THE SATO-TATE CONJECTURE for MODULAR FORMS of WEIGHT 3 Contents 1. Introduction 1 2. Notation and Assumptions 5 3. Modular Forms
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Tate's Conjecture, Algebraic Cycles and Rational K-Theory In
K-Theory 13: 109–122, 1998. 109 © 1998 Kluwer Academic Publishers. Printed in the Netherlands. Tate’s Conjecture, Algebraic Cycles and Rational K-Theory in Characteristic p THOMAS GEISSER? Institute for Experimental Mathematics, Ellernstr. 29, 45326 Essen, Germany e-mail: [email protected] (Received: May 1997) Abstract. The purpose of this article is to discuss conjectures on motives, algebraic cycles and K-theory of smooth projective varieties over finite fields. We give a characterization of Tate’s conjecture in terms of motives and their Frobenius endomorphism. This is used to prove that if Tate’s conjecture holds and rational and numerical equivalence over finite fields agree, then higher rational K-groups of smooth projective varieties over finite fields vanish (Parshin’s conjecture). Parshin’s conjecture in turn implies a conjecture of Beilinson and Kahn giving bounds on rational K-groups of fields in finite characteristic. We derive further consequences from this result. Mathematics Subject Classifications (1991). 19E08, 14C35, 19E15. Key words: higher algebraic K-theory, Milnor K-theory, finite fields, Tate’s conjecture, Beilinson’s conjecture, Parshin’s conjecture, Chow groups. 1. Introduction There are three results which allow to deduce properties of the category of motives for numerical equivalence: Deligne’s proof of the Weil conjectures, Jannsen’s semi- simplicity theorem, and the existence of the Frobenius automorphism πM for motives M. If one further assumes Tate’s conjecture, one can give a very precise description of this category (Milne [10]). For example, simple motives are determined by their Frobenius endomorphism, and one can recover the endomorphism algebra with the Frobenius. -
Arxiv:1401.5507V2
FAMILIES OF L-FUNCTIONS AND THEIR SYMMETRY PETER SARNAK, SUG WOO SHIN, AND NICOLAS TEMPLIER Abstract. In [100] the first-named author gave a working definition of a family of automorphic L-functions. Since then there have been a number of works [32], [118], [73] [49], [72] and especially [108] by the second and third-named authors which make it possible to give a conjectural answer for the symmetry type of a family and in particular the universality class predicted in [68] for 1 the distribution of the zeros near s = 2 . In this note we carry this out after introducing some basic invariants associated to a family. 1. Definition of families and Conjectures The zoo of automorphic cusp forms π on G = GLn over Q correspond bijectively to their standard completed L-functions Λ(s, π) and they constitute a countable set containing species of different types. For example there are self-dual forms, ones corresponding to finite Galois representations, to Hasse–Weil zeta functions of varieties defined over Q, to Maass forms, etc. From a number of points of view (including the nontrivial problem of isolating special forms) one is led to study such Λ(s, π)’s in families in which the π’s have similar characteristics. Some applications demand the understanding of the behavior of the L-functions as π varies over a family. Other applications involve questions about an individual L-function. In practice a family is investigated as it arises. For example the density theorems of Bombieri [13] and Vinogradov [113] are concerned with showing that in a suitable sense most Dirichlet L-functions have few violations of the Riemann hypothesis, and as such it is a powerful substitute for the latter. -
Counting Points on Igusa Varieties of Hodge Type by Thomas a Mack
