Western University TopSCHOLAR®

Masters Theses & Specialist Projects Graduate School

12-2011 Distribution of Trace Elements in Basin Sediments Laura Mahoney Benneyworth Western Kentucky University, [email protected]

Follow this and additional works at: http://digitalcommons.wku.edu/theses Part of the Environmental Indicators and Impact Assessment Commons, Environmental Monitoring Commons, and the Water Resource Management Commons

Recommended Citation Benneyworth, Laura Mahoney, "Distribution of Trace Elements in Cumberland River Basin Reservoir Sediments" (2011). Masters Theses & Specialist Projects. Paper 1113. http://digitalcommons.wku.edu/theses/1113

This Thesis is brought to you for free and open access by TopSCHOLAR®. It has been accepted for inclusion in Masters Theses & Specialist Projects by an authorized administrator of TopSCHOLAR®. For more information, please contact [email protected].

DISTRIBUTION OF TRACE ELEMENTS IN CUMBERLAND RIVER BASIN RESERVOIR SEDIMENTS

A Thesis Presented to The Faculty of the Department of Geography and Geology Western Kentucky University Bowling Green, Kentucky

In Partial Fulfillment Of the Requirements for the Degree Master of Science

By Laura Mahoney Benneyworth

December 2011

ACKNOWLEDGMENTS

I would like to thank Richard Tippit, Mark Campbell, and Bob Sneed of the

USACE Nashville District for providing me with the data, and for all the assistance they gave to me during my research. I would also like to express my appreciation to my committee members, Dr. Keeling, and Dr. Yan for their guidance and tutelage through my years in the Geoscience Department, as well as for their review of my manuscript.

Special thanks go to my advisor, Dr. All, who has shown incredible patience with my degree progress, and has consistently provided me with encouragement and positive feedback. I owe an additional debt of gratitude to Dr. All for introducing me to many concepts and issues that have helped me find a new career path. Lastly, love and gratitude goes to my husband, who has always supported me in my academic and professional endeavors.

iii

CONTENTS

CHAPTER ONE: INTRODUCTION ...... 1 CHAPTER TWO: BACKGROUND ...... 5 Importance of Lakes, , and Dams ...... 6 Comparison of Lake and Reservoir Characteristics ...... 8 Sources of Trace Elements in Sediment ...... 10 Sediment Quality ...... 11 Sediment Monitoring ...... 15 Urban Sediments ...... 16 Measures of Urbanization ...... 18 CHAPTER THREE: MATERIALS AND METHODS ...... 21 Hydrology ...... 21 Land Use ...... 28 Population Density ...... 30 Sediment Sampling and Laboratory Analysis...... 32 Data Analysis ...... 33 CHAPTER FOUR: RESULTS AND DISCUSSION ...... 37 Reservoir Concentration Comparisons ...... 37 Concentration Trends ...... 47 Comparison to Probable Effect Concentrations ...... 50 Potential Sources ...... 51 Study Limitations ...... 54 CHAPTER FIVE: CONCLUSION ...... 55 APPENDIX A: SUMMARY OF CRB SEDIMENT DATA ...... 59 REFERENCES ...... 63

iv

LIST OF FIGURES

Figure 1. Location of CRB Reservoirs ...... 22

Figure 2. National Land Cover 2006 Dataset for the CRB ...... 29

Figure 3. 2000 Census Population Density of the CRB Watersheds ...... 31

Figure 4. Range of Concentrations for CRB Sediment Samples, By Trace Element (As, Be, Cd) (1994-2010) ...... 38

Figure 5. Range of Concentrations for CRB Sediment Samples, By Trace Element (Cu, Cr, Hg) (1994-2010) ...... 39

Figure 6. Range of Concentrations for CRB Sediment Samples, By Trace Element (Pb, Ni, Zn) (1994-2010) ...... 40

Figure 7. Concentrations of CRB Sediments (As, Be, Cd), By Year (1994-2010) ...... 45

Figure 8. Concentrations of CRB Sediments (Cr, Cu Hg), By Year (1994-2010) ...... 46

Figure 9. Concentrations of CRB Sediments (Ni, Pb, Zn), By Year (1994-2010) ...... 47

Figure 10. Potential Point Sources From USEPA’s Geospatial Database ...... 53

v

LIST OF TABLES

Table 1. Potential Sources of Trace Elements Commonly Found in Urban Sediments .. 17

Table 2. Summary of CRB Reservoir Functions ...... 24

Table 3. Summary of CRB Reservoir Properties ...... 25

Table 4. Summary of Gehan Hypothesis Testing ...... 43

Table 5. Summary of Metal Contaminant Index Calculation and Rank ...... 51

vi

DISTRIBUTION OF TRACE ELEMENTS IN CUMBERLAND RIVER BASIN RESERVOIR SEDIMENTS

Laura Mahoney Benneyworth December 2011 68 Pages

Directed by: John All, David Keeling, and Jun Yan

Department of Geography and Geology Western Kentucky University

The U.S. Army Corps of Engineers, Nashville District, maintains ten reservoirs in the Cumberland River Basin in Kentucky and , and has been monitoring sediment chemistry in the reservoirs since 1994. The purpose of this study is to evaluate the sediment data collected from the reservoirs from 1994 to 2010 to determine if there are any spatial patterns of the trace elements: arsenic, beryllium, cadmium, chromium, copper, lead, mercury, nickel, and zinc. The results indicated that trace element levels were consistent with national baseline concentrations measured by the U.S. Geological

Survey. Center Hill reservoir had the greatest number of trace element concentrations

(all except cadmium) that were significantly higher when compared to all other reservoirs. The degree of urbanization in the reservoir basins was based on population density from the 2000 Census and the percentage of developed land using the 2006 national land cover dataset. Aquatic toxicity values were used as a measure of sediment quality. The reservoirs with the worst aquatic toxicity rankings were not the most urban, instead they were the reservoirs with the longest retention times. Therefore, it may be concluded that retention time has a larger effect on Cumberland River Basin sediment concentrations than the type of land use or the degree of urbanization. The results also indicate that it may be prudent to include an evaluation of quality based on aquatic

vii

toxicity when monitoring sediment quality, and that when reservoirs are the subject of sediment quality assessments, the consideration of the physical properties of the reservoir, especially the retention time, is essential for a comprehensive evaluation. This may also imply that sediment quality in reservoirs may effectively be regulated by water resource management techniques at the reservoirs that affect retention time.

viii

CHAPTER ONE: INTRODUCTION

All life depends on less than one percent of the total quantity of water on the planet (Hornberger, et al., 1998). With projected increases in global human populations, the demand for water has become more critical than ever. Currently, more than 1 billion people worldwide lack access to safe drinking water, and water-related diseases lead to two to five million deaths annually (Gleick, 2003; Rijsberman,2006 ). There are some areas in the world where water scarcity is not an issue; however, the spatial distribution of water supplies does not always coincide with human needs. If there is no mechanism to store excess water, it can be wasted; alternatively, if excess water is not controlled, flooding and possible loss of life and property may result. The construction of reservoirs is one way in which the control of water has historically been addressed (Rijsberman,

2006; WES, 1998).

With increased population comes an increased proportion of urbanized land.

Increases in urbanized land result in higher levels of runoff from non-point sources; this subsequently can result in higher concentrations of contaminants in surrounding water bodies and sediments (Novotny and Olem, 1994). The characteristics of sediment contamination in a watershed have been reported to relate to land use activities (USEPA,

1997), as well as to the physical properties of the substrate and hydrological conditions of the watershed (Novotny and Olem, 1994).

One of the most important watersheds in the southeastern U. S. is the Cumberland

River Basin (CRB), located in southern Kentucky and in northern Tennessee. The U.S.

Army Corps of Engineers, Nashville District (USACE), has authority for, and maintains, ten reservoirs in the CRB. The USACE has been monitoring sediment chemistry in the

1 reservoirs since1994. The purpose of this study is to evaluate the reservoir sediment quality data to determine if there are any spatial patterns of trace elements detected in the

CRB sediments collected from 1994 to 2010. The trace elements evaluated include: arsenic (As); beryllium (Be); cadmium (Cd); chromium (Cr); copper (Cu); lead (Pb); mercury (Hg); nickel (Ni), and zinc (Zn).

Reservoirs play an important role in the management of water resources, and provide many functions such as flood control and water supply. Reservoirs can also act as “traps” for sediments originating from upstream watersheds. Previous sediment quality studies have been conducted on trace elements in lakes and reservoirs by a variety of organizations, most notably the U.S. Geological Survey (USGS) and the U.S.

Environmental Protection Agency (USEPA). Most of these studies, however, have not been conducted on a watershed as large as the CRB, or the sediments monitored over a period of time as long as the USACE’s program.

Increased development of farmland and urbanization results in greater erosion and runoff, and increased areas of impervious surface. Urban sediments have been studied extensively over the past several decades. The types of contaminants commonly found in urban sediments include fertilizers, nutrients, pesticides, and trace elements (inorganics) including all of the elements of interest. Sources of trace elements in sediments are the result of natural processes such as erosion, but also include anthropogenic sources such as atmospheric deposition from combustion of fossil fuels and municipal wastes, industrial processes, rooftops, and agricultural runoff. Historically, urban sediment quality has been shown to be correlated to land use activities. However, more recent studies

(Chalmers, et al., 2007; Horowitz and Stephens, 2008; USGS, 2009) indicate that

2 population density is a more important determinant in sediment quality than land use or upstream geology. The evaluation of sediment quality is important because non-point source pollution, which contributes significantly to sediment contamination, is the greatest source of impairment in the nation’s water bodies. Furthermore, the presence of contaminants in sediments can potentially have effects on entire ecosystems.

The null hypothesis tested in this study is that there is no significant difference in the sediment quality in any of the USACE reservoirs. Because the reservoirs are spatially distributed over a large area (about 18,000 square miles), it is assumed that the trace element concentrations in sediment are independent from one another, as each reservoir would be associated with unique point and non-point sources. The research objectives of the study are to: 1) examine the range of concentrations of trace elements from each reservoir for patterns of contamination; 2) compare measured sediment concentrations from the USACE reservoirs to representative background concentrations; 3) compare the entire database of trace element concentrations from all reservoirs collectively to each individual reservoir to determine if the concentrations were significantly different from one another; 4) evaluate any trends in sediment concentrations over time; 5) compare the measured sediment concentrations to relevant benchmarks to assess sediment quality and toxicity; and 6) determine if there is any correlation with the degree of “urbanization” of the reservoir watersheds with the measured trace element sediment concentrations.

The research objectives were accomplished by use of a variety of geospatial analyses, including data exploration and visualization, geographic information systems

(GIS), and statistics. All of the sediment data were collected by the USACE prior to data analysis. Relevant hydrologic properties of the CRB reservoirs were compiled and

3 evaluated. Land cover was evaluated using the national 2006 dataset. The relative

“urban rank” of each reservoir was estimated by population density using 2000 census data. Trends in sediment quality in the reservoirs were evaluated by use of box and whisker plots, Excel plots, nonparametric two-sided hypothesis tests, and outlier tests.

Concentrations of trace elements were compared to representative background levels generated by the USGS, and the potential for aquatic toxicity was evaluated by comparison to established sediment quality criteria.

By evaluating the distribution of sediment concentrations of trace elements in the

USACE’s CRB reservoirs, the role of hydrology and urbanization on sediment contamination was investigated, and potential sources impacting the reservoir sediments were evaluated. For the CRB sediments, hydrology, particularly retention time, was found to have a greater bearing on sediment concentrations than the degree of urbanization of the watershed. This finding may have an impact on the future assessments of reservoir sediment quality, and on best management practices for urban non-point source pollution.

4

CHAPTER TWO: BACKGROUND

Physical geography is an integrative science that seeks to explain and predict the spatial distribution of human activity on physical features on the earth. Geographers study how and why things differ from place to place, and the change in patterns over time

Geography is a “problem-solving discipline” (McGrew and Monroe, 2000). The term

“geospatial” is often used to refer to a location relative to the Earth's surface (de Smith, et al., 2006). However, geospatial analysis has been described as a process for looking at geographic patterns and relationships between features and processes (de Smith, et al.,

2006), and can include many contexts where the evaluation of space is important in terms of what happens and where. Some common types of geospatial analyses include: mapping where things are located; evaluating the most and least of something; mapping the density of entities and phenomena; finding what is nearby; finding what is inside; and evaluating change through time and space (Mitchell, 1999). Specifically, geospatial analysis may employ data mining and exploration, database design and development, surface analysis, image interpretation, data analysis, statistics, modeling, and data visualization. It may involve the use of GIS, or it may not involve a graphic representation or map of the information at all. As described by de Smith, et al. (2006), geospatial data analysis assists in understanding both first order (environmental) effects, and second-order (interaction) effects. Analytical approaches may be data-driven, involving the exploration of geospatial data; model-driven, involving testing hypotheses and creating models; or both. The evaluation of the distribution and nature of pollutants in the environment is, at its very essence, the study of spatial distribution of human

5 activity on physical features on the earth; therefore, geospatial analysis is integral and implicit in the process.

Geospatial analysis was used to evaluate the interaction of non-point source pollution and sediment chemistry in the CRB reservoirs. Background information is first given regarding:

 the importance of lakes and reservoirs,

 comparison of lake and reservoir characteristics,

 sources of trace elements in sediment,

 sediment quality,

 sediment monitoring,

 urban sediments, and

 measures of urbanization

Importance of Lakes, Reservoirs, and Dams Reservoirs are constructed to address specific water needs, including municipal and drinking water supplies, agricultural irrigation, industrial and cooling water supplies, power generation, flood control, sport or commercial fisheries, recreation, aesthetics, and navigation. It has been estimated that approximately 25 percent of all water previously flowing to the oceans is now impounded in reservoirs (UNEP, 2000).

Reservoirs represent an important component of the socioeconomic structure of both developed and developing countries. Nearly all major river systems in the world have reservoirs in their drainage basins, and reservoirs exist on all continents and in all countries (except Antarctica), although their distribution within regions is irregular. Most reservoirs are concentrated in the temperate and sub-tropical zones of the northern and

6 southern hemisphere. More than half of the world's reservoirs are located in the U.S,

Canada, Mexico, Brazil, China, and India (UNEP, 2000).

The first reservoirs were thought to have been constructed about 4,000 years ago in China, Egypt, and Mesopotamia for drinking water and irrigation. The total volume of globally impounded water has increased about 12 times after World War II, including a

40-fold increase in Latin America and a 100-fold increase in Africa and Asia. The building of reservoirs peaked in the late 1960s, and there has been essentially no new reservoir construction since then in North America and Europe. Most of the new reservoirs scheduled to come into operation in the 21st century are located in Asia,

Africa, and Latin America (UNEP, 1999).

Lakes are used for many of the same purposes as reservoirs; however, most lakes are naturally formed, whereas reservoirs are built by humans, either by damming a flowing river or by diverting water from a river to an artificial basin (impoundment).

Upon completion of a dam, the river pools behind the dam and fills the artificially created basin (WES, 1998). Several types of dams are constructed to make reservoirs. Small dams (3-6 meters above the natural river bed) may be used to store water for drinking purposes or to divert water flow of smaller rivers for various purposes, including the operation of mill water wheels. The most common type of dam is earth-filled; about 85 percent of the dams of heights between 15-60 meters are of this type. Arched dams are usually constructed where high dam walls are required, and account for 40-50 percent of the very large dams (dam height of 150 meters or more) around the world. An estimated

800,000 dams were in operation worldwide in 1997, and about 45,000 of these were large dams (UNEP, 2000).

7

Gleick (2003) calls the reliance of dams, reservoirs, aqueducts, pipelines for water management the “hard path”, where water resources are controlled through supply side solutions such as infrastructure, rather than the management of water from the demand side, by societal and economic control. All dam/reservoir construction projects have both beneficial and adverse environmental and socio-economic impacts. Benefits include improvement of local economies, improved energy supply, relief from flooding and droughts, supply of drinking water, and management of the world’s water resources.

Negative aspects of the “hard path” have also included substantial and often unanticipated social, environmental, cultural, and economic impacts (Gleick, 2003). For example, the Aswan High Dam in Egypt (and Sudan), which impounds the Nile River, has resulted in the creation of over a million acres of arable land, protection from high floods and droughts, generation of hydroelectric power, and improved navigation possibilities. The Aswan High Dam, however, has also resulted in increased riverbank erosion, scouring, river meandering, decreased water quality due to increased industrial and agricultural discharges, increased reservoir siltation and eutrophication, increased water-vector related illnesses, and inundation of historical monuments (UNEP, 2000).

Likewise, the Three Gorges Dam project in China was a monumental engineering accomplishment, but it has also displaced more than one million people whose villages were flooded by the reservoir behind it (Gleick, 2003).

Comparison of Lake and Reservoir Characteristics In the U.S., reservoirs are generally located in areas where water demand is high, or flooding is frequent; reservoirs are rarely constructed where there is an abundance of natural lakes (WES, 1998). Natural lakes are generally circular, bowl-shaped, depressions in the land surface. The center of the lake is usually the deepest part, and the

8 lake usually has one inflowing and outflowing river channel. In contrast, reservoir basins usually have multiple tributary inputs, and are more irregular and dendritic in shape, with the “arms” radiating outward from the main body of the reservoir. The depth of a reservoir increases from the upstream end to the dam end of the water basin. The dendritic shape of many reservoirs provides a much longer shoreline than in lakes of similar volume. Reservoirs usually have larger drainage basins than lakes, and also have larger drainage-area-to-surface ratios (WES, 1998).

Many of the early reservoir studies focused on sediment loading from drainage basins because of eutrophication or siltation concerns. Sedimentation studies are important because the rate at which a reservoir filled with sediment is a major determinant of its useful operational life. Eutrophication is the enrichment of surface water bodies due to the presence of organic compounds originating from urban, agricultural, and industrial activities. If unchecked, eutrophication ultimately will reduce oxygen in the water column, killing fish and other organisms, and reducing biodiversity.

Compared to lakes, reservoirs are more sustainable against the growing biological load due to the larger share of mineral particles in the sediments from abrasion of the shore

(WES, 1998).

Compared to flowing streams, reservoirs are especially susceptible to sediment pollution due to their long retention times, complex responses to pollution inputs, and integrating nature (Moltz, et al., 2011). Water at the dam end of a reservoir is typically of higher quality than water entering the reservoir; and this can result in physical, chemical, and biological water quality gradients. However, because of large water inflows, flushing of contaminants may occur rapidly in reservoirs, unlike naturally-formed lakes.

9

Because of their larger drainage basins, and their multiple tributary inputs, the inflow of water into reservoirs is more directly tied to precipitation events in the drainage basin than it is in lakes (UNEP, 2000).

Sources of Trace Elements in Sediment Trace element concentrations found in reservoir and lake sediments may enter the hydrologic cycle naturally, due to geological weathering processes and erosion during precipitation events, and/or may result from anthropogenic sources. In the absence of human inputs, lake and reservoir sediments usually result from erosion of bedrock and shorelines. As noted by Chapman, et al. (2003), naturally-occurring or "background" concentrations of trace elements in sediments vary greatly.

Reservoirs can act as sediment traps. As water enters a reservoir, the velocity of water is reduced, and sediment and other materials carried in the faster-flowing water will settle out, causing sedimentation (Ongley, 1996). Chemical accumulation in lake and reservoir sediment results mainly from the deposition of the elements adsorbed onto suspended particulate matter, as well as from the diffusion of dissolved concentrations from the overlying water column (Chapman, et al., 2003; Ongley, 1996).

Sediment texture, particle size, and particulate organic matter can be very important to the fate and transport of some elements in streams and lakes (Paul and

Meyer, 2001). Coarser material is deposited rapidly at the point where the water body enters the reservoir, and is only redistributed under highly turbulent conditions. Fine material is suspended, and may be repeatedly resuspended by rain, wind, and lake currents until it eventually settles out in depositional areas (Ongley, 1996). In many rivers 50 to 100 percent of the suspended load will be composed only of silt+clay sized

10 particles less than 0.62 µm; it is this sediment fraction that is mainly responsible for the transport of chemicals adsorbed on particles (Ongley, 1996).

Some trace elements, because of their geochemical properties, can be remobilized after being deposited in sediments. Fine-grained sediments in floodplain deposits are stored for long periods, and can be remobilized many years later by bank erosion during floods or by geochemical weathering and leaching, often enhanced by increased acidity

(Novotny and Olem, 1994). Recently deposited trace elements in soft sediments can provide information on transport processes and sources (Chapman, et al., 2003). As deposition occurs over time, deep sediments in lakes and reservoirs can become a historical record of the temporal trends of chemicals in the environment (Ongley, 1996).

Anthropogenic sources of sediment contaminants consist of point sources and non-point sources. Point sources, such as industrial effluents and municipal wastewater discharges to water bodies are relatively easy to identify and isolate (USEPA, 2005). In contrast, non-point sources like stormwater, agricultural runoff, snowmelt, and atmospheric deposition of stack emissions are closely tied to precipitation and runoff events, are less predictable, more variable, and more difficult to identify than point sources (USEPA, 2005). In particular, the residence time of elemental mercury in the atmosphere from stack emissions (which may be deposited into water bodies) may be as much as one year, allowing its distribution over large distances, both regionally and globally (USEPA, 1997). Typically, non-point sources of trace elements are more important than point sources in urban streams (Paul and Meyer, 2001).

Sediment Quality The management of freshwater ecosystems has historically focused on water quality. While initiatives undertaken in the past twenty years have improved water

11 quality conditions, evidence suggests that management efforts directed only at the improvement of surface water quality, rather than sediment quality, may not adequately protect the entire ecosystem.

Section 402 of the Clean Water Act (CWA) provides authority for issuing

National Pollutant Discharge Elimination System (NPDES) permits for point discharges to the nation’s water bodies (Percival, et al., 2009). The 1987 Water Quality Act

Amendments to the CWA added Section 319, which established a national program to control non-point stormwater source pollution. Under section 305(b)(1)(A) of the CWA, states are required to submit reports on the quality of their waters to the USEPA every two years, and USEPA prepares a national report summarizing its findings on the quality of the nation’s water resources. Under section 303(d) of the CWA, states are required to compile a list of impaired waters that fail to meet any of their applicable water quality standards or cannot support their designated or existing uses after imposition of technology based controls. This list, called a “303(d) list,” is submitted to Congress every two years, and states are required to develop a Total Maximum Daily Load

(TMDL) for each pollutant causing impairment of water bodies on the list. The TMDL provides waste load allocations for point source discharges; it is the sum of the loading from point sources as well as non-point sources, plus a margin of safety. The USEPA has developed the Assessment TMDL Tracking And ImplementatioN System (ATTAINS) database and website to combine two formerly separate databases, the National

Assessment Database (for 305(b)) and the TMDL Tracking System (for 303(d)) (USEPA,

2005). In addition, Section 314 of the Clean Lakes Program has awarded grants for the study and restoration of publicly owned lakes.

12

The USEPA (2011a) has estimated that the current water quality in 69 percent of the nation’s 41.7 million acres of lakes, ponds, and reservoirs is “impaired” (with only about 46 percent of the nation’s lakes assessed), based on data collected by states under the CWA 305(b) and 303(d) reporting requirements. The primary source of impairment nationally in lakes/reservoirs has changed over the last decade from agriculture to atmospheric deposition. As of 2011, the top sources of pollutants nationally to lakes, ponds, and reservoirs, in order, are: atmospheric deposition, “unknown/ unspecified sources”, agriculture, natural/wildlife, hydromodification, “other”, urban runoff/stormwater, municipal discharges/sewage, and unspecified nonpoint sources

(USEPA, 2011a). Mercury, nutrients, polychlorinated biphenyls (PCBs), organic enrichment, and metals (other than mercury) were cited by USEPA as the current leading causes of impairment nationally in lakes/reservoirs. Mercury impairment was primarily due to mercury in fish tissue. Sedimentation was also listed as one of the top ten causes of impairment in lakes/reservoirs. Of impairment causes for the non-mercury metals, lead comprised about 60 percent. The most impaired designated use is currently “aquatic life harvesting” (74 percent impaired) (USEPA, 2011a). In 2000, the leading cause of impairment in lakes/reservoirs was nutrients (50 percent of impaired lake acres); agriculture was the leading source of impairment. Metals were reported as the second greatest cause of impairment in 2000 (42 percent of impaired lake acres); however, mercury was not listed separately from metals in the 2000 survey (USEPA, 2002). In

Kentucky, as of 2010, mercury was listed as the primary cause of impairment in lakes, reservoirs and ponds, and atmospheric deposition was the primary source of impairment.

In Tennessee, as of 2010, the primary causes of impairment to lakes, reservoirs and

13 ponds, was PCBs, followed by mercury, and the primary source of impairment was legacy pollutants, followed by atmospheric deposition (USEPA, 2011a).

Sediment pollution has two dimensions: (1) as a physical contaminant, from land degradation, erosion, and top soil loss, which can lead to excess turbidity in receiving streams, ecological impacts, and decreased storage capacity in reservoirs due to siltation; and (2) as a chemical contaminant, as a result of metals, pesticides, nutrients adsorbing to silt and clay fractions of the sediment. Chemical pollution is tied to both the particle size of the sediment, and the amount of particulate organic matter associated with the sediment (Novotny and Olem, 1994).

Contaminated sediments can have a critical effect on the overall health of an ecosystem and watershed (USEPA, 2004). Due to their physical and chemical properties many chemicals, including pesticides and metals found only in trace amounts in water, can bioaccumulate to elevated levels in sediments and biota (MacDonald and Ingersoll,

2002). Contaminated sediments can directly impact aquatic organisms, and represent a continuing source of potentially toxic substances that may also impact fish, wildlife, and humans through food or water consumption. Fish consumption advisories have resulted from sediment contamination in lakes, and have adversely affected commercial, sport, and food fisheries. The presence of mercury in fish tissues has resulted in many fish advisories (USEPA, 1997). Ecological impacts are often evident in fish and other biota collected from contaminated sediment areas, including higher incidences of tumors and other abnormalities. Contaminated sediments can also have an impact on navigation.

Approximately 300 million cubic yards of sediments are dredged from harbors and

14 shipping channels annually to maintain commerce and, of this amount, 3 to 12 million cubic yards require special handling and disposal (USEPA, 1997).

Sediment Monitoring Reservoirs and freshwater lakes provide the US with 70 percent of its drinking water, and supply water for electric utilities, industry, and agriculture, as well as support the nation’s 19-billion dollar freshwater fishing industry. Lakes and reservoirs also support complex ecosystems, and provide habitat for numerous threatened and endangered species (USEPA, 2009a). Therefore, monitoring the quality of these resources is an issue of national interest.

