsporesurvivorsfromtheleftoutsampleandsumsuptheerror

untilthetotalsamplesinthetrainingsetisanalyzed.Goodcorrelationonsporesurvivors

obtainedfromthestandardplatecountandthemidinfraredspectralregionswasfound

forbothPATPandTPtreatments(Figure5.85.9).Highcoefficientsofcorrelation(r>

0.96)andlowstandarderrorsofcrossvalidation(SECV~10 0.16 –10 0.26 CFU/mL)were obtainedfromallPLSRmodels.

To verify whether or not single and doublepulse treatments followed similar mechanism of inactivation, the developed PLSR model based on singlepulse PATP treatmentwasusedtopredictthesporesurvivorsduringvariousstagesofthedouble pulsetreatment.Figure5.10showsthepredictedsporesurvivorsby FTIRspectraand the experimental values obtained from the standard plate count during each stage of doublepulsetreatmentof B. amyloliquefaciens TMW2.479sporesgrownondifferent sporulationmedia.FTIRspectramicrobiallethalitymodelbasedonsinglepulsecould

nd notpredictdoublepulselethality changesduring2 pulse pressure holding time (D 2),

122 possibly due to differences in respective spore inactivation mechanisms. It is further possible that some of the biochemical changes were not detected during doublepulse treatment by FTIR microspectroscopy. The singlepulse based PATP lethality model

nd wasonlysuccessfulinpredicting(<0.6logCFU/mL)uptoC 2 (the2 pulsecomeup time; Figure 5.1.B and Figure 5.10). More studies are needed using advanced high resolutionspectroscopictechniquessuchasRamantofurtherunderstandthenatureof biochemicalchangesundertheseconditions.

5.4 Conclusions

AstudywasconductedtoinvestigatePATP,HPP,and TP treatment effects on biochemical changes of B. amyloliquiefaciens TMW2.479spores.BothPATPandTP

causedriseofCaDPabandsatapproximately1384,1415,and1442cm 1.Theintensityof

thesebandsingeneralincreasedwithincreasingtreatmenttimes.Foranequivalentlog

reduction, PATP showed higher intensities than that of TP. Changes in lipids and polypeptides were also evident in PATPtreated highly resistant NAYE grown spores.

Release of CaDPA from the spore core served as a key component indicating the inactivationof B.amyloliquefaciens TMW2.479spores.FTIRspectraofthebacterial spores not only influenced by the processing conditions, but also influenced by the sporulationmedia.

123

References

Ahn, J., Balasubramaniam, V.M., and Yousef, A.E. 2007. Inactivation kinetics of selected aerobic and anaerobic bacterial spores by pressureassisted thermal processing.InternationalJournalofFoodMicrobiology.113:321329. Akhtar S., ParedesSabja D., Torres J.A., Sarker M.R. 2009. Strategy to inactivate Clostridiumperfringens sporesinmeatproducts.FoodMicrobiology.26:272277. Anonymous.2009.PressureassistedsterilizationacceptedbyFDA.FoodProcessing.70: 16. Balasubramaniam, V.M., Farkas, D., and Turek, E.J. 2008. Preserving foods through highpressureprocessing.FoodTechnology.62:3238. Brooke,H.,Perkins,D.L.,Setlow,B.,Setlow,P.,Bronk,B.V.,andMyrick,M.L.2008. Sampling and quantitative analysis of clean B. subtilis spores at submonolayer coverage by reflectance Fourier transform infrared microscopy using goldcoated filtersubstrates.AppliedSpectroscopy. 62:881888. Bull, M.K., Olivier, S.A., Diepenbeek, R.J. van, Kormelink, F., Chapman, B. 2009. Synergisticinactivation ofsporesofproteolytic Clostridium botulinum strains by highpressureandheatisstrainandproductdependent.AppliedandEnvironmental Microbiology.75:434445. Byler, D.M. and Farrel, H.M. 1989 . Infrared spectroscopic evidence for calcium ion interactionwithcarboxylate groupsofcasein. Journalofdairyscience. 72:1719 1723. Cheung, H.Y., Cui, J., and Sun, S.Q. 1999. Realtime monitoring of Bacillus subtilis endospore components by attenuated total reflection Fouriertransform infrared spectroscopyduringgermination.Microbiology.145:10431048. Cazemier,A.E.,Wagenaars,S.F.M.,andterSteeg,P.F.2001.Effectofsporulationand recovery medium on the heat resistance and amount of injury of spores from spoilage.JournalofAppliedMicrobiology.90:761770. Goodacre,R.,Shann,B.,Gilbert,R.J.,Timmins,E.M.,McGovern,A.C.,Alsberg,B.K., Kell,D.B.,andLogan,N.A.2000.Detectionofthedipicolinicacidbiomarkerin Bacillus spores using curiepoint pyrolysis mass spectrometry and Fourier transforminfraredspectroscopy.AnalyticalChemistry.72:119127.

124

Dunn,W.J.,IIIandWold,S.1995.SIMCApatternrecognitionandclassification,p.179 193. In H.vandeWaterbeemd(ed.),Chemometricmethodsinmoleculardesign. VCHPublishers,NewYork. Hayakawa,I.,Kanno,T,Yoshiyama,K,andFujio,Y.1994.Oscillatorycomparedwith continuous high pressure sterilization on Bacillus stearothermophilus spores. JournalofFoodScience.59:164167. Helm,D.andNaumann,D.1995.Identificationofsomebacterial cellcomponentsby FTIRspectroscopy.FEMSMicrobiologyLetters.126:7580. Kvalheim, O.M. and Karstang, T.V. 1992. SIMCAclassification by means of disjoint crossvalidatedprincipalcomponentsmodels,p.209248. In R.G. Brereton(ed.), Multivariate pattern recognition in chemometrics: illustrated by case studies. Elsevier,NewYork. Lavine,B.K.2000.Clusteringandclassificationofanalyticaldata,p.96899710. In R.A. Meyers(ed.),Encyclopediaofanalyticalchemistry.JohnWiley,NewYork. Mah,J.H.,Kang,D.H.,andTang,J.2008a.Effectsofmineralsonsporulationandheat resistanceof Clostridiumsporogenes .InternationalJournalofFoodMicrobiology. 128:385–389. Männig,A.,Baldauf,N.A.,RodriguezRomo,L.A.,Yousef,A.E.,andRodríguezSaona, L.E. 2008. Differentiation of Salmonella enterica serovarsandstrainsincultures andfoodusinginfraredspectroscopicandmicrospectroscopictechniquescombined with softindependent modeling of class analogy pattern recognition analysis. JournalofFoodProtection.71:22492256. Margosch,D.,Ehrmann,M.A.,Buckow,R.,Heinz,V.,Vogel,R.F.,andGänzle,M.G. 2006. Highpressuremediated survival of Clostridium botulinum and Bacillus amyloliquefaciens endospores at high temperature. Applied and Environmental Microbiology.72:34763481. Mark,H.2001.Dataanalysis:Multilinearregressionandprincipalcomponentanalysis, p. 129184. In D.A.BurnsandE.W.Ciurczak(eds.),Handbookofnearinfrared analysis.TaylorandFrancis,NewYork. Matches,J.R.,Walker,H.W.,andAyres,J.C.1964.Phospholipidsinvegetativecellsand sporesof Bacilluspolymyxa .JournalofBacteriology.87:1623. Mazas,M.,González,I.,López,M.,González,J.,andSarmiento,R.M.1995.Effectsof sporulation media and strain on thermal resistance of Bacillus cereus spores. InternationalJournalofFoodScienceandTechnology.30:7178. 125

Meyer, R.S., Cooper, K.L., Knorr, D., and Lelieveld, H.L.M. 2000. Highpressure sterilizationoffoods.FoodTechnology.54:6772. Naumann,D.2000.Infraredspectroscopyinmicrobiology,p.102131. In R.A.Meyers (Ed.),EncyclopediaofAnalyticalChemistry.JohnWiley&SonsLtd.,Chichester, UK. NgoThi,N.A.andNaumann,D.2007.Investigatingtheheterogeneityofcellgrowthin microbial colonies by FTIR microspectroscopy. Analytical and Bioanalytical Chemistry.387:17691777. Pitel,D.W.andGilvarg,C.1971.Timingofmucopeptideandphospholipidsynthesisin sporulating Bacillusmegaterium .TheJournalofBiologicalChemistry.246:3720 3724 Perkins,D.L.,Lovell,C.R.,Bronk,B.V.,Setlow,B.,Setlow,P.,andMyrick,M.L.2005. Fouriertransforminfraredreflectancemicrospectroscopystudyof Bacillussubitlis engineeredwithoutdipicolinicacid:thecontributionofcalciumdipicolinatetothe midinfraredabsorbanceof Bacillussubtilis endospores.AppliedSpectroscopy.59, 893896. Ratphitagsanti,W.,Ahn,J.,Balasubramaniam,V.M.,andYousef,A.E.2009.Influence of pressurization rate and pressure pulsing on the inactivation of Bacillus amyloliquefaciens spores during pressureassisted thermal processing. Journal of FoodProtection.72:775782. Reddy, N.R., Tetzloff, R.C., Solomon, H.M., and Larkin, J.W. 2006. Inactivation of Clostridiumbotulinum nonproteolytictypeBsporesbyhighpressureprocessingat moderatetoelevatedhightemperatures. Innovative Food Science and Emerging Technologies.7:169175. Sahu,R.K.,Mordechai,S.,Pesakhov,S.,Dagan,R.,andPorat,N.2006.UseofFTIR spectroscopy to distinguish between capsular types and capsular quantities in Streptococcuspneumoniae .Biopolymers.83:434442. Schiza, M.V., Perkins, D.L., Priore R.J., Setlow, B., Setlow, P., Bronk, B.V., Wong, D.M., and Myrick, M.L. 2005. Improved dispersion of bacterial endospores for quantitativeinfraredsamplingongoldcoatedporousaluminamembranes.Applied Spectroscopy.59:10681074. Setlow, B. and Setlow, P. 1995. Small, acidsoluble proteins bound to DNA protect Bacillus subtilis spores from killing by dry heat. Applied and Environmental Microbiology.61:27872790.