Counting Points on Igusa Varieties of Hodge Type by Thomas A Mack-Crane A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Mathematics in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Sug Woo Shin, Chair Professor Xinyi Yuan Professor Richard Bamler Professor Ori Ganor Spring 2021 Abstract Counting Points on Igusa Varieties of Hodge Type by Thomas A Mack-Crane Doctor of Philosophy in Mathematics University of California, Berkeley Professor Sug Woo Shin, Chair The Langlands-Kottwitz method seeks to understand Shimura varieties in terms of automorphic forms by deriving a trace formula for the cohomology of Shimura varieties which can be compared to the automorphic trace formula. This method was pioneered by Langlands [Lan77, Lan79], and developed further by Kottwitz in [Kot90, Kot92] in the case of Shimura varieties of PEL type with good reduction. Igusa varieties were introduced in their modern form by Harris-Taylor [HT01] in the course of studying the bad reduction of certain simple Shimura varieties. The relation between Igusa varieties and Shimura varieties was expanded to PEL type by Mantovan [Man04, Man05], and their study of the cohomology of Igusa varieties was expanded to PEL type and streamlined in the Langlands-Kottwitz style by Shin [Shi09, Shi10]. Following the generalization of Mantovan’s work to Hodge type by Hamacher and Hamacher-Kim [Ham19, HK19], we carry out the Langlands-Kottwitz method for Igusa varieties of Hodge type, generalizing the work of [Shi09]. That is, we derive a trace formula for the cohomology of Igusa varieties suitable for eventual comparison with the automorphic trace formula. -
Construction of Automorphic Galois Representations: the Self-Dual Case
CONSTRUCTION OF AUTOMORPHIC GALOIS REPRESENTATIONS: THE SELF-DUAL CASE SUG WOO SHIN This survey paper grew out of the author's lecture notes for the Clay Summer School in 2009. Proofs are often omitted or sketched, but a number of references are given to help the reader find more details if he or she wishes. The article aims to be a guide to the outline of argument for constructing Galois representations from the so-called regular algebraic conju- gate self-dual automorphic representations, implementing recent improvements in the trace formula and endoscopy. Warning. Although it is important to keep track of various constants (e.g. sign matters!), twists by characters, etc in proving representation-theoretic identities, I often ignore them in favor of simpler notation and formulas. Thus many identities and statements in this article should be taken with a grain of salt and not cited in academic work. Correct and precise statements can be found in original papers. I should also point out that significant progress has been made, especially in the case of non-self-dual automorphic representations ([HLTT16], [Sch15]) since the original version of these notes was written. I have kept updates minimal (mostly taking place in introduction, adding references to some recent developments) and do not discuss these exciting new results here. The interested readers are referred to survey papers such as [Wei16, Mor16, Scha, Sch16, Car]. Acknowledgments. I heartily thank the Clay Mathematics Institute for its generous support toward the 2009 summer school and choosing an exciting location as Hawaii. I am grateful to the participants for their interest and wonderful questions. -
Monodromy and the Tate Conjecture-1
Monodromy and the Tate conjecture-1 Monodromy and ttthe Tattte conjjjecttture::: Piiicard numbers and Mordellllll-Weiiilll ranks iiin famiiillliiies A. Johan de Jong and Nicholas M. Katz Intttroductttiiion We use results of Deligne on …-adic monodromy and equidistribution, combined with elementary facts about the eigenvalues of elements in the orthogonal group, to give upper bounds for the average "middle Picard number" in various equicharacteristic families of even dimensional hypersurfaces, cf. 6.11, 6.12, 6.14, 7.6, 8.12. We also give upper bounds for the average Mordell- Weil rank of the Jacobian of the generic fibre in various equicharacteristic families of surfaces fibred over @1, cf. 9.7, 9.8. If the relevant Tate Conjecture holds, each upper bound we find for an average is in fact equal to that average The paper is organized as follows: 1.0 Review of the Tate Conjecture 2.0 The Tate Conjecture over a finite field 3.0 Middle-dimensional cohomology 4.0 Hypersurface sections of a fixed ambient variety 5.0 Smooth hypersurfaces in projective space 6.0 Families of smooth hypersurfaces in projective space 7.0 Families of smooth hypersurfaces in products of projective spaces 8.0 Hypersurfaces in @1≠@n as families over @1 9.0 Mordell-Weil rank in families of Jacobians References 1...0 Reviiiew of ttthe Tattte Conjjjecttture 1.1 Let us begin by recalling the general Tate Conjectures about algebraic cycles on varieties over finitely generated ground fields, cf. Tate's articles [Tate-Alg] and [Tate-Conj]. We start with a field k, a separable closure äk of k, and Gal(äk/k) its absolute galois group. -