Although a number of organizations have monitored the sediments in lakes and reservoirs at various locations in the U.S., there are few published studies in the U.S. where sediments have been monitored in an entire basin over a decade or more. The

USEPA conducted a series of lake surveys under the National Aquatic Resource Surveys

(NARS) program in 2007, in which biological, recreational, chemical, and physical stressors on the nation’s lakes were evaluated. Of the chemical stressors, mercury was the only trace element analyzed in sediments; however, these data were not available in the latest National Lakes Assessment Report (USEPA, 2009a).

The most comprehensive study of trace elements in sediments, to date, is the

USGS’s (2011) National Water Quality Assessment (NAWQA) program. Nationwide, from 1992 to 2002, the USGS sampled surface water and bed sediments from 51 river basins, representing a variety of land-use types, resulting in over 1,000 samples that were field sieved to yield total concentrations. Sampling was done in the summer or autumn low flow to minimize seasonal variability, samples were composited, and locations were limited to depositional zones. None of the NAWQA sampling locations were located in

15

Kentucky, or in the CRB in Tennessee. Baseline trace element sediment concentrations for the entire U.S. were generated in the NAWQA program; these represented concentrations for 448 sites that were predominantly undeveloped and non-urban, and thus can be viewed to represent national, representative “background” concentrations

(Horowitz and Stephens, 2008).

Urban Sediments The types of contaminants found in reservoir sediments can reveal much about the surrounding land use and types of development that have occurred in a watershed

(USEPA, 1997) (Table 1). Urban settings are often associated with sediment contamination due to the presence of industrial and municipal discharges and emissions, contaminated runoff, and the widespread use of motor vehicles (Callendar and Rice;

2000; Van Metre and Mahler, 2003; 2004). Rice (1999) found that the anthropogenic sources contributing most to the presence of trace elements in water bodies were: combustion of fossil fuels in power plants; combustion of municipal solid waste; metal smelters; automobile emissions and wear of automobile parts; biomass burning; direct discharges from industrial sources and municipal sewage sludge; acid mine drainage; and runoff of manure and artificial fertilizers from farms. All of the trace elements of interest to this study are found in coal, or are waste products from coal mining or coal combustion byproducts such as stack gas, fly ash, and coal sludge (USDOE, 1996;

USEPA, 2009b).

The USEPA (2005) has noted that “street dirt” can have elevated concentrations of Cd, Cr, Cu, Pb, and Zn. Other studies have shown that correlations exist between Pb and Zn sediment concentrations, population, and traffic density (Callendar and Rice,

2000). Most of the lead in sediments is likely present from the pre-1973 use of leaded

16 gasoline; concentrations have steadily declined in sediments since the 1980s. Zinc concentrations have increased in urban areas with high traffic density over the past 50 years, roughly coinciding with increased urbanization in various watersheds studied

(Councell, et al., 2004).

Table 1. Potential Sources of Elements Commonly Found in Urban Sedimentsa

Chemical Sources and Uses of Trace Elements in the Environment Arsenic coal combustion, ore smelting, pig and poultry sewage, phosphate (As) fertilizers, insecticides, fungicides; herbicide, metal roofing coal combustion, nuclear weapons and reactors, aircraft and space Beryllium vehicle structures, x-ray machines, mirrors, specialty ceramics, (Be) automobiles, computers, sports equipment coal combustion, smelters, iron and steel mills, electroplating, zinc ore, Cadmium fertilizers, tire wear and exhaust, sewage sludge and wastewater, waste (Cd) incineration, paint pigments, metal roofing, “street dirt” steel works, electroplating, copper smelting, combustion of natural gas, Chromium oil and coal, sewage sludge, waste incineration, phosphate fertilizers, (Cr) brake linings, tires, engine parts, “street dirt” copper mining and smelting, other non-ferrous smelters, plastic industry, Copper steel works, agriculture, sewage sludge, plumbing, brake linings, tires, (Cu) engine parts, “street dirt” Lead leaded gasoline, paint, plastics, ceramics, asphalt shingles, brake linings, (Pb) tires coal combustion, municipal waste, commercial/industrial combustion, medical waste incinerators; production of chlorine and caustic soda (by mercury cell chlor-alkali plants); fluorescent lamps, wiring devices and Mercury switches (thermostats), mercuric oxide batteries, amalgamation, pulp and (Hg) paper mills; cement manufacturing, wood processing (as an anti-fungal agent), use as a solvent for reactive and precious metals, preservative for pharmaceutical products Nickel metal alloys, stainless steel, heat exchangers, valves, brake linings, tires, (Ni) engine parts, plating, batteries, coloring ceramics zinc smelters, metal mining and production, coal combustion, waste Zinc incineration, wastewater sewage sludge, phosphate fertilizer, galvanized (Zn) metal, deicing salts, tires and brakes, “street dirt” aSources: Rice, 1999; USEPA, 2004; Councell, et al., 2004; Paul and Meyer, 2001; USEPA, 2005; ATSDR, 2011.

17

The contribution of particles from rooftops to contaminant loading in urban streams on a watershed scale was studied by Van Meter and Mahler (2003). They found that metal roofing was a source of Cd and Zn, and asphalt shingles were a source of Pb.

Van Meter and Mahler (2003) also reported that the range of trace element contributions from rooftop washoff to watershed loading was 6 percent for As and Cr to 55 percent for

Zn. The greatest contribution of trace metals from atmospheric deposition of particles onto rooftops was for Hg (46 percent). Brigham, et al. (2003) reported that the source of more than 85 percent of the inorganic Hg in the atmosphere is coal-fired facilities and industrial boilers. As noted previously, the USEPA has estimated that Hg is currently the greatest cause of impairment of the nation’s lakes and reservoirs, and atmospheric deposition was the greatest source of impairment (USEPA, 2009c).

Measures of Urbanization It follows that if increased anthropogenic activities mean higher concentrations of trace elements in sediments, then increased urbanization means greater anthropogenic activities. The US Census Bureau defines “urban” for the 2000 Census as all territory, population, and housing units located in an urbanized area or an urban cluster (US

Census Bureau, 2011). An “urbanized area” is defined as a densely settled territory that contains 50,000 or more people, and an “urban cluster” is defined as densely settled territory that contains at least 2,500 people, but fewer than 50,000 people (US Census

Bureau, 2002). “Densely settled territory” consists of census blocks or block groups that have a population density of 1,000 people/ square mile or more, and surrounding census blocks that have an overall density of at least 500 people/square mile. “Rural” is defined as areas outside of urbanized areas and urban clusters (US Census Bureau, 2011).

18

Roy, et al. (2009) used road, sewer, and septic density, and percent urban, percent impervious surface, and percent agriculture, as measures of anthropogenic disturbance to water quality. Chalmers, et al. (2007) correlated urbanization and sediment metal concentrations using percent urban, CIT (commercial, industrial, and transportation), and residential land use. Chalmers et al. (2007) used population density as indicators of urbanization; “urban” was defined as CIT land use of greater than 20 percent. Brown, et al. (2009) used three variables to describe urban intensity in a study of the impacts of urbanization on stream ecosystems in metropolitan areas: housing density, percent developed land in the basin, and road density; water quality was measured, but sediment quality was not.

Horowitz and Stephens (2008) evaluated the role of land use, upstream geology, and population density on trace element sediment concentrations from the NAWQA program. Of the land use types evaluated (agriculture, urban, undeveloped, and mixed), they found that the only land use that affected sediment chemistry was urban, based on the 1992 National Land Cover Dataset (NLCD). Horowitz and Stephens (2008) concluded that population density (based on the 2000 Census) had a more consistent effect on sediment chemistry than either land use or upstream geology, but they qualified that the results may partially be a function of scale and sampling design.

The USGS (2009) studied nine metropolitan areas as part of the NAWQA program to develop a nationally consistent metric for urban intensity. Over 90 demographic, land cover, and infrastructure variables were evaluated. Population density based on census blocks (2000 census) was chosen as the central determinant of urban

19 intensity in the USGS studies, because urban effects are associated with goods and services with an increasing population.

The amount of impervious surface has been studied frequently as a surrogate for urban intensity (USEPA, 2005). In areas with high population density, high levels of impervious surface are inferred. Although all of these studies made thorough evaluations of land use, population density, and sediment concentrations, none published accompanying hydrologic information about the water bodies from which the samples were collected, so it is not possible to determine how hydrology may have affected measured sediment concentrations.

20

CHAPTER THREE: MATERIALS AND METHODS

Hydrology The CRB includes over 7,500 square miles in Kentucky and over 10,000 square miles in Tennessee (Figure 1). The basin is approximately 350 miles long, and averages

50 miles wide. The USACE maintains ten reservoirs in the CRB that provide a variety of services, including hydropower, navigation, flood control, recreation, and water supply.

Land use in the vicinity of the reservoirs varies considerable with the local communities, but includes industrial, commercial, residential, manufacturing, retail, and agriculture

(USACE, 1996).

At its source, the Cumberland River and its tributaries flow in very deep, steep- sided valleys through rugged terrain. Elevations in the basin range from 4,150 feet in the eastern headwaters to 302 feet at the confluence east of . The

Cumberland River is formed by two tributaries that each contribute only one percent of the total CRB flow: the Clover Fork, and the Poor Fork, located downstream of Harlan,

Kentucky. The largest major tributary is the Caney Fork, which contributes 15 percent of the total CRB flow (USACE, 1996).

Main stem dam projects are located on major waterways, and have control capabilities, as opposed to a tributary dam; main stem dams include run-of-the-river dams. A run-of-the-river dam has a limited storage, low hydraulic head, and no positive control over water storage; discharge is a function of inflow. Storage dams are deep, typically more than100 feet, and have maximum hydraulic head, which provides for

21

Created by Author (2011) with information provided by USACE (2011)

Figure 1. Location of CRB Reservoirs

22 hydropower generation, and storage capabilities that provide for flood control (WES,

1998). Five of the ten USACE reservoirs in the CRB are located on the Cumberland

River (i.e., main stem, noted by an asterisk, *), and five are located on its tributaries.

The USACE reservoirs, in hydrologic order, include: Martin's Fork, Laurel River,

*Wolf Creek/, Dale Hollow, *Cordell Hull, Center Hill, *Old Hickory,

J. Percy Priest, *Cheatham, and *Lake Barkley. The Lower Cumberland is shown in

Figure 1 north of Lake Barkley, but it is not part of the Upper CRB. The drainage basins generally correspond to the eight digit HUC (Hydrologic Unit Codes). All of the reservoirs except Martin’s Fork produce hydropower. Four reservoirs (*Barkley,

*Cheatham, *Old Hickory, *Cordell Hull) have navigation locks, and five act as storage reservoirs (Center Hill, Dale Hollow, Laurel, *Wolf Creek/Lake Cumberland, J. Percy

Priest and, to a lesser extent, Martin’s Fork) (Table 2). The impound dates of the reservoirs range from 1944 to 1978 (USACE, 1996).

The total drainage area of the CRB is over 18,000 square miles, with Martin’s

Fork being the smallest at about 56 square miles, and Wolf Creek/Lake Cumberland having the largest local drainage area at over 5,400 square miles (USACE, 1996). The total (summer) flood storage of the ten CRB reservoirs is over 14 million acre-feet, with

Wolf Creek/Lake Cumberland by far having the greatest capacity, at over 6 million ac- feet, providing 42 percent of the flood storage of the entire CRB (Table 3). This storage has been reduced somewhat with the lowering of the pool at Wolf Creek/Lake

Cumberland associated with the rehab of the dam in recent years (USACE, 2010). Lake

23

Table 2. Summary of CRB Reservoir Functions

Reservoir Functions Reservoir Abbreviation River F R WQ F/W WS N H

Lake Barkley *BAR Cumberland        Center Hill CEN Caney Fork       Cordell Hull *COR Cumberland      

Dale Hollow DAL Obey      

Laurel LAU Laurel      Martin’s Fork MAR Martin’s Fork     Wolf Creek/Lake Cumberland *WOL Cumberland       Cheatham *CHE Cumberland      

J. Percy Priest JPP Stones       Old Hickory *OLD Cumberland       *Main stem reservoir. Functions: F= flood control; R=recreational; WQ= water quality; F/W= fish and wildlife; WS=water supply; N= navigation; H=hydropower. Source: USACE (1996).

24

Table 3. Summary of Reservoir Propertiesa

Local Reservoir

Years No. of Range of Reservoir Drainage Population Sampled Sediment Depths Area Area DA:RA Retention Density (1994- Sample Sampled (square. (square DA:RA Ratio Time (people/square Urban b c d Reservoir 2010) Locations (feet) mile ) mile) Ratio Rank (days) mile) Rank 97, 02, *BAR 07 6 12 to 66 146 3,438 24 9 9 81 5

96, 01, CEN 06 7 50 to 161 36 2,174 60 4 131 57 6 95, 00, *COR 05, 10 5 6 to 70 21.8 1,372 63 2 8 32 8 95, 00, DAL 05, 10 7 10 to 135 48.4 935 19 10 343 19 9 98, 03,

LAU 08 4 22 to 245 9.5 282 30 7 471 102 3 97, 02, MAR 07 4 4 to 35 0.9 56 62 3 21 7 10 98, 03, *WOL 08 7 9 to 160 99.2 5,451 55 5 140 49 7 94, 99, *CHE 04, 09 11 3 to 40 11.6 1,594 137 1 2 380 1

94, 99, JPP 04, 09 11 13 to 96 35.5 892 25 8 95 170 2 96, 01, *OLD 06 8 8 to 71 42.9 1,404 33 6 11 97 4 * Main stem reservoir. a Source: USACE (1996); Tippit and Campbell (2011). b Sample locations and number of samples varied slightly over the years, due to various reasons (Tippit and M. Campbell, 2011). c Source: Based on mean discharge and reservoir storage at typical minimum headwater elevation (Sneed 2006; 2011). d Source: Estimated in GIS from the 2000 US Census shapefiles ESRI (2008).

25

Barkley is the most downstream reservoir in the CRB, and it controls runoff from nearly

98 percent of the entire basin. In addition to being the only flood control dam in the CRB that also serves as a navigation pool, Lake Barkley is unique because it is connected by a canal to , a TVA lake. The area between Lake Barkley and Kentucky

Lake is called “The Land Between the Lakes”, and is managed by the U.S. Department of the Interior, Forest Service (USACE, 1996).

On May 1-2, 2010, the CRB experienced what has been characterized as a large- scale, regional flash flood, estimated at “greater than a 1,000 year storm” (USACE,

2010). This historic rainfall event resulted in severe flooding on the Cumberland and lower Tennessee Rivers in northern Tennessee and southwestern Kentucky. The precipitation was very intense, and produced record rainfall, stage, and discharge amounts across the CRB. Rainfall amounts exceeded 17 inches during the two-day event for some areas, the highest amount in more than 140 years of record. Much of the rain fell in areas not controlled by the USACE reservoirs. The full storage capacity of Wolf

Creek, Dale Hollow, and Center Hill dams was unable to be used because the rainfall was concentrated in drainage areas downstream of the dams. Just upstream of Nashville, the

J. Percy Priest dam’s flood storage capacity was exceeded, which required opening of the spillway gates to avoid overtopping. Spillway gate operations were required at both

Cordell Hull and Old Hickory to prevent overtopping and losing control of water releases, and the Cheatham dam was overtopped (USACE, 2010). It is unknown what impact the flood has had on the CRB sediments, but it is reasonable to assume that sediments in affected reservoirs would be disturbed and likely transported downstream.

26

The two reservoirs that were sampled in 2010 by the USACE after the flood were Dale

Hollow and Cordell Hull; Dale Hollow was not affected by the flood.

The average length of time it takes for water to flush out of a reservoir is its retention time, which is generally determined by the reservoir’s water source, size, inflow/outflow regime, and watershed size. Retention time is estimated by the storage capacity (acre-feet) divided by the annual runoff (feet/year). Main stem dams usually have short retention times, and are more shallow than storage dams, which generally have long retention times (WES, 1998).

Hydraulic retention times in the CRB reservoirs range dramatically, from very short (2 days in Cheatham) to over a year (471 days) in Laurel (see Table 3). Local drainage basin area to reservoir area (DA: RA) ratios were estimated for each reservoir and ranked (1 highest). The reservoirs with the shortest retention times and the largest local drainage areas were main stem reservoirs (shown with an asterisk,*). The top two

CRB reservoirs with the shortest retention times also had the highest DA: RA ratios,*Cheatham, and *Cordell Hull (see Table 3):

 shortest retention times-- *Cheatham, *Cordell Hull, *Barkley, *Old Hickory  largest local drainage areas--*Wolf Creek/Lake Cumberland, *Barkley, *Center Hill, *Cheatham  largest lake size (water acres)--*Barkley, *Wolf Creek/Lake Cumberland, Dale Hollow,*Old Hickory  highest DA:RA ratio--*Cheatham, *Cordell Hull, Martin’s Fork, Center Hill

Historically, concentrations of nutrients in reservoir water inflows have been high, especially at J. Percy Priest, where the main water quality problem has been eutrophication from non-point sources (USACE, 1996). Suspended solids are generally lower on the main stem than the tributaries, due primarily to sedimentation behind the

27 dams. Besides non-point sources, the principal sources of contaminants in the CRB have historically been industrial effluents from the DuPont facility on Old Hickory reservoir, thermal discharges from TVA's Cumberland City and Gallatin, TN steam plants, and effluents from various municipal wastewater plants (USACE, 1996).

Land Use Land use for the CRB reservoir watersheds was evaluated by use of the Multi-

Resolution Land Characteristics Consortium’s (MRLC) 2006 national land cover dataset

(MRLC, 2011). The national land cover dataset products are created through a cooperative project involving multiple federal agencies. The 2006 land cover dataset is a

16-class land cover classification scheme applied consistently across the U.S. at a spatial resolution of 30 meters, based primarily on the unsupervised classification of Landsat

Enhanced Thematic Mapper (ETM+) 2006 satellite data. The 2006 dataset for the CRB reservoir watersheds, along with the list of 16 cover classes, is given in Figure 2. The percent of each land cover type in each of the CRB reservoirs was estimated by clipping the raster and summing the counts for each land use type, by reservoir. Similar land cover types were combined for the following: developed land (use types 21-24); forests

(41-43); scrub (51-52); “agriculture” (pasture/hay and cultivated crops, use types 81-82); and wetlands (land use types 90 and 95). The percentage of each land cover type, by reservoir, was plotted in Excel (Figure 2). As shown in Figure 2, the most developed lands were found in the watersheds for Cheatham (19 percent), Laurel (18 percent), and J.

Percy Priest (16 percent). All watersheds were 40 percent or more forested. The highest

28

Kentucky

Kentucky

Tennessee

Tennessee

Created by Author from 2006 MRLC data (2011)

Figure 2. National Land Cover 2006 Dataset for the CRB

29

percentage of agricultural land was found for Lake Barkley (43 percent), and the lowest was found for Martin’s Fork (1 percent), and Wolf Creek/Lake Cumberland (13 percent).

Population Density U. S. Census population data in the form of the 2000 Census block centroids

(ESRI, 2008) were used in GIS to estimate population density associated with each of the reservoirs. Population density was chosen as the measure of urban intensity for the CRB since it was the primary determinant in the 2009 USGS study, as well as a factor shown to be representative of urbanization in several other studies (USGS, 2009; Roy, et al.

,2009; Chalmers, et al., 2007; Brown, et al., 2009). The 2000 Census was used because it was most representative of the time range from which sediment data were collected

(1994-2010). Population density for each reservoir was estimated in GIS by clipping the block centroids with the CRB project boundaries, summing the area and population for each block within each reservoir, and then dividing the total population by the total land area, per reservoir. A portion of Center Hill reservoir is shown as an example (Figure 3).

Although all but two reservoir areas (Dale Hollow, Martin’s Fork) exceeded a total population of 50,000, none of the reservoir areas met the 2000 Census definition of

“urban” based on population density (1,000 people per square mile). The highest population density was found for *Cheatham dam, at 380 people per square mile; this compares to the Nashville urbanized area of 1,730 people per square mile (see Figure 1).

Ranks were assigned to the most “urban” reservoirs based on population density

(1 is highest). The most “urban” reservoirs were *Cheatham, J. Percy Priest, Laurel, and

*Old Hickory. Of these, only *Cheatham and *Old Hickory are main stem reservoirs

30

Created by Author from 2000 Census data (2011) Figure 3. 2000 Census Population Density of the CRB Watersheds

31

Priest; *Old Hickory, *Barkley, and *Cheatham (US Census, 2011). The three most

“urban” reservoirs based on population density also correspond to the most “developed”, based on the 2006 MRLC dataset, i.e., Cheatham, J. Percy Priest, and Laurel.

Sediment Sampling and Laboratory Analysis The sediment sampling program conducted by the Nashville District was initiated in 1994 under USACE guidance #1110-2-26, Water Quality Investigations and Control

Activities, as part of the USACE’s water quality and water management mission (Tippit and Campbell, 2011). Every year, personnel from the Water Management Branch conduct water quality monitoring at all ten CRB reservoirs. Sampling covered a range of physical, chemical, and biological parameters (water data are not evaluated as part of this study); however, only the trace elements As, Be, Cd, Cr, Cu, Pb, Hg, Ni, and Zn are considered in this study. Each year, two reservoirs are also sampled for sediment contaminants on a rotating basis, so that every five years a complete round of reservoir sediment sampling is conducted. Therefore, every reservoir is monitored for sediment once every five years. The sediment sampling program is intended as a screening-level assessment of the general sediment quality throughout the CRB.

All sampling locations were biased; they were not randomly selected, but rather were collected in areas that are representative of conditions at the reservoir, and to illustrate a range of hydrologic conditions, such as the main channel, embayment, or forebay, etc. Samples were collected in the fall (September to November), and the same individual sampling locations within the reservoirs are sampled from year to year, generally within 500 feet. Only surficial (0 to 0.5 feet) sediment samples were collected; no cores or borings are part of this monitoring program. Consistency of sampling has been ensured because the same individuals have collected the samples over the years, 32 using the same equipment and same methods. Sediments were collected by boat, using a ponar dredge, and were homogenized by hand with a stainless steel spoon. Most sediments collected were in the silt and clay size range, but were not sieved (Tippit and

Campbell, 2011). Sediments collected from Cheatham dam in particular tended to be more sand and gravel and less clay and silt than other reservoirs. Normalization of the data was not possible because the organic content and particle size of the sediments was not been determined, and aluminum has not been consistently measured throughout the monitoring period (Tippit and Campbell, 2011). The number of sediment sample locations and the depths of water from which the samples were collected varied, depending on the reservoir; generally, larger reservoirs had more samples (see Table 3).

Samples were analyzed by two different laboratories over the 1994-2010 time period. All trace elements except Hg were analyzed by method SW6010B, inductively coupled plasma/atomic absorption (ICP/AA), and Hg was measured by cold vapor (AA

CVAA) (USEPA, 1994). Data were reported as totals, dry weight. Sediment chemistry data files were prepared by the USACE Nashville District Water Management Branch in

Microsoft Excel and in GIS.

Data Analysis It is well known that the interpretation of data from samples of environmental media collected for chemical analysis is complicated by the fact that all data are “left censored” because the lowest possible measured values are defined by the detection limit of the analysis. Thus, there are no zero results, and the lowest values, the below detection limit data, (or non-detects, NDs), are reported as “less than” a number (Helsel, 2010;

Singh, 2006; Gilbert, 1987; USEPA, 1989, 2010). Results reported as NDs may actually range anywhere between zero and the detection limit. In addition, environmental data are 33 not often normally distributed, which precludes the use of classical (normal) statistics.

Furthermore, samples collected over different periods of time, or collected by different labs, may have multiple detection limits. Performing the appropriate statistical analyses on such data is always a challenge, and has been the subject of debate for decades

(Helsel, 1990, 2005, 2010; USEPA, 1989, 2010, 2011b).

There are two primary issues to resolve with environmental data: what value to use to represent NDs, and what statistics to apply? As reported by Helsel (2005), numerous environmental guidance documents have suggested methods for computing descriptive statistics for ND that are known to be flawed. The most commonly used methods to address ND data have been substitution methods where the ND data are typically replaced by zero, one-half (or another fraction) of the detection limit, or by the detection limit (Helsel, 2010). Substitution has been shown to result in variable results with high bias when calculating the mean, which worsens as the number of NDs increases (Helsel, 2005). Instead of substitution, other possible methods to handle NDs when computing descriptive statistics are parametric methods, including maximum likelihood estimation (MLE), imputation methods, such as regression on order statistics

(ROS), or nonparametric methods, such as the Kaplan-Meier (KM) method, bootstrap techniques, the jackknife method, or the Winsorization method (Helsel, 2005; USEPA,

2010, 2011b). Singh, et al. (2006) concluded that the KM method is better than parametric methods under many circumstances. In the past, normal statistics were commonly used to estimate means and other summary statistics for environmental data without proving the distribution type; alternatively, it was often just assumed that all environmental data followed a lognormal distribution (USEPA, 1989; Helsel, 2005,

34

2010). Data distributions can be tested for goodness of fit, and nonparametric statistics can be used where the underlying data distribution is either unknown or unclear.

The USEPA also recommends use of the nonparametric Gehan test for hypothesis testing when data sets have multiple detection limits, as is the case with the Cumberland

River Basin sediments (USEPA, 2011b; 2011c). The Gehan test is typically used to test whether a site concentration is different that background. The Gehan test was used here as a two sample, one-sided hypothesis test to estimate whether the mean concentration of a given trace element (the “site”) for one Cumberland Basin reservoir was greater than all others (the “background”). The Gehan test is a modification of the Wilcoxon Rank Sum test that tests for a location shift in the site concentrations (i.e., shift of the entire distribution). The Gehan test is a non-parametric test that utilizes only the rank of the concentrations, and thus it detects any upward shift of the concentration distribution of interest with respect to another group of data, such as background. The level of significance (α), chosen was 0.05. The p-value represents the probability that the null hypothesis (H0), is true. The null hypothesis is rejected for all p-values less than the level of significance, and the alternative hypothesis is selected. The smaller the p-value, the stronger is the evidence for rejection of the null hypothesis. The p-values are computed using normal approximation for Gehan’s statistic, G, as follows (USEPA, 2011c):

where

m is background, and n is site measurements, ranked form smallest to largest, where the total number of combined samples is N=m+n, 35

Ri is the ranks for the N ordered data, and the N scores are (Ri) = 2 Ri –N -1, where I is successively set equa1 to 1, 1, …N,

th hi = 1 if the i datum is from the site population th hi = 0 if the i datum is from the background population,

Form 1 (one –sided): If G ≥ z1-α, then reject the null hypothesis that the site population median is less than or equal to the background population median (use z table for critical values).