126

Setlow, B., Atluri, S., Kitchel, R., KoziolDube, K., and Setlow, P. 2006. Role of dipicolinic acid in resistance and stability of spores of Bacillus subtilis with or without DNAprotective α/ßtype small acidsoluble poteins. Journal of bacteriology.188:37403747. Subramanian, A., Ahn, J., Balasubramaniam, V.M., and RodriguezSaona, L.E. 2006. Determination of spore inactivation during thermal and pressureassisted thermal processingusingFTIRspectroscopy.JournalofAgriculturalandFoodChemistry. 54:1030010306. Subramanian, A., Ahn, J., Balasubramaniam, V.M., and RodriguezSaona, L.E. 2007. Monitoring biochemical changes in bacterial spore during thermal and pressure assistedthermalprocessingusingFTIRspectroscopy.JournalofAgriculturaland FoodChemistry .55:93119317. Wolfangel, P., Lehnert, R., Meyer, H.H., and Müller, K. 1999. FTIR studies of phospholipid membranes containing monoacetylenic acyl chains. Physical ChemistryChemicalPhysics.1:48334841. Zhu, S., Naim, F., Marcotte, M., Ramaswamy, H., Shao, Y. 2008. Highpressure destruction kinetics of Clostridium sporogenes sporesingroundbeefatelevated temperatures.InternationalJournalofFoodMicrobiology.126:8692.

127

Mediacomponent Amount(g/L) Difco TM Trypticsoyagar(TSAYE) Pancreaticdigestofcasein 15 Papaicdigestofsoybean 5 Sodiumchloride 5 Agar 15 Yeastextract 6 Difco TM Nutrientagar(NAYE) Beefextract 3 Peptone 5 Agar 15 Yeastextract 6 Bothmediaweresupplementedwith10ppmMnSO 4. Source:Becton,DickinsonandCompany(Sparks,MD)

Table5.1.Approximateformulaperliterofmediausedforsporulation.

128

Totaltreatmenttime* LogN/No TSAYEgrown † NAYEgrown † Singlepulse 0.7min(BC) 0.2±0.3A 0.3±0.1 A 3.7min(BD) 3.2±0.1 E 2.5±0.3 D Doublepulse st A A 0.7min(B 1C1;after1 pulsecomeuptime) 0.2±0.3 0.3±0.1 st BC B 2.2min(B 1D1;after1 pulse) 1.5±0.2 1.1±0.2 C BC 3.2min(B 1B2;afterpausingtime) 1.6±0.2 1.2±0.1 nd D C 3.9min(B 1C2;after2 pulsecomeuptime) 2.2±0.3 1.6±0.3 nd G F 5.4min(B 1D2;after2 pulse) 5.8±0.3 5.1±0.3 *SeeFigure5.1.Aand5.1.Bfornomenclature.Total processing time includes pressure comeup time, pressureholdingtime,anddepressurizationtime. †Initialpopulationofuntreatedcontrols:TSAYE1.6x10 8CFU/mL;NAYE2.5x10 8CFU/mL. LogN/NowascalculatedwhereNrepresentingsporecountmeasuredafterexposuretothePATPtreatment foraspecificholdingtimeandNorepresentinginitialsporecountwithoutthePATPtreatment. Meanswiththesameletterarenotsignificantlydifferent.

Table5.2.Logreductionof Bacillusamyloliquefaciens TMW2.479sporesaftersingle anddoublepulsetreatmentsat3minequivalentpressureholdingtime.

129

Treatmentconditionand TSAYEgrownspores NAYEgrownspores holdingtime Wavenumber(cm 1) Ratioof LogN/No Wavenumber(cm 1) Ratioof LogN/No ~1377 ~1411 ~1438 peak ~1377 ~1411 ~1438 peak 1384 1415 1446 height 1384 1415 1446 height 1384 cm 1 1384 cm 1 1442cm 1 1442cm 1 PATP(600MPa105°C) 0min 67 179 48 1.4 0.1±0.2AB 212 621 8 26 0.1±0.2 AB 0.5min 348 1399 645 0.5 0.7±0.2BCD 938 6192 59 16 0.1±0.2 AB 1min 1325 2433 2851 0.5 1.5±0.2E 2216 10829 168 13 0.9±0.0 CDE 2min 1304 3226 2301 0.6 2.5±0.3F 4195 11146 620 7 1.7±0.0 E 5min 2369 4152 3016 0.8 5.1±0.3I 4919 31230 570 9 3.4±0.2 G 8min 1417 2779 2943 0.5 5.8±0.3 J 4363 42730 657 7 5.2±0.1 IJ TP(105°C0.1MPa) 0min 51 260 103 0.5 0.2±0.2A 8 20 22 0.3 0.3±0.2 A 2min 140 229 184 0.8 0.2±0.0 A 63 271 241 0.3 0.3±0.2 A 5min 1956 1524 969 2.0 0.2±0.2 A 190 680 309 0.6 0.3±0.1 A 130 30min 608 1335 1411 0.4 1.1±0.0 DE 583 2164 1554 0.4 0.1±0.1 ABC F DE

70min 750 2501 2359 0.3 2.5±0.1 743 2446 2516 0.3 1.1±0.4 120min 1001 2884 1949 0.5 3.9±0.1GH 2641 9643 6334 0.4 2.6±0.5 F 180min 798 6725 4179 0.2 <D.L. 6430 28580 30803 0.2 4.7±0.4 HI 240min 1040 4888 3136 0.3 <D.L. 4571 46611 21886 0.2 5.1±0.1 IJ HPP(600MPa35°C) 0min n/a n/a n/a 0.1±0.1 AB n/a n/a n/a 0.02±0.0 AB 5min n/a n/a n/a 0.2±0.0 A n/a n/a n/a 0.1±0.1 AB 30min n/a n/a n/a 0.2±0.1 A n/a n/a n/a 0.2±0.1 A 70min n/a n/a n/a 0.03±0.1 AB n/a n/a n/a 0.3±0.1 A <D.L.representssporesurvivorsundermethoddetectionlimit(<10 2CFU/mL). n/a:datanotavailable.SIMCAcouldnotdifferentiatethetreatedsamplesintodistinctivegroups. Meanswiththesameletterarenotsignificantlydifferent. Table5.3.DiscriminatingpowervaluesatbandsassociatedtoCaDPAstructuresandlogN/Nocorrespondingtotreatments.

(A)

120 700 T1-3 ' T1-4 105 600 90 T1-2 T1-3 500 75 T1-5 400 60 300 45 T1-1 200 30 (MPa) Pressure Temperature (°C) Temperature 15 100 A B C D 0 0 0 1 2 3 4 5 6 7 8

Treatment time (min)

(B)

120 700 T1-3 ' T1-4 T2-4 105 600

90 T1-3 T2-3 T1-2 500 75 T1-5 400 60 T2-2 T2-5 300 45 T1-1 200

30 (MPa) Pressure Temperature (°C) Temperature 15 100 A B1 C1 D1 B2 C2 D2 0 0 0 1 2 3 4 5 6 7 8 910

Treatment time (min) Figure 5.1. Sample pressure () and temperature ( ) histories during single(A)anddoublepulse(B)treatment.Processingtimesincludepreprocesstimein aconditioningbathandpressurechamber(AB1),pressurecomeuptime(B 1C1andB 2 C2),pressureholdingtime(C 1D1 andC 2D2),anddepressurizationtime(<2s).Glycol bathtemperaturewasmaintainedat105.5°C.Timepausingbetweentwopulses(D 1B2) waskeptat1min.

131

(A)

TSAYE grown

PC3

NAYE grown PC1

PC2

(B)

Sensitive crops

PC2

Resistant crops

PC1 PC3

Figure5.2.Softindependentmodelingbyclassanalogyonresistantpropertyofuntreated Bacillus amyloliquefaciens TMW 2.479 spores as influenced by different sporulation media(A)anddifferentsporecroppreparationsusingTSAYEasasporulationmedium (B).

132

(A)

untreated control

CUT

0.5 min

PC2 PC3

1 min 2, 5, 8 min PC1

(B) 30, 70, 120 min

PC2 PC1 180, 240 min

PC3

CUT, 2, 5 min untreated control

Figure5.3.Softindependentmodelingbyclassanalogyofdifferentclassprojectionsof Bacillus amyloliquefaciens TMW 2.479 spores (NAYE grown) after pressureassisted thermalprocessingat600MPa105°C(A)andthermalprocessingat105°C0.1MPa(B).

133

12000

1415 TSAYE crop 1384 NAYE crop 10000 1446

8000 1577 1384 1350 6000 1415 1442 1303

4000 1273 1635 1543 1192 1612 Discriminating Power(arbitraryunit) Discriminating 2000

0 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 Wavenumber (cm -1 )

Figure 5.4. Discrimination power plot in classification of pressureassisted thermal processingtreated Bacillusamyloliquefaciens TMW2.479sporesgrownontwodifferent media.

134

30000

(A) 1381 SP DP 25000 1411

20000

15000

10000 1442 1570 Discriminating Power (arbitrary unit) 1500 5000

0 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 Wavenumber (cm -1 )

350000

SP (B) 1377 300000 DP

250000 1346 1411 1435

200000

150000 1724

100000 1303 1496 1238 1280 1581 999 DiscriminatingPower (arbitraryunit) 50000

0 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 Wavenumber (cm -1 )

Figure 5.5. Comparison of single (SP) and doublepulse (DP) treatments on Bacillus amyloliquefaciens TMW2.479sporesprocessedatanequivalentholdingtimeof3min; TSAYEgrownspores(A)andNAYEgrownspores(B). 135

14000

TSAYE crop

12000 1411 NAYE crop 1384

10000

8000 1620 1438 1442

6000 1377 1562

4000 1527 1643 Discriminating Power(arbitrary unit) 2000

0 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 Wavenumber (cm -1 )

Figure 5.6. Discrimination power plot in classification of Bacillus amyloliquefaciens TMW2.479sporesgrownontwodifferentmediaafterthermalprocessingat105°C0.1 MPa.

136

50000 16000

45000 1419 PATP 1411 14000 TP 40000 1392 12000 35000

10000 30000

25000 1612 8000 1438

20000 6000 TPtreated spores treated PATP spores 15000 1573 1276 4000 1373

DiscriminatingPower (arbitraryunit) 10000 DiscriminatingPower (arbitraryunit)

2000 5000

0 0 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 Wavenumber (cm -1 )

Figure5.7.Comparisonofdiscriminatingpowerplotof Bacillusamyloliquefaciens TMW 2.479sporesgrownonNAYEat3logreductionafterTP(105°Cat0.1MPafor120min) andPATP(600MPaat105°Cfor5min)treatments.

137

(A)

Untreated control

0 min 0.5 min

8 1 min

2 min

5 min 8 min 6

# of factor = 9 SECV = 0.2644 r = 0.9627 FT-IR predicted FT-IR spore survivors CFU/ml) (log 5 6 7 8 Measured spore survivors (log CFU/ml)

(B)

Untreated control 0 min 9 0.5 min 1 min

8

2 min 7

5 min

6 8 min # of factor = 10 SECV = 0.1944 r = 0.9789 5 FT-IR predicted FT-IR survivorsspore (log CFU/ml) 5 6 7 8 9 Measured spore survivors (log CFU/ml)

Figure5.8.Crossvalidated(leaveoneout)partialleastsquaresregressionplotsforspore inactivation by pressureassisted thermal processing; TSAYE grown spores (A) and NAYEgrownspores(B).