Arxiv:1810.06480V3 [Math.AG] 10 May 2021 1.2.1
A NOTE ON THE BEHAVIOUR OF THE TATE CONJECTURE UNDER FINITELY GENERATED FIELD EXTENSIONS EMILIANO AMBROSI ABSTRACT. We show that the `-adic Tate conjecture for divisors on smooth proper varieties over finitely generated fields of positive characteristic follows from the `-adic Tate conjecture for divisors on smooth projective surfaces over finite fields. Similar results for cycles of higher codimension are given. 1. INTRODUCTION Let k be a field of characteristic p ≥ 0 with algebraic closure k and write π1(k) for the absolute Galois group of k.A k-variety is a reduced scheme, separated and of finite type over k. For a k-variety Z i write Zk := Z ×k k and CH (Zk) for the group of algebraic cycles of codimension i modulo rational equivalence. Let ` 6= p be a prime. 1.1. Conjectures. Recall the following versions of the Grothendieck-Serre-Tate conjectures ([Tat65], [And04, Section 7.3]): Conjecture 1.1.1. If k is finitely generated and Z is a smooth proper k-variety, then: • T (Z; i; `): The `-adic cycle class map [ 0 c : CHi(Z ) ⊗ ! H2i(Z ; (i))π1(k ) Zk k Q` k Q` [k0:k]<+1 is surjective; 2i • S(Z; i; `): The action of π1(k) on H (Zk; Q`(i)) is semisimple; 2i π1(k) 2i • WS(Z; i; `): The inclusion H (Zk; Q`(i)) ⊆ H (Zk; Q`(i)) admits a π1(k)-equivariant splitting. For a field K, one says that T (K; i; `) holds if for every finite field extension K ⊆ L and every smooth proper L-variety Z, T (Z; i; `) holds. -
A REMARK on UNIFORM BOUNDEDNESS for BRAUER GROUPS 1. Introduction 1.1. Let K Be a Field of Characteristic P ≥ 0 and Let K Be A
A REMARK ON UNIFORM BOUNDEDNESS FOR BRAUER GROUPS ANNA CADORET AND FRANC¸OIS CHARLES Abstract. The Tate conjecture for divisors on varieties over number fields is equivalent to finiteness of `-primary torsion in the Brauer group. We show that this finiteness is actually uniform in one-dimensional families for varieties that satisfy the Tate conjecture for divisors { e.g. abelian varieties and K3 surfaces. 1. Introduction 1.1. Let k be a field of characteristic p ≥ 0 and let k be a separable closure of k. Let X be a smooth proper variety over k. For any prime number ` 6= p, consider the cycle class map 2 c1 : Pic(Xk) ⊗ Q` ! H (Xk; Q`(1)): 2 The absolute Galois group Gal(k=k) of k acts naturally on the ´etalecohomology group H (Xk; Q`(1)), and the image of the cycle class map c1 is contained in the group [ 2 U H (Xk; Q`(1)) ; U where U runs through the open subgroups of Gal(k=k). We say that X satisfies the `-adic Tate conjecture for divisors if the image of c1 is equal to the group above. As is well-known, the Tate conjecture for divisors is related to finiteness results for the Brauer group. Indeed, given X and ` as above, X satisfies the `-adic Tate conjecture for divisors if and only if for every subgroup U of finite index in Gal(k=k), the group U 1 Br(Xk) [` ] is finite. 1.2. In this paper, we investigate whether one might be able to find uniform bounds on the Brauer groups above when the variety X varies in a family. -
PETER SCHOLZE to RECEIVE 2013 SASTRA RAMANUJAN PRIZE the 2013 SASTRA Ramanujan Prize Will Be Awarded to Professor Peter Scholze