ProUCL 4.1 is a free software package developed by the USEPA (USEPA,

2011b) to address the calculation of statistics for ND data; it was used to evaluate the

USACE reservoir data for this study. In addition, GIS analyses were performed using

ESRI ArcEditor 10.0 software. Nonparametric methods were used for all of the data analyses to be consistent, and to avoid having to prove data distributions. “Box and whisker” plots were also generated in ProUCL. Box plots show the data extremes (the

“whiskers”) and medians, as well as the interquartile range (the width of the box), and are useful for showing how widely distributed the results are, and potential outliers in the data. ProUCL also plots the maximum non-detected value on the box plots. In addition, outliers were evaluated in ProUCL using both the Dixon test (n less than or equal to 25), and the Rosner test (n greater than 25); ND data were assumed to be equal to the detection limits for this analysis. Statistical outliers provide evidence that an extreme value does not fit the rest of the database. Outliers in a data set may be due to sampling and analysis errors, or may indicate the locations of hotspots (USEPA 2010).

36

CHAPTER FOUR: RESULTS AND DISCUSSION

Reservoir Concentration Comparisons For each trace element, all data collected for all ten reservoirs were plotted on one graph. Box and whisker plots of the CRB sediment data generated in ProUCL are given in Figure 4 (As, Be, Cd), Figure 5 (Cr, Cu, Pb), and Figure 6 (Hg, Ni, Zn). Outlier tests conducted in ProUCL per the Rosner and Dixon tests, at a significance level of 0.10 or above, are indicated by a yellow circle around the data point in Figures 4, 5, and 6.

The representative “baseline” trace element sediment concentrations from the USGS’s

NAWQA sediment sampling, as reported by Horowitz and Stephens (2008), are also shown for comparison in each box plot as a horizontal red line. The entire sediment concentration data set is given in Appendix A.

As noted in Figures 4, 5, and 6, Ni was the only trace element detected in every single sample collected; Cr and Cu were also detected in all samples, with the exception of a few samples collected at Cheatham and J. Percy Priest. The median concentrations for all reservoirs were below the USGS’s baseline value for Be, Cr, and Cu. The median concentrations for Cd for all reservoirs exceeded the USGS’s baseline value, except for

Center Hill and Old Hickory, and about half of the reservoir medians for Hg and Ni exceeded the USGS’s baseline values. The reservoir results are discussed individually below:

 Lake Barkley. No chemical concentrations were remarkable except Cd, which was highly variable; Cd also exceeded the USGS’s baseline value. Cu outliers were indicated for Barkley, but the USGS baseline value was not exceeded.

 Center Hill. The median value for As, Hg, Pb, and Zn exceeded the USGS baseline values. Cd outliers did not exceed the USGS’s baseline value. Outliers were observed for Cd, Hg and Zn. 37

Figure 4. Range of Concentrations for CRB Sediment Samples, By Trace Element (As, Be, Cd) (1994-2010)

38

Figure 5. Range of Concentrations for CRB Sediment Samples, By Trace Element (Cr, Cu, Hg) (1994-2010)

39

Figure 6. Range of Concentrations for CRB Sediment Samples, By Trace Element (Pb, Ni, Zn)(1994-2010)

40

 Cordell Hull. Cd exceeded the USGS’s baseline value. Outliers were observed for Hg.

 Dale Hollow. Highly variable results were indicated for Be, Hg, Ni, and Zn. The median value for As, Cd, and Hg exceeded the USGS baseline value. Cd and Cu outliers were observed.

 Laurel. The USGS’s baseline values for Cd, Pb, and Zn were exceeded. There were Ni and Pb outliers for Laurel.

 Martin’s Fork. Cd and Zn results were highly variable; the Cd median also exceeded the USGS’s baseline value.

/Lake Cumberland. The median exceeded the USGS’s baseline value for Cd and Zn. Outliers for Hg were observed.

 Cheatham. The Cd median exceeded the USGS’s baseline value. As, Cu, Pb, and Zn outliers were indicated for Cheatham.

 J. Percy Priest. Outliers were observed for As, Pb, Ni, and Zn, but the USGS baseline values were not exceeded. The Cd and Hg USGS baseline values were exceeded.

 Old Hickory. Outliers for Hg were observed, and USGS baseline value was exceeded.

ProUCL was used to perform two sample, one-sided hypothesis testing using the

Gehan test. Each reservoir was individually tested for each trace element against the concentrations for all other reservoirs (X) to determine if the individual reservoir was significantly different from X at the 0.05 confidence level. The null hypothesis was that the specific reservoir’s trace element median concentration was less than or equal to X; the null was rejected if p was less than 0.05, i.e., the concentration of the reservoir was greater than all others. The p value is the smallest value for which the null hypothesis is rejected in favor of the alternatives; the greater the value, the higher the degree of trust in the null hypothesis (USEPA, 2010).

41

CRB reservoirs were ranked by the number of trace elements that were greater than all others, where 1 is high, or “worst” (Table 4). Center Hill ranked highest, as it had 8/9 trace elements (all but Cd) that were higher than all other reservoirs. The next highest ranking reservoirs were Wolf Creek/Lake Cumberland, Laurel, and Old Hickory.

Of these, only Wolf Creek/Lake Cumberland is a main stem reservoir. Laurel and Old

Hickory ranked in the top four most “urban” reservoirs (see Table 3). Copper was found to be significantly different more times than any other trace element (5 out of 10), followed by As, Cr, Hg, and Ni (each 3/10). Cheatham had the highest number of p values of “1”, indicating that there is no evidence to reject the null hypothesis. It may be also be concluded that most trace elements in Cheatham reservoir sediments are either lower or equal to those in all other reservoirs, as indicated in Figures 4, 5, and 6. It is interesting to note that of the three reservoirs found to be lower for all trace elements than all other reservoirs, Cordell Hull, Cheatham, J. Percy Priest, the latter two ranked as the two most “urban” reservoirs in the CRB (see Table 3).

Chalmers, et al. (2007) projected that, on average, trace elements concentrations double when a rural site becomes suburban, and triple when a suburban site becomes urban. Of the trace elements tested Cd, Cu, Pb, and Zn had the highest correlation to urbanization. Hollister, et al. (2008) evaluated the effect of scale and land use on estuarine sediments and found that Pb and Cu concentrations had the strongest relationship with developed land; Cd, Hg, and Zn showed a moderate association, and As and Cr were weakly associated. Furthermore, they found that Pb and Zn were significantly related to local (range of 15-20 kilometers) uses, suggesting that local sources were more important than distant land uses in the watershed for these trace

42

Table 4. Summary of Gehan Hypothesis Testing

p Values at 0.05 Confidence Level

Res. As Be Cd Cr Cu Pb Hg Ni Zn Rank *BAR 0.96 0.767 0.00192 0.237 0.279 0.667 0.73 0.95 0.69 5 CEN 3.10E-07 2.00E-06 0.957 1.90E-09 0.00295 1.60E-04 3.00E-06 1.80E-04 3.00E-06 1 *COR 0.419 1 0.474 0.996 0.993 1 0.906 0.555 0.995 6 DAL 1.9E-06 0.863 0.435 0.388 0.884 0.956 1.70E-04 5.70E-04 0.574 4 LAU 0.241 0.226 0.0478 0.0549 2.50E-04 0.00651 0.713 0.00718 0.137 3 MAR 0.999 0.0866 0.196 0.991 7.40E-04 0.617 0.984 0.117 0.0876 5 *WOL 0.0223 0.215 0.0686 0.00385 0.00427 0.14 0.541 9.30E-06 8.70E-06 2 *CHE 1 1 0.85 1 1 0.938 0.999 1 1 6 JPP 0.997 0.0832 0.0885 0.277 0.987 0.174 0.984 1 0.937 6 *OLD 0.168 0.0252 1 0.901 0.0159 0.398 0.00915 0.29 0.275 4

*Main stem reservoir. The most “urban” reservoirs, based on population density, are in italics (see Table 3). Bold type means p was less than 0.05; reject the null hypothesis, reservoir concentration is greater than all others. Some reservoirs tied in rankings.

43 elements. Rice (1999) also found that trace elements characteristic of urban settings (Cu, sediment are similar to those in the literature for urban sediments; however, no other similarities were found for other trace elements. This may be due, in part, to high detection limits, especially at Cheatham.

Concentration Trends Concentrations of each trace element are shown through time (1994-2010) in

Figures 7, 8, and 9. Trends were evaluated by date and then by reservoir, with a moving average trend line; non-detect data were plotted at the detection limit. Selected highs and lows for reservoirs are shown in red and green letters, respectively. Sediment quality criteria levels called probable effects concentrations (PEC) values are also shown as dashed lines in Figures 7, 8, and 9 (there is no PEC for Be).

For most of the trace elements, there was not a clear pattern; concentrations tended to increase and decrease, without a large difference in minimum and maximum concentrations, such as for As, Cr, Ni, and Zn. The biggest range in concentrations appeared for Cd and Hg. A decreasing trend appeared for Pb after 1994; this is consistent with the findings of others who have observed decreased Pb concentrations in sediment since the ban of leaded gasoline (Callendar and Rice, 2000; Councell, et al. 2004). After a high in 1994, a decreasing trend appeared for Cd until about 2007, when concentrations generally increased. A similar trend was found and for Hg, which was highest in 1995, then decreased until 2006, when it generally started to increase. For a number of trace elements (Be, Cd, Cr, Cu, Ni, and Zn) there appeared to be a decrease between 2004 and

2005; 2004 was noted to be a “high water year” by the USACE (Tippit and Campbell,

2011). The reservoirs monitored during 2004 included Cheatham, and J. Percy Priest; reservoirs monitored in 2005 included Cordell Hull, and Dale Hollow.

44

JPP CHE

DAL

CHE

JPP

MAR

CHE

Figure 7. Concentrations of CRB Sediments (As, Be, Cd), By Year (1994-2010)

45

JPP

CHE

LAU

CHE DAL

COR CHE

CEN OLD

CHE JPP ,

Figure 8. Concentrations of CRB Sediments (Cr, Cu, Hg), By Year (1994-2010)

46

JPP

DAL

CHE JPP

CHE

CHE

Figure 9. Concentrations of CRB Sediments (Pb, Ni, Zn), By Year (1994-2010)

47

An evaluation of concentration trends through time for the CRB is a little misleading because not all lakes were analyzed for all years (each reservoir was measured once every five years). Therefore, some peaks may be due to circumstances at certain reservoirs, rather than a trend in the trace element concentrations. Similar plots of concentrations were also prepared by sample depth and by sample location (embayment, main channel, forebay), but no trends were obvious, and they are not presented here. In addition, with the sampling design used, it was not possible to distinguish possible surface water contaminants from potential atmospheric sources for the CRB sediments.

The CRB findings are not as conclusive as other trace element sediment trends noted in the literature. As part of the NAWQA program, Mahler, et al. (2006) evaluated national historical trends in trace element concentrations in sediment cores from 35 lakes and reservoirs collected from 1996 to 2001 from primarily urban locations (none were located in Kentucky or Tennessee). They found that decreasing trends outnumbered increasing trends for all seven elements evaluated (Cd, Cr, Cu, Pb, Hg, Ni, and Zn). The most pronounced changes were observed by Mahler, et al. for Pb (83 percent of the lakes had decreasing trends, and 6 percent had increasing trends) and Cr (54 percent had decreasing trends, and none had increasing trends). Collectively, the change in means for all metals was -7 percent, ranging from Pb at -28 percent to Zn at +2 percent. Zinc was found to be increasing, especially in dense urban watersheds. Mahler, et al. (2006) concluded that the source of Hg and Ni was likely atmospheric, but the transport pathway to urban lakes was fluvial; conversely, urban inputs via water for Pb and Zn generally overshadowed regional atmospheric sources. Chalmers, et al. (2007) found similar

48 declining trends for metals (Cd, Cr, Cu, Ni, Pb, Hg, Zn) in lake sediments in New

England from 1965 to 2000.

In a number of instances in the CRB sediments, there were very high non-detect levels (compared to SW846 method detection limits) for several trace elements, including numerous non-detect limits in the 60 to 170 mg/kg range for Zn; the SW846 method detection limit is 2 mg/kg (USEPA, 1994). In addition to high detection limits, there were some reservoirs that had more ND data than others, and some trace elements that were not detected more often than others. By far, Cheatham had most ND data: As

(8/41); Be, (10/41); Cd (15/41); Hg (16/41); and Zn (11/41). Other reservoirs had high numbers of non-detect data, but for fewer elements: J. Percy Priest (Hg 17/35); Dale

Hollow (Zn 7/26); Wolf Creek/Lake Cumberland (As 7/21); and Old Hickory (Cd 9/24).

Mercury (Hg) had the highest percentage of non-detects compared to other trace element

(34 percent for all reservoirs combined), and was often found to have detection limits higher than the method detection limit of 0.1 mg/kg. Nickel was the only trace element detected in every single sample collected, and Cr and Cu were also detected in all samples, with the exception of a few samples collected at Cheatham and J. Percy Priest, respectively. The USACE has observed that the Cheatham sediment samples often had a high water content (Tippit and Campbell, 2011), which may result in higher detection limits if there was insufficient sample volume for analysis. Furthermore, since the CRB

Basin sediment samples are not sieved, the high number of ND values and the high levels of ND detection limits may be the result of analyzing coarser grained sediment fractions that would not be expected to adsorb trace elements. Since coarser particles tend to have

49 lower concentrations of metals, a high proportion of coarse particles in a sample tends to dilute the whole sample; this is known as “the matrix effect” (Ongley, 1996).

Comparison to Probable Effect Concentrations To evaluate the potential environmental relevance of the trace element concentrations in the CRB reservoir sediments, the concentrations were compared to the sediment PECs. PECs are a consensus of six different sets of published sediment quality guidelines based on toxicity to a variety of benthic organisms. Concentration of a trace element in sediments above the corresponding PEC is expected to cause adverse effects to benthic biota in freshwater ecosystems. PEC quotients (PECQs) are often calculated to show the relative toxicity of a contaminant. The PECQ is the mean of the trace element concentration divided by the PEC value; a PECQ greater than 1 is a good indicator of toxicity (MacDonald, et al., 2000). None of the trace elements had an individual PECQ of 1.0 or more. The only PECQs that exceeded 0.5 were Cd (for J. Percy Priest only), and Ni (for Center Hill, Dale Hollow, Laurel, Martin’s Fork, and Wolf Creek/Lake

Cumberland).

As a measure of overall sediment quality between reservoirs, a metals contaminant index (MCI) (Mahler, et al., 2006) was calculated by summing the PECQs and dividing by the number of contaminants; the MCI values were then ranked (1 is the highest toxicity). The highest ranking (“worst”) MCI values were for Center Hill, Dale

Hollow, Wolf Creek/Lake Cumberland, and Laurel. The lowest ranking (“best”) MCI values were for Cheatham, Cordell Hull, Old Hickory, and Barkley (Table 5).

Potential Sources The USEPA’s geospatial database (USEPA 2011d) was used to evaluate potential primarily industrial and municipal point sources of contaminants to the two “worst” CRB

50

Table 5. Summary of Metal Contaminant Index Calculation and Rank

Metals PEC Quotient Contaminant (Mean Detected Concentration/PEC) Index (PECQ/n

Reservoir As Be Cd Cr Cu Pb Hg Ni Zn x 1000) Rank

*BAR 0.15 NA 0.36 0.17 0.11 0.15 0.11 0.39 0.19 203 7

CEN 0.32 NA 0.11 0.26 0.12 0.20 0.15 0.73 0.24 267 1 *COR 0.19 NA 0.21 0.12 0.08 0.11 0.11 0.46 0.13 176 9

DAL 0.31 NA 0.18 0.17 0.09 0.14 0.22 0.78 0.20 263 2

LAU 0.26 NA 0.27 0.19 0.17 0.19 0.06 0.64 0.24 253 4 MAR 0.10 NA 0.34 0.11 0.14 0.15 0.10 0.55 0.21 214 6

*WOL 0.26 NA 0.21 0.19 0.13 0.17 0.10 0.78 0.24 260 3

*CHE 0.15 NA 0.24 0.11 0.07 0.15 0.07 0.25 0.14 147 10

JPP 0.16 NA 0.51 0.18 0.09 0.21 0.12 0.33 0.16 220 5 *OLD 0.20 NA 0.07 0.15 0.12 0.16 0.13 0.48 0.18 185 8 __ __ PEC 33 NA 4.98 111 149 128 1.06 49 459

*Main stem reservoir. NA= PEC not available for Be. Mean detected concentrations were total, dry weight (mg/kg). PEC = probable effects concentration for aquatic toxicity; PEC Quotient (PECQ) = mean concentration/PEC ; PECQ of 1 or greater is an indicator of toxicity. Metals Contaminant Index (MCI) = PECQ/ number of contaminants.

51 reservoirs, based on the MCI rank: Center Hill and Dale Hollow. The database is very comprehensive and updated often; it contains spatial representations and limited facility data from the following databases maintained by the USEPA: the CERCLA (Superfund)

National Priorities List of abandoned hazardous waste sites; RCRAInfo, the list of active hazardous waste large quantity generators and treatment, storage, disposal facilities; the

Integrated Compliance Information System (ICIS), the Permit Compliance System

(PCS); the NPDES list of permitted water dischargers; the Air Facility System (AFS), the list of major dischargers of air pollutants; the annual Toxic Release Inventory (TRI) system; the Section Seven Tracking System (SSTS) for pesticides; and ACRES, which lists Brownfields Properties.

For Dale Hollow, there are very few industrial and municipal sources near the reservoir, and none which would appear to contribute significant levels of trace elements to reservoir sediments. Although there are more potential sources located near Center

Hill than Dale Hollow, the data available for the facilities do not indicate that any would be potential sources of trace elements (Figure 10) (USEPA, 2011d).

The most recent 303(d) lists for both Kentucky and Tennessee were consulted to determine if any of the CRB reservoirs were considered to be impaired. For Kentucky, the latest 303(d) list was the final list from 2008. The only CRB reservoirs that were mentioned were Lake Cumberland/Wolf Creek for methylmercury from atmospheric deposition, and Laurel reservoir for a variety of causes, including: mining, temperature, sedimentation/siltation, fecal coliform, sulfates, organic, conductance, and phosphorus

(KDEP, 2008). The source of the mercury was not noted in the report. For Tennessee, the only CRB reservoirs noted as impaired were portions of Lake Barkley for thermal

52

Center Hill Reservoir

Dale Hollow Reservoir

Source: Created by Author (2011) using USEPA’s Geospatial database (April, 2011).

Figure 10. Potential Point Sources From USEPA’s Geospatial Database

53 impairment from the Cumberland Steam Plant, and portions of Cheatham, for bacteria

(TDEC, 2010).

Study Limitations Although the CRB sediment sampling program has been long-term and consistently executed, there are some limitations in the data that should be considered when evaluating the results. First, it is intended as a screening program, so it does not require the rigor of a different sampling regime, such as for permit compliance. Also, the frequency and spatial extent of sampling data vary by watershed; not all of the reservoirs are sampled every year which makes a true annual comparison not possible. The biggest difference in the CRB program compared to many of the studies in the literature is that the sediments are not sieved so that just the silt/clay fraction is accounted for, where most trace element concentrations would be expected to be found. Also, as noted previously, some of the lab results had very high detection limits, making it appear that a contaminant was not detected when it really might have been, if a lower detection limit was achieved; this may be because of the lack of sieving of the sediments. Although a bigger watershed may be expected to have the potential for more contamination, the size of the drainage area does not address the possible intensity of land use or population density. There are also problems of scale. Localized problems and sources in specific reaches might be expected to reflect intensity of land use in the vicinity, but may not be useful in interpreting larger trends in the entire watershed. Potential contaminants like trace elements that are long-lived and not readily degraded in the environment have been cycled in sediments for many years, and may have been transported far from their original source.

54

CHAPTER FIVE: CONCLUSION

The sediment sampling program conducted by the USACE on the CRB over the last 17 years indicated trace element levels that were generally consistent with national baseline (“background”) concentrations measured by the USGS in the NAWQA program.

Individual locations exceeded the USGS values for some trace elements, with Cd, Hg, and Ni the elements exceeding the USGS levels most often. Copper did not exceed the

USGS levels in any sediment samples collected in the CRB. Nickel was the only trace element detected in every sediment sample collected. No remarkable trends through time were observed for the CRB sediments, although it appears that Pb levels have decreased over the years that the sediments have been collected, and that Cd and Hg levels have been rising since about 2006. However, Hg had 34 percent non-detect values for sediments collected from all reservoirs, and many of the sample detection limits were higher than the method detection limit for Hg. The USACE should consider reevaluating its current analytical methods and reporting limits, in addition to sieving sediments in the future to facilitate comparison of concentrations between reservoirs.

In comparing the sediment concentrations from one reservoir to another, Center

Hill had the greatest number of trace element concentrations (8/9, all except Cd) that were statistically significantly greater than all other reservoirs. Although Cu in CRB sediments did not exceed the USGS baseline levels, Cu was significantly higher more times than any other trace element (5 out of 10), when comparing concentrations among reservoirs.

The results of this study showed that although land use was correlated to population density in the CRB watersheds, population density was not necessarily

55 correlated with sediment quality. Watersheds with higher portions of developed land usually are more urbanized, and that trend was also found in the CRB. Use of the 2006

MRLC dataset to estimate the percentage of land cover type in each CRB reservoir watershed showed that Cheatham, J. Percy Priest, and Laurel were found to have the most “developed” land. Population density estimates from the 2000 Census used as a measure of urbanization in the Cumberland River reservoir watersheds showed that these three reservoirs also ranked as the “most urban”. The urban rankings based on the 2000

Census data, therefore, are consistent with the estimates of developed land based on the

2006 MRLC dataset.

Based on the literature reviewed, it was expected that the most urban CRB reservoirs would have the highest (“worst”) concentrations of trace elements in the sediments sampled. Three out of the top four “worst” reservoirs based on aquatic toxicity

(Center Hill, Wolf Creek/Lake Cumberland, and Laurel), were also in the top four reservoirs with the highest concentrations that were significantly different than all others, based on the Gehan test. However, applying aquatic toxicity value comparisons as a measure of sediment quality, there was no obvious correspondence between the degree of urbanization of the CRB reservoir drainage areas and sediment quality. In addition, there did not appear to be any correspondence with sediment quality and the drainage area/reservoir area ratios of the CRB reservoirs.

Surprisingly, reservoirs with the “worst” sediment quality (Center Hill, Dale

Hollow, Wolf Creek/Lake Cumberland, and Laurel), in terms of aquatic toxicity comparisons, were not the most urban, but the reservoirs with the longest retention times.

Furthermore, the reservoirs with “best” quality, in terms of aquatic toxicity comparisons,

56 were the most urban reservoirs, Cheatham and Old Hickory, followed Cordell Hull and

Barkley; these four reservoirs also have the four shortest retention times. Therefore, it may be concluded that retention time may have a more significant effect on CRB sediment quality than urbanization. This is a logical finding, as sediment concentrations do not have time to accumulate in reservoirs with short retention times.

Historically and currently, the majority of the non-point source “best management practices” for surface water are based on the well-accepted assumption that land use activities directly impact water and sediment quality (USEPA, 2005). The findings of this study, however, is not completely consistent with other’s findings that showed a correlation between population density and sediment concentration (USGS, 2009; Roy, et al. ,2009; Chalmers, et al., 2007; Brown, et al., 2009).. There are several possible explanations for this difference. First, none of these studies in the literature reported the hydrologic characteristics of the water bodies they evaluated in terms of retention time.

Also, none of these studies evaluated sediment quality based on aquatic toxicity; quality was based solely on concentration. Furthermore, although not evaluated in this study, it is possible that some of the contamination of CRB reservoir sediments comes from atmospheric deposition, rather than being directly associated with “developed” land uses, or the degree of urbanization of the watershed. Sources of atmospheric deposition are present in rural areas (e.g., power plants), and atmospheric contaminants have been shown to travel great distances form their sources. The USEPA has found that atmospheric sources were the greatest sources of water quality impairment in lakes and reservoirs; thus, these types of sources may warrant more evaluation in terms of non- point source pollution, especially for Hg.

57

The results of this study indicate that it may be prudent to include an evaluation of quality based on aquatic toxicity when sediment monitoring sediment quality, and that when reservoirs are the subject of sediment quality assessments, the consideration of the physical properties of the reservoir, especially the retention time, is essential for a comprehensive evaluation. This may also imply that sediment quality in reservoirs may be effectively regulated by water resource management techniques at the reservoirs that affect retention time.