138

(A)

0 min Untreated control 8 2 min 70 min 5 min 30 min 6 120 min

4

180 min 240 min # of factor = 18 2 SECV = 0.1761 r = 0.9961

2 4 6 8 FT-IR predicted CFU/ml) survivorsFT-IR spore (log Measured spore survivors (log CFU/ml)

(B)

0 min Untreated control

30 min 2 min 8 70 min 5 min

120 min 6

180 min

4 # of factor = 13 240 min SECV = 0.1556 r = 0.9958

4 6 8 FT-IR predicted CFU/ml) survivorsFT-IR spore (log Measured spore survivors (log CFU/ml)

Figure5.9.Crossvalidated(leaveoneout)partialleastsquaresregressionplotsforspore inactivationbythermalprocessing;TSAYEgrownspores(A)andNAYEgrownspores (B). 139

(A)

8

7

6

5

4

3 Spore survivors (log CFU/ml) (log survivors Spore 2

1

0 D1 B2 C2 D2 Various stages during double-pulse trement

(B)

8

7

6

5

4

3

Spore survivors (log CFU/ml) (log survivors Spore 2

1

0 D1 B2 C2 D2 Various stages during double-pulse treatment Figure5.10.PredictingmicrobialefficacyofdoublepulsePATPtreatmentfor Bacillus amyloliquefaciens TMW 2.479 spore survivors based on singlepulse FTIR spectra model. Predicted spore survivors by FTIR spectra ( )andmeasuredspore survivorsbystandardplatecount( );TSAYEgrown spores (A) and NAYE grown spores (B). RefertoFigure5.1.B fornomenclatureduringthedoublepulse treatment.

140

Chapter6:Conclusions

Roleofpressurizationrateandpressurepulsingonsporeinactivation

• Regardless of pressurization rate, the 600 MPa105°C treatment for 5 min

reduced B. amyloliquefaciens spores by approximately 6.5 log CFU/mL in the

sporesuspensioncontaining~1.4x10 8and~1.1x10 9 CFU/mL.Similarprocess

conditions resulted in inactivation to undetectable level when a lower spore

suspensionlevel(~1.3x10 6CFU/mL)wasused.

• Slowpressurizationrate(3.75MPa/s),showedenhancedinactivationwithinshort

pressureholdingtime(≤2min).Duringslowerpressurizationrates,sporeshave

beenexposedtoalethaltemperatureregion(T>95°C)foralongertimethanthat

of faster pressurization rates (18.06 MPa/s). This prolonged thermal exposure

underpressuremighthavecontributedtoenhancedinactivation.

• Doublepulse treatment (600 MPa105°C, with two 1.5 minpressure holding

times)significantlyenhancedPATPsporeinactivationthansinglepulsetreatment

(600 MPa105°C, with 3 minpressure holding time). Doublepulse treatment

generallyprovidedadditional2.4to4logCFU/mLmorethanthatfromsingle

pulse treatment. Regardless of pressurization rates, doublepulse treatment

inactivated B.amyloliquefaciens sporestobelowthemethod’sdetectionlimit(≤

10CFU/mL)afteratotalof3minholdingtime.Processtemperatureduring2 nd 141

pulseincreasedfrom105°Cto112°Cduetoheatgainfromthesurroundingsas

well as heat of compression. However, increasing process temperature from

105°Cto112°Cduringsinglepulsetreatmentwasnotadequatetocausesimilar

logreductionasthatofdoublepulsetreatment.Differentinactivationmechanisms

mayhavebeenresponsibleforthesporeinactivationduringsingleanddouble

pulsetreatment.

RoleoforganicacidinenhancingPATPsporeinactivation

• Addition of organic acids (100 200 mM at pH 5.0) to the spore suspension

(withoutanytreatment)didnotcauseanystatisticallysignificantinactivationor

germination.

• Chemical and foodgrade organic acids produced similar microbial efficacy

duringPATPtreatment.

• Organic acid facilitated spore germination and the magnitude of spore

germinationvariedwithtypeoforganicacidandpressureholdingtime.

• Amongtheorganicacidstested,aceticandcitricacidswasfoundtobethemost

effectiveinenhancingsporeinactivationafter2minpressureholdingtimeat700

MPa105°C.Lacticacidexhibitedsimilarsporereductionlevelsasthatofspores

suspendedindeionizedwater.

• In a lowacid food model system (carrot puree), recovery of the remaining

populationwasobservedduringextendedstorage(upto28daysat32°C)butthe

presenceoforganicacidssuppressedsporerecovery.

142

BiochemicalchangesofPATPtreatedsporesthroughFTIRmicrospectroscopy

• A protocol was developed for the classification of bacterial spores treated by

various processing methods (PATP, HPP, and TP) by combining hydrophobic

grid membrane filtration with infrared microspectroscopy. This enabled direct

spectroscopicobservationofthebiochemicalchangesintreatedspores.

• FTIRspectraofthebacterialsporeswerenotonlyinfluencedbythePATP,TP,

andHPPprocessingconditions,butalsobythesporulationmedia.

• The main functional groups associated to spore inactivation by PATP and TP

treatments were identified as those related to calcium dipicolinate (CaDPA).

AssociatedFTIRbandswereidentifiedas1381,1415,and1442cm 1,implying

thecontributionofCOO vibrationofCaDPAchelate,theinteractionofCa 2+ with

COO group,andpyridineringvibrationofdipicolinicacid(DPA),respectively.

• SurvivingsporesfromstandardplatecountwerewellcorrelatedwiththeFTIR

spectra. High coefficients of correlation (r > 0.96) and low standard errors of

crossvalidation (~ 10 0.16 – 10 0.26 CFU/mL) were obtained from the developed

partialleastsquareregressionmodels.

• Singlepulse based PATP FTIR PLSR model could not predict doublepulse

lethality changes during the 2 nd pulse pressure holding time, possibly due to

differencesinrespectivesporeinactivationmechanisms.

• Morestudiesareneededusingadvancedhighresolutionspectroscopictechniques

suchasRamantofurtherunderstandthenatureofbiochemical changes during

doublepulsetreatment.

143

Bibliography

Ahn, J., Balasubramaniam, V.M., and Yousef, A.E. 2007. Inactivation kinetics of selected aerobic and anaerobic bacterial spores by pressureassisted thermal processing.InternationalJournalofFoodMicrobiology.113:321329. Ahn,J.andBalasubramaniam,V.M.2007a.Effectsofinoculumlevelandpressurepulse ontheinactivationof Clostridiumsporogenes sporesbypressureassistedthermal processing.JournalofMicrobiologyandBiotechnology .17:616623.

Ahn, J. and Balasubramaniam, V.M. 2007b. Physiological responses of Bacillus amyloliquefaciens spores to high pressure. Journal of Microbiology and Biotechnology.17:524529.

Akhtar S., ParedesSabja D., Torres J.A., Sarker M.R. 2009. Strategy to inactivate Clostridiumperfringens sporesinmeatproducts.FoodMicrobiology.26:272277.

Ananta, E., Heinz, V., Schlüter, O., and Knorr, D. 2001. Kinetics studies on high pressure inactivation of Bacillus stearothermophilus spores suspended in food matrices.InnovativeFoodScienceandEmergingTechnologies.2:261272.

Anonymous.2009.PressureassistedsterilizationacceptedbyFDA.FoodProcessing.70: 16.

Ardia,A.,Knorr,D.,Ferrari,G.,andHeinz,V.2003.Kineticstudiesoncombinedhigh pressureandtemperatureinactivationof Alicyclobacillusacidoterrestris sporesin orangejuice.AppliedBiotechnology,FoodScienceandPolicy.1:169173.

Balasubramaniam, V.M. 2003. High pressure food preservation. Encyclopedia of Agricultural,Food,andBiologicalEngineering,NewYork:MarcelDekker,Inc.,pp 490496.

Balasubramaniam, V.M., Ting, E.Y., Stewart, C.M., and Robbins, J.A. 2004. Recommendedlaboratorypracticesforconductinghighpressuremicrobial

144

inactivationexperiments.InnovativeFoodScienceandEmergingTechnologies.5: 299306.

Balasubramaniam, V.M., Farkas, D., and Turek, E.J. 2008. Preserving foods through highpressureprocessing.FoodTechnology.62:3238. Basak, S. and Ramaswamy, H.S. 2001. Pulsed high pressure inactivation of pectin methyl esterase in single strength and concentrated orange juices . Canadian BiosystemsEngineering.43:3.253.29. Beales, N. 2003. Adaptation of microorganisms to cold temperatures, weak acid preservatives, low pH, and osmotic stress: a review. Comprehensive Reviews in FoodScienceandFoodSafety.3:120. Black,E.P.,Setlow,P.,Hocking,A.D.,Stewart,C.M., Kelly, A.L., and Hoover, D.G. 2007a.Responseofsporestohighpressureprocessing.ComprehensiveReviewsin FoodScienceandFoodSafety.6:103119.

Black, E.P, Wei, J., Atluri, S., Cortezzo, D.E., KoziolDube, K., Hoover, D.G., and Setlow,P.2007b.Analysisoffactorsinfluencingtherateofgerminationofspores of Bacillussubtilis byveryhighpressure.JournalofAppliedMicrobiology.102:65 76.

Black, E.P., Linton, M., McCall, R.D., Curran, W., Fitzgerald, G.F., Kelly, A.L., and Patterson, M.F. 2008. The combined effects of high pressure and nisin on germination and inactivation of Bacillus spores in milk. Journal of Applied Microbiology.105:7887.

Brooke,H.,Perkins,D.L.,Setlow,B.,Setlow,P.,Bronk,B.V.,andMyrick,M.L.2008. Sampling and quantitative analysis of clean B. subtilis spores at submonolayer coverage by reflectance Fourier transform infrared microscopy using goldcoated filtersubstrates.AppliedSpectroscopy. 62:881888.

Bull,M.K.,Olivier,S.A.,Diepenbeek,R.J.van,Kormelink,F.,Chapman,B.2009. Synergisticinactivation ofsporesofproteolytic Clostridium botulinum strains by highpressureandheatisstrainandproductdependent.AppliedandEnvironmental Microbiology.75:434445. Byler, D.M. and Farrel, H.M. 1989 . Infrared spectroscopic evidence for calcium ion interactionwithcarboxylate groupsofcasein. Journalofdairyscience. 72:1719 1723.