PETER SCHOLZE TO RECEIVE 2013 SASTRA RAMANUJAN PRIZE The 2013 SASTRA Ramanujan Prize will be awarded to Professor Peter Scholze of the University of Bonn, Germany. The SASTRA Ramanujan Prize was established in 2005 and is awarded annually for outstanding contributions by young mathematicians to areas influenced by the genius Srinivasa Ramanujan. The age limit for the prize has been set at 32 because Ramanujan achieved so much in his brief life of 32 years. The prize will be awarded in late December at the International Conference on Number Theory and Galois Representations at SASTRA University in Kumbakonam (Ramanujan's hometown) where the prize has been given annually. Professor Scholze has made revolutionary contributions to several areas at the interface of arithmetic algebraic geometry and the theory of automorphic forms. Already in his master's thesis at the University of Bonn, Scholze gave a new proof of the Local Langlands Conjecture for general linear groups. There were two previous approaches to this problem, one by Langlands{Kottwitz, and another by Harris and Taylor. Scholze's new approach was striking for its efficiency and simplicity. Scholze's proof is based on a novel approach to calculate the zeta function of certain Shimura varieties. This work completed in 2010, appeared in two papers in Inventiones Mathematicae in 2013. Scholze has generalized his methods partly in collaboration with Sug Woo Shin to determine the `-adic Galois representations defined by a class of Shimura varieties. These results are contained in two papers published in 2013 in the Journal of the American Mathematical Society. While this work for his master's was groundbreaking, his PhD thesis written under the direction of Professor Michael Rapoport at the University of Bonn was a more mar- velous breakthrough and a step up in terms of originality and insight. -
The Mumford-Tate Conjecture for Drinfeld-Modules
MUMFORD-TATE CONJECTURE 1 THE MUMFORD-TATE CONJECTURE FOR DRINFELD-MODULES by Richard PINK* Abstract Consider the Galois representation on the Tate module of a Drinfeld module over a finitely generated field in generic characteristic. The main object of this paper is to determine the image of Galois in this representation, up to commensurability. We also determine the Dirichlet density of the set of places of prescribed reduction type, such as places of ordinary reduction. §0. Introduction Let F be a finitely generated field of transcendence degree 1 over a finite field of characteristic p. Fix a place ∞ of F , and let A be the ring of elements of F which are regular outside ∞. Consider a finitely generated extension K of F and a Drinfeld module ϕ : A → EndK (Ga) of rank n ≥ 1 (cf. Drinfeld [10]). In other words K is a finitely generated field of transcendence degree ≥ 1 over Fp, and ϕ has “generic characteristic”. sep Let K ⊂ K¯ denote a separable, respectively algebraic closure of K. Let Fλ denote the completion of F at a place λ. If λ 6= ∞ we have a continuous representation sep ρλ : Gal(K /K) −→ GLn(Fλ) Communicated by Y. Ihara, September 20, 1996. 1991 Mathematics Subject Classifications: 11G09, 11R58, 11R45 * Fakult¨at f¨ur Mathematik und Informatik, Universit¨at Mannheim, D-68131 Mannheim, Germany 2 RICHARD PINK which describes the Galois action on the λ-adic Tate module of ϕ. The main goal of this article is to give a qualitative characterization of the image of ρλ. Here the term “qualitative” refers to properties that are shared by all open subgroups, i.e. -
Junehyuk Jung –
Junehyuk Jung B [email protected] • Í sites.google.com/brown.edu/junehyuk/ Positions Brown University, Department of Mathematics Providence, RI Assistant Professor 7/2020– Texas A&M University, Department of Mathematics College Station, TX Assistant Professor 8/2017–6/2020 KAIST, Department of Mathematical Science Daejeon, South Korea Researcher 6/2013–7/2016 Visiting Positions Rice University, Department of Mathematics Houston, TX Adjunct Assistant Professor 7/2019–3/2020 Yale University, Department of Mathematics New Haven, CT Visitor 4/2017–6/2017 University of California Berkeley, Department of Mathematics Berkeley, CA Visitor 2/2017–3/2017 Northwestern University, Mathematics Department Evanston, IL Visitor 10/2016–11/2016 Institute for Advanced Study, School of Mathematics Princeton, NJ Member 9/2014–12/2015 Northwestern University, Mathematics Department Evanston, IL Visiting Postdoctoral Fellow 