58

APPENDIX A SUMMARY OF CRB SEDIMENT DATA

Sediment Concentration, dry weight (mg/kg) Sample Sediment Concentration, dry weight (mg/kg) Sample Depth Sample Depth As Be Cd Cr Cu Pb Hg Ni Zn Reservoir Station Year (feet) BAR 3BAR20002 1997 64 4.9 1.1 0.48 19.7 17.6 21.2 0.113 24 88.2 BAR 3BAR20002 2002 66 7.2 1.1 0.88 22 19 19 0.072 24 < 94 BAR 3BAR20002 2007 63 6.2 1.1 3.63 23.9 18.9 24.8 < 0.210 24.2 97.5 BAR 3BAR20005 1997 50 4.8 1 0.95 18.4 17.1 23.3 0.112 19.8 93.9 BAR 3BAR20005 2002 46 6.3 1.0 0.97 20 20 20 0.071 22 < 98 BAR 3BAR20005 2007 49 1 0.82 2.82 17.6 19.1 20 < 0.210 19.3 88.9 BAR 3BAR20006 1997 35 4.3 0.7 0.52 12.8 13.8 16.1 0.067 16.3 61.7 BAR 3BAR20006 2002 32 5.3 0.81 0.83 17 15 16 0.055 18 < 79 BAR 3BAR20006 2007 43 6.9 1 3.65 22 41.7 23.7 < 0.210 24.4 117 BAR 3BAR20007 1997 17 4.6 0.8 4.9 13.4 11.6 18.6 0.076 18 70.3 BAR 3BAR20007 2002 14 3.7 0.61 0.56 13 8.7 13 0.041 13 < 60 BAR 3BAR20007 2007 26 1.3 1.01 3.24 22.6 16.6 25.2 < 0.210 23.1 109 BAR 3BAR20031 1997 23 5.6 0.90 0.53 20.7 11.9 18.8 0.064 16.6 70.5 BAR 3BAR20031 2002 12 4.5 0.70 1.30 18 11 16 0.052 13 < 166 BAR 3BAR20031 2007 24 1.9 0.90 3.05 23.8 13.4 21.2 < 0.210 17.7 87.2 BAR 3BAR20032 1997 16 5.3 0.90 0.31 16.6 11.5 17 < 0.040 14.4 54.2 BAR 3BAR20032 2002 16 6.1 0.83 0.61 19.0 13 16 0.045 15 < 65 BAR 3BAR20032 2007 20 8.9 0.86 2.95 21.9 13.5 20 < 0.210 16.8 77.9

CEN 3CEN20002 1996 150 11.3 1.80 0.582 28.0 22.4 29.3 0.137 49 104 CEN 3CEN20002 2001 161 15.1 1.61 0.26 24.1 19.5 21.5 0.117 37.7 89 B CEN 3CEN20002 2006 157 18.0 1.20 < 0.61 28 18.0 < 30 0.420 40 109 CEN 3CEN20004 1996 120 12.6 1.70 0.597 32.3 18.6 28.4 0.155 41 132 CEN 3CEN20004 2001 130 13.2 1.68 0.23 29.7 18.7 24.5 0.111 34.9 104 B CEN 3CEN20004 2006 131 15.0 1.40 0.35 31 18 28 0.260 35 110 CEN 3CEN20007 1996 68 9.0 1.60 0.79 29.7 16.5 23.8 < 0.100 37.9 129 CEN 3CEN20007 2001 70 8.5 1.57 0.44 25.7 13.8 21.3 0.089 30.3 101 B CEN 3CEN20007 2006 70 7.6 1.10 0.56 26.0 11 23 0.220 29 101 CEN 3CEN20008 1996 55 11.7 1.40 1.10 38.6 24 30.3 < 0.100 48 156 CEN 3CEN20008 2001 63 10.9 1.30 0.74 34.8 20.5 27.1 0.113 34.7 125 B CEN 3CEN20008 2006 65 3 1.2 0.59 33.0 18 27 0.230 30 130 CEN 3CEN20010 1996 50 7.1 1.2 0.44 26.5 18.4 26.8 < 0.100 34.2 130 CEN 3CEN20010 2001 57 7.2 1.2 0.20 21.2 17.5 23.7 0.096 29.5 102.0 B CEN 3CEN20010 2006 60 8.6 1.1 0.28 22.0 14.0 22.0 0.210 28.0 104.0 CEN 3CEN20015 2001 108 12.1 1.58 0.12 23.8 19.9 21.5 0.107 35.6 86.7 B CEN 3CEN20015 2006 107 15.0 1.5 0.37 26.0 19.0 22.0 0.290 37.0 97.0 CEN 3CEN20036 1996 5 7.0 0.8 1.54 31.0 19.3 25.2 < 0.100 28.6 110.0

COR 3COR20002 1995 62 7.42 0.9 0.449 16.3 13.8 18.1 0.11 29.7 76.4 COR 3COR20002 2000 62 7.1 0.52 0.22 20.9 15.1 17.2 0.078 34.5 88.9 B COR 3COR20002 2005 62 3.98 0.280 1.75 8.2 8.94 10 0.011 18 48.0 COR 3COR20002 2010 70 7.7 0.970 2.1 20.0 16 17 < 0.050 33 91.0 COR 3COR20008 1995 36 7.65 1.3 0.397 20.9 18 23.9 0.205 33.8 10.3 COR 3COR20008 2000 35 3.90 < 0.4 0.17 8.0 8.37 9.3 0.036 16 41.0 B COR 3COR20008 2005 36 8.86 0.614 2.31 12.0 13 18 0.018 24 77.0 COR 3COR20008 2010 37 8.90 1.200 2.20 24.0 16 16 < 0.050 33 110.0 COR 3COR20010 1995 14 5.04 0.5 0.275 9.0 7.6 10.6 0.12 16.1 40.2 COR 3COR20010 2000 10 5.60 0.63 0.13 14.0 15.8 18.5 0.068 28 83.0 B COR 3COR20010 2005 8 < 10 0.073 1.15 5.9 5.76 6.13 < 0.010 12 33.0 COR 3COR20010 2010 6 6.3 0.720 2.00 15.0 13.00 13.00 < 0.050 28 74.0 COR 3COR20013 1995 10 6.4 0.6 0.51 11.9 9.5 16.1 0.375 18.6 50.3 COR 3COR20013 2000 30 4.1 < 0.4 0.19 8.7 8.1 9.5 0.038 17.2 44.3 B COR 3COR20013 2005 10 3.37 0.207 < 1.48 7.9 8.54 9.37 0.030 17 48.0 COR 3COR20013 2010 28 4.70 0.520 1.20 11.0 9.20 9.50 < 0.050 19 50.0 COR 3COR20016 1995 18 7.3 0.8 0.64 17.7 12.4 19.2 0.825 20.9 70.5 COR 3COR20016 2000 18 5.9 0.36 0.28 16.8 11.1 16 0.066 20.7 68.1 B COR 3COR20016 2005 20 5.77 0.290 1.31 9.4 7.01 13 0.034 12 45.0 COR 3COR20016 2010 20 6.60 0.750 1.70 18.0 12 16 < 0.050 20 65.0

DAL 3DAL20002 1995 135 17.6 1.00 0.88 15.9 25.3 37.0 0.663 69.8 129.0 DAL 3DAL20002 2000 130 13.8 0.65 0.62 21.5 26.9 31.3 0.080 80.5 140.0 J DAL 3DAL20002 2005 134 9.34 0.085 1.04 4.6 6.80 4.80 0.120 20 36.3 DAL 3DAL20002 2010 135 24 1.3 3.3 26.0 36 31.00 < 0.250 100 180.0 DAL 3DAL20004 1995 100 11.3 0.80 0.31 16.4 11.9 27.5 0.528 34.0 82.3 DAL 3DAL20004 2000 95 9.1 0.32 0.16 16.2 14.1 20.1 0.070 37.4 < 83.8 DAL 3DAL20004 2005 98 10 0.058 0.854 3.6 3.08 < 9.59 0.056 8.34 20 DAL 3DAL20004 2010 100 16 1.00 2.4 28 19 19 < 0.230 48 120 DAL 3DAL20008 1995 50 12.1 1.10 0.45 25.1 13.5 25.2 0.599 31.6 107 DAL 3DAL20008 2000 50 10.7 0.80 0.21 29.2 15.5 20.5 0.080 33.0 < 113 DAL 3DAL20008 2005 56 11 0.081 0.745 6.9 3.91 < 10 0.135 7.73 28 DAL 3DAL20008 2010 58 12 1.3 2.2 30 17 20 < 0.190 33 120 DAL 3DAL20009 1995 12 6.7 2.30 0.49 17.2 16.1 17 0.644 42.2 133 DAL 3DAL20009 2000 15 6.0 1.81 0.39 17.1 16.1 14.1 0.070 51.4 < 141 DAL 3DAL20009 2005 20 5.45 0.370 0.924 5.8 4.14 < 9.73 0.059 14 41 DAL 3DAL20009 2010 15 4 0.730 59 1.1 16.0 6.10 5.40 < 0.070 19 47 DAL 3DAL20010 1995 15 4.6 0.90 0.43 13.5 8.7 14.6 0.497 22.8 < 63.5 DAL 3DAL20010 2000 10 6.4 1.00 0.42 31.8 13.6 16 0.060 39.6 < 103 DAL 3DAL20010 2005 15 6.38 0.174 0.513 8.6 3.30 < 10 0.076 11 27 DAL 3DAL20010 2010 16 3.6 0.71 0.93 14.0 7.10 12 < 0.090 14 42 DAL 3DAL20050 1995 60 10.6 1.70 0.53 22.3 16.2 27.7 0.613 57.8 138 DAL 3DAL20050 2000 55 10.4 1.40 0.22 39.1 18.0 24.3 0.080 64.1 < 144 DAL 3DAL20050 2005 62 23 0.363 1.02 8.6 6.02 7.82 0.075 20 49 DAL 3DAL20050 2010 62 13 2.1 2.7 36 22 22 < 0.190 69 170 DAL 3DAL20051 1995 11 5.1 0.60 0.496 14.9 10.2 16.7 0.523 29.3 76.2 DAL 3DAL20051 2000 15 6.8 0.21 0.35 22.7 12.2 14.4 0.080 34.4 < 93.2

LAU 3LAU20002 1998 245 8.1 0.92 1.4 19 18 20.9 0.071 32.9 84.8 LAU 3LAU20002 2003 245 8.1 0.92 1.40 19 18 20.9 0.070 32.9 < 84.8 LAU 3LAU20002 2008 236 < 8.7 1.00 2.61 21 16.8 27.5 < 0.050 35.2 94.1 LAU 3LAU20005 1998 135 12 1.50 0.29 32.7 27.9 34.8 0.080 54.9 130 LAU 3LAU20005 2003 145 11 1.40 1.40 25.2 31.1 27.4 0.080 34.4 < 139 LAU 3LAU20005 2008 138 < 15 1.30 2.50 25.2 24.8 26.2 < 0.050 33.4 117 LAU 3LAU20006 1998 175 3.5 0.80 0.05 17 9.3 14.5 0.048 17.7 51.7 LAU 3LAU20006 2003 175 7.8 1.10 1.30 19 21 21.2 0.080 29.2 < 85.6 LAU 3LAU20006 2008 172 < 10 0.90 2.10 20 17.5 24 < 0.050 29 76 LAU 3LAU20007 1998 22 5.1 0.80 0.34 21.5 44.7 28.1 0.088 23.3 130 LAU 3LAU20007 2003 30 5.1 0.93 1.20 17 30.5 22.3 0.090 24.8 < 171 LAU 3LAU20007 2008 28 < 7 0.90 1.76 19.1 37.9 25.9 < 0.050 28.3 184

MAR 3MAR20002 1997 35 3.1 1.10 0.31 7.6 21.2 19.3 0.059 31.7 82.7 MAR 3MAR20002 2002 32 7.3 1.58 0.903 19.8 29.2 20.3 0.055 44.6 153 B MAR 3MAR20002 2007 33 1.6 1.39 4.860 19.3 27.9 26.4 < 0.240 34.4 135 MAR 3MAR20004 1997 9 1.8 0.80 0.230 4.6 11.1 28.7 0.035 9.7 41.4 MAR 3MAR20004 2002 10 4.1 0.96 0.646 11.6 16.3 14.3 0.041 20.1 82.6 B MAR 3MAR20004 2007 10 1.8 1.07 3.630 15.6 23.8 20.7 < 0.240 24.1 107 MAR 3MAR20005 1997 24 2.3 0.8 0.270 6.7 17.3 15.8 0.045 24.1 66.2 MAR 3MAR20005 2002 22 5.7 1.22 0.756 17.4 23.1 16.9 0.043 36 120 B MAR 3MAR20005 2007 23 1.7 1.38 4.9 19.9 25.4 26.7 < 0.240 35.7 137 MAR 3MAR20006 1997 4 2.4 0.8 0.170 0.5 13.8 11.2 0.036 16.3 47.3 MAR 3MAR20006 2002 18 6.6 1.28 0.801 17.5 26.2 17.1 0.045 35.8 126 B MAR 3MAR20006 2007 10 2 0.84 2.850 11.6 20.2 16.3 < 0.240 12 44

WOL 3WOL20002 1998 160 13 1.2 0.4 24 23.9 26.4 0.082 58 122 WOL 3WOL20002 2003 160 14 1.2 1.5 24 26 20 0.076 63 146 WOL 3WOL20002 2008 140 < 10 0.7 1.33 15 14.2 12.3 < 0.050 39.7 78.8 WOL 3WOL20004 1998 134 11.9 1.6 0.39 26.3 26.3 32.9 0.087 59 145 WOL 3WOL20004 2003 135 12 1.6 1.5 27 29 26 0.079 56 161 WOL 3WOL20004 2008 114 < 10 1.1 1.69 20.5 18.2 18.9 < 0.050 40.4 101 WOL 3WOL20006 1998 80 8 1.4 0.3 22 23 26 0.100 43 127 WOL 3WOL20006 2003 98 8 1.3 1.40 22 27 22 0.059 42 145 WOL 3WOL20006 2008 71 < 7.6 1.3 2.06 23.5 23.1 21.6 0.050 41 125 WOL 3WOL20007 1998 95 9 1.6 0.3 25 24 25 0.100 48 131 WOL 3WOL20007 2003 98 8.4 1.5 1.5 25 25 21 0.063 44 143 WOL 3WOL20007 2008 72 < 7.8 1.2 1.82 22.5 18.5 18.3 < 0.050 35 106 WOL 3WOL20010 1998 80 8 1 0.59 22 16.4 28.8 0.102 22.1 98 WOL 3WOL20010 2003 25 7.8 0.76 1.3 22 13 22 0.080 15 93 WOL 3WOL20010 2008 72 < 10 0.50 1.27 20.2 12.3 20 < 0.050 12.4 81.5 WOL 3WOL20011 1998 52 7.9 1 0.39 17 13.9 20.8 0.076 44.4 96.4 WOL 3WOL20011 2003 50 4.6 0.06 0.76 17 13 17 0.056 28 102 WOL 3WOL20011 2008 29 < 8.4 0.80 1.56 21.4 12.9 17 < 0.050 32.8 87.5 WOL 3WOL20047 1998 22 4.7 0.70 0.20 20 11.4 22 0.802 21.8 84.8 WOL 3WOL20047 2003 20 7.8 0.08 1.20 20 15 17 0.059 41 101 WOL 3WOL20047 2008 12 < 4.1 0.40 0.791 10.7 10.8 14.8 < 0.050 15.2 64.3

CHE 3CHE20002 1994 40 1.5 < 0.59 < 1.47 3.8 2.6 9.6 0.100 6.1 < 25.5 CHE 3CHE20002 1999 40 3.9 0.4 0.13 9.9 0.2 10.7 < 0.040 6.7 22.7 CHE 3CHE20002 2004 38 2.54 0.308 < 0.480 6.9 3.74 10 0.022 7.49 31 CHE 3CHE20002 2009 39 4.30 0.690 1.2 14 9.20 15 < 0.090 16 77 CHE 3CHE20005 1994 25 1.3 < 0.74 < 1.84 2.7 18.2 19.9 0.080 7.5 < 49.5 CHE 3CHE20005 1999 20 5.7 0.70 0.44 16.9 11 20.7 0.064 17.6 69.5 CHE 3CHE20005 2004 17 < 4.34 0.321 < 0.434 5.5 4.53 5.8 0.018 8.67 23.1 CHE 3CHE20005 2009 20 3.40 0.610 1.1 12 9.60 15.0 < 0.090 15 77 CHE 3CHE20008 1994 20 1.0 < 0.60 < 1.51 < 1.8 5.9 19.1 < 0.060 3.1 < 21.7 CHE 3CHE20008 1999 20 4.8 0.70 0.16 17.5 9.8 22.8 0.084 15.4 50 CHE 3CHE20008 2004 5 < 4.41 0.361 < 0.441 7.7 6.03 32 0.049 8.94 32 CHE 3CHE20008 2009 8 3.70 0.430 0.940 9.8 5.30 15 < 0.070 12 42 CHE 3CHE20012 1994 26 0.8 < 0.80 < 2 3.3 6.5 16.1 0.25 5.1 < 23.3 CHE 3CHE20012 1999 29 5.5 1.00 0.40 23.4 10.1 22.5 0.058 18.1 62.3 CHE 3CHE20012 2004 25 < 4.70 0.282 < 0.470 5.7 4.10 7.65 0.022 5.62 24 CHE 3CHE20012 2009 25 5.20 0.810 1.5 22 6.20 10 < 0.090 14 51 CHE 3CHE20038 1994 17 1.4 < 0.61 < 1.54 2.3 5.9 15.3 < 0.070 6.3 < 37.3 CHE 3CHE20038 1999 6 5.4 0.60 0.13 12.4 6.3 11.7 0.040 11.4 < 46.4 CHE 3CHE20038 2004 3 < 6.57 0.460 0.184 9.7 7.60 13 0.040 12 52 CHE 3CHE20038 2009 10 5.30 0.770 1.800 12.0 7.20 11 < 0.070 17 44 CHE 3CHE20080 1994 19 2.0 < 1.01 < 2.54 < 3.0 9.7 < 13.7 < 0.110 3.8 < 35.7 CHE 3CHE20080 1999 20 5.4 0.80 0.41 20.6 10 19.4 0.048 17 60.4 CHE 3CHE20080 2004 17 < 4.89 0.293 < 0.489 7.2 5.64 9.37 0.023 7.36 31 CHE 3CHE20080 2009 12 5.30 0.900 1.500 21 11 19.00 < 0.140 18 81 CHE 3CHE20081 1994 12 1.8 < 0.59 3.14 5.6 18.7 42.4 < 0.070 11.2 < 76.9 CHE 3CHE20081 1999 9 8.1 1.20 1.12 28.6 33.3 62.8 0.100 24.8 212 CHE 3CHE20081 2004 10 < 4.40 0.299 < 0.440 6.7 7.25 24 0.018 8.54 47 CHE 3CHE20081 2009 8 3.10 0.430 1.500 9.6 4.70 26 < 0.080 10 170 CHE 3CHE20082 1994 12 3.1 < 0.73 3.55 20.7 19.6 39.4 0.220 15.0 < 68.1 CHE 3CHE20082 1999 15 9.8 1.20 0.39 26.2 18.0 25.1 0.064 27.1 88.1 CHE 3CHE20082 2004 13 1.60 0.310 < 0.470 6.7 7.61 11 0.025 8.41 41 CHE 3CHE20082 2009 12 9.20 1.300 2.400 25 23 26 < 0.140 30 130 CHE 3CHE20083 1994 13 2.5 < 0.56 3.65 9.1 2.7 21.8 0.070 3.0 < 35.5 CHE 3CHE20083 1999 10 5.2 1.10 0.33 23.6 15.1 31.7 0.084 15.8 122 CHE 3CHE20083 2004 5 < 4.18 0.284 < 0.418 4.9 6.06 12 0.029 4.15 50 CHE 3CHE20083 2009 8 4.30 1.000 1.700 20 20 27 < 0.120 15.00 150 CHE 3CHE20084 1994 17 1.6 < 0.56 2.37 2.9 7.6 15.9 0.070 9.8 < 28.9 CHE 3CHE20084 1999 5 8.9 0.90 0.20 20.5 10 18.9 < 0.040 20.9 53.7 CHE 3CHE20084 2004 4 7.97 0.935 0.295 17 12 28 0.035 19 84 CHE 3CHE20084 2009 4 25 1.300 2.800 21 10 20 < 0.060 25 71 CHE 3CHE20085 2004 5 < 4.89 0.274 < 0.489 4.9 5.55 12 0.031 4.11 59

JPP 3JPP20002 1994 95 4.9 < 2.04 8.16 14.6 < 5.1 40.7 < 0.150 20.2 < 83.3 JPP 3JPP20002 1999 95 6.8 1.30 0.18 24.2 14.4 26.2 0.064 17.4 53.7 JPP 3JPP20002 2004 96 25 0.826 < 2.43 21.8 18 32 0.066 13 96 JPP 3JPP20002 2009 96 6 1.600 1.90 25 20 23 < 0.370 22 84 JPP 3JPP20003 1994 75 3.3 < 1.10 6 13.6 < 2.8 39 < 0.100 15.5 < 74.2 JPP 3JPP20003 1999 74 6.3 1.40 0.19 29.0 14.3 28.9 0.064 21 64.2 JPP 3JPP20003 2004 75 7.33 0.203 < 0.441 4.7 3.85 5.9 0.015 3.59 20 JPP 3JPP20003 2009 80 3.5 1.2 1.4 20 14 17 < 0.320 16 78 JPP 3JPP20004 1994 15 3.27 1.07 6.2 18.3 16.6 45.8 < 0.100 24.4 109 JPP 3JPP20004 1999 13 5.7 1.20 0.279 22.6 15.3 23.4 0.068 18.9 63.5 JPP 3JPP20004 2004 15 5.61 0.243 < 0.434 5.7 6.26 8.5 0.029 4.46 44 JPP 3JPP20004 2009 16 2.10 1.0 1.200 15 14 15 < 0.200 14 98 JPP 3JPP20005 2009 28 2.70 1.1 1.400 17 16 17.0 < 0.220 17 89 JPP 3JPP20006 1994 18 4.9 1.79 9.7 37.5 34 84.4 0.220 33.9 183 JPP 3JPP20006 1999 16 6.0 1.30 0.689 66.2 6.8 29.2 0.070 16.6 65.4 JPP 3JPP20006 2004 18 7.35 0.529 < 0.490 25 4.38 17 0.030 7.77 40 JPP 3JPP20006 2009 22 1.80 1.0 1.200 17 14 17 < 0.200 12 92 JPP 3JPP20007 1994 20 6.2 1.84 10.6 26 28.2 67.7 < 0.160 46.0 142 JPP 3JPP20007 1999 19 5.4 1.10 0.28 26.8 11.7 21.7 0.060 19.7 52.4 JPP 3JPP20007 2004 22 5.46 0.29 < 0.49 8.33 5.85 8.01 0.02 5.99 26 JPP 3JPP20007 2009 25 7.5 1.3 2.4 19.0 13.0 16 < 0.230 21 69 JPP 3JPP20008 1994 46 5 1.53 8.55 20.3 23.3 55 < 0.120 26.8 101 JPP 3JPP20008 1999 45 4 1 0.3 21.2 12.9 21.3 0.064 15.8 70.8 JPP 3JPP20008 2004 45 5.49 0.256 < 0.491 6.5 5.40 8.4 0.022 5.19 27 JPP 3JPP20008 2009 46 2.60 1 1.3 16 13 14 < 0.210 14 66 JPP 3JPP20009 1994 37 6.2 1.79 10.2 30.7 25.8 76.8 < 0.160 30.4 130 JPP 3JPP20009 1999 41 6.2 1.40 0.21 29.2 16.4 27.5 0.064 21.3 68.2 JPP 3JPP20009 2004 50 7.29 0.235 < 0.436 6.2 4.60 7.3 0.019 3.97 23 JPP 3JPP20009 2009 55 2 0.940 1.200 17 12 14 < 0.260 13 81 JPP 3JPP20010 1994 26 2.0 1.34 5.94 15.5 2.8 40 0.100 18.1 81.8 JPP 3JPP20010 1999 21 2.8 0.80 0.17 17 9.5 21.2 0.060 11.1 40.5 JPP 3JPP20010 2004 23 4.08 0.163 < 0.430 4.7 3.66 6.3 0.026 3 NA J JPP 3JPP20010 2009 35 1.40 0.890 1.0 16 11 15 < 0.26 11 60 JPP 3JPP20011 2009 35 2.50 1.300 1.4 20 14 18 < 0.27 15 91 JPP 3JPP20012 2009 17 2.10 1.200 1.4 17.0 13 18 < 0.23 14 57