145

Cameron,M.S.,Leonard,S.J.,andBarrett,E.L.1980.EffectofmoderatelyacidicpHon heat resistance of Clostridium sporogenes spores in phosphate buffer and in bufferedpeapuree.AppliedandEnvironmentalMicrobiology.39:943949. Casadei, M.A., Ingram, R., Skinner, R.J., and Gaze, J.E. 2000. Heat resistance of Paenibacillus polymyxa in relation to pH and acidulants. Journal of applied microbiology.89:801806. Cazemier,A.E.,Wagenaars,S.F.M.,andterSteeg,P.F.2001.Effectofsporulationand recovery medium on the heat resistance and amount of injury of spores from spoilagebacilli.JournalofAppliedMicrobiology.90:761770.

Chapleau,N.,Ritz,M.,Delépine,S.,Jugiau,F.,Fedeighi,M.,anddeLamballerie,M. 2006. Influence of kinetic parameters of high pressure processing on bacterial inactivationinabuffersystem.InternationalJournalofFoodMicrobiology.106: 324330. Cheftel,J.C.1995.Review:Highpressure,microbialinactivationandfoodpreservation. FoodScienceandTechnologyInternational.1:7590.

Chen,H.andHoover,D.G.2004.UseofWeibullmodeltodescribeandpredictpressure inactivation of Listeria monocytogenes Scott A in whole milk. Innovative Food ScienceandEmergingTechnologies.5:269276.

Cheung, H.Y., Cui, J., and Sun, S.Q. 1999. Realtime monitoring of Bacillus subtilis endospore components by attenuated total reflection Fouriertransform infrared spectroscopyduringgermination.Microbiology.145:10431048.

CléryBarraud, C., Gaubert, A., Masson, P., and Vidal, D. 2004. Combined effects of high hydrostatic pressure and temperature for inactivation of Bacillus anthracis spores.AppliedandEnvironmentalMicrobiology.70:635637. Clouston,J.G.andWills,P.A.1969.Initiationofgerminationandinactivationof Bacillus pumilus sporebyhydrostaticpressure.JournalofBacteriology.97:684–690.

Crawford, Y.J., Murano, E.A., Olson, D.G., and Shenoy, K. 1996. Use of high hydrostaticpressureandirradiationtoeliminate Clostridiumsporogenes sporesin chickenbreast.JournalofFoodProtection.59:711715.

Deeth,H.C.andDatta,N.2002.Alternativetechnologiesforproducingsterilelowacid foodproducts.FoodAustralia.54:273277.

146

DeHeij,W.B.C.,VanSchepdael,L.J.M.M.,Moezelaar,R.,Hoogland,H.,Master,A.M., andvandenBerg,R.W.2003.Highpressuresterilization:maximizingthebenefits ofadiabaticheating’,FoodTechnology.57:3741.

Doores, S. 1993. Organic acids, p. 95136. In P.M. Davidson and A.L. Branen (eds.), Antimicrobialsinfoods.MarcelDekkerInc.,NewYork. Dunn,W.J.,IIIandWold,S.1995.SIMCApatternrecognitionandclassification,p.179 193. In H.vandeWaterbeemd(ed.),Chemometricmethodsinmoleculardesign. VCHPublishers,NewYork.

Earnshaw, R.G., Appleyard, J., and Hurst, R.M. 1995. Understanding physical inactivationprocesses:combinedpreservationopportunitiesusingheat,ultrasound andpressure.InternationalJournalofFoodMicrobiology.28:197219.

Eľyanov, B.S. and Hamann, S.D. 1975. Some quantitative relationships for ionization reactionsathighpressures.AustralianJournalofChemistry.28:945954. Farkas, D.F. and Hoover, D.G. 2000. High pressure processing: Kinetics of microbial inactivationforalternativefoodprocessingtechnologies.JournalofFoodScience Supplement.65:4764.

FDA: Most probable number from serial dilutions. Bacteriological analytical manual online [Internet]. 8 th edition. Gaithersburg, MD: AOAC International; c2001 [Accessed2009June19].Availablefrom: http://www.fda.gov/Food/ScienceResearch/LaboratoryMethods/BacteriologicalAna lyticalManualBAM/ucm109656.htm Foster, J.W. 2000. Microbial responses to acid stress, p. 99110. In G. Storz and R. HenggeAronis(eds.),Bacterialstressresponses.ASMPress,WashingtonDC. Furukawa,S.,Nakahara,A.,andHayakawa,I.2000.Effectofreciprocalpressurization ongerminationandkillingofbacterialspores.InternationalJournalofFoodScience andTechnology.35:529532.

Furukawa,S.,Shimoda,M.,andHayakawa,I.2003.Mechanismoftheinactivationof bacterial spores by reciprocal pressurization treatment. Journal of Applied Microbiology.94:836841.

Garriga,M.,Grèbol,N.,Aymerich,M.T.,Monfort,J.M.,andHugas,M.2004.Microbial inactivation after highpressure processing at 600 MPa in commercial meat productsoveritsshelflife.InnovativeFoodScienceandEmergingTechnologies.5: 451457. 147

Goodacre,R.,Shann,B.,Gilbert,R.J.,Timmins,E.M.,McGovern,A.C.,Alsberg,B.K., Kell,D.B.,andLogan,N.A.2000.Detectionofthedipicolinicacidbiomarkerin Bacillus spores using curiepoint pyrolysis mass spectrometry and Fourier transforminfraredspectroscopy.AnalyticalChemistry.72:119127. Gould,G.W.andJones,M.V.1989.Combinationandsynergisticeffects,p.401–421. In G.W.Gould(ed.),Mechanismsofactionoffoodpreservationprocedures.Elsevier AppliedScience,London.

Gould,G.W.1999.Waterandthebacterialspore:resistance,dormancy,andgermination, p. 301323. In International symposium on the properties of water in foods (7 th : 1998 Helsinki, Finland), Water management in the design and distribution of qualityfoods.TechnomicPub.Co.,Lancaster.

Gould,G.W.2006.HistoryofScience–spores.JournalofAppliedMicrobiology.101: 507513.

Hayakawa,I.,Kanno,T,Yoshiyama,K,andFujio,Y.1994.Oscillatorycomparedwith continuous high pressure sterilization on Bacillus stearothermophilus spores. JournalofFoodScience.59:164167.

Hayakawa, I., Furukawa, S., Midzunaga, A., Horiuchi, H., Nakashima, T., Fujio, Y., Yano, Y., Ishikura, T., and Sasaki, K. 1998. Mechanism of inactivation of heat tolerantsporesof Bacillusstearothermophilus IFO12550byrapiddecompression. JournalofFoodScience.63:371374.

Heldman,D.R.andNewsome,R.L.2003.Kineticmodelsformicrobialsurvivalduring processing.FoodTechnology.57:4046.

Helm,D.andNaumann,D.1995.Identificationofsomebacterial cellcomponentsby FTIRspectroscopy.FEMSMicrobiologyLetters.126:7580.

Hite, B.H. 1899. The effect of pressure in the preservation of milk. West Virginia UniversityAgriculturalExperimentStation,MorgantownBulletin.58:1535.

Hite,B.H.,Giddings,N.J.,andWeakley,C.E.1914. The effect of pressure on certain microorganisms encountered in the preservation of fruits and vegetables. West VirginiaUniversityAgriculturalExperimentStation,MorgantownBulletin.146:1 67.

Hoogland, H., De Heij, W., and Van Schepdael, L. 2001. High pressure sterilisation: noveltechnology,newproducts,newopportunities.NewFood.3:2126.

148

Hsiao,C.P.andSiebert,K.J.1999.Modelingtheinhibitoryeffectsoforganicacidson bacteria.InternationalJournalofFoodMicrobiology.47:189201. Igura,N.,Kamimura,Y.,Islam,M.S.,Shimoda,M.,andHayakawa,I.2003.Effectsof mineralsonresistanceof Bacilllussubtilis sporestoheatandhydrostaticpressure. AppliedandEnvironmentalMicrobiology.69:63076310.

Jin, T., Zhang, H., Boyd, G., and Tang, J. 2008. Thermal resistance of Salmonella enteritidis and Escherichiacoli K12inliquideggdeterminedbythermaldeathtime disks.JournalofFoodEngineering.84:608614. Kalchayanand, N, Dunne, C.P., Sikes, A., andRay, B. 2003. Inactivation of bacterial endospores by combined action of hydrostatic pressure and bacteriocins in roast beef.JournalofFoodSafety.23:219231.

Kalchayanand,N,Dunne,C.P.,Sikes,A.,andRay,B.2004.Germinationinductionand inactivationof Clostridium sporesatmediumrangehydrostaticpressuretreatment. InnovativeFoodScienceandEmergingTechnologies.5:277283.

Kitamura, Y. and Itoh, T. 1987. Reaction volume of protonic ionization for buffering agents: Prediction of pressure dependence of pH and pOH. Journal of Solution Chemistry.16:715725. Knorr,D.1999.Novelapproachesinfoodprocessingtechnology:newtechnologiesfor preservingfoodsandmodifyingfunction.CurrentOpinion in Biotechnology. 10: 485491.

Koutchma,T.,Guo,B.,Patazca,E.,andParisi,B.2005.Highpressurehightemperature sterilization:fromkineticanalysistoprocessverification.JournalofFoodProcess Engineering.28:610629.

Kvalheim, O.M. and Karstang, T.V. 1992. SIMCAclassification by means of disjoint crossvalidatedprincipalcomponentsmodels,p.209248. In R.G. Brereton(ed.), Multivariate pattern recognition in chemometrics: illustrated by case studies. Elsevier,NewYork.

Lado, B.H. and Yousef, A.E. 2002. Alternative foodpreservation technologies: efficiencyandmechanisms’,MicrobesandInfection.4:433440.

Lau,M.H.andTurek,E.J.2007.Determinationofqualitydifferencesinlowacidfoods sterilized by high pressure versus retorting, p. 195217. In C. Doona and F. Feeherry(eds.),HighPressureProcessingofFoods.BlackwellPublishing,Ames.

149

Lavine,B.K.2000.Clusteringandclassificationofanalyticaldata,p.96899710. In R.A. Meyers(ed.),Encyclopediaofanalyticalchemistry.JohnWiley,NewYork.

Leguerinel,I.,andMafart,P.2001.ModelingtheinfluenceofpHandorganicacidtypes onthermalinactivationof Bacillus cereus spores.InternationalJournalofFood Microbiology.63:2934. LopezCaballero,M.E.,PerezMateos,M.,Montero,P.,andBorderias,A.J.2000.Oyster preservationbyhighpressuretreatment.JournalofFoodProtection.63:196201. LópezPedemonte,T.J.,RoigSagués,A.X.,Trujillo,A.J.,Capellas,M.,andGuamis,B. 2003. Inactivation of spores of Bacillus cereus in cheese by high hydrostatic pressurewiththeadditionofnisinorlysozyme.JournalofDairyScience. 86:3075 3081. Lown,D.A.,Thirsh,H.R.,andWynneJones,L.1968.Effectofpressureonionization equilibriainwaterat25°C.TransactionsoftheFaradaySociety.64:20732080. Mah,J.H.,Kang,D.H.,andTang,J.2008.Effectsofmineralsonsporulationandheat resistanceof Clostridiumsporogenes .InternationalJournalofFoodMicrobiology. 128:385–389.