9/2013–12/2013 Education Princeton University Princeton, NJ Doctor of Philosophy 9/2008–6/2013 Mathematics Advisor: Peter C. Sarnak Thesis Title: “On the zeros of automorphic forms” University of Chicago Chicago, IL Master of Science 9/2006–8/2008 Mathematics University of Chicago Chicago, IL Bachelor of Arts 9/2005–8/2008 Mathematics with Honors Honors and Awards National Science Foundation grant Awarded, DMS-1900993 7/2019–6/2022 Sloan Research Fellowship Awarded, $ 35,000 per year 7/2019–6/2021 Posco TJ Park Science Fellowship Awarded, $ 35,000 per year 3/2014–2/2016 Samsung Scholarship for Graduate Studies Awarded, $ 50,000 per -
Sato-Tate Distributions
SATO-TATE DISTRIBUTIONS ANDREW V.SUTHERLAND ABSTRACT. In this expository article we explore the relationship between Galois representations, motivic L-functions, Mumford-Tate groups, and Sato-Tate groups, and we give an explicit formulation of the Sato- Tate conjecture for abelian varieties as an equidistribution statement relative to the Sato-Tate group. We then discuss the classification of Sato-Tate groups of abelian varieties of dimension g 3 and compute some of the corresponding trace distributions. This article is based on a series of lectures≤ presented at the 2016 Arizona Winter School held at the Southwest Center for Arithmetic Geometry. 1. AN INTRODUCTION TO SATO-TATE DISTRIBUTIONS Before discussing the Sato-Tate conjecture and Sato-Tate distributions in the context of abelian vari- eties, let us first consider the more familiar setting of Artin motives (varieties of dimension zero). 1.1. A first example. Let f Z[x] be a squarefree polynomial of degree d. For each prime p, let 2 fp (Z=pZ)[x] Fp[x] denote the reduction of f modulo p, and define 2 ' Nf (p) := # x Fp : fp(x) = 0 , f 2 g which we note is an integer between 0 and d. We would like to understand how Nf (p) varies with p. 3 The table below shows the values of Nf (p) when f (x) = x x + 1 for primes p 60: − ≤ p : 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 Nf (p) 00111011200101013 There does not appear to be any obvious pattern (and we should know not to expect one, because the Galois group of f is nonabelian). -
Higher Brauer Groups
Higher Brauer Groups Thomas Sebastian Alexander Benedikt Jahn Dissertation an der Fakultät für Mathematik, Informatik und Statistik der Ludwig–Maximilians–Universität München vorgelegt von Thomas Sebastian Alexander Benedikt Jahn am 2. Juni 2015 Higher Brauer Groups Thomas Sebastian Alexander Benedikt Jahn Dissertation an der Fakultät für Mathematik, Informatik und Statistik der Ludwig–Maximilians–Universität München vorgelegt von Thomas Sebastian Alexander Benedikt Jahn am 2. Juni 2015 Erstgutachter: Prof. Dr. Andreas Rosenschon, München Zweitgutachter: Prof. Dr. Alexander Schmidt, Heidelberg Tag der mündlichen Prüfung: 21. Juli 2015 Contents Zusammenfassung/Abstract vii 1. Introduction 1 2. Higher Brauer Groups 5 2.1. Brauer groups . 6 2.2. Zeta functions and Tate’s conjecture . 10 2.3. Lichtenbaum’s complex . 23 2.4. Lichtenbaum and motivic cohomology . 27 3. The Order of Higher Brauer Groups 33 3.1. Bilinear form . 34 3.2. Alternating form . 37 3.3. Steenrod squares and omega . 40 3.4. Proof of the theorem . 43 A. Hypercohomology 47 Zusammenfassung 2 Die klassische kohomologische Brauergruppe Br(X) = Het(X, Gm) einer glatten algebraischen Varietät X ist in verschiedenen Kontexten der algebraischen Geo- metrie von Interesse. Beispielsweise steht die kohomologische Brauergruppe in Zusammenhang mit Werten von Zeta-Funktionen und einer Vermutung von Tate über die Surjektivität gewisser Zyklenabbildungen. Für eine glatte projektive Fläche X über einem endlichen Körper gilt die Tate Vermutung für Divisoren an der Primzahl ` ungleich der Charakteristik genau dann, wenn die `-primär Gruppe Br(X)(`) endlich ist. Weiter hat die Zeta-Funktion von X eine Darstel- lung als eine rationale Funktion, wobei nach einer Vermutung von Tate und Artin sich bestimmte Werte einer der auftretenden Faktoren durch eine Formel approxi- mieren lassen, die die Ordnung jBr(X)j der Brauergruppe involviert.