OLD 3OLD20002 1996 71 6.4 1.10 0.52 17.4 21.4 20.9 < 0.10 29.1 93.2 OLD 3OLD20002 2001 70 7.0 1.20 0.26 17.5 21.4 20.8 0.08 29.9 95.3 B OLD 3OLD20002 2006 64 8.1 0.90 < 0.30 17.0 15.0 18.0 0.24 27 87 OLD 3OLD20005 1996 50 5.0 0.70 0.30 11.4 8.8 11.4 < 0.10 17.2 56 OLD 3OLD20005 2001 45 5.9 0.88 0.23 12.1 14.8 14.0 0.06 19.8 68.1 B OLD 3OLD20005 2006 51 5.4 0.77 < 0.26 13 13 15 0.31 21 69 OLD 3OLD20007 1996 8 4.2 0.60 0.19 10.4 5.5 9.4 < 0.10 13.7 < 41.7 OLD 3OLD20007 2001 40 7.5 1.00 0.23 13.5 12.9 17.6 0.06 23.8 76.7 B OLD 3OLD20007 2006 71 6.5 0.87 0.22 14 11 15 0.16 23 74 OLD 3OLD20013 1996 29 7.8 1.3 0.28 19.1 21.9 25 < 0.1 27.4 88.2 OLD 3OLD20013 2001 26 8.1 1.4 < 0.50 18 17.2 20.2 0.059 24.8 73.9 B OLD 3OLD20013 2006 26 9.2 1.3 < 0.42 21 21 25 0.420 27 97 OLD 3OLD20018 1996 28 5.9 1.4 0.331 19.6 22.6 24.8 < 0.100 23.7 85.9 OLD 3OLD20018 2001 23 9 1.5 < 0.5 18.6 21.6 22.2 0.069 22 86.3 B OLD 3OLD20018 2006 23 < 8.5 1.3 < 0.43 22 21 26 0.26 25 102 OLD 3OLD20020 1996 36 8 1.1 0.38 17.6 23.5 22.8 < 0.10 27.2 87.7 OLD 3OLD20020 2001 23 7.7 1.3 0.15 18.2 25.2 20.7 0.075 27.5 98.3 B OLD 3OLD20020 2006 21 < 6.9 1.0 < 0.35 18 17 21 0.23 25 87 OLD 3OLD20021 1996 17 4 1.2 0.51 18.3 18.2 27.8 < 0.10 15.1 97.8 OLD 3OLD20021 2001 20 5 1.4 0.23 18.3 17.5 24.8 0.086 18 93.2 B OLD 3OLD20021 2006 20 < 6.7 1 < 0.34 19 13 23 0.22 18 100 OLD 3OLD20022 1996 22 6.1 1 0.35 13.9 17.5 17.4 < 0.100 24.2 68 OLD 3OLD20022 2001 24 6.5 1.20 0.19 15.2 18.2 19.2 0.06 26.4 78.5 B OLD 3OLD20022 2006 24 6.9 0.94 < 0.31 16 16 19 0.200 24 75 N: 227 227 227 227 227 227 227 227 226 Nondetects: 23 14 34 2 2 6 78 0 31 % Nondetect: 10.13 6.17 15 0.881 0.881 2.643 34.36 0 13.7 USGS Mean Baseline: 8.1 1.6 0.5 66 24 24 0.08 28 100 NOTES: NA=Not analyzed; Less than (<)=Not detected at reporting detection limit; J=estimated value, assumed less than contract required quantification limit (CRQL), but greater than or equal to method detection limit (MDL); B=found in blank. Bold=Outlier, per ProUCL assume ND equal to detection limit. Shaded=exceeds USGS mean baseline concentration. Sample Sediment Concentration, dry weight (mg/kg) Sample Sediment Concentration, dry weight (mg/kg) Sample Depth Sample Depth As Be Cd Cr Cu Pb Hg Ni Zn Reservoir Station Year (feet) As Be Cd Cr Cu Pb Hg Ni Zn Reservoir Station Year (feet) BAR 3BAR20002 1997 64 4.9 1.1 0.48 19.7 17.6 21.2 0.113 24 88.2 BAR 3BAR20002 1997 64 4.9 1.1 0.48 19.7 17.6 21.2 0.113 24 88.2 BAR 3BAR20002 2002 Sample66 7.2 1.1 0.88 Sediment22 Concentration,19 dry weight19 (mg/kg) 0.072 24 < 94 BAR 3BAR20002 2002 66 7.2 1.1 0.88 22 19 19 0.072 24 < 94 BAR 3BAR20002 Sample2007 Depth63 6.2 1.1 3.63 23.9 18.9 24.8 < 0.210 24.2 97.5 BAR 3BAR20002 2007 63 As 6.2 Be1.1 Cd3.63 Cr23.9 Cu18.9 Pb24.8 < Hg0.210 Ni24.2 Zn97.5 ReservoirBAR 3BAR20005Station 1997Year (feet)50 4.8 1 0.95 18.4 17.1 23.3 0.112 19.8 93.9 BAR 3BAR20005 1997 50 4.8 1 0.95 18.4 17.1 23.3 0.112 19.8 93.9 BAR 3BAR200053BAR20002 20021997 4664 6.34.9 1.01.1 0.970.48 19.720 17.620 21.220 0.0710.113 2224 < 88.298 BAR 3BAR20005 2002 46 6.3 1.0 0.97 20 20 20 0.071 22 < 98 BAR 3BAR200053BAR20002 20072002 4966 7.21 0.821.1 2.820.88 17.622 19.119 2019 < 0.2100.072 19.324 < 88.994 BAR 3BAR20005 2007 49 1 0.82 2.82 17.6 19.1 20 < 0.210 19.3 88.9 BAR 3BAR200063BAR20002 19972007 3563 4.36.2 0.71.1 0.523.63 12.823.9 13.818.9 16.124.8 < 0.0670.210 16.324.2 61.797.5 BAR 3BAR20006 1997 35 4.3 0.7 0.52 12.8 13.8 16.1 0.067 16.3 61.7 BAR 3BAR200063BAR20005 20021997 3250 5.34.8 0.811 0.830.95 18.417 17.115 23.316 0.0550.112 19.818 < 93.979 BAR 3BAR20006 2002 32 5.3 0.81 0.83 17 15 16 0.055 18 < 79 BAR 3BAR200063BAR20005 20072002 4346 6.96.3 1.01 3.650.97 2220 41.720 23.720 < 0.2100.071 24.422 < 11798 BAR 3BAR20006 2007 43 6.9 1 3.65 22 41.7 23.7 < 0.210 24.4 117 BAR 3BAR200073BAR20005 19972007 1749 4.61 0.820.8 2.824.9 13.417.6 11.619.1 18.620 < 0.0760.210 19.318 70.388.9 BAR 3BAR20007 1997 17 4.6 0.8 4.9 13.4 11.6 18.6 0.076 18 70.3 BAR 3BAR200073BAR20006 20021997 1435 3.74.3 0.610.7 0.560.52 12.813 13.88.7 16.113 0.0410.067 16.313 < 61.760 BAR 3BAR20007 2002 14 3.7 0.61 0.56 13 8.7 13 0.041 13 < 60 BAR 3BAR200073BAR20006 20072002 2632 1.35.3 1.010.81 3.240.83 22.617 16.615 25.216 < 0.2100.055 23.118 < 10979 BAR 3BAR20007 2007 26 1.3 1.01 3.24 22.6 16.6 25.2 < 0.210 23.1 109 BAR 3BAR200313BAR20006 19972007 2343 5.66.9 0.901 0.533.65 20.722 11.941.7 18.823.7 < 0.0640.210 16.624.4 70.5117 BAR 3BAR200313BAR20007 1997 2317 5.64.6 0.900.8 0.534.9 20.713.4 11.911.6 18.818.6 0.0640.076 16.618 70.570.3 BAR 3BAR20031 2002 12 4.5 0.70 1.30 18 11 16 0.052 13 < 166 BAR 3BAR200313BAR20007 2002 1214 4.53.7 0.700.61 1.300.56 1813 8.711 1613 0.0520.041 13 < 16660 BAR 3BAR20031 2007 24 1.9 0.90 3.05 23.8 13.4 21.2 < 0.210 17.7 87.2 BAR 3BAR200313BAR20007 2007 2426 1.91.3 0.901.01 3.053.24 23.822.6 13.416.6 21.225.2 < 0.210 17.723.1 87.2109 BAR 3BAR20032 1997 16 5.3 0.90 0.31 16.6 11.5 17 < 0.040 14.4 54.2 BAR 3BAR200323BAR20031 1997 1623 5.35.6 0.90 0.310.53 16.620.7 11.511.9 18.817 < 0.0400.064 14.416.6 54.270.5 BAR 3BAR20032 2002 16 6.1 0.83 0.61 19.0 13 16 0.045 15 < 65 BAR 3BAR200323BAR20031 2002 1612 6.14.5 0.830.70 0.611.30 19.018 1311 16 0.0450.052 1513 < 16665 BAR 3BAR20032 2007 20 8.9 0.86 2.95 21.9 13.5 20 < 0.210 16.8 77.9 BAR 3BAR200323BAR20031 2007 2024 8.91.9 0.860.90 2.953.05 21.923.8 13.513.4 21.220 < 0.210 16.817.7 77.987.2 BAR 3BAR20032 1997 16 5.3 0.90 0.31 16.6 11.5 17 < 0.040 14.4 54.2 CEN 3CEN20002 1996 150 11.3 1.80 0.582 28.0 22.4 29.3 0.137 49 104 CENBAR 3CEN200023BAR20032 19962002 15016 11.36.1 1.800.83 0.5820.61 28.019.0 22.413 29.316 0.1370.045 4915 < 10465 CEN 3CEN20002 2001 161 15.1 1.61 0.26 24.1 19.5 21.5 0.117 37.7 89 B CENBAR 3CEN200023BAR20032 20012007 16120 15.18.9 1.610.86 0.262.95 24.121.9 19.513.5 21.520 < 0.1170.210 37.716.8 77.989 B CEN 3CEN20002 2006 157 18.0 1.20 < 0.61 28 18.0 < 30 0.420 40 109 CEN 3CEN20002 2006 157 18.0 1.20 < 0.61 28 18.0 < 30 0.420 40 109 CEN 3CEN20004 1996 120 12.6 1.70 0.597 32.3 18.6 28.4 0.155 41 132 CEN 3CEN200043CEN20002 1996 120150 12.611.3 1.701.80 0.5970.582 32.328.0 18.622.4 28.429.3 0.1550.137 4149 132104 CEN 3CEN20004 2001 130 13.2 1.68 0.23 29.7 18.7 24.5 0.111 34.9 104 B CEN 3CEN200043CEN20002 2001 130161 13.215.1 1.681.61 0.230.26 29.724.1 18.719.5 24.521.5 0.1110.117 34.937.7 10489 B CEN 3CEN20004 2006 131 15.0 1.40 0.35 31 18 28 0.260 35 110 CEN 3CEN200043CEN20002 2006 131157 15.018.0 1.401.20 < 0.350.61 3128 18.018 < 2830 0.2600.420 3540 110109 CEN 3CEN20007 1996 68 9.0 1.60 0.79 29.7 16.5 23.8 < 0.100 37.9 129 CEN 3CEN200073CEN20004 1996 12068 12.69.0 1.601.70 0.5970.79 29.732.3 16.518.6 23.828.4 < 0.1000.155 37.941 129132 CEN 3CEN20007 2001 70 8.5 1.57 0.44 25.7 13.8 21.3 0.089 30.3 101 B CEN 3CEN200073CEN20004 2001 13070 13.28.5 1.571.68 0.440.23 25.729.7 13.818.7 21.324.5 0.0890.111 30.334.9 101104 B CEN 3CEN20007 2006 13170 7.6 1.10 0.56 26.0 11 23 0.220 29 101 CEN 3CEN200073CEN20004 2006 70 15.07.6 1.101.40 0.560.35 26.031 1118 2328 0.2200.260 2935 101110 CEN 3CEN20008 1996 55 11.7 1.40 1.10 38.6 24 30.3 < 0.100 48 156 CEN 3CEN200083CEN20007 1996 5568 11.79.0 1.401.60 1.100.79 38.629.7 16.524 30.323.8 < 0.100 37.948 156129 CEN 3CEN200083CEN20007 2001 6370 10.98.5 1.301.57 0.740.44 34.825.7 20.513.8 27.121.3 0.1130.089 34.730.3 125101 B CEN 3CEN20008 2001 63 10.9 1.30 0.74 34.8 20.5 27.1 0.113 34.7 125 B CEN 3CEN200083CEN20007 2006 6570 7.63 1.101.2 0.590.56 33.026.0 1811 2723 0.2300.220 3029 130101 CEN 3CEN20008 2006 65 3 1.2 0.59 33.0 18 27 0.230 30 130 CEN 3CEN200103CEN20008 1996 5055 11.77.1 1.401.2 0.441.10 26.538.6 18.424 26.830.3 < 0.100 34.248 130156 CEN 3CEN20010 1996 50 7.1 1.2 0.44 26.5 18.4 26.8 < 0.100 34.2 130 CEN 3CEN200103CEN20008 2001 5763 10.97.2 1.301.2 0.200.74 21.234.8 17.520.5 23.727.1 0.0960.113 29.534.7 102.0125 B CEN 3CEN20010 2001 57 7.2 1.2 0.20 21.2 17.5 23.7 0.096 29.5 102.0 B CEN 3CEN200103CEN20008 2006 6065 8.63 1.11.2 0.280.59 22.033.0 14.018 22.027 0.2100.230 28.030 104.0130 CEN 3CEN20010 2006 60 8.6 1.1 0.28 22.0 14.0 22.0 0.210 28.0 104.0 CEN 3CEN200153CEN20010 20011996 10850 12.17.1 1.581.2 0.120.44 23.826.5 19.918.4 21.526.8 < 0.1070.100 35.634.2 86.7130 B CEN 3CEN20015 2001 108 12.1 1.58 0.12 23.8 19.9 21.5 0.107 35.6 86.7 B CEN 3CEN200153CEN20010 20062001 10757 15.07.2 1.51.2 0.370.20 26.021.2 19.017.5 22.023.7 0.2900.096 37.029.5 102.097.0 B CEN 3CEN20015 2006 107 15.0 1.5 0.37 26.0 19.0 22.0 0.290 37.0 97.0 CEN 3CEN200363CEN20010 19962006 605 7.08.6 0.81.1 1.540.28 31.022.0 19.314.0 25.222.0 < 0.1000.210 28.628.0 110.0104.0 CEN 3CEN20036 1996 5 7.0 0.8 1.54 31.0 19.3 25.2 < 0.100 28.6 110.0 CEN 3CEN20015 2001 108 12.1 1.58 0.12 23.8 19.9 21.5 0.107 35.6 86.7 B CORCEN 3COR200023CEN20015 19952006 10762 7.4215.0 0.91.5 0.4490.37 16.326.0 13.819.0 18.122.0 0.2900.11 29.737.0 76.497.0 COR 3COR20002 1995 62 7.42 0.9 0.449 16.3 13.8 18.1 0.11 29.7 76.4 CORCEN 3COR200023CEN20036 20001996 625 7.17.0 0.520.8 0.221.54 20.931.0 15.119.3 17.225.2 < 0.0780.100 34.528.6 110.088.9 B COR 3COR20002 2000 62 7.1 0.52 0.22 20.9 15.1 17.2 0.078 34.5 88.9 B COR 3COR20002 2005 62 3.98 0.280 1.75 8.2 8.94 10 0.011 18 48.0 COR 3COR20002 2005 62 3.98 0.280 1.75 8.2 8.94 10 0.011 18 48.0 COR 3COR20002 20101995 7062 7.427.7 0.9700.9 0.4492.1 20.016.3 13.816 18.117 < 0.0500.11 29.733 91.076.4 COR 3COR20002 2010 70 7.7 0.970 2.1 20.0 16 17 < 0.050 33 91.0 COR 3COR200083COR20002 19952000 3662 7.657.1 0.521.3 0.3970.22 20.9 15.118 23.917.2 0.2050.078 33.834.5 10.388.9 B COR 3COR200083COR20002 19952005 3662 7.653.98 0.2801.3 0.3971.75 20.98.2 8.9418 23.910 0.205 33.8 10.3 COR 3COR20008 2000 35 3.90 < 0.4 0.17 8.0 8.37 9.3 0.0360.011 1618 41.048.0 B COR 3COR200083COR20002 20002010 3570 3.907.7 < 0.9700.4 0.172.1 20.08.0 8.3716 9.317 < 0.0360.050 1633 41.091.0 B COR 3COR20008 2005 36 8.86 0.614 2.31 12.0 13 18 0.018 24 77.0 COR 3COR20008 20051995 36 8.867.65 0.6141.3 0.3972.31 12.020.9 1318 23.918 0.0180.205 33.824 77.010.3 COR 3COR20008 2010 37 8.90 1.200 2.20 24.0 16 16 < 0.050 33 110.0 COR 3COR20008 20102000 3735 8.903.90 < 1.2000.4 2.200.17 24.08.0 8.3716 9.316 < 0.0500.036 3316 110.041.0 B COR 3COR20010 1995 14 5.04 0.5 0.275 9.0 7.6 10.6 0.12 16.1 40.2 COR 3COR200103COR20008 19952005 1436 5.048.86 0.6140.5 0.2752.31 12.09.0 7.613 10.618 0.0180.12 16.124 40.277.0 COR 3COR20010 2000 10 5.60 0.63 0.13 14.0 15.8 18.5 0.068 28 83.0 B COR 3COR200103COR20008 20002010 1037 5.608.90 1.2000.63 0.132.20 14.024.0 15.816 18.516 < 0.0680.050 2833 110.083.0 B COR 3COR20010 2005 8 < 10 0.073 1.15 5.9 5.76 6.13 < 0.010 12 33.0 COR 3COR20010 20051995 148 < 5.0410 0.0730.5 0.2751.15 5.99.0 5.767.6 6.1310.6 < 0.0100.12 16.112 33.040.2 COR 3COR20010 2010 6 6.3 0.720 2.00 15.0 13.00 13.00 < 0.050 28 74.0 COR 3COR20010 20102000 106 5.606.3 0.7200.63 2.000.13 15.014.0 13.0015.8 13.0018.5 < 0.0500.068 28 74.083.0 B COR 3COR20013 1995 10 6.4 0.6 0.51 11.9 9.5 16.1 0.375 18.6 50.3 COR 3COR200133COR20010 19952005 108 < 6.410 0.0730.6 0.511.15 11.95.9 5.769.5 16.16.13 < 0.3750.010 18.612 50.333.0 COR 3COR20013 2000 30 4.1 < 0.4 0.19 8.7 8.1 9.5 0.038 17.2 44.3 B COR 3COR200133COR20010 20002010 306 4.16.3 < 0.7200.4 0.192.00 15.08.7 13.008.1 13.009.5 < 0.0380.050 17.228 44.374.0 B COR 3COR20013 2005 10 3.37 0.207 < 1.48 7.9 8.54 9.37 0.030 17 48.0 COR 3COR20013 20051995 10 3.376.4 0.2070.6 < 1.480.51 11.97.9 8.549.5 9.3716.1 0.0300.375 18.617 48.050.3 COR 3COR20013 2010 28 4.70 0.520 1.20 11.0 9.20 9.50 < 0.050 19 50.0 COR 3COR20013 20102000 2830 4.704.1 < 0.5200.4 1.200.19 11.08.7 9.208.1 9.509.5 < 0.0500.038 17.219 50.044.3 B COR 3COR20016 1995 18 7.3 0.8 0.64 17.7 12.4 19.2 0.825 20.9 70.5 COR 3COR200163COR20013 19952005 1810 3.377.3 0.2070.8 < 0.641.48 17.77.9 12.48.54 19.29.37 0.8250.030 20.917 70.548.0 COR 3COR20016 2000 18 5.9 0.36 0.28 16.8 11.1 16 0.066 20.7 68.1 B COR 3COR200163COR20013 20002010 1828 4.705.9 0.5200.36 0.281.20 16.811.0 11.19.20 9.5016 < 0.0660.050 20.719 68.150.0 B COR 3COR20016 2005 20 5.77 0.290 1.31 9.4 7.01 13 0.034 12 45.0 COR 3COR20016 20051995 2018 5.777.3 0.2900.8 1.310.64 17.79.4 7.0112.4 19.213 0.0340.825 20.912 45.070.5 COR 3COR20016 2010 20 6.60 0.750 1.70 18.0 12 16 < 0.050 20 65.0 COR 3COR20016 20102000 2018 6.605.9 0.7500.36 1.700.28 18.016.8 11.112 16 < 0.0500.066 20.720 65.068.1 B COR 3COR20016 2005 20 5.77 0.290 1.31 9.4 7.01 13 0.034 12 45.0 CORDAL 3DAL200023COR20016 19952010 13520 17.6 1.00 0.88 15.9 25.3 37.0 0.663 69.8 129.0 DAL 3DAL20002 1995 135 17.66.60 0.7501.00 0.881.70 15.918.0 25.312 37.016 < 0.6630.050 69.820 129.065.0 DAL 3DAL20002 2000 130 13.8 0.65 0.62 21.5 26.9 31.3 0.080 80.5 140.0 J DAL 3DAL20002 2000 130 13.8 0.65 0.62 21.5 26.9 31.3 0.080 80.5 140.0 J DAL 3DAL20002 20051995 134135 9.3417.6 0.0851.00 1.040.88 15.94.6 6.8025.3 4.8037.0 0.1200.663 69.820 129.036.3 DAL 3DAL20002 2005 134 9.34 0.085 1.04 4.6 6.80 4.80 0.120 20 36.3 DAL 3DAL20002 20102000 135130 13.824 0.651.3 0.623.3 26.021.5 26.936 31.0031.3 < 0.2500.080 80.5100 180.0140.0 J DAL 3DAL20002 2010 135 24 1.3 3.3 26.0 36 31.00 < 0.250 100 180.0 DAL 3DAL200043DAL20002 19952005 100134 11.39.34 0.0850.80 0.311.04 16.44.6 11.96.80 27.54.80 0.5280.120 34.020 82.336.3 DAL 3DAL20004 1995 100 11.3 0.80 0.31 16.4 11.9 27.5 0.528 34.0 82.3 DAL 3DAL200043DAL20002 20002010 13595 9.124 0.32APPENDIX1.3 0.163.3 16.226.0A 14.136 31.0020.1 < 0.0700.250 37.4100 < 180.083.8 DAL 3DAL20004 2000 95 9.1 0.32 0.16 16.2 14.1 20.1 0.070 37.4 < 83.8 DAL 3DAL20004 20051995 10098 11.310 0.0580.80 0.8540.31 16.43.6 3.0811.9 < 9.5927.5 0.0560.528 8.3434.0 82.320 DAL 3DAL20004 2005 SUMMAR98 10 Y OF0.058 CRB0.854 SEDIMENT3.6 3.08 DATA< 9.59 0.056 8.34 20 DAL 3DAL20004 20102000 10095 9.116 1.000.32 0.162.4 16.228 14.119 20.119 < 0.2300.070 37.448 < 83.8120 DAL 3DAL20004 2010 100 16 1.00 2.4 28 19 19 < 0.230 48 120 DAL 3DAL200083DAL20004 19952005 5098 12.110 0.0581.10 0.8540.45 25.13.6 13.53.08 < 25.29.59 0.5990.056 31.68.34 10720 DAL 3DAL20008 1995 50 12.1 1.10 0.45 25.1 13.5 25.2 0.599 31.6 107 DAL 3DAL200083DAL20004 20002010 10050 10.716 0.801.00 0.212.4 29.228 15.519 20.519 < 0.0800.230 33.048 < 113120 DAL 3DAL20008 2000 50 10.7 0.80 0.21 29.2 15.5 20.5 0.080 33.0 < 113 DAL 3DAL20008 20051995 Sample5650 12.111 0.0811.10 0.7450.45 Sediment25.16.9 Concentration,3.9113.5 dry weight< 25.210 (mg/kg) 0.1350.599 7.7331.6 10728 DAL 3DAL20008 2005 56 11 0.081 0.745 6.9 3.91 < 10 0.135 7.73 28 DAL 3DAL20008 Sample20102000 Depth5850 10.712 0.801.3 0.212.2 29.230 15.517 20.520 < 0.1900.080 33.033 < 120113 DAL 3DAL20008 2010 58 As 12 Be1.3 Cd2.2 Cr 30 Cu 17 Pb 20 < Hg0.190 Ni 33 Zn120 ReservoirDAL 3DAL200093DAL20008Station 1995Year2005 (feet)1256 6.711 0.0812.30 0.7450.49 17.26.9 16.13.91 < 1710 0.6440.135 42.27.73 13328 DAL 3DAL20009 1995 12 6.7 2.30 0.49 17.2 16.1 17 0.644 42.2 133 DALBAR 3DAL200093BAR200023DAL20008 200019972010 156458 6.04.912 1.811.11.3 0.390.482.2 17.119.730 16.117.617 14.121.220 < 0.0700.1130.190 51.42433 < 88.2141120 DAL 3DAL20009 2000 15 6.0 1.81 0.39 17.1 16.1 14.1 0.070 51.4 < 141 DALBAR 3DAL200093BAR20002 200520021995 206612 5.457.26.7 0.3702.301.1 0.9240.880.49 17.25.822 4.1416.119 < 9.731917 0.0590.0720.644 42.21424 < 1334194 DAL 3DAL20009 20052000 20 5.45 0.370 0.924 5.8 4.14 < 9.73 0.059 14 41 DALBAR 3DAL200093BAR20002 20102007 1563 6.26.04 0.7301.811.1 3.630.391.1 16.023.917.1 6.1018.916.1 5.4024.814.1 < 0.0700.210 24.251.419 < 97.514147 DAL 3DAL20009 20102005 1520 5.454 0.7300.370 0.9241.1 16.05.8 6.104.14 < 5.409.73 < 0.0700.059 1914 47 DALBAR 3DAL200103BAR20005 19951997 1550 4.64.8 0.901 0.430.95 13.518.4 17.18.7 14.623.3 0.4970.112 22.819.8 < 63.593.941 DAL 3DAL200103DAL20009 19952010 15 4.64 0.7300.90 0.431.1 13.516.0 6.108.7 14.65.40 < 0.4970.070 22.819 < 63.547 DALBAR 3DAL200103BAR20005 20002002 1046 6.46.3 1.001.0 0.420.97 31.820 13.620 1620 0.0600.071 39.622 < 10398 DAL 3DAL20010 20001995 1015 6.44.6 1.000.90 0.420.43 31.813.5 13.68.7 14.616 0.0600.497 39.622.8 < 63.5103 DALBAR 3DAL200103BAR20005 20052007 1549 6.381 0.1740.82 0.5132.82 17.68.6 3.3019.1 < 1020 < 0.0760.210 19.311 88.927 DAL 3DAL20010 20052000 1510 6.386.4 0.1741.00 0.5130.42 31.88.6 3.3013.6 < 1016 0.0760.060 39.611 < 10327 DALBAR 3DAL200103BAR20006 20101997 1635 3.64.3 0.710.7 0.930.52 14.012.8 7.1013.8 16.112 < 0.0900.067 16.314 61.742 DAL 3DAL20010 20102005 1615 6.383.6 0.1740.71 0.5130.93 14.08.6 7.103.30 < 1210 < 0.0900.076 1411 4227 DALBAR 3DAL200503BAR20006 19952002 6032 10.65.3 1.700.81 0.530.83 22.317 16.215 27.716 0.6130.055 57.818 < 13879 DAL 3DAL200503DAL20010 19952010 6016 10.63.6 1.700.71 0.530.93 22.314.0 16.27.10 27.712 < 0.6130.090 57.814 13842 DALBAR 3DAL200503BAR20006 20002007 5543 10.46.9 1.401 0.223.65 39.122 18.041.7 24.323.7 < 0.0800.210 64.124.4 < 144117 DAL 3DAL20050 20001995 5560 10.410.6 1.401.70 0.220.53 39.122.3 18.016.2 24.327.7 0.0800.613 64.157.8 < 144138 DALBAR 3DAL200503BAR20007 20051997 6217 4.623 0.3630.8 1.024.9 13.48.6 6.0211.6 7.8218.6 0.0750.076 2018 70.349 DAL 3DAL20050 20052000 6255 10.423 0.3631.40 1.020.22 39.18.6 6.0218.0 7.8224.3 0.0750.080 64.120 < 14449 DALBAR 3DAL200503BAR20007 20102002 6214 3.713 0.612.1 0.562.7 3613 8.722 2213 < 0.1900.041 6913 < 17060 DAL 3DAL20050 20102005 62 1323 0.3632.1 1.022.7 8.636 6.0222 7.8222 < 0.1900.075 6920 17049 DALBAR 3DAL200513BAR20007 19952007 1126 5.11.3 0.601.01 0.4963.24 14.922.6 10.216.6 16.725.2 < 0.5230.210 29.323.1 76.2109 DAL 3DAL200513DAL20050 19952010 1162 5.113 0.602.1 0.4962.7 14.936 10.222 16.722 < 0.5230.190 29.369 76.2170 BAR 3BAR20031 20001997 23 5.6 0.90 0.53 20.7 11.9 18.8 0.064 16.6 70.5 DAL 3DAL20051 1995 1511 6.85.1 0.210.60 0.4960.35 22.714.9 12.210.2 14.416.7 0.0800.523 34.429.3 < 93.276.2 BARDAL 3BAR200313DAL20051 20022000 1215 4.56.8 0.700.21 1.300.35 22.718 12.211 14.416 0.0520.080 34.413 < 93.2166 DAL 3DAL20051 2000 15 6.8 0.21 0.35 22.7 12.2 14.4 0.080 34.4 < 93.2 LAUBAR 3LAU200023BAR20031 19982007 24524 8.11.9 0.920.90 3.051.4 23.819 13.418 20.921.2 < 0.0710.210 32.917.7 84.887.2 LAU 3LAU20002 1998 245 8.1 0.92 1.4 19 18 20.9 0.071 32.9 84.8 LAUBAR 3LAU200023BAR20032 20031997 24516 8.15.3 0.920.90 1.400.31 16.619 11.518 20.917 < 0.0700.040 32.914.4 < 84.854.2 LAU 3LAU20002 20031998 245 8.1 0.92 1.401.4 19 18 20.9 0.0700.071 32.9 < 84.8 LAUBAR 3LAU200023BAR20032 20082002 23616 < 8.76.1 1.000.83 2.610.61 19.021 16.813 27.516 < 0.0500.045 35.215 < 94.165 LAU 3LAU20002 20082003 236245 < 8.78.1 1.000.92 2.611.40 2119 16.818 27.520.9 < 0.0500.070 35.232.9 < 94.184.8 LAUBAR 3LAU200053BAR20032 19982007 13520 8.912 1.500.86 0.292.95 32.721.9 27.913.5 34.820 < 0.0800.210 54.916.8 77.9130 LAU 3LAU200053LAU20002 19982008 135236 < 8.712 1.501.00 0.292.61 32.721 27.916.8 34.827.5 < 0.0800.050 54.935.2 94.1130 LAU 3LAU20005 20031998 145 11 1.40 1.40 25.2 31.1 27.4 0.080 34.4 < 139 LAU 3LAU20005 2003 145135 1112 1.401.50 1.400.29 25.232.7 31.127.9 27.434.8 0.080 34.454.9 < 139130 LAUCEN 3LAU200053CEN20002 200819962003 138150145 < 11.31511 1.301.801.40 0.5822.501.40 25.228.0 24.822.431.1 26.229.327.4 < 0.0500.1370.080 33.434.449 < 117104139 LAU 3LAU20005 2008 161138 < 15 1.30 2.50 25.2 24.8 26.2 < 0.050 33.4 117 LAUCEN 3LAU200063CEN200023LAU20005 199820012008 175138 < 15.13.515 0.801.611.30 0.050.262.50 24.125.217 19.524.89.3 14.521.526.2 < 0.0480.1170.050 17.737.733.4 51.711789 B LAU 3LAU20006 1998 175 3.5 0.80 0.05 17 9.3 14.5 0.048 17.7 51.7 LAUCEN 3LAU200063CEN20002 200320061998 175157 18.07.83.5 1.101.200.80 < 1.300.610.05 192817 18.09.321 < 21.214.530 0.0800.4200.048 29.217.740 < 85.651.7109 LAU 3LAU20006 2003 175 7.8 1.10 1.30 19 21 21.2 0.080 29.2 < 85.6 LAUCEN 3LAU200063CEN20004 200819962003 172120175 < 12.67.810 0.901.701.10 0.5972.101.30 32.32019 17.518.621 28.421.224 < 0.0500.1550.080 29.22941 < 85.613276 LAU 3LAU20006 2008 172 < 10 0.90 2.10 20 17.5 24 < 0.050 29 76 LAUCEN 3LAU200073CEN200043LAU20006 199820012008 13017222 < 13.25.110 0.801.680.90 0.340.232.10 21.529.720 44.718.717.5 28.124.524 < 0.0880.1110.050 23.334.929 13010476 B LAU 3LAU20007 1998 22 5.1 0.80 0.34 21.5 44.7 28.1 0.088 23.3 130 LAUCEN 3LAU200073CEN20004 200320061998 1313022 15.05.1 0.931.400.80 1.200.350.34 21.51731 30.544.718 22.328.128 0.0900.2600.088 24.823.335 < 171110130 LAU 3LAU20007 2003 30 5.1 0.93 1.20 17 30.5 22.3 0.090 24.8 < 171 LAUCEN 3LAU200073CEN20007 200819962003 286830 < 9.05.17 0.901.600.93 1.760.791.20 19.129.717 37.916.530.5 25.923.822.3 < 0.0500.1000.090 28.337.924.8 < 184129171 LAU 3LAU20007 2008 28 < 7 0.90 1.76 19.1 37.9 25.9 < 0.050 28.3 184 CENLAU 3CEN200073LAU20007 20012008 7028 < 8.57 1.570.90 0.441.76 25.719.1 13.837.9 21.325.9 < 0.0890.050 30.328.3 101184 B MARCEN 3MAR200023CEN20007 19972006 3570 3.17.6 1.10 0.310.56 26.07.6 21.211 19.323 0.0590.220 31.729 82.7101 MAR 3MAR20002 1997 35 3.1 1.10 0.31 7.6 21.2 19.3 0.059 31.7 82.7 MARCEN 3MAR200023CEN20008 200219961997 325535 11.77.33.1 1.581.401.10 0.9031.100.31 19.838.67.6 29.221.224 20.330.319.3 < 0.0550.1000.059 44.631.748 82.7153156 B MAR 3MAR20002 2002 32 7.3 1.58 0.903 19.8 29.2 20.3 0.055 44.6 153 B MARCEN 3MAR200023CEN20008 200720012002 336332 10.91.67.3 1.391.301.58 4.8600.9030.74 19.334.819.8 27.920.529.2 26.427.120.3 < 0.2400.1130.055 34.434.744.6 135125153 B MAR 3MAR20002 2007 33 1.6 1.39 4.860 19.3 27.9 26.4 < 0.240 34.4 135 MARCEN 3MAR200043CEN200083MAR20002 199720062007 65339 1.81.63 0.801.391.2 0.2304.8600.59 33.019.34.6 11.127.918 28.726.427 < 0.0350.2300.240 34.49.730 41.4130135 MAR 3MAR20004 1997 9 1.8 0.80 0.230 4.6 11.1 28.7 0.035 9.7 41.4 MARCEN 3MAR200043CEN20010 200219961997 10509 4.17.11.8 0.960.801.2 0.6460.2300.44 11.626.54.6 16.318.411.1 14.326.828.7 < 0.0410.1000.035 20.134.29.7 82.641.4130 B MAR 3MAR20004 2002 10 4.1 0.96 0.646 11.6 16.3 14.3 0.041 20.1 82.6 B MARCEN 3MAR200043CEN20010 200720012002 1057 1.87.24.1 1.070.961.2 3.6300.6460.20 15.621.211.6 23.817.516.3 20.723.714.3 < 0.2400.0960.041 24.129.520.1 102.082.6107 B MAR 3MAR20004 2007 10 1.8 1.07 3.630 15.6 23.8 20.7 < 0.240 24.1 107 MARCEN 3MAR200053CEN200103MAR20004 199720062007 246010 2.38.61.8 1.070.81.1 0.2703.6300.28 22.015.66.7 17.314.023.8 15.822.020.7 < 0.0450.2100.240 24.128.0 104.066.2107 MAR 3MAR20005 1997 24 2.3 0.8 0.270 6.7 17.3 15.8 0.045 24.1 66.2 MARCEN 3MAR200053CEN20015 20022001 1082224 12.15.72.3 1.221.580.8 0.7560.2700.12 17.423.86.7 23.119.917.3 16.921.515.8 0.0430.1070.045 35.624.136 86.766.2120 B MAR 3MAR20005 2002 22 5.7 1.22 0.756 17.4 23.1 16.9 0.043 36 120 B MARCEN 3MAR200053CEN20015 20072006 10723 15.01.7 1.381.5 0.374.9 19.926.0 25.419.0 26.722.0 < 0.2400.290 35.737.0 97.0137 MAR 3MAR20005 2007 23 1.7 1.38 4.9 19.9 25.4 26.7 < 0.240 35.7 137 MARCEN 3MAR200063CEN20036 19971996 45 2.47.0 0.8 0.1701.54 31.00.5 13.819.3 11.225.2 < 0.0360.100 16.328.6 110.047.3 MAR 3MAR20006 1997 4 2.4 0.8 0.170 0.5 13.8 11.2 0.036 16.3 47.3 MAR 3MAR20006 2002 18 6.6 1.28 0.801 17.5 26.2 17.1 0.045 35.8 126 B MAR 3MAR20006 2002 18 6.6 1.28 0.801 17.5 26.2 17.1 0.045 35.8 126 B MARCOR 3MAR200063COR20002 20071995 1062 7.422 0.840.9 2.8500.449 11.616.3 20.213.8 16.318.1 < 0.2400.11 29.712 76.444 MARCOR 3COR200023MAR20006 20002007 6210 7.12 0.520.84 2.8500.22 20.911.6 15.120.2 17.216.3 < 0.0780.240 34.512 88.944 B WOLCOR 3WOL200023COR20002 19982005 16062 3.9813 0.2801.2 1.750.4 8.224 23.98.94 26.410 0.0820.011 5818 48.0122 WOL 3WOL20002 1998 160 13 1.2 0.4 24 23.9 26.4 0.082 58 122 WOLCOR 3WOL200023COR20002 20032010 16070 7.714 0.9701.2 1.52.1 20.024 2616 2017 < 0.0760.050 6333 91.0146 WOL 3WOL20002 2003 160 14 1.2 1.5 24 26 20 0.076 63 146 WOLCOR 3WOL200023COR20008 20081995 14036 < 7.6510 0.71.3 0.3971.33 20.915 14.218 12.323.9 < 0.0500.205 39.733.8 78.810.3 WOL 3WOL20002 2008 140 < 10 0.7 1.33 15 14.2 12.3 < 0.050 39.7 78.8 WOLCOR 3WOL200043COR20008 19982000 13435 11.93.90 < 1.60.4 0.390.17 26.38.0 26.38.37 32.99.3 0.0870.036 5916 41.0145 B WOL 3WOL20004 1998 134 11.9 1.6 0.39 26.3 26.3 32.9 0.087 59 145 WOLCOR 3WOL200043COR20008 20032005 13536 8.8612 0.6141.6 2.311.5 12.027 2913 2618 0.0790.018 5624 77.0161 WOL 3WOL20004 2003 135 12 1.6 1.5 27 29 26 0.079 56 161 WOLCOR 3WOL200043COR20008 20082010 11437 < 8.9010 1.2001.1 1.692.20 20.524.0 18.216 18.916 < 0.050 40.433 110.0101 WOL 3WOL20004 2008 114 < 10 1.1 1.69 20.5 18.2 18.9 < 0.050 40.4 101 WOLCOR 3COR200103WOL20006 19951998 1480 5.048 0.51.4 0.2750.3 9.022 7.623 10.626 0.1000.12 16.143 40.2127 WOL 3WOL20006 1998 80 8 1.4 0.3 22 23 26 0.100 43 127 WOLCOR 3COR200103WOL20006 20002003 1098 5.608 0.631.3 0.131.40 14.022 15.827 18.522 0.0680.059 2842 83.0145 B WOL 3WOL20006 2003 98 8 1.3 1.40 22 27 22 0.059 42 145 WOLCOR 3COR200103WOL20006 20052008 718 < 7.610 0.0731.3 1.152.06 23.55.9 5.7623.1 6.1321.6 < 0.0100.050 1241 33.0125 WOL 3WOL20006 2008 71 < 7.6 1.3 2.06 23.5 23.1 21.6 0.050 41 125 WOLCOR 3COR200103WOL20007 20101998 956 6.39 0.7201.6 2.000.3 15.025 13.0024 13.0025 < 0.0500.100 2848 74.0131 WOL 3WOL20007 1998 95 9 1.6 0.3 25 24 25 0.100 48 131 WOLCOR 3COR200133WOL20007 19952003 1098 6.48.4 0.61.5 0.511.5 11.925 9.525 16.121 0.3750.063 18.644 50.3143 WOL 3WOL20007 2003 98 8.4 1.5 1.5 25 25 21 0.063 44 143 WOLCOR 3COR200133WOL20007 20002008 3072 < 4.17.8 < 0.41.2 0.191.82 22.58.7 18.58.1 18.39.5 < 0.0380.050 17.235 44.3106 B WOL 3WOL20007 2008 72 < 7.8 1.2 1.82 22.5 18.5 18.3 < 0.050 35 106 WOLCOR 3COR200133WOL20010 20051998 1080 3.378 0.2071 < 1.480.59 7.922 8.5416.4 9.3728.8 0.0300.102 22.117 48.098 WOL 3WOL20010 1998 80 8 1 0.59 22 16.4 28.8 0.102 22.1 98 WOLCOR 3COR200133WOL20010 20102003 2825 4.707.8 0.5200.76 1.201.3 11.022 9.2013 9.5022 < 0.0500.080 1915 50.093 WOL 3WOL20010 2003 25 7.8 0.76 1.3 22 13 22 0.080 15 93 WOLCOR 3COR200163WOL20010 19952008 1872 < 7.310 0.500.8 0.641.27 17.720.2 12.412.3 19.220 < 0.8250.050 20.912.4 70.581.5 WOL 3WOL20010 2008 72 < 10 0.50 1.27 20.2 12.3 20 < 0.050 12.4 81.5 WOLCOR 3COR200163WOL20011 20001998 1852 5.97.9 0.361 0.280.39 16.817 11.113.9 20.816 0.0660.076 20.744.4 68.196.4 B WOL 3WOL20011 1998 52 7.9 1 0.39 17 13.9 20.8 0.076 44.4 96.4 WOLCOR 3COR200163WOL20011 20052003 2050 5.774.6 0.2900.06 1.310.76 9.417 7.0113 1317 0.0340.056 1228 45.0102 WOL 3WOL20011 2003 50 4.6 0.06 0.76 17 13 17 0.056 28 102 WOLCOR 3COR200163WOL20011 20102008 2029 < 6.608.4 0.7500.80 1.701.56 18.021.4 12.912 1617 < 0.050 32.820 65.087.5 WOL 3WOL20011 2008 29 < 8.4 0.80 1.56 21.4 12.9 17 < 0.050 32.8 87.5 WOL 3WOL20047 1998 22 4.7 0.70 0.20 20 11.4 22 0.802 21.8 84.8 WOL 3WOL20047 1998 22 4.7 0.70 0.20 20 11.4 22 0.802 21.8 84.8 WOLDAL 3DAL200023WOL20047 19952003 13520 17.67.8 1.000.08 0.881.20 15.920 25.315 37.017 0.6630.059 69.841 129.0101 WOL 3WOL20047 2003 20 7.8 0.08 1.20 20 15 17 0.059 41 101 WOLDAL 3DAL200023WOL20047 20002008 13012 < 13.84.1 0.650.40 0.7910.62 21.510.7 26.910.8 31.314.8 < 0.0800.050 80.515.2 140.064.3 J WOL 3WOL20047 2008 12 < 4.1 0.40 0.791 10.7 10.8 14.8 < 0.050 15.2 64.3 DAL 3DAL20002 2005 134 9.34 0.085 1.04 4.6 6.80 4.80 0.120 20 36.3 CHE 3CHE20002 1994 40 1.5 < 0.59 < 1.47 3.8 2.6 9.6 0.100 6.1 < 25.5 DALCHE 3DAL200023CHE20002 20101994 13540 1.524 < 0.591.3 < 1.473.3 26.03.8 2.636 31.009.6 < 0.2500.100 1006.1 < 180.025.5 CHE 3CHE20002 19941999 40 1.53.9 < 0.590.4 < 1.470.13 3.89.9 2.60.2 10.79.6 < 0.1000.040 6.16.7 < 25.522.7 DALCHE 3DAL200043CHE20002 19951999 10040 11.33.9 0.800.4 0.310.13 16.49.9 11.90.2 27.510.7 < 0.5280.040 34.06.7 82.322.7 CHE 3CHE20002 19992004 4038 2.543.9 0.3080.4 < 0.4800.13 9.96.9 3.740.2 10.710 < 0.0400.022 7.496.7 22.731 DALCHE 3DAL200043CHE20002 20002004 9538 2.549.1 0.3080.32 < 0.4800.16 16.26.9 14.13.74 20.110 0.0700.022 37.47.49 < 83.831 CHE 3CHE20002 20042009 3839 2.544.30 0.3080.690 < 0.4801.2 6.914 3.749.20 1015 < 0.0220.090 7.4916 3177 DALCHE 3DAL200043CHE20002 20052009 9839 4.3010 0.0580.690 0.8541.2 3.614 3.089.20 < 9.5915 < 0.0560.090 8.3416 2077 CHE 3CHE200023CHE20005 20091994 3925 4.301.3 < 0.6900.74 < 1.841.2 2.714 9.2018.2 19.915 < 0.0900.080 7.516 < 49.577 DALCHE 3DAL200043CHE20005 20101994 10025 1.316 < 1.000.74 < 1.842.4 2.728 18.219 19.919 < 0.2300.080 7.548 < 49.5120 CHE 3CHE20005 19941999 2520 1.35.7 < 0.740.70 < 1.840.44 16.92.7 18.211 19.920.7 0.0800.064 17.67.5 < 49.569.5 CHE 3CHE20005 1999 20 5.7 0.70 0.44 16.9 11 20.7 0.064 17.6 69.5 CHEDAL 3CHE200053DAL20008 199919952004 205017 < 12.14.345.7 0.3210.701.10 < 0.4340.440.45 16.925.15.5 13.54.5311 20.725.25.8 0.0640.5990.018 17.631.68.67 69.523.1107 CHE 3CHE20005 2004 17 < 4.34 0.321 < 0.434 5.5 4.53 5.8 0.018 8.67 23.1 CHEDAL 3CHE200053DAL20008 200420002009 175020 < 4.3410.73.40 0.3210.6100.80 < 0.4340.211.1 29.25.512 4.5315.59.60 20.515.05.8 < 0.0180.0800.090 8.6733.015 < 23.111377 CHE 3CHE20005 2009 20 3.40 0.610 1.1 12 9.60 15.0 < 0.090 15 77 CHEDAL 3CHE200053DAL200083CHE20008 200920051994 2056 3.401.011 < 0.6100.0810.60 < 0.7451.511.1 < 6.91.812 9.603.915.9 < 15.019.110 < 0.0900.1350.060 7.733.115 < 21.77728 CHE 3CHE20008 1994 20 1.0 < 0.60 < 1.51 < 1.8 5.9 19.1 < 0.060 3.1 < 21.7 CHEDAL 3CHE200083DAL20008 199420101999 2058 1.04.812 < 0.600.701.3 < 1.510.162.2 < 17.51.830 5.99.817 19.122.820 < 0.0600.1900.084 15.43.133 < 21.712050 CHE 3CHE20008 1999 20 4.8 0.70 0.16 17.5 9.8 22.8 0.084 15.4 50 DALCHE 3DAL200093CHE20008 199519992004 12205 < 4.416.74.8 0.3612.300.70 < 0.4410.490.16 17.217.57.7 16.16.039.8 22.81732 0.6440.0840.049 42.215.48.94 1335032 CHE 3CHE20008 2004 5 < 4.41 0.361 < 0.441 7.7 6.03 32 0.049 8.94 32 DALCHE 3DAL200093CHE20008 200420002009 1558 < 4.413.706.0 0.3610.4301.81 < 0.4410.9400.39 17.17.79.8 16.16.035.30 14.13215 < 0.0700.049 51.48.9412 < 1413242 CHE 3CHE20008 2009 8 3.70 0.430 0.940 9.8 5.30 15 < 0.070 12 42 CHEDAL 3CHE200083DAL200093CHE20012 200920051994 20268 3.705.450.8 < 0.4300.3700.80 < 0.9400.9242 9.85.83.3 5.304.146.5 < 9.7316.115 < 0.0700.0590.25 5.11214 < 23.34142 CHE 3CHE20012 1994 26 0.8 < 0.80 < 2 3.3 6.5 16.1 0.25 5.1 < 23.3 CHEDAL 3DAL200093CHE20012 201019941999 261529 0.85.54 < 0.7300.801.00 < 0.401.12 16.023.43.3 6.1010.16.5 16.15.4022.5 < 0.0700.0580.25 18.15.119 < 23.362.347 CHE 3CHE20012 1999 29 5.5 1.00 0.40 23.4 10.1 22.5 0.058 18.1 62.3 DALCHE 3DAL200103CHE20012 199519992004 152925 < 4.704.65.5 0.2820.901.00 < 0.4700.430.40 13.523.45.7 10.14.108.7 14.622.57.65 0.4970.0580.022 22.818.15.62 < 63.562.324 CHE 3CHE20012 2004 25 < 4.70 0.282 < 0.470 5.7 4.10 7.65 0.022 5.62 24 DALCHE 3DAL200103CHE20012 200420002009 1025 < 4.705.206.4 0.2820.8101.00 < 0.4700.421.5 31.85.722 13.64.106.20 7.651610 < 0.0600.0220.090 39.65.6214 < 1032451 CHE 3CHE20012 2009 25 5.20 0.810 601.5 22 6.20 10 < 0.090 14 51 CHEDAL 3CHE200123DAL200103CHE20038 200920051994 251517 5.206.381.4 < 0.8100.1740.61 < 0.5131.541.5 8.62.322 6.203.305.9 < 15.310 < 0.0900.0760.070 6.31411 < 37.32751 CHE 3CHE20038 1994 17 1.4 < 0.61 < 1.54 2.3 5.9 15.3 < 0.070 6.3 < 37.3 CHEDAL 3DAL200103CHE20038 201019941999 17166 1.43.65.4 < 0.610.710.60 < 1.540.930.13 14.012.42.3 7.105.96.3 15.311.712 < 0.0700.0900.040 11.46.314 < 37.346.442 CHE 3CHE20038 1999 6 5.4 0.60 0.13 12.4 6.3 11.7 0.040 11.4 < 46.4 DALCHE 3DAL200503CHE20038 199519992004 6063 < 10.66.575.4 0.4601.700.60 0.1840.530.13 22.312.49.7 16.27.606.3 27.711.713 0.6130.040 57.811.412 < 46.413852 CHE 3CHE20038 2004 3 < 6.57 0.460 0.184 9.7 7.60 13 0.040 12 52 DALCHE 3DAL200503CHE20038 200420002009 55103 < 10.46.575.30 0.4600.7701.40 0.1841.8000.22 39.112.09.7 18.07.607.20 24.31311 < 0.0800.0400.070 64.11217 < 1445244 CHE 3CHE200383CHE20080 20091994 10 5.30 0.770 1.800 12.0 7.20 11 < 0.070 17 44 CHEDAL 3CHE200383DAL20050 20092005 106219 5.302.023 < 0.7700.3631.01 < 1.8001.022.54 < 12.08.63.0 7.206.029.7 < 7.8213.711 < 0.0700.0750.110 3.81720 < 35.74944 CHE 3CHE20080 19941999 19 2.0 < 1.01 < 2.54 < 3.0 9.7 < 13.7 < 0.110 3.8 < 35.7 CHEDAL 3DAL200503CHE20080 20101994 196220 2.05.413 < 1.010.802.1 < 2.540.412.7 < 20.63.036 9.72210 < 13.719.422 < 0.1100.1900.048 3.86917 < 35.760.4170 CHE 3CHE20080 19992004 2017 < 4.895.4 0.2930.80 < 0.4890.41 20.67.2 5.6410 19.49.37 0.0480.023 7.3617 60.431 DALCHE 3DAL200513CHE20080 19951999 1120 5.15.4 0.600.80 0.4960.41 14.920.6 10.210 16.719.4 0.5230.048 29.317 76.260.4 CHE 3CHE20080 20042009 1712 < 4.895.30 0.2930.900 < 0.4891.500 7.221 5.6411 19.009.37 < 0.0230.140 7.3618 3181 DALCHE 3DAL200513CHE20080 20042000 1517 < 4.896.8 0.2930.21 < 0.4890.35 22.77.2 12.25.64 14.49.37 0.0800.023 34.47.36 < 93.231 CHE 3CHE200803CHE20081 20091994 12 5.301.8 < 0.9000.59 1.5003.14 5.621 18.711 19.0042.4 < 0.1400.070 11.218 < 76.981 CHE 3CHE20080 2009 12 5.30 0.900 1.500 21 11 19.00 < 0.140 18 81 CHE 3CHE20081 19941999 129 1.88.1 < 0.591.20 3.141.12 28.65.6 18.733.3 42.462.8 < 0.0700.100 11.224.8 < 76.9212 LAUCHE 3LAU200023CHE20081 19981994 24512 8.11.8 < 0.920.59 3.141.4 5.619 18.718 20.942.4 < 0.0710.070 32.911.2 < 84.876.9 CHE 3CHE20081 19992004 109 < 4.408.1 0.2991.20 < 0.4401.12 28.66.7 33.37.25 62.824 0.1000.018 24.88.54 21247 CHELAU 3LAU200023CHE20081 19992003 2459 8.1 1.200.92 1.121.40 28.619 33.318 62.820.9 0.1000.070 24.832.9 < 84.8212 CHE 3CHE20081 20042009 108 < 4.403.10 0.2990.430 < 0.4401.500 6.79.6 7.254.70 2426 < 0.0180.080 8.5410 17047 CHELAU 3CHE200813LAU20002 20042008 23610 < 4.408.7 0.2991.00 < 0.4402.61 6.721 7.2516.8 27.524 < 0.0180.050 8.5435.2 94.147 CHE 3CHE200813CHE20082 20091994 128 3.103.1 < 0.4300.73 1.5003.55 20.79.6 4.7019.6 39.426 < 0.0800.220 15.010 < 68.1170 CHELAU 3CHE200813LAU20005 20091998 1358 3.1012 0.4301.50 1.5000.29 32.79.6 4.7027.9 34.826 < 0.080 54.910 170130 CHE 3CHE20082 19941999 1215 3.19.8 < 0.731.20 3.550.39 20.726.2 19.618.0 39.425.1 0.2200.064 15.027.1 < 68.188.1 CHELAU 3LAU200053CHE20082 19942003 14512 3.111 < 0.731.40 3.551.40 20.725.2 19.631.1 39.427.4 0.2200.080 15.034.4 < 68.1139 CHE 3CHE20082 19992004 1513 1.609.8 0.3101.20 < 0.4700.39 26.26.7 18.07.61 25.111 0.0640.025 27.18.41 88.141 CHELAU 3LAU200053CHE20082 19992008 13815 < 9.815 1.201.30 0.392.50 26.225.2 18.024.8 25.126.2 < 0.0640.050 27.133.4 88.1117 CHE 3CHE20082 20042009 1312 1.609.20 0.3101.300 < 0.4702.400 6.725 7.6123 1126 < 0.0250.140 8.4130 13041 CHELAU 3CHE200823LAU20006 20041998 17513 1.603.5 0.3100.80 < 0.4700.05 6.717 7.619.3 14.511 0.0250.048 8.4117.7 51.741 CHE 3CHE200823CHE20083 20091994 1213 9.202.5 < 1.3000.56 2.4003.65 9.125 2.723 21.826 < 0.1400.070 3.030 < 35.5130 CHELAU 3CHE200823LAU20006 20092003 17512 9.207.8 1.3001.10 2.4001.30 2519 2321 21.226 < 0.1400.080 29.230 < 85.6130 CHE 3CHE20083 19941999 1310 2.55.2 < 0.561.10 3.650.33 23.69.1 15.12.7 21.831.7 0.0700.084 15.83.0 < 35.5122 CHELAU 3LAU200063CHE20083 19942008 17213 < 2.510 < 0.560.90 3.652.10 9.120 17.52.7 21.824 < 0.0700.050 3.029 < 35.576 CHE 3CHE20083 19992004 105 < 4.185.2 0.2841.10 < 0.4180.33 23.64.9 15.16.06 31.712 0.0840.029 15.84.15 12250 CHELAU 3LAU200073CHE20083 19991998 1022 5.25.1 1.100.80 0.330.34 23.621.5 15.144.7 31.728.1 0.0840.088 15.823.3 122130 CHE 3CHE20083 20042009 58 < 4.184.30 0.2841.000 < 0.4181.700 4.920 6.0620 1227 < 0.0290.120 15.004.15 15050 CHELAU 3CHE200833LAU20007 20042003 305 < 4.185.1 0.2840.93 < 0.4181.20 4.917 6.0630.5 22.312 0.0290.090 4.1524.8 < 17150 CHE 3CHE200833CHE20084 20091994 178 4.301.6 < 1.0000.56 1.7002.37 2.920 7.620 15.927 < 0.1200.070 15.009.8 < 28.9150 CHELAU 3CHE200833LAU200073CHE20084 200920081999 288 < 4.307 1.0000.90 1.7001.76 19.120 37.920 25.927 < 0.1200.050 15.0028.3 150184 CHE 3CHE20084 1994 175 1.68.9 < 0.560.90 2.370.20 20.52.9 7.610 15.918.9 < 0.0700.040 20.99.8 < 28.953.7 CHE 3CHE20084 19942004 174 7.971.6 < 0.9350.56 0.2952.37 2.917 7.612 15.928 0.0700.035 9.819 < 28.984 CHE 3CHE20084 1999 5 8.9 0.90 0.20 20.5 10 18.9 < 0.040 20.9 53.7 MARCHE 3MAR200023CHE20084 199919972009 3554 8.93.125 1.3000.901.10 2.8000.200.31 20.57.621 21.210 18.919.320 < 0.0400.0590.060 20.931.725 53.782.771 CHE 3CHE20084 2004 4 7.97 0.935 0.295 17 12 28 0.035 19 84 MARCHE 3CHE200843MAR200023CHE20085 20042002 3245 < 7.974.897.3 0.9350.2741.58 < 0.2950.9030.489 19.84.917 29.25.5512 20.32812 0.0350.0550.031 44.64.1119 1538459 B CHE 3CHE20084 2009 4 25 1.300 2.800 21 10 20 < 0.060 25 71 MARCHE 3CHE200843MAR20002 20092007 334 1.625 1.3001.39 2.8004.860 19.321 27.910 26.420 < 0.0600.240 34.425 13571 CHE 3CHE20085 2004 5 < 4.89 0.274 < 0.489 4.9 5.55 12 0.031 4.11 59 MARCHEJPP 3CHE200853MAR200043JPP20002 200419971994 9559 < 4.891.84.9 < 0.2740.802.04 < 0.4890.2308.16 14.64.94.6 < 5.5511.15.1 28.740.712 < 0.0310.0350.150 4.1120.29.7 < 41.483.359 MARJPP 3MAR200043JPP20002 20021999 1095 4.16.8 0.961.30 0.6460.18 11.624.2 16.314.4 14.326.2 0.0410.064 20.117.4 82.653.7 B JPP 3JPP20002 1994 95 4.9 < 2.04 8.16 14.6 < 5.1 40.7 < 0.150 20.2 < 83.3 MARJPP 3MAR200043JPP20002 199420072004 109596 1.84.925 < 0.8261.072.04 < 3.6308.162.43 15.614.621.8 < 23.85.118 20.740.732 < 0.2400.1500.066 24.120.213 < 83.310796 JPP 3JPP20002 1999 95 6.8 1.30 0.18 24.2 14.4 26.2 0.064 17.4 53.7 MARJPP 3MAR200053JPP20002 199919972009 249596 2.36.86 1.6001.300.8 0.2700.181.90 24.26.725 17.314.420 15.826.223 < 0.0450.0640.370 24.117.422 66.253.784 JPP 3JPP20002 2004 96 25 0.826 < 2.43 21.8 18 32 0.066 13 96 MARJPP 3MAR200053JPP200023JPP20003 200420021994 229675 5.73.325 < 0.8261.221.10 < 0.7562.436 17.421.813.6 < 23.12.818 16.93239 < 0.0430.0660.100 15.53613 < 74.212096 B JPP 3JPP20002 2009 96 6 1.600 1.90 25 20 23 < 0.370 22 84 MARJPP 3MAR200053JPP200023JPP20003 200920071999 239674 1.76.36 1.6001.381.40 1.900.194.9 19.929.025 25.414.320 26.728.923 < 0.3700.2400.064 35.72221 64.213784 JPP 3JPP20003 1994 75 3.3 < 1.10 6 13.6 < 2.8 39 < 0.100 15.5 < 74.2 MARJPP 3MAR200063JPP20003 199419972004 754 7.332.43.3 < 0.2031.100.8 < 0.1700.4416 13.60.54.7 < 13.83.852.8 11.25.939 < 0.0360.1000.015 16.315.53.59 < 47.374.220 JPP 3JPP20003 1999 74 6.3 1.40 0.19 29.0 14.3 28.9 0.064 21 64.2 MARJPP 3MAR200063JPP20003 199920022009 187480 6.66.33.5 1.281.401.2 0.8010.191.4 17.529.020 26.214.314 17.128.917 < 0.0450.0640.320 35.82116 64.212678 B JPP 3JPP20003 2004 75 7.33 0.203 < 0.441 4.7 3.85 5.9 0.015 3.59 20 MARJPP 3MAR200063JPP200033JPP20004 200420071994 107515 7.333.272 0.2030.841.07 < 2.8500.4416.2 11.618.34.7 20.23.8516.6 16.345.85.9 < 0.2400.0150.100 3.5924.412 1094420 JPP 3JPP20003 2009 80 3.5 1.2 1.4 20 14 17 < 0.320 16 78 JPP 3JPP200033JPP20004 20091999 8013 3.55.7 1.201.2 0.2791.4 22.620 15.314 23.417 < 0.3200.068 18.916 63.578 JPP 3JPP20004 1994 15 3.27 1.07 6.2 18.3 16.6 45.8 < 0.100 24.4 109 WOLJPP 3WOL200023JPP20004 199419982004 16015 3.275.6113 0.2431.071.2 < 0.4340.46.2 18.35.724 23.916.66.26 26.445.88.5 < 0.0820.1000.029 24.44.4658 12210944 JPP 3JPP20004 19992009 1316 2.105.7 1.201.0 0.279 22.615 15.314 23.415 0.068 18.914 63.5 WOLJPP 3WOL200023JPP20004 19992003 16013 5.714 1.201.2 0.2791.2001.5 22.624 15.326 23.420 < 0.0760.0680.200 18.963 63.514698 JPP 3JPP200043JPP20005 20042009 1528 5.612.70 0.2431.1 < 0.4341.400 5.717 6.2616 17.08.5 < 0.0290.220 4.4617 4489 WOLJPP 3WOL200023JPP20004 20042008 14015 < 5.6110 0.2430.7 < 0.4341.33 5.715 14.26.26 12.38.5 < 0.0500.029 39.74.46 78.844 JPP 3JPP200043JPP20006 20091994 1618 2.104.9 1.791.0 1.2009.7 37.515 1434 84.415 < 0.2000.220 33.914 18398 WOLJPP 3WOL200043JPP20004 20091998 13416 11.92.10 1.61.0 1.2000.39 26.315 26.314 32.915 < 0.2000.087 5914 14598 JPP 3JPP200053JPP20006 20091999 2816 2.706.0 1.301.1 1.4000.689 66.217 6.816 17.029.2 < 0.2200.070 16.617 65.489 WOLJPP 3JPP200053WOL20004 20092003 13528 2.7012 1.11.6 1.4001.5 1727 1629 17.026 < 0.2200.079 1756 16189 JPP 3JPP20006 19942004 18 7.354.9 0.5291.79 < 0.4909.7 37.525 4.3834 84.417 0.2200.030 33.97.77 18340 WOLJPP 3JPP200063WOL20004 19942008 11418 < 4.910 1.791.1 1.699.7 37.520.5 18.234 84.418.9 < 0.2200.050 33.940.4 183101 WOLJPP 3WOL200063JPP20006 199819992009 801622 1.806.08 1.301.41.0 0.6891.2000.3 66.22217 6.82314 29.22617 < 0.1000.0700.200 16.64312 65.412792 JPP 3JPP20006 1999 16 6.0 1.30 0.689 66.2 6.8 29.2 0.070 16.6 65.4 WOLJPP 3WOL200063JPP200063JPP20007 200320041994 981820 7.356.28 0.5291.841.3 < 0.4901.4010.6 222526 4.3828.227 67.72217 < 0.0590.0300.160 7.7746.042 14514240 JPP 3JPP20006 2004 18 7.35 0.529 < 0.490 25 4.38 17 0.030 7.77 40 WOLJPP 3WOL200063JPP200063JPP20007 200820091999 712219 < 1.807.65.4 1.101.31.0 1.2002.060.28 23.526.817 23.111.714 21.621.717 < 0.0500.2000.060 19.74112 52.412592 JPP 3JPP20006 2009 22 1.80 1.0 1.200 17 14 17 < 0.200 12 92 WOLJPP 3WOL200073JPP20007 199819942004 952022 5.466.29 0.291.841.6 < 0.4910.60.3 8.332526 5.8528.224 8.0167.725 < 0.1000.1600.02 5.9946.048 13114226 JPP 3JPP20007 1994 20 6.2 1.84 10.6 26 28.2 67.7 < 0.160 46.0 142 WOLJPP 3WOL200073JPP20007 200319992009 981925 7.58.45.4 1.101.31.5 0.282.41.5 19.026.825 13.011.725 21.72116 < 0.0630.0600.230 19.72144 52.414369 JPP 3JPP20007 1999 19 5.4 1.10 0.28 26.8 11.7 21.7 0.060 19.7 52.4 WOLJPP 3WOL200073JPP200073JPP20008 200820041994 722246 < 5.467.85 0.291.531.2 < 0.491.828.55 8.3322.520.3 5.8518.523.3 8.0118.355 < 0.0500.1200.02 5.9926.835 10610126 JPP 3JPP20007 2004 22 5.46 0.29 < 0.49 8.33 5.85 8.01 0.02 5.99 26 WOLJPP 3WOL200103JPP200073JPP20008 199820091999 802545 7.584 1.31 0.592.40.3 19.021.222 13.016.412.9 28.821.316 < 0.1020.2300.064 22.115.821 70.89869 JPP 3JPP200073JPP20008 20092004 2545 5.497.5 0.2561.3 0.4912.4 19.06.5 13.05.40 8.416 < 0.2300.022 5.1921 6927 WOLJPP 3WOL200103JPP20008 20031994 2546 7.85 0.761.53 < 8.551.3 20.322 23.313 2255 < 0.0800.120 26.815 10193 JPP 3JPP20008 19942009 46 2.605 1.531 8.551.3 20.316 23.313 5514 < 0.120 26.814 10166 WOLJPP 3WOL200103JPP20008 20081999 7245 < 104 0.501 1.270.3 20.221.2 12.312.9 21.320 < 0.0500.0640.210 12.415.8 81.570.8 JPP 3JPP200083JPP20009 19991994 4537 6.24 1.791 10.20.3 21.230.7 12.925.8 21.376.8 < 0.0640.160 15.830.4 70.8130 WOLJPP 3WOL200113JPP20008 19982004 5245 5.497.9 0.2561 < 0.4910.39 6.517 13.95.40 20.88.4 0.0760.022 44.45.19 96.427 JPP 3JPP200083JPP20009 20041999 4541 5.496.2 0.2561.40 < 0.4910.21 29.26.5 5.4016.4 27.58.4 0.0220.064 5.1921.3 68.227 WOLJPP 3WOL200113JPP20008 20032009 5046 2.604.6 0.061 0.761.3 1716 13 1714 < 0.0560.210 2814 10266 JPP 3JPP200083JPP20009 20092004 4650 2.607.29 0.2351 < 0.4361.3 6.216 4.6013 7.314 < 0.2100.019 3.9714 6623 WOLJPP 3WOL200113JPP20009 20081994 2937 < 8.46.2 0.801.79 1.5610.2 21.430.7 12.925.8 76.817 < 0.0500.160 32.830.4 87.5130 JPP 3JPP20009 19942009 3755 6.22 0.9401.79 1.20010.2 30.717 25.812 76.814 < 0.1600.260 30.413 13081 WOLJPP 3WOL200473JPP20009 19981999 2241 4.76.2 0.701.40 0.200.21 29.220 11.416.4 27.522 0.8020.064 21.821.3 84.868.2 JPP 3JPP200093JPP20010 19991994 4126 6.22.0 1.401.34 0.215.94 29.215.5 16.42.8 27.540 0.0640.100 21.318.1 68.281.8 WOLJPP 3WOL200473JPP20009 20032004 2050 7.297.8 0.2350.08 < 0.4361.20 6.220 4.6015 7.317 0.0590.019 3.9741 10123 JPP 3JPP200093JPP20010 20041999 5021 7.292.8 0.2350.80 < 0.4360.17 6.217 4.609.5 21.27.3 0.0190.060 3.9711.1 40.523 WOLJPP 3WOL200473JPP20009 20082009 1255 < 4.12 0.9400.40 0.7911.200 10.717 10.812 14.814 < 0.0500.260 15.213 64.381 JPP 3JPP200093JPP20010 20092004 5523 4.082 0.9400.163 < 1.2000.430 4.717 3.6612 6.314 < 0.2600.026 133 NA81 J JPP 3JPP20010 1994 26 2.0 1.34 5.94 15.5 2.8 40 0.100 18.1 81.8 JPP 3JPP20010 19942009 2635 1.402.0 0.8901.34 5.941.0 15.516 2.811 4015 < 0.1000.26 18.111 81.860 CHEJPP 3CHE200023JPP20010 19941999 4021 1.52.8 < 0.590.80 < 1.470.17 3.817 2.69.5 21.29.6 0.1000.060 11.16.1 < 25.540.5 JPP 3JPP200103JPP20011 19992009 2135 2.502.8 1.3000.80 0.171.4 1720 9.514 21.218 < 0.0600.27 11.115 40.591 CHEJPP 3CHE200023JPP20010 19992004 4023 4.083.9 0.1630.4 < 0.4300.13 9.94.7 3.660.2 10.76.3 < 0.0400.026 6.73 22.7NA J JPP 3JPP200103JPP20012 20042009 2317 4.082.10 0.1631.200 < 0.4301.4 17.04.7 3.6613 6.318 < 0.0260.23 143 NA57 J CHEJPP 3CHE200023JPP20010 20042009 3835 2.541.40 0.3080.890 < 0.4801.0 6.916 3.7411 1015 < 0.0220.26 7.4911 3160 JPP 3JPP20010 2009 35 1.40 0.890 1.0 16 11 15 < 0.26 11 60 CHEJPP 3CHE200023JPP20011 2009 3935 4.302.50 0.6901.300 1.21.4 1420 9.2014 1518 < 0.0900.27 1615 7791 OLDJPP 3JPP200113OLD20002 20091996 3571 2.506.4 1.3001.10 0.521.4 17.420 21.414 20.918 < 0.270.10 29.115 93.291 CHEJPP 3CHE200053JPP20012 19942009 2517 2.101.3 < 1.2000.74 < 1.841.4 17.02.7 18.213 19.918 < 0.0800.23 7.514 < 49.557 OLDJPP 3JPP200123OLD20002 20092001 1770 2.107.0 1.2001.20 0.261.4 17.017.5 21.413 20.818 < 0.230.08 29.914 95.357 B CHE 3CHE20005 1999 20 5.7 0.70 0.44 16.9 11 20.7 0.064 17.6 69.5 OLD 3OLD20002 2006 64 8.1 0.90 < 0.30 17.0 15.0 18.0 0.24 27 87 CHE 3CHE20005 2004 17 < 4.34 0.321 < 0.434 5.5 4.53 5.8 0.018 8.67 23.1 OLD 3OLD200023OLD20005 1996 7150 6.45.0 1.100.70 0.520.30 17.411.4 21.48.8 20.911.4 < 0.10 29.117.2 93.256 OLDCHE 3CHE200053OLD20002 20091996 2071 3.406.4 0.6101.10 0.521.1 17.412 9.6021.4 15.020.9 < 0.0900.10 29.115 93.277 OLD 3OLD200023OLD20005 2001 7045 7.05.9 1.200.88 0.260.23 17.512.1 21.414.8 20.814.0 0.080.06 29.919.8 95.368.1 B OLDCHE 3CHE200083OLD20002 19942001 2070 1.07.0 < 0.601.20 < 1.510.26 < 17.51.8 21.45.9 19.120.8 < 0.0600.08 29.93.1 < 21.795.3 B OLD 3OLD200023OLD20005 2006 6451 8.15.4 0.900.77 < 0.300.26 17.013 15.013 18.015 0.240.31 2721 8769 OLDCHE 3CHE200083OLD20002 19992006 2064 4.88.1 0.700.90 < 0.160.30 17.517.0 15.09.8 22.818.0 0.0840.24 15.427 5087 OLD 3OLD200053OLD20007 1996 508 5.04.2 0.700.60 0.300.19 11.410.4 8.85.5 11.49.4 < 0.10 17.213.7 < 41.756 OLDCHE 3CHE200083OLD20005 20041996 505 < 4.415.0 0.3610.70 < 0.4410.30 11.47.7 6.038.8 11.432 < 0.0490.10 8.9417.2 3256 OLD 3OLD200053OLD20007 2001 4540 5.97.5 0.881.00 0.23 12.113.5 14.812.9 14.017.6 0.06 19.823.8 68.176.7 B OLDCHE 3CHE200083OLD20005 20092001 458 3.705.9 0.4300.88 0.9400.23 12.19.8 5.3014.8 14.015 < 0.0700.06 19.812 68.142 B OLD 3OLD200053OLD20007 2006 5171 5.46.5 0.770.87 < 0.260.22 1314 1311 15 0.310.16 2123 6974 OLDCHE 3CHE200123OLD20005 19942006 2651 0.85.4 < 0.800.77 < 0.262 3.313 6.513 16.115 0.250.31 5.121 < 23.369 OLD 3OLD200073OLD20013 1996 298 4.27.8 0.601.3 0.190.28 10.419.1 21.95.5 9.425 < 0.100.1 13.727.4 < 41.788.2 OLDCHE 3CHE200123OLD20007 19991996 298 5.54.2 1.000.60 0.400.19 23.410.4 10.15.5 22.59.4 < 0.0580.10 18.113.7 < 62.341.7 OLD 3OLD200073OLD20013 2001 4026 7.58.1 1.001.4 < 0.230.50 13.518 12.917.2 17.620.2 0.0590.06 23.824.8 76.773.9 B OLD 3OLD20007 2001 40 7.5 1.00 0.23 13.5 12.9 17.6 0.06 23.8 76.7 B OLDCHE 3OLD200073CHE200123OLD20013 20062004 712526 < 4.706.59.2 0.2820.871.3 < 0.4700.220.42 5.71421 4.101121 7.651525 0.0220.4200.16 5.622327 742497 OLD 3OLD20007 2006 71 6.5 0.87 0.22 14 11 15 0.16 23 74 OLDCHE 3OLD200133CHE200123OLD20018 19962009 292528 5.207.85.9 0.8101.31.4 0.3310.281.5 19.119.622 21.96.2022.6 24.82510 < 0.0900.1000.1 27.423.714 88.285.951 OLD 3OLD20013 1996 29 7.8 1.3 0.28 19.1 21.9 25 < 0.1 27.4 88.2 OLDCHE 3OLD200133CHE200383OLD20018 20011994 261723 8.11.49 < 0.611.41.5 < 0.501.540.5 18.62.318 17.221.65.9 20.215.322.2 < 0.0590.0700.069 24.86.322 < 73.937.386.3 B OLD 3OLD20013 2001 26 8.1 1.4 < 0.50 18 17.2 20.2 0.059 24.8 73.9 B OLDCHE 3OLD200133CHE200383OLD20018 20061999 26236 < 9.25.48.5 0.601.3 < 0.420.130.43 12.42122 6.321 11.72526 0.4200.0400.26 11.42725 < 46.410297 OLD 3OLD20013 2006 26 9.2 1.3 < 0.42 21 21 25 0.420 27 97 OLDCHE 3OLD200183CHE200383OLD20020 19962004 28363 < 6.575.98 0.4601.41.1 0.3310.1840.38 19.617.69.7 22.67.6023.5 24.822.813 < 0.1000.0400.10 23.727.212 85.987.752 OLD 3OLD20018 1996 28 5.9 1.4 0.331 19.6 22.6 24.8 < 0.100 23.7 85.9 OLDCHE 3OLD200183CHE200383OLD20020 20012009 2310 5.307.79 0.7701.51.3 < 1.8000.150.5 18.612.018.2 21.67.2025.2 22.220.711 < 0.0690.0700.075 27.52217 86.398.344 B OLD 3OLD20018 2001 23 9 1.5 < 0.5 18.6 21.6 22.2 0.069 22 86.3 B OLDCHE 3OLD200183CHE200803OLD20020 20061994 231921 < 8.52.06.9 < 1.011.31.0 < 0.432.540.35 < 3.02218 9.72117 < 13.72621 < 0.1100.260.23 3.825 < 35.710287 OLD 3OLD20018 2006 23 < 8.5 1.3 < 0.43 22 21 26 0.26 25 102 OLDCHE 3OLD200203CHE200803OLD20021 19961999 362017 5.484 0.801.11.2 0.380.410.51 17.620.618.3 23.518.210 22.819.427.8 < 0.0480.10 27.215.117 87.760.497.8 OLD 3OLD20020 1996 36 8 1.1 0.38 17.6 23.5 22.8 < 0.10 27.2 87.7 OLDCHE 3OLD200203CHE200803OLD20021 20012004 231720 < 4.897.75 0.2931.31.4 < 0.4890.150.23 18.218.37.2 25.25.6417.5 20.79.3724.8 0.0750.0230.086 27.57.3618 98.393.231 B OLD 3OLD20020 2001 23 7.7 1.3 0.15 18.2 25.2 20.7 0.075 27.5 98.3 B OLDCHE 3OLD200203CHE200803OLD20021 20062009 211220 < 5.306.96.7 0.9001.01 < 1.5000.350.34 182119 171113 19.002123 < 0.1400.230.22 2518 1008781 OLD 3OLD20020 2006 21 < 6.9 1.0 < 0.35 18 17 21 0.23 25 87 OLDCHE 3OLD200213CHE200813OLD20022 19961994 171222 1.86.14 < 0.591.21 0.513.140.35 18.313.95.6 18.218.717.5 27.842.417.4 < 0.0700.1000.10 15.111.224.2 < 97.876.968 OLD 3OLD20021 1996 17 4 1.2 0.51 18.3 18.2 27.8 < 0.10 15.1 97.8 OLDCHE 3OLD200213CHE200813OLD20022 20011999 20249 8.16.55 1.201.4 0.231.120.19 18.328.615.2 17.533.318.2 24.862.819.2 0.0860.1000.06 24.826.418 93.278.5212 B OLD 3OLD20021 2001 20 5 1.4 0.23 18.3 17.5 24.8 0.086 18 93.2 B OLDCHE 3OLD200213CHE200813OLD20022 20062004 201024 < 4.406.76.9 0.2990.941 < 0.4400.340.31 6.71916 7.251316 232419 0.0180.2000.22 8.541824 1004775 OLD 3OLD20021 2006 20 N: < 6.7 1 < 0.34 19 13 23 0.22 18 100 OLDCHE 3OLD200223CHE20081 19962009 228 227 3.106.1 227 0.4301 227 1.5000.35 227 13.99.6 227 17.54.70 227 17.426 227< 0.1000.080 227 24.210 226 17068 OLD 3OLD20022 1996 Nondetects:22 23 6.1 14 1 34 0.35 2 13.9 2 17.5 6 17.4 78< 0.100 0 24.2 31 68 OLDCHE 3OLD200223CHE20082 20011994 2412 6.53.1 < 1.200.73 0.193.55 15.220.7 18.219.6 19.239.4 0.2200.06 26.415.0 < 78.568.1 B OLD 3OLD20022 2001 % Nondetect:24 10.13 6.5 6.17 1.20 15 0.19 0.881 15.2 0.881 18.2 2.643 19.2 34.36 0.06 0 26.4 13.7 78.5 B OLDCHE 3OLD200223CHE20082 20061999 2415 6.99.8 0.941.20 < 0.310.39 26.216 18.016 25.119 0.2000.064 27.124 88.175 OLD 3OLD20022 USGS2006 Mean Baseline:24 8.16.9 0.941.6 < 0.310.5 6616 2416 2419 0.2000.08 2824 10075 CHE 3CHE20082 2004 13 N: 227 1.60 227 0.310 227< 0.470 227 6.7 227 7.61 227 11 227 0.025 227 8.41 226 41 NOTES: N: 227 227 227 227 227 227 227 227 226 CHE 3CHE20082 2009 Nondetects:12 23 9.20 14 1.300 34 2.400 2 25 2 23 6 26 78< 0.140 0 30 31 130 NA=Not analyzed; Less than (<)=Not detectedNondetects: at reporting detection23 limit; J=estimated14 value,34 assumed less2 than contract2 required quantification6 78 0 31 CHE 3CHE20083 1994 % Nondetect:13 10.13 2.5 6.17< 0.56 15 3.65 0.881 9.1 0.881 2.7 2.643 21.8 34.36 0.070 0 3.0 13.7< 35.5 limit (CRQL), but greater than or equal to %method Nondetect: detection10.13 limit (MDL); B=found6.17 in blank.15 0.881 0.881 2.643 34.36 0 13.7 CHE 3CHE20083 USGS1999 Mean Baseline:10 8.15.2 1.101.6 0.330.5 23.666 15.124 31.724 0.0840.08 15.828 100122 Bold=Outlier, per ProUCL assumeUSGS ND Mean equal Baseline: to detection limit. 8.1 1.6 0.5 66 24 24 0.08 28 100 NOTES:CHE 3CHE20083 2004 5 < 4.18 0.284 < 0.418 4.9 6.06 12 0.029 4.15 50 NOTES:Shaded=exceeds USGS mean baseline concentration. NA=NotCHE analyzed;3CHE20083 Less than (<)=Not2009 detected at reporting8 detection4.30 limit; J=estimated1.000 value, assumed1.700 less than 20contract required20 quantification 27 < 0.120 15.00 150 NA=Not analyzed; Less than (<)=Not detected at reporting detection limit; J=estimated value, assumed less than contract required quantification limit CHE(CRQL), but3CHE20084 greater than or equal1994 to method17 detection limit (MDL);1.6 B=found< 0.56 in blank. 2.37 2.9 7.6 15.9 0.070 9.8 < 28.9 limit (CRQL), but greater than or equal to method detection limit (MDL); B=found in blank. Bold=OutlierCHE , 3CHE20084per ProUCL assume1999 ND equal to detection5 limit. 8.9 0.90 0.20 20.5 10 18.9 < 0.040 20.9 53.7 Bold=Outlier, per ProUCL assume ND equal to detection limit. Shaded=exceedsCHE 3CHE20084 USGS mean baseline2004 concentration.4 7.97 0.935 0.295 17 12 28 0.035 19 84 Shaded=exceeds USGS mean baseline concentration. CHE 3CHE20084 2009 4 25 1.300 2.800 21 10 20 < 0.060 25 71 CHE 3CHE20085 2004 5 < 4.89 0.274 < 0.489 4.9 5.55 12 0.031 4.11 59