Mañas, P. and Pagán, R. 2005. Microbial inactivation by new technologies of food preservation–Areview.JournalofAppliedMicrobiology.98:13871399.

Männig,A.,Baldauf,N.A.,RodriguezRomo,L.A.,Yousef,A.E.,andRodríguezSaona, L.E. 2008. Differentiation of Salmonella enterica serovarsandstrainsincultures andfoodusinginfraredspectroscopicandmicrospectroscopictechniquescombined with softindependent modeling of class analogy pattern recognition analysis. JournalofFoodProtection.71:22492256.

Margosch,D.,Ehrmann,M.A.,Gänzle,M.G.,andVogel,R.F.2004a.Comparisonof pressure and heat resistance of Clostridium botulinum and other endospores in mashedcarrots.JournalofFoodProtection.67:25302537.

Margosch, D., Gänzle, M.G., Ehrmann, M.A., and Vogel, R.F. 2004b. Pressure inactivationof Bacillus endospores.AppliedandEnvironmentalMicrobiology.70: 73217328.

Margosch,D.,Ehrmann,M.A.,Buckow,R.,Heinz,V.,Vogel,R.F.,andGänzle,M.G. 2006. Highpressuremediated survival of Clostridium botulinum and Bacillus amyloliquefaciens endospores at high temperature. Applied and Environmental Microbiology.72:34763481.

150

Mark,H.2001.Dataanalysis:Multilinearregressionandprincipalcomponentanalysis, p. 129184. In D.A.BurnsandE.W.Ciurczak(eds.),Handbookofnearinfrared analysis.TaylorandFrancis,NewYork.

Marquis, R.E., and Bender, G.R. 1985. Mineralization and heat resistance of bacterial spores.JournalofBacteriology.161:789791. Matches,J.R.,Walker,H.W.,andAyres,J.C.1964.Phospholipidsinvegetativecellsand sporesof Bacilluspolymyxa .JournalofBacteriology.87:1623.

Mathys, A., Chapman, B., Bull, M., Heinz, V., and Knorr, D. 2007. Flow cytometric assessmentof Bacillus sporeresponsetohighpressureandheat.InnovativeFood ScienceandEmergingTechnologies.8:519527. Matser,A.M.,Krebbers,B.,vander Berg,R.W.,andBartelP.V.2004.Advantagesof highpressuresterilisationonqualityoffoodproducts.TrendsinFoodScienceand Technology.15:7985. Mazas,M.,González,I.,López,M.,González,J.,andSarmiento,R.M.1995.Effectsof sporulation media and strain on thermal resistance of Bacillus cereus spores. InternationalJournalofFoodScienceandTechnology.30:7178.

Meyer, R.S., Cooper, K.L., Knorr, D., and Lelieveld, H.L.M. 2000. Highpressure sterilizationoffoods.FoodTechnology.54:6772.

Mills,G.,Earnshaw,R.,andPatterson,M.F.1998.Effectsofhighhydrostaticpressure on Clostridiumsporogenes spores.LettersinAppliedMicrobiology.26:227230.

Min,S.2008.Propertiesoffoodandbuffersolutionsduringhighpressureprocessing:in situ measurement of density, compressibility, electrical conductivity and reaction volume. [DPhil dissertation]. Columbus, OH: Ohio State Univ. 153p. Available from:OhioLINKElectronicThesesandDissertationsCenter,Columbus,OH.

Moir,A.2006.Howdosporesgerminate?JournalofAppliedMicrobiology.101:526 530.

Montville, T.J. and Matthews, K.R. (eds.). 2005. Food microbiology: an introduction. ASMPress.,WashingtonD.C.

MoussaBoudjemaa,B.,Gonzalez,J.,andLopez,M.2006. Heat resistance of Bacillus cereus sporesincarrotextractacidifiedwithdifferentacidulants.FoodControl.17: 819824.

151

Mozhaev,V.V.,Heremans,K.,Frank,J.,Masson,P.,andBalny,C.1994.Exploitingthe effects of high hydrostatic pressure in biotechnological applications. Trends in Biotechnology.12:493501.

Murakami, M., Tedzuka, H., and Yamazaki, K. 1998. Thermal resistance of Alicyclobacillus acidoterrestris spores in different buffers and pH. Food Microbiology.15:577582.

Nakayama,A.,Yano,Y.,Kobayashi,S.,Ishikawa,M.,andSakai,K.1996.Comparison onpressureresistancesofsporeofsix Bacillus strainswiththeirheatresistances. AppliedandEnvironmentalMicrobiology.62:38973900.

Naumann,D.2000.Infraredspectroscopyinmicrobiology,p.102131. In R.A.Meyers (Ed.),EncyclopediaofAnalyticalChemistry.JohnWiley&SonsLtd.,Chichester, UK.

NeumanJr,R.C.,Kauzmann,W.,andZipp,A.1973.Pressuredependenceofweakacid ionizationinaqueousbuffers.TheJournalofPhysicalChemistry.77:26872691. NgoThi,N.A.andNaumann,D.2007.Investigatingtheheterogeneityofcellgrowthin microbial colonies by FTIR microspectroscopy. Analytical and Bioanalytical Chemistry.387:17691777.

Nguyen, L.T., Rastogi, N.K., and Balasubramaniam, V.M. 2007. Evaluation of the instrumental quality of pressureassisted thermally processed carrots. Journal of FoodScience.72:264270. Noma,S.,Shimoda,M.,andHayakaya,I.2002.Inactivation of vegetative bacteria by rapiddecompressiontreatment.JournalofFoodScience.67:34083411. Ocio,M.J.,Sánchez,T.,Fernandez,P.S.,Rodrigo,M.,andMartínez,A.1994.Thermal resistance characteristics of PA 3679 in the temperature range of 110121°C as affected by pH, type of acidulant and substrate. International Journal of Food Microbiology.22:239247. Oh,S.andMoon,M.J.2003.Inactivationof Bacilluscereus sporesbyhighhydrostatic pressureatdifferenttemperatures.JournalofFoodProtection.66:599603.

Oomes,S.J.C.M.andBrul,S.2004.Theeffectofmetalionscommonlypresentinfood ongeneexpressionofsporulating Bacillussubtilis cellsinrelationtosporewetheat resistance.InnovativeFoodScienceandEmergingTechnologies.5:307316.

152

Opstal,I.V.,Bagamboula,C.F.,Vanmuysen,S.C.M.,Wuytack,E.Y.,andMichiels,C.W. 2004. Inactivation of Bacillus cereus spores in milk by mild pressure and heat treatments.InternationalJournalofFoodMicrobiology.92:227234.

Otero, L., MolinaGarcia, A.D., and San, P.D. 2000. Thermal effect in foods during quasiadiabatic pressure treatments. Innovative Food Science and Emerging Technologies.1:119126.

Owen,B.B.,andBrinkleyJr.,S.R.1941.Calculationoftheeffectofpressureuponionic equilibriainpurewaterandinsaltsolutions.ChemistryReviews.29:461474. Oxen,P.andKnorr,D.1993.Baroprotectiveeffectsofhighsoluteconcentrationsagainst inactivation of Rhodotorula rubra . LebensmittelWissenschaft Technologie. 26: 220223.

Paidhungat,M,Setlow, B,Daniels,W.B.,Hoover,D, Papafragkou, E, and Setlow, P. 2002.Mechanismsofinductionofgerminationof Bacillussubtilis sporesbyhigh pressure.AppliedandEnvironmentalMicrobiology.68:31723175.

Palop, A., Marco, A., Raso, J., Sala, F.J., and Condón, S. 1997. Survival of heated Bacillus coagulans spores in a medium acidified with lactic or citric acid. InternationalJournalofFoodMicrobiology.38:2530.

Palou,E., LopezMalo, A.,BarbosaCanovas,G.V.,WeltiChanes, J., Davidson, M.P., andSwanson,B.G.1998.Effectofoscillatoryhighhydrostaticpressuretreatments on Bysochlamysnivea ascosporessuspendedinfruitjuiceconcentrates.Lettersin AppliedMicrobiology.27:375378.

ParedesSabja,D.,Gonzalez,M.,Sarker,M.R.,andTorres,J.A.2007.Combinedeffects of hydrostatic pressure, temperature, and pH on the inactivation of spores of Clostridium perfringens Type A and Clostridium sporogenes in buffer solutions. JournalofFoodScience.72.202206.

Patazca, E., Koutchma, T., and Ramaswamy, H.S. 2006. Inactivation kinetics of Geobacillusstearothermophilus sporesinwaterusinghighpressureprocessingat elevatedtemperatures.JournalofFoodScience.71:110116.

Patterson, M.F. 2005. Microbiology of pressuretreated foods – A review. Journal of AppliedMicrobiology.98:14001409.

Pehl, M. and Delgado, A. 1999. An insitu technique to visualize temperature and velocityfieldsinliquidbiotechnicalsubstancesathighpressure,p.519528. In H.

153

Ludwig(ed.),Advancesinhighpressurebioscienceandbiotechnology.Springer Verlag,Heidelberg,Germany.

Perkins,D.L.,Lovell,C.R.,Bronk,B.V.,Setlow,B.,Setlow,P.,andMyrick,M.L.2005. Fouriertransforminfraredreflectancemicrospectroscopystudyof Bacillussubitlis engineeredwithoutdipicolinicacid:thecontributionofcalciumdipicolinatetothe midinfraredabsorbanceof Bacillussubtilis endospores.AppliedSpectroscopy.59, 893896.

Piggot, P.J. 2000. Sporulation, p. 377386. In J. Lederberg (ed.), Encyclopedia of Microbiology,Volume4,2 nd ed.AcademicPress,SanDiego.

Pitel,D.W.andGilvarg,C.1971.Timingofmucopeptideandphospholipidsynthesisin sporulating Bacillusmegaterium .TheJournalofBiologicalChemistry.246:3720 3724.

Rademacher, B., Werner, F., and Pehl, M. 2002. Effect of pressurizing ramp on the inactivation of Listeria innocua considering thermofluiddynamical processes. InnovativeFoodScienceandEmergingTechnologies .3:1924. Rajan, S., Ahn, J., Balasubramaniam, V.M., and Yousef, A.E. 2006a. Combined pressurethermalinactivationkineticsof Bacillus amyloliquefaciens sporesinegg pattymince.JournalofFoodProtection.69:853860. Rajan,S.,Pandrangi,S.,Balasubramaniam,V.M.,andYousef,A.E.2006b.Inactivation of Bacillus stearothermophilus sporesin eggpattiesbypressureassistedthermal processing.LebensmittelWissenschaftTechnologie.39:844851. Rasanayagam, V., Balasubramaniam, V.M., Ting, E., Sizer, C.E., Bush, C., and Anderson, C. 2003. Compression heating of selected fatty food materials during highpressureprocessing.JournalofFoodScience.68:254259.

Raso, J., BarbosaCánovas, G.V., and Swanson, B.G. 1998a. Sporulation temperature affects initiation of germination and inactivation by high hydrostatic pressure of Bacilluscereus .JournalofAppliedMicrobiology.85:1724.

Raso, J., GóngoraNieto, M.M., BarbosaCánovas, G.V., and Swanson, B.G. 1998b. Influence of several environmental factors on the initiation of germination and inactivationof Bacilluscereus byhighhydrostaticpressure.InternationalJournalof FoodMicrobiology.44:125132.

154

Raso, J. and BarbosaCánovas, G.V. 2003. Nonthermal preservation of foods using combinedprocessingtechniques.CriticalReviewsinFoodScienceandNutrition. 43:265285.

Ratphitagsanti,W.,Ahn,J.,Balasubramaniam,V.M.,andYousef,A.E.2009.Influence of pressurization rate and pressure pulsing on the inactivation of Bacillus amyloliquefaciens spores during pressureassisted thermal processing. Journal of FoodProtection.72:775782.

Reddy, N.R., Solomon, H.M., Fingerhut, G.A., Rhodehamel, E.J., Balasubramaniam, V.M., and Palaniappan, S. 1999. Inactivation of Clostridium botulinum type E sporesbyhighpressureprocessing.JournalofFoodSafety.19:277288.

Reddy,N.R.,Solomon,H.M.,Tetzloff,R.C.,andRhodehamel,E.J.2003.Inactivationof Clostridium botulinum Type A spores by highpressure processing at elevated temperature.JournalofFoodProtection.66:14021407.

Reddy, N.R., Tetzloff, R.C., Solomon, H.M., and Larkin, J.W. 2006. Inactivation of Clostridiumbotulinum nonproteolytictypeBsporesbyhighpressureprocessingat moderate to elevated high temperatures. Innovative Food Science and Emerging Technologies.7:169175.

Roberts, C.M. and Hoover, D.G. 1996. Sensitivity of Bacillus coagulans spores to combinations of high hydrostatic pressure, heat, acidity and nisin. Journal of AppliedBacteriology.81:363368.

Rovere,P.,Maggi,A.,Scaramuzza,N.,Gola,S.,Miglioli,L.,Carpi,G.,andDall'Aglio, G.1996.Highpressureheattreatments:evaluationofthesterilizingeffectandof thermaldamage.IndustriaConserve.71:473483.

Rovere,P.,Miglioli,L.,Lonneborg,N.G.,Scaramuzza,N.,andGola,S.1998.Modelling andcalculationofthesterilisingeffectinhighpressure heattreatments. Industria Conserve.73:303315.

Sahu,R.K.,Mordechai,S.,Pesakhov,S.,Dagan,R.,andPorat,N.2006.UseofFTIR spectroscopy to distinguish between capsular types and capsular quantities in Streptococcuspneumoniae .Biopolymers.83:434442.

Sáiz,A.H.,Mingo,S.T.,Balda,F.P.,andSamson,C.T. 2008. Advances in design for successfulcommercialhighpressurefoodprocessing.FoodAustralia.60:154156.

155

Sale,A.J.H.,Gould,G.W.,andHamilton,W.A.1970.Inactivationofbacterialsporesby highhydrostaticpressure.JournalofGeneralMicrobiology.60:323334.

SanMartín,M.F.,BarbosaCanovas,G.V.,andSwanson,B.G.2002.Foodprocessingby highhydrostaticpressure.CriticalReviewsinFoodScienceandNutrition.42:627 645.

Schiza, M.V., Perkins, D.L., Priore R.J., Setlow, B., Setlow, P., Bronk, B.V., Wong, D.M., and Myrick, M.L. 2005. Improved dispersion of bacterial endospores for quantitativeinfraredsamplingongoldcoatedporousaluminamembranes.Applied Spectroscopy.59:10681074.

Scurrah, K.J., Robertson, R.E., Craven, H.M., Pearce, L.E., and Szabo, E.A. 2006. Inactivation of Bacillus spores in reconstituted skim milk by combined high pressureandheattreatment.JournalofAppliedMicrobiology.101:172–180.

Setlow, B. and Setlow, P. 1995. Small, acidsoluble proteins bound to DNA protect Bacillus subtilis spores from killing by dry heat. Applied and Environmental Microbiology.61:27872790.

Setlow, B., Atluri, S., Kitchel, R., KoziolDube, K., and Setlow, P. 2006. Role of dipicolinic acid in resistance and stability of spores of Bacillus subtilis with or without DNAprotective α/ßtype small acidsoluble poteins. Journal of bacteriology.188:37403747. Setlow, P. and Johnson, E.A. 2001. Spores and their significance, p. 3370. In M.P. Doyle,L.R.Beuchat,andT.J.Montville(eds.),FoodMicrobiology:Fundamentals andFrontiers,2 nd ed.ASMPress,WashingtonD.C. Setlow,P.2003.Sporegermination.CurrentOpinioninMicrobiology.6:550556.

Shao, Y., Ramaswamy, H.S., and Zhu, S. 2007. Highpressure destruction kinetics of spoilage and pathogenic bacteria in raw milk cheese. Journal of Food Process Engineering.30:357374. Shearer, A.E.H., Dunne, C.P., Sikes, A., and Hoover, D.G. 2000. Bacterial spore inhibitionandinactivationinfoodsbypressure,chemicalpreservatives,andmild heat.JournalofFoodProtection.63:15031510. Sizer, C.E., Balasubramaniam, V.M., and Ting, E. 2002. Validation highpressure processforlowacidfoods.FoodTechnology.56:3642. Smelt,J.P.P.M.1998.Recentadvancesinthemicrobiologyofhighpressureprocessing. TrendsinFoodScienceandTechnology.9:152158. 156

Smelt,J.P.P.M.,Hellemons,J.C.,Wouters,P.C.,andGerwen,S.J.C.2002.Physiological and mathematical aspects in setting criteria for decontamination of foods by physicalmeans.InternationalJournalofFoodMicrobiology.78:5777.

Solomon, E.B. and Hoover, D.G. 2004. Inactivation of Campylobacter jejuni by high pressurehydrostaticpressure.LettersinAppliedMicrobiology.38:505509.

Stewart,C.M.,Dunne,C.P.,Sikes,A.,andHoover,D.G.2000.Sensitivityofsporesof Bacillus subtilis and Clostridium sporogenes PA 3679 to combinations of high hydrostaticpressureandotherprocessingparameters.InnovativeFoodScienceand EmergingTechnologies.1:4956.

Subramanian, A., Ahn, J., Balasubramaniam, V.M., and RodriguezSaona, L. 2006. Determination of spore inactivation during thermal and pressureassisted thermal processingusingFTIRspectroscopy.JournalofAgriculturalandFoodChemistry. 54:1030010306. Subramanian, A., Ahn, J., Balasubramaniam, V.M., and RodriguezSaona, L. 2007. Monitoring biochemical changes in bacterial spore during thermal and pressure assistedthermalprocessingusingFTIRspectroscopy.JournalofAgriculturaland FoodChemistry.55:93119317. Tay,A.,Shellhammer,T.H.,Yousef,A.E.,and,Chism,G.W.2003.Pressuredeathand tailingbehaviorof Listeriamonocytogenes strainshavingdifferentbarotolerances. JournalofFoodProtection.66:20572061.

Ting,E.,Balasubramaniam,V.M.,andRaghubeer,E.2002.Determiningthermaleffects inhighpressureprocessing.FoodTechnology.56:31–35.

Valero,M.,Fernández,P.S.,andSalmerón,M.C.2003.InfluenceofpHandtemperature ongrowthof Bacilluscereus invegetablesubstrates.InternationalJournalofFood Microbiology.82:7179.

VanOpstal,I.,Bagamboula,C.F.,Vanmuysen,S.C.M.,Wuytack,E.Y.,Michiels,C.W. 2004. Inactivation of Bacillus cereus spores in milk by mild pressure and heat treatments.InternationalJournalofFoodMicrobiology.92:227234.

Wolfangel, P., Lehnert, R., Meyer, H.H., and Müller, K. 1999. FTIR studies of phospholipid membranes containing monoacetylenic acyl chains. Physical ChemistryChemicalPhysics.1:48334841.

157

Wuytack, E.Y., Boven, S., and Michiels, C.W. 1998. Comparative study of pressure inducedgerminationof Bacillussubtilis sporesatlowandhighpressure.Applied andEnvironmentalMicrobiology.64:32203224.

Wuytack,E.Y.,Soons,J.,Poschet,F.,andMichiels,C.W.2000.Comparativestudyof pressureandnutrientinducedgerminationof Bacillussubtilis spores.Appliedand EnvironmentalMicrobiology.66:257261.

Wuytack,E.Y.,andMichiels,C.W.2001.Astudyonthe effects of high pressure and heat on Bacillus subtilis spores at low pH. International Journal of Food Microbiology.64:333341.

Zhu, S., Naim, F., Marcotte, M., Ramaswamy, H., Shao, Y. 2008. Highpressure destruction kinetics of Clostridium sporogenes sporesingroundbeef atelevated temperatures.InternationalJournalofFoodMicrobiology.126:8692.