JPP 3JPP20002 1994 95 4.9 < 2.04 8.16 14.6 < 5.1 40.7 < 0.150 20.2 < 83.3 JPP 3JPP20002 1999 95 6.8 1.30 0.18 24.2 14.4 26.2 0.064 17.4 53.7 JPP 3JPP20002 2004 96 25 0.826 < 2.43 21.8 18 32 0.066 13 96 JPP 3JPP20002 2009 96 6 1.600 1.90 25 20 23 < 0.370 22 84 JPP 3JPP20003 1994 75 3.3 < 1.10 6 13.6 < 2.8 39 < 0.100 15.5 < 74.2 JPP 3JPP20003 1999 74 6.3 1.40 0.19 29.0 14.3 28.9 0.064 21 64.2 JPP 3JPP20003 2004 75 7.33 0.203 < 0.441 4.7 3.85 5.9 0.015 3.59 20 JPP 3JPP20003 2009 80 3.5 1.2 1.4 20 14 17 < 0.320 16 78 JPP 3JPP20004 1994 15 3.27 1.07 6.2 18.3 16.6 45.8 < 0.100 24.4 109 JPP 3JPP20004 1999 13 5.7 1.20 0.279 22.6 15.3 23.4 0.068 18.9 63.5 JPP 3JPP20004 2004 15 5.61 0.243 < 0.434 5.7 6.26 8.5 0.029 4.46 44 JPP 3JPP20004 2009 16 2.10 1.0 1.200 15 14 15 < 0.200 14 98 JPP 3JPP20005 2009 28 2.70 1.1 1.400 17 16 17.0 < 0.220 17 89 JPP 3JPP20006 1994 18 4.9 1.79 9.7 37.5 34 84.4 0.220 33.9 183 JPP 3JPP20006 1999 16 6.0 1.30 0.689 66.2 6.8 29.2 0.070 16.6 65.4 JPP 3JPP20006 2004 18 7.35 0.529 < 0.490 25 4.38 17 0.030 7.77 40 JPP 3JPP20006 2009 22 1.80 1.0 1.200 17 14 17 < 0.200 12 92 JPP 3JPP20007 1994 20 6.2 1.84 10.6 26 28.2 67.7 < 0.160 46.0 142 JPP 3JPP20007 1999 19 5.4 1.10 0.28 26.8 11.7 21.7 0.060 19.7 52.4 JPP 3JPP20007 2004 22 5.46 0.29 < 0.49 8.33 5.85 8.01 0.02 5.99 26 JPP 3JPP20007 2009 25 7.5 1.3 2.4 19.0 13.0 16 < 0.230 21 69 JPP 3JPP20008 1994 46 5 1.53 8.55 20.3 23.3 55 < 0.120 26.8 101 JPP 3JPP20008 1999 45 4 1 0.3 21.2 12.9 21.3 0.064 15.8 70.8 JPP 3JPP20008 2004 45 5.49 0.256 < 0.491 6.5 5.40 8.4 0.022 5.19 27 JPP 3JPP20008 2009 46 2.60 1 1.3 16 13 14 < 0.210 14 66 JPP 3JPP20009 1994 37 6.2 1.79 10.2 30.7 25.8 76.8 < 0.160 30.4 130 JPP 3JPP20009 1999 41 6.2 1.40 0.21 29.2 16.4 27.5 0.064 21.3 68.2 JPP 3JPP20009 2004 50 7.29 0.235 < 0.436 6.2 4.60 7.3 0.019 3.97 23 JPP 3JPP20009 2009 55 2 0.940 1.200 17 12 14 < 0.260 13 81 JPP 3JPP20010 1994 26 2.0 1.34 5.94 15.5 2.8 40 0.100 18.1 81.8 JPP 3JPP20010 1999 21 2.8 0.80 0.17 17 9.5 21.2 0.060 11.1 40.5 JPP 3JPP20010 2004 23 4.08 0.163 < 0.430 4.7 3.66 6.3 0.026 3 NA J JPP 3JPP20010 2009 35 1.40 0.890 1.0 16 11 15 < 0.26 11 60 JPP 3JPP20011 2009 35 2.50 1.300 1.4 20 14 18 < 0.27 15 91 JPP 3JPP20012 2009 17 2.10 1.200 1.4 17.0 13 18 < 0.23 14 57

OLD 3OLD20002 1996 71 6.4 1.10 0.52 17.4 21.4 20.9 < 0.10 29.1 93.2 OLD 3OLD20002 2001 70 7.0 1.20 0.26 17.5 21.4 20.8 0.08 29.9 95.3 B OLD 3OLD20002 2006 64 8.1 0.90 < 0.30 17.0 15.0 18.0 0.24 27 87 OLD 3OLD20005 1996 50 5.0 0.70 0.30 11.4 8.8 11.4 < 0.10 17.2 56 OLD 3OLD20005 2001 45 5.9 0.88 0.23 12.1 14.8 14.0 0.06 19.8 68.1 B OLD 3OLD20005 2006 51 5.4 0.77 < 0.26 13 13 15 0.31 21 69 OLD 3OLD20007 1996 8 4.2 0.60 0.19 10.4 5.5 9.4 < 0.10 13.7 < 41.7 OLD 3OLD20007 2001 40 7.5 1.00 0.23 13.5 12.9 17.6 0.06 23.8 76.7 B OLD 3OLD20007 2006 71 6.5 0.87 0.22 14 11 15 0.16 23 74 OLD 3OLD20013 1996 29 7.8 1.3 0.28 19.1 21.9 25 < 0.1 27.4 88.2 OLD 3OLD20013 2001 26 8.1 1.4 < 0.50 18 17.2 20.2 0.059 24.8 73.9 B OLD 3OLD20013 2006 26 9.2 1.3 < 0.42 21 21 25 0.420 27 97 OLD 3OLD20018 1996 28 5.9 1.4 0.331 19.6 22.6 24.8 < 0.100 23.7 85.9 OLD 3OLD20018 2001 23 9 1.5 < 0.5 18.6 21.6 22.2 0.069 22 86.3 B OLD 3OLD20018 2006 23 < 8.5 1.3 < 0.43 22 21 26 0.26 25 102 OLD 3OLD20020 1996 36 8 1.1 0.38 17.6 23.5 22.8 < 0.10 27.2 87.7 OLD 3OLD20020 2001 23 7.7 1.3 0.15 18.2 25.2 20.7 0.075 27.5 98.3 B OLD 3OLD20020 2006 21 < 6.9 1.0 < 0.35 18 17 21 0.23 25 87 OLD 3OLD20021 1996 17 4 1.2 0.51 18.3 18.2 27.8 < 0.10 15.1 97.8 OLD 3OLD20021 2001 20 5 1.4 0.23 18.3 17.5 24.8 0.086 18 93.2 B OLD 3OLD20021 2006 20 < 6.7 1 < 0.34 19 13 23 0.22 18 100 OLD 3OLD20022 1996 22 6.1 1 0.35 13.9 17.5 17.4 < 0.100 24.2 68 OLD 3OLD20022 2001 24 6.5 1.20 0.19 15.2 18.2 19.2 0.06 26.4 78.5 B OLD 3OLD20022 2006 24 6.9 0.94 < 0.31 16 16 19 0.200 24 75 N: 227 227 227 227 227 227 227 227 226 Nondetects: 23 14 34 2 2 6 78 0 31 % Nondetect: 10.13 6.17 15 0.881 0.881 2.643 34.36 0 13.7 USGS Mean Baseline: 8.1 1.6 0.5 66 24 24 0.08 28 100 NOTES: NA=Not analyzed; Less than (<)=Not detected at reporting detection limit; J=estimated value, assumed less than contract required quantification limit (CRQL), but greater than or equal to method detection limit (MDL); B=found in blank. Bold=Outlier, per ProUCL assume ND equal to detection limit. Shaded=exceeds USGS mean baseline concentration. Sample Sediment Concentration, dry weight (mg/kg) Sample Depth Sample Depth As Be Cd Cr Cu Pb Hg Ni Zn Reservoir Station Year (feet) BAR 3BAR20002 1997 64 4.9 1.1 0.48 19.7 17.6 21.2 0.113 24 88.2 BAR 3BAR20002 2002 66 7.2 1.1 0.88 22 19 19 0.072 24 < 94 BAR 3BAR20002 2007 63 6.2 1.1 3.63 23.9 18.9 24.8 < 0.210 24.2 97.5 BAR 3BAR20005 1997 50 4.8 1 0.95 18.4 17.1 23.3 0.112 19.8 93.9 BAR 3BAR20005 2002 46 6.3 1.0 0.97 20 20 20 0.071 22 < 98 BAR 3BAR20005 2007 49 1 0.82 2.82 17.6 19.1 20 < 0.210 19.3 88.9 BAR 3BAR20006 1997 35 4.3 0.7 0.52 12.8 13.8 16.1 0.067 16.3 61.7 BAR 3BAR20006 2002 32 5.3 0.81 0.83 17 15 16 0.055 18 < 79 BAR 3BAR20006 2007 43 6.9 1 3.65 22 41.7 23.7 < 0.210 24.4 117 BAR 3BAR20007 1997 17 4.6 0.8 4.9 13.4 11.6 18.6 0.076 18 70.3 BAR 3BAR20007 2002 14 3.7 0.61 0.56 13 8.7 13 0.041 13 < 60 BAR 3BAR20007 2007 26 1.3 1.01 3.24 22.6 16.6 25.2 < 0.210 23.1 109 BAR 3BAR20031 1997 23 5.6 0.90 0.53 20.7 11.9 18.8 0.064 16.6 70.5 BAR 3BAR20031 2002 12 4.5 0.70 1.30 18 11 16 0.052 13 < 166 BAR 3BAR20031 2007 24 1.9 0.90 3.05 23.8 13.4 21.2 < 0.210 17.7 87.2 BAR 3BAR20032 1997 16 5.3 0.90 0.31 16.6 11.5 17 < 0.040 14.4 54.2 BAR 3BAR20032 2002 16 6.1 0.83 0.61 19.0 13 16 0.045 15 < 65 BAR 3BAR20032 2007 20 8.9 0.86 2.95 21.9 13.5 20 < 0.210 16.8 77.9