158

AppendixA:SAScommands

159

AppendixA1: Inactivationofdifferentsporeconcentrationsbyselectedprocessingvariables(seeTable 3.2) Independentvariables=inoculumlevels(10 9,10 8,and10 6CFU/mL);pressurizationrate (fastandslow);PATPholdingtimes(0,0.5,1,2,3,and5min) Dependentvariable(Y)=logreduction(CFU/mL) data single_pulse;; input inoculumratetime@; doi= 1to 3; input Y@; output ; end ; datalines ; 1 1 1 -0.40 -0.32 -0.80 1 1 2 -0.67 -0.71 -1.3 1 1 3 -1.3 -1.0 -1.9 1 1 4 -2.6 -2.9 -3.0 1 1 5 -3.3 -3.6 -4.3 1 1 6 -4.7 -5.6 -6.0 1 2 1 -0.94 -1.0 -1.3 1 2 2 -1.3 -1.5 -1.4 1 2 3 -1.9 -2.6 -3.0 1 2 4 -3.4 -3.2 -3.4 1 2 5 -4.3 -4.5 -4.9 1 2 6 -5.7 -6.2 -6.4 2 1 1 -0.60 -0.58 -0.78 2 1 2 -1.5 -1.5 -1.5 2 1 3 -2.6 -2.2 -2.4 2 1 4 -3.8 -3.6 -4.3 2 1 5 -5.5 -5.5 -4.7 2 1 6 -6.8 -6.7 -6.9 2 2 1 -2.8 -2.3 -2.6 2 2 2 -2.4 -3.0 -3.3 2 2 3 -3.2 -3.3 -3.7 2 2 4 -4.4 -4.7 -4.6 2 2 5 -6.1 -5.8 -5.5 2 2 6 -6.5 -6.5 -6.7 3 1 1 -0.79 -0.37 -0.49 3 1 2 -1.1 -1.2 -1.3 3 1 3 -1.8 -1.8 -2.4 3 1 4 -4.2 -4.3 -3.8 3 1 5 -4.8 -5.1 -5.0 3 1 6 -5.2 -5.1 -5.1 3 2 1 -2.0 -2.2 -2.0 3 2 2 -2.2 -2.5 -2.0 3 2 3 -2.9 -3.5 -3.3 3 2 4 -4.5 -4.8 -4.3 3 2 5 -5.2 -5.1 -5.1 3 2 6 -5.2 -5.1 -5.1 160

; proc print ; run ; proc glm ;; class inoculumratetime; model Y=inoculumratetimeinoculum*rateinoculum*timerate*timeinoculum*rate*time; means inoculumratetime/ tukey ; means inoculum*rateinoculum*timerate*timeinoculum*rate*time/ tukey ; run ; Inactivation of spores (~1.4 x 10 8 CFU/mL) by pulsed pressure and other processing variables(seeTable3.2) Independentvariables=treatments:single105°C,single112°C,double105°C112°C; pressurizationrate:fastandslow;PATPholdingtimes:1and3min Dependentvariable(Y)=logreduction(CFU/mL) data pulsing_logreduction;; input treatmentratetime@; do i= 1to 3; input y@; output ; end ; datalines ; 1 1 1 -2.6 -2.2 -2.2 1 1 2 -5.5 -5.5 -4.5 1 2 1 -3.2 -3.3 -3.6 1 2 2 -6.1 -5.7 -5.4 2 1 1 -4.2 -4.5 -4.7 2 1 2 -7.0 -6.9 -6.3 2 2 1 -6.5 -6.3 -6.3 2 2 2 -7.2 -6.6 -7.2 3 1 1 -4.9 -4.8 -3.7 3 1 2 -7.1 -7.0 -7.0 3 2 1 -7.1 -7.0 -7.0 3 2 2 -7.1 -7.0 -7.0 ; proc print ; run ; proc glm ;; class treatmentratetime; model Y=treatmentratetimetreatment*ratetreatment*timerate*timetreatment*rate*time; means treatmentratetime/ tukey ; means treatment*ratetreatment*timerate*timetreatment*rate*time/ tukey ; run; Mean comparison of spore survivors processed at different treatment conditions (see Figure3.5) Independentvariables=treatmentcondition;replication Dependentvariable(Y)=logsurvivor(CFU/mL) data pulsing_logN;; 161 input treatmentrepsurvivor; datalines ; 1 1 8.1 1 2 8.0 1 3 8.0 2 1 8.1 2 2 8.0 2 3 8.0 3 1 5.5 3 2 5.9 3 3 5.8 4 1 4.9 4 2 4.8 4 3 4.4 5 1 2.7 5 2 2.6 5 3 3.5 6 1 2.0 6 2 2.4 6 3 2.7 7 1 3.9 7 2 3.5 7 3 3.3 8 1 1.6 8 2 1.8 8 3 1.8 9 1 1.1 9 2 1.2 9 3 1.7 10 1 0.90 10 2 1.4 10 3 0.85 11 1 3.2 11 2 3.3 11 3 4.3 12 1 1.0 12 2 1.0 12 3 1.0 13 1 1.0 13 2 1.0 13 3 1.0 14 1 1.0 14 2 1.0 14 3 1.0 ; proc print ; run ; proc glm ;; class treatmentrep; model survivor=treatment; means treatment/ tukey ; run ;

162

AppendixA2: SporesurvivorsinvarioussuspensionmediaafterPATPtreatment(seeFigure4.1) Independentvariables=suspensionmedia(DIW,acetic,citric,lactic);replications(1,2, 3);pressureholdingtimes(untreated,0,1,2,3,5min) Dependentvariable(Y)=logsurvivor(CFU/mL) option ls= 120 ; data FCCBH; input solreptimecfu; cards ; 1 1 -1 8.0 1 2 -1 8.1 1 3 -1 8.1 1 1 0 7.8 1 2 0 7.8 1 3 0 7.8 1 1 1 3.6 1 2 1 4.0 1 3 1 4.1 1 1 2 2.1 1 2 2 2.7 1 3 2 2.3 1 1 3 1.0 1 2 3 1.0 1 3 3 1.0 1 1 5 1.0 1 2 5 1.0 1 3 5 1.0 2 1 -1 8.2 2 2 -1 8.1 2 3 -1 8.2 2 1 0 7.8 2 2 0 7.8 2 3 0 8.0 2 1 1 4.3 2 2 1 4.4 2 3 1 4.2 2 1 2 2.0 2 2 2 1.6 2 3 2 1.6 2 1 3 1.0 2 2 3 1.0 2 3 3 1.0 2 1 5 1.0 2 2 5 1.0 2 3 5 1.0 7 1 -1 8.3 3 2 -1 8.3 3 3 -1 8.2 3 1 0 8.1

163

3 2 0 8.1 3 3 0 7.6 3 1 1 3.1 3 2 1 3.5 3 3 1 3.1 3 1 2 1.8 3 2 2 1.6 3 3 2 1.5 3 1 3 1.0 3 2 3 1.0 3 3 3 1.0 3 1 5 1.0 3 2 5 1.0 3 3 5 1.0 4 1 -1 8.1 4 2 -1 8.1 4 3 -1 8.1 4 1 0 7.8 4 2 0 7.8 4 3 0 8.1 4 1 1 3.5 4 2 1 3.9 4 3 1 3.9 4 1 2 2.7 4 2 2 2.9 4 3 2 2.3 4 1 3 1.0 4 2 3 1.0 4 3 3 1.0 4 1 5 1.0 4 2 5 1.0 4 3 5 1.0 ; proc glm ; class solreptime; model cfu=solreptimesol*time; means solreptimesol*time/ SNK ; run ; MeancomparisonafterPATPtreatment:(seeFigure4.1) option ls= 120 ; data FCCBH; input trtrepcfu; cards ; 1 1 8.0 1 2 8.1 1 3 8.1 2 1 7.8 2 2 7.8 2 3 7.8 3 1 3.6 3 2 4.0

164

3 3 4.1 4 1 2.1 4 2 2.7 4 3 2.3 5 1 1.0 5 2 1.0 5 3 1.0 6 1 1.0 6 2 1.0 6 3 1.0 7 1 8.2 7 2 8.1 7 3 8.2 8 1 7.8 8 2 7.8 8 3 8.0 9 1 4.3 9 2 4.4 9 3 4.2 10 1 2.0 10 2 1.6 10 3 1.6 11 1 1.0 11 2 1.0 11 3 1.0 12 1 1.0 12 2 1.0 12 3 1.0 13 1 8.3 13 2 8.3 13 3 8.2 14 1 8.1 14 2 8.1 14 3 7.6 15 1 3.1 15 2 3.5 15 3 3.1 16 1 1.8 16 2 1.6 16 3 1.5 17 1 1.0 17 2 1.0 17 3 1.0 18 1 1.0 18 2 1.0 18 3 1.0 19 1 8.1 19 2 8.1 19 3 8.1 20 1 7.8 20 2 7.8 20 3 8.1 21 1 3.5 21 2 3.9

165

21 3 3.9 22 1 2.7 22 2 2.9 22 3 2.3 23 1 1.0 23 2 1.0 23 3 1.0 24 1 1.0 24 2 1.0 24 3 1.0 ; proc glm ; class trtrep; model cfu=trtrep; means trtrep/ SNK ; run ; Sporesurvivorsasinfluencedbysuspensionmedia(seeTable4.3) Independentvariables=treatment;replication Dependentvariable(Y)=logsurvivor(MPN/mL) option ls= 120 ; data FCC_HT_bysol; input trtrepmpn; cards ; 1 1 1.8 1 2 2.2 1 3 2.3 2 1 2.1 2 2 2.7 2 3 2.3 3 1 2.3 3 2 2.7 3 3 2.3 4 1 2.3 4 2 2.7 4 3 2.3 5 1 1.4 5 2 0.48 5 3 0.79 6 1 1.4 6 2 0.86 6 3 0.79 7 1 1.4 7 2 0.86 7 3 0.79 8 1 1.4 8 2 1.1 8 3 0.86 9 1 0.56 9 2 0.86 9 3 0.48 166

10 1 0.56 10 2 0.86 10 3 0.48 11 1 0.56 11 2 0.86 11 3 0.48 12 1 0.56 12 2 0.86 12 3 0.48 13 1 0.48 13 2 0.48 13 3 0.48 14 1 0.48 14 2 0.48 14 3 0.48 15 1 0.48 15 2 0.56 15 3 0.48 16 1 0.48 16 2 0.56 16 3 0.48 17 1 1.3 17 2 0.56 17 3 0.48 18 1 1.3 18 2 1.0 18 3 0.48 19 1 1.3 19 2 1.0 19 3 0.48 20 1 1.3 20 2 1.0 20 3 0.48 21 1 0.48 21 2 1.4 21 3 1.0 22 1 0.86 22 2 1.4 22 3 1.0 23 1 0.86 23 2 1.4 23 3 1.0 24 1 0.56 24 2 1.4 24 3 1.0 25 1 1.0 25 2 0.48 25 3 0.56 26 1 1.0 26 2 0.48 26 3 0.56 27 1 1.0 27 2 0.48 27 3 0.56

167

28 1 1.0 28 2 0.48 28 3 0.56 29 1 0.48 29 2 0.48 29 3 0.56 30 1 0.48 30 2 0.48 30 3 0.56 31 1 0.48 31 2 0.48 31 3 0.56 32 1 0.48 32 2 0.48 32 3 0.48 ; proc glm ; class trtrep; model mpn=trtrep; means trt/ SNK ; run ; Sporesurvivorsasinfluencedbyincubationtime(seeTable4.3) Independentvariables=treatment;replication Dependentvariable(Y)=logsurvivor(MPN/mL) Forexample:3minPATPtreatmentindeionizedwater option ls= 120 ; data FCC_HT_DIW; input trtrepmpn; cards ; 1 1 1.8 1 2 2.2 1 3 2.3 5 1 2.1 5 2 2.7 5 3 2.3 9 1 2.3 9 2 2.7 9 3 2.3 13 1 2.3 13 2 2.7 13 3 2.3 ; proc glm ; class trtrep; model mpn=trtrep; means trt/ SNK ; run; 168

SporerecoveryinPATPtreatedcarrotpuree(seeTable4.4) Independentvariables=treatment;replication Dependentvariable(Y)=logsurvivor(MPN/mL) Forexample:5minPATPtreatment option ls= 120 ; data FCC_BH_HT_all; input trtrepmpn; cards ; 1 1 1.4 1 2 1.2 1 3 1.2 2 1 0.48 2 2 1.4 2 3 0.86 3 1 1.2 3 2 1.6 3 3 1.5 4 1 0.86 4 2 2.2 4 3 1.6 5 1 2.0 5 2 2.2 5 3 1.6 6 1 2.4 6 2 1.6 6 3 1.2 7 1 0.48 7 2 0.48 7 3 0.56 8 1 1.9 8 2 0.48 8 3 0.86 9 1 0.48 9 2 0.48 9 3 0.48 10 1 0.48 10 2 2.0 10 3 0.86 11 1 1.6 11 2 1.0 11 3 0.56 12 1 0.56 12 2 1.2 12 3 0.56 13 1 1.0 13 2 2.0 13 3 1.4 14 1 0.48 14 2 0.56 14 3 1.4 169

15 1 1.4 15 2 1.6 15 3 1.7 16 1 1.4 16 2 1.9 16 3 1.7 17 1 2.2 17 2 2.6 17 3 1.6 18 1 1.8 18 2 2.2 18 3 2.1 19 1 1.6 19 2 1.5 19 3 0.86 20 1 2.6 20 2 1.5 20 3 2.3 21 1 1.5 21 2 1.5 21 3 3.1 22 1 2.6 22 2 2.2 22 3 2.1 23 1 1.9 23 2 2.3 23 3 0.79 24 1 1.9 24 2 0.48 24 3 0.48 ; proc glm ; class trtrep; model mpn=trtrep; means trt/ SNK ; run ; 170

AppendixA3: Sporeinactivationduringvariousstagesofsingleanddoublepulsetreatment(seeTable 5.2) Independentvariables=variousstagesoftreatment(SPCUT,SP3min,DPCUT,DP 1.5min,etc.);sporulationmedia(TSAYE,NAYE) Dependentvariable(Y)=logreduction(CFU/mL) data pulsing_logreduction;; input treatmentmedia@; do i= 1to 5; input y@; output ; end ; datalines ; 1 1 0.08 -0.02 0.66 0.10 0.20 1 2 0.30 0.30 0.26 0.35 0.42 2 1 -3.4 -3.2 -3.0 -3.3 -3.2 2 2 -2.5 -2.5 -2.2 -2.5 -2.8 3 1 -1.6 -1.7 -1.5 -1.7 -1.2 3 2 -1.1 -1.1 -1.0 -1.2 -1.2 4 1 -1.7 -1.9 -1.6 -1.6 -1.4 4 2 -1.2 -1.2 -1.1 -1.3 -1.2 5 1 -2.3 -2.6 -1.8 -2.4 -1.9 5 2 -1.6 -1.6 -1.3 -1.7 -1.9 6 1 -6.0 -5.8 -5.9 -6.0 -5.4 6 2 -5.1 -5.1 -4.9 -5.4 -4.9 ; proc print ; run ; proc glm ;; class treatmentmedia; model Y=treatmentmediatreatment*media; means treatmentmediatreatment*media/ tukey ; run ; Meancomparisonduringvariousstagesofsingleanddoublepulsetreatment(seeTable 5.2) data pulsing_logreduction;; input treatment@; do i= 1to 5; input y@; output ; end ; datalines ; 1 0.08 -0.02 0.66 0.10 0.20 2 0.30 0.30 0.26 0.35 0.42 3 -3.4 -3.2 -3.0 -3.3 -3.2 4 -2.5 -2.5 -2.2 -2.5 -2.8 5 -1.6 -1.7 -1.5 -1.7 -1.2 171

6 -1.1 -1.1 -1.0 -1.2 -1.2 7 -1.7 -1.9 -1.6 -1.6 -1.4 8 -1.2 -1.2 -1.1 -1.3 -1.2 9 -2.3 -2.6 -1.8 -2.4 -1.9 10 -1.6 -1.6 -1.3 -1.7 -1.9 11 -6.0 -5.8 -5.9 -6.0 -5.4 12 -5.1 -5.1 -4.9 -5.4 -4.9 ; proc print ; run ; proc glm ;; class treatment; model Y=treatment; means treatment/ tukey ; run ; Influenceoftreatmentconditionsonsporeinactivation(seeTable5.3) Independentvariables=treatmentcondition(PATP,TP,HPP);treatmenttime(0to240 min);sporulationmedia(TSAYE,NAYE) Dependentvariable(Y)=logreduction(CFU/mL) data process_logreduction;; input processtimemedia@; do i= 1to 2; input y@; output ; end ; datalines ; 1 1 1 0.00 -0.20 1 1 2 0.20 0.00 1 2 1 -0.50 -0.80 1 2 2 0.00 -0.20 1 3 1 -1.7 -1.4 1 3 2 -0.90 -0.90 1 4 1 -2.3 -2.7 1 4 2 -1.7 -1.6 1 5 1 -4.8 -5.3 1 5 2 -3.6 -3.3 1 6 1 -5.6 -6.1 1 6 2 -5.1 -5.2 2 1 1 0.30 0.00 2 1 2 0.20 0.40 2 4 1 0.20 0.10 2 4 2 0.20 0.40 2 5 1 0.30 0.00 2 5 2 0.20 0.40 2 7 1 -1.1 -1.0 2 7 2 -0.20 -0.10 2 8 1 -2.5 -2.6 2 8 2 -1.4 -0.90 2 9 1 -4.0 -3.9 2 9 2 -2.9 -2.2 2 10 1 -7.3 -7.4 172

2 10 2 -4.4 -4.9 2 11 1 -7.3 -7.4 2 11 2 -5.2 -5.0 3 1 1 -0.10 0.00 3 1 2 0.00 0.00 3 5 1 0.20 0.10 3 5 2 0.00 0.20 3 7 1 0.10 0.20 3 7 2 0.20 0.30 3 8 1 0.00 0.10 3 8 2 0.20 0.40 ; proc print ; run ; proc glm ;; class processtimemedia; model Y=processtimemediaprocess*timeprocess*mediatime*mediaprocess*time*media; means processtimemedia/ tukey ; run ; Meancomparison(seeTable5.3) data process_logreduction;; input treatment@; do i= 1to 2; input y@; output ; end ; datalines ; 1 0.00 -0.20 2 0.20 0.00 3 -0.50 -0.80 4 0.00 -0.20 5 -1.7 -1.4 6 -0.90 -0.90 7 -2.3 -2.7 8 -1.7 -1.6 9 -4.8 -5.3 10 -3.6 -3.3 11 -5.6 -6.1 12 -5.1 -5.2 13 0.30 0.00 14 0.20 0.40 15 0.20 0.10 16 0.20 0.40 17 0.30 0.00 18 0.20 0.40 19 -1.1 -1.0 20 -0.20 -0.10 21 -2.5 -2.6 22 -1.4 -0.90 23 -4.0 -3.9 24 -2.9 -2.2 25 -7.3 -7.4

173

26 -4.4 -4.9 27 -7.3 -7.4 28 -5.2 -5.0 29 -0.10 0.00 30 0.00 0.00 31 0.20 0.10 32 0.00 0.20 33 0.10 0.20 34 0.20 0.30 35 0.00 0.10 36 0.20 0.40 ; proc print ; run ; proc glm ;; class treatment; model Y=treatment; means treatment/ tukey ; run ; 174

AppendixB:MATLABcommandsforpressureandthermaldosages MainPT.m clc clear TP{1}= 'S1rep1' ; TP{2}= 'S2rep1' ; TP{3}= 'S3rep1' ; TP{4}= 'S4rep1' ; TP{5}= 'S5rep1' ; TP{6}= 'S6rep1' ; TP{7}= 'S7rep1' ; TP{8}= 'S8rep1' ; TP{9}= 'L1rep1' ; TP{10}= 'L2rep1' ; TP{11}= 'L3rep1' ; TP{12}='L4rep1' ; TP{13}= 'L5rep1' ; TP{14}= 'L6rep1' ; TP{15}= 'L7rep1' ; TP{16}= 'L8rep1' ; result{1,1}= 'Treatment' ; result{1,2}= 'St' ; result{1,3}= 'Sp' ; for i=1:16; [St,Sp]=IntegPT(TP{i}); St(i)=St;Sp(i)=Sp; fprintf(1,TP{i}); fprintf(1, '%2.5f\t' ,St(i)); fprintf(1, '%2.5f\t\n' ,Sp(i)); result{i+1,1}=TP{i}; result{i+1,2}=St(i); result{i+1,3}=Sp(i); end xlswrite( 'resultTP' ,result);

175

IntegPT.m function [St,Sp]=IntegPT(x) %Integrationfunctionisusedtocalculateareaunderthetemperatureand pressure profilebyusingtrapezoidalrule.Themethodwasselected basedonthepropertiesof tabulateddatawhichhasequalspacingand almostlinearrelationshipwithinshorttime interval.Thesurfacearea iscountedfrombeginningtoendoftreatmentincludingthe elapsedperiod betweentwo"PULSES". %Theprogramiscapableofloadingdatafromexcelfiles,calculatingthe desiredareas andwhencalledbythemainprogram,writethedatatoan excelfilenamed"result". %LoadingTemperatureandpressureprofiledatafromSpreadsheet TP=xlsread(x); %LocatetheendingpointoftheTPprofile [N,n]=size(TP); St=0;Sp=0; for i=1:N1; if TP(i,3)~=0|TP(i+1,3)~=0 It=0.5*(TP(i,2)+TP(i+1,2)); St=St+It; end Ip=0.5*(TP(i,3)+TP(i+1,3)); Sp=Sp+Ip; end end

176

AppendixC:FTIRspectraof Bacillusamyloliquefaciens TMW2.479spores

177

178

RawspectraofTSAYEgrownspores(untreatedcontrol)

179

RawspectraofNAYEgrownspores(untreatedcontrol)

180

RawspectraofTSAYEgrownspores(8minPATPtreatment)

181

RawspectraofNAYEgrownspores(8minPATPtreatment)

182

SecondderivativespectraofTSAYEgrownspores(untreatedcontrol)

183

SecondderivativespectraofNAYEgrownspores(untreatedcontrol)

184

SecondderivativespectraofTSAYEgrownspores(8minPATPtreatment)

185

SecondderivativespectraofNAYEgrownspores(8minPATPtreatment)