CEN 3CEN20002 1996 150 11.3 1.80 0.582 28.0 22.4 29.3 0.137 49 104 CEN 3CEN20002 2001 161 15.1 1.61 0.26 24.1 19.5 21.5 0.117 37.7 89 B CEN 3CEN20002 2006 157 18.0 1.20 < 0.61 28 18.0 < 30 0.420 40 109 CEN 3CEN20004 1996 120 12.6 1.70 0.597 32.3 18.6 28.4 0.155 41 132 CEN 3CEN20004 2001 130 13.2 1.68 0.23 29.7 18.7 24.5 0.111 34.9 104 B CEN 3CEN20004 2006 131 15.0 1.40 0.35 31 18 28 0.260 35 110 CEN 3CEN20007 1996 68 9.0 1.60 0.79 29.7 16.5 23.8 < 0.100 37.9 129 CEN 3CEN20007 2001 70 8.5 1.57 0.44 25.7 13.8 21.3 0.089 30.3 101 B CEN 3CEN20007 2006 70 7.6 1.10 0.56 26.0 11 23 0.220 29 101 CEN 3CEN20008 1996 55 11.7 1.40 1.10 38.6 24 30.3 < 0.100 48 156 CEN 3CEN20008 2001 63 10.9 1.30 0.74 34.8 20.5 27.1 0.113 34.7 125 B CEN 3CEN20008 2006 65 3 1.2 0.59 33.0 18 27 0.230 30 130 CEN 3CEN20010 1996 50 7.1 1.2 0.44 26.5 18.4 26.8 < 0.100 34.2 130 CEN 3CEN20010 2001 57 7.2 1.2 0.20 21.2 17.5 23.7 0.096 29.5 102.0 B CEN 3CEN20010 2006 60 8.6 1.1 0.28 22.0 14.0 22.0 0.210 28.0 104.0 CEN 3CEN20015 2001 108 12.1 1.58 0.12 23.8 19.9 21.5 0.107 35.6 86.7 B CEN 3CEN20015 2006 107 15.0 1.5 0.37 26.0 19.0 22.0 0.290 37.0 97.0 CEN 3CEN20036 1996 5 7.0 0.8 1.54 31.0 19.3 25.2 < 0.100 28.6 110.0

COR 3COR20002 1995 62 7.42 0.9 0.449 16.3 13.8 18.1 0.11 29.7 76.4 COR 3COR20002 2000 62 7.1 0.52 0.22 20.9 15.1 17.2 0.078 34.5 88.9 B COR 3COR20002 2005 62 3.98 0.280 1.75 8.2 8.94 10 0.011 18 48.0 COR 3COR20002 2010 70 7.7 0.970 2.1 20.0 16 17 < 0.050 33 91.0 COR 3COR20008 1995 36 7.65 1.3 0.397 20.9 18 23.9 0.205 33.8 10.3 COR 3COR20008 2000 35 3.90 < 0.4 0.17 8.0 8.37 9.3 0.036 16 41.0 B COR 3COR20008 2005 36 8.86 0.614 2.31 12.0 13 18 0.018 24 77.0 COR 3COR20008 2010 37 8.90 1.200 2.20 24.0 16 16 < 0.050 33 110.0 COR 3COR20010 1995 14 5.04 0.5 0.275 9.0 7.6 10.6 0.12 16.1 40.2 COR 3COR20010 2000 10 5.60 0.63 0.13 14.0 15.8 18.5 0.068 28 83.0 B COR 3COR20010 2005 8 < 10 0.073 1.15 5.9 5.76 6.13 < 0.010 12 33.0 COR 3COR20010 2010 6 6.3 0.720 2.00 15.0 13.00 13.00 < 0.050 28 74.0 COR 3COR20013 1995 10 6.4 0.6 0.51 11.9 9.5 16.1 0.375 18.6 50.3 COR 3COR20013 2000 30 4.1 < 0.4 0.19 8.7 8.1 9.5 0.038 17.2 44.3 B COR 3COR20013 2005 10 3.37 0.207 < 1.48 7.9 8.54 9.37 0.030 17 48.0 COR 3COR20013 2010 28 4.70 0.520 1.20 11.0 9.20 9.50 < 0.050 19 50.0 COR 3COR20016 1995 18 7.3 0.8 0.64 17.7 12.4 19.2 0.825 20.9 70.5 COR 3COR20016 2000 18 5.9 0.36 0.28 16.8 11.1 16 0.066 20.7 68.1 B COR 3COR20016 2005 20 5.77 0.290 1.31 9.4 7.01 13 0.034 12 45.0 COR 3COR20016 2010 20 6.60 0.750 1.70 18.0 12 16 < 0.050 20 65.0

DAL 3DAL20002 1995 135 17.6 1.00 0.88 15.9 25.3 37.0 0.663 69.8 129.0 DAL 3DAL20002 2000 130 13.8 0.65 0.62 21.5 26.9 31.3 0.080 80.5 140.0 J DAL 3DAL20002 2005 134 9.34 0.085 1.04 4.6 6.80 4.80 0.120 20 36.3 DAL 3DAL20002 2010 135 24 1.3 3.3 26.0 36 31.00 < 0.250 100 180.0 DAL 3DAL20004 1995 100 11.3 0.80 0.31 16.4 11.9 27.5 0.528 34.0 82.3 DAL 3DAL20004 2000 95 9.1 0.32 0.16 16.2 14.1 20.1 0.070 37.4 < 83.8 DAL 3DAL20004 2005 98 10 0.058 0.854 3.6 3.08 < 9.59 0.056 8.34 20 DAL 3DAL20004 2010 100 16 1.00 2.4 28 19 19 < 0.230 48 120 DAL 3DAL20008 1995 50 12.1 1.10 0.45 25.1 13.5 25.2 0.599 31.6 107 DAL 3DAL20008 2000 50 10.7 0.80 0.21 29.2 15.5 20.5 0.080 33.0 < 113 DAL 3DAL20008 2005 56 11 0.081 0.745 6.9 3.91 < 10 0.135 7.73 28 DAL 3DAL20008 2010 58 12 1.3 2.2 30 17 20 < 0.190 33 120 DAL 3DAL20009 1995 12 6.7 2.30 0.49 17.2 16.1 17 0.644 42.2 133 DAL 3DAL20009 2000 15 6.0 1.81 0.39 17.1 16.1 14.1 0.070 51.4 < 141 DAL 3DAL20009 2005 20 5.45 0.370 0.924 5.8 4.14 < 9.73 0.059 14 41 DAL 3DAL20009 2010 15 4 0.730 1.1 16.0 6.10 5.40 < 0.070 19 47 DAL 3DAL20010 1995 15 4.6 0.90 0.43 13.5 8.7 14.6 0.497 22.8 < 63.5 DAL 3DAL20010 2000 10 6.4 1.00 0.42 31.8 13.6 16 0.060 39.6 < 103 DAL 3DAL20010 2005 15 6.38 0.174 0.513 8.6 3.30 < 10 0.076 11 27 DAL 3DAL20010 2010 16 3.6 0.71 0.93 14.0 7.10 12 < 0.090 14 42 DAL 3DAL20050 1995 60 10.6 1.70 0.53 22.3 16.2 27.7 0.613 57.8 138 DAL 3DAL20050 2000 55 10.4 1.40 0.22 39.1 18.0 24.3 0.080 64.1 < 144 DAL 3DAL20050 2005 62 23 0.363 1.02 8.6 6.02 7.82 0.075 20 49 DAL 3DAL20050 2010 62 13 2.1 2.7 36 22 22 < 0.190 69 170 DAL 3DAL20051 1995 11 5.1 0.60 0.496 14.9 10.2 16.7 0.523 29.3 76.2 DAL 3DAL20051 2000 15 6.8 0.21 0.35 22.7 12.2 14.4 0.080 34.4 < 93.2

LAU 3LAU20002 1998 245 8.1 0.92 1.4 19 18 20.9 0.071 32.9 84.8 LAU 3LAU20002 2003 245 8.1 0.92 1.40 19 18 20.9 0.070 32.9 < 84.8 LAU 3LAU20002 2008 236 < 8.7 1.00 2.61 21 16.8 27.5 < 0.050 35.2 94.1 LAU 3LAU20005 1998 135 12 1.50 0.29 32.7 27.9 34.8 0.080 54.9 130 LAU 3LAU20005 2003 145 11 1.40 1.40 25.2 31.1 27.4 0.080 34.4 < 139 LAU 3LAU20005 2008 138 < 15 1.30 2.50 25.2 24.8 26.2 < 0.050 33.4 117 LAU 3LAU20006 1998 175 3.5 0.80 0.05 17 9.3 14.5 0.048 17.7 51.7 LAU 3LAU20006 2003 175 7.8 1.10 1.30 19 21 21.2 0.080 29.2 < 85.6 LAU 3LAU20006 2008 172 < 10 0.90 2.10 20 17.5 24 < 0.050 29 76 LAU 3LAU20007 1998 22 5.1 0.80 0.34 21.5 44.7 28.1 0.088 23.3 130 LAU 3LAU20007 2003 30 5.1 0.93 1.20 17 30.5 22.3 0.090 24.8 < 171 LAU 3LAU20007 2008 28 < 7 0.90 1.76 19.1 37.9 25.9 < 0.050 28.3 184

MAR 3MAR20002 1997 35 3.1 1.10 0.31 7.6 21.2 19.3 0.059 31.7 82.7 MAR 3MAR20002 2002 32 7.3 1.58 0.903 19.8 29.2 20.3 0.055 44.6 153 B MAR 3MAR20002 2007 33 1.6 1.39 4.860 19.3 27.9 26.4 < 0.240 34.4 135 MAR 3MAR20004 1997 9 1.8 0.80 0.230 4.6 11.1 28.7 0.035 9.7 41.4 MAR 3MAR20004 2002 10 4.1 0.96 0.646 11.6 16.3 14.3 0.041 20.1 82.6 B MAR 3MAR20004 2007 10 1.8 1.07 3.630 15.6 23.8 20.7 < 0.240 24.1 107 MAR 3MAR20005 1997 24 2.3 0.8 0.270 6.7 17.3 15.8 0.045 24.1 66.2 MAR 3MAR20005 2002 22 5.7 1.22 0.756 17.4 23.1 16.9 0.043 36 120 B MAR 3MAR20005 2007 23 1.7 1.38 4.9 19.9 25.4 26.7 < 0.240 35.7 137 MAR 3MAR20006 1997 4 2.4 0.8 0.170 0.5 13.8 11.2 0.036 16.3 47.3 MAR 3MAR20006 2002 18 6.6 1.28 0.801 17.5 26.2 17.1 0.045 35.8 126 B MAR 3MAR20006 2007 10 2 0.84 2.850 11.6 20.2 16.3 < 0.240 12 44

WOL 3WOL20002 1998 160 13 1.2 0.4 24 23.9 26.4 0.082 58 122 WOL 3WOL20002 2003 160 14 1.2 1.5 24 26 20 0.076 63 146 WOL 3WOL20002 2008 140 < 10 0.7 1.33 15 14.2 12.3 < 0.050 39.7 78.8 WOL 3WOL20004 1998 134 11.9 1.6 0.39 26.3 26.3 32.9 0.087 59 145 WOL 3WOL20004 2003 135 12 1.6 1.5 27 29 26 0.079 56 161 WOL 3WOL20004 2008 114 < 10 1.1 1.69 20.5 18.2 18.9 < 0.050 40.4 101 WOL 3WOL20006 1998 80 8 1.4 0.3 22 23 26 0.100 43 127 WOL 3WOL20006 2003 98 8 1.3 1.40 22 27 22 0.059 42 145 WOL 3WOL20006 2008 71 < 7.6 1.3 2.06 23.5 23.1 21.6 0.050 41 125 WOL 3WOL20007 1998 95 9 1.6 0.3 25 24 25 0.100 48 131 WOL 3WOL20007 2003 98 8.4 1.5 1.5 25 25 21 0.063 44 143 WOL 3WOL20007 2008 72 < 7.8 1.2 1.82 22.5 18.5 18.3 < 0.050 35 106 WOL 3WOL20010 1998 80 8 1 0.59 22 16.4 28.8 0.102 22.1 98 WOL 3WOL20010 2003 25 7.8 0.76APPENDIX1.3 22 A 13 22 0.080 15 93 WOL 3WOL20010 2008 72 < 10 0.50 1.27 20.2 12.3 20 < 0.050 12.4 81.5 WOL 3WOL20011 1998 52SUMMAR7.9 Y OF1 CRB0.39 SEDIMENT17 13.9 DATA20.8 0.076 44.4 96.4 WOL 3WOL20011 2003 50 4.6 0.06 0.76 17 13 17 0.056 28 102 WOL 3WOL20011 2008 29 < 8.4 0.80 1.56 21.4 12.9 17 < 0.050 32.8 87.5 WOL 3WOL20047 1998 22 4.7 0.70 0.20 20 11.4 22 0.802 21.8 84.8 Sample Sediment Concentration, dry weight (mg/kg) WOL 3WOL20047 2003 20 7.8 0.08 1.20 20 15 17 0.059 41 101 Sample Depth WOL 3WOL20047 2008 12 < As 4.1 Be0.40 Cd0.791 Cr10.7 Cu10.8 Pb14.8 < Hg0.050 Ni15.2 Zn64.3 Reservoir Station Year (feet) BAR 3BAR20002 1997 64 4.9 1.1 0.48 19.7 17.6 21.2 0.113 24 88.2 CHE 3CHE20002 1994 40 1.5 < 0.59 < 1.47 3.8 2.6 9.6 0.100 6.1 < 25.5 BAR 3BAR20002 2002 66 7.2 1.1 0.88 22 19 19 0.072 24 < 94 CHE 3CHE20002 1999 40 3.9 0.4 0.13 9.9 0.2 10.7 < 0.040 6.7 22.7 BAR 3BAR20002 2007 63 6.2 1.1 3.63 23.9 18.9 24.8 < 0.210 24.2 97.5 CHE 3CHE20002 2004 38 2.54 0.308 < 0.480 6.9 3.74 10 0.022 7.49 31 BAR 3BAR20005 1997 50 4.8 1 0.95 18.4 17.1 23.3 0.112 19.8 93.9 CHE 3CHE20002 2009 39 4.30 0.690 1.2 14 9.20 15 < 0.090 16 77 BAR 3BAR20005 2002 46 6.3 1.0 0.97 20 20 20 0.071 22 < 98 CHE 3CHE20005 1994 25 1.3 < 0.74 < 1.84 2.7 18.2 19.9 0.080 7.5 < 49.5 BAR 3BAR20005 2007 49 1 0.82 2.82 17.6 19.1 20 < 0.210 19.3 88.9 CHE 3CHE20005 1999 20 5.7 0.70 0.44 16.9 11 20.7 0.064 17.6 69.5 CHEBAR 3CHE200053BAR20006 20041997 1735 < 4.344.3 0.3210.7 < 0.4340.52 12.85.5 4.5313.8 16.15.8 0.0180.067 8.6716.3 23.161.7 CHEBAR 3CHE200053BAR20006 20092002 2032 3.405.3 0.6100.81 0.831.1 1217 9.6015 15.016 < 0.0900.055 1518 < 7779 CHEBAR 3CHE200083BAR20006 19942007 2043 1.06.9 < 0.601 < 1.513.65 < 1.822 41.75.9 19.123.7 < 0.0600.210 24.43.1 < 21.7117 CHEBAR 3CHE200083BAR20007 19991997 2017 4.84.6 0.700.8 0.164.9 17.513.4 11.69.8 22.818.6 0.0840.076 15.418 70.350 CHEBAR 3CHE200083BAR20007 20042002 145 < 4.413.7 0.3610.61 < 0.4410.56 7.713 6.038.7 3213 0.0490.041 8.9413 < 3260 CHEBAR 3CHE200083BAR20007 20092007 268 3.701.3 0.4301.01 0.9403.24 22.69.8 5.3016.6 25.215 < 0.0700.210 23.112 10942 CHEBAR 3CHE200123BAR20031 19941997 2623 0.85.6 < 0.800.90 < 0.532 20.73.3 11.96.5 16.118.8 0.0640.25 16.65.1 < 23.370.5 CHEBAR 3CHE200123BAR20031 19992002 2912 5.54.5 1.000.70 0.401.30 23.418 10.111 22.516 0.0580.052 18.113 < 62.3166 CHEBAR 3CHE200123BAR20031 20042007 2524 < 4.701.9 0.2820.90 < 0.4703.05 23.85.7 4.1013.4 7.6521.2 < 0.0220.210 5.6217.7 87.224 CHEBAR 3CHE200123BAR20032 20091997 2516 5.205.3 0.8100.90 0.311.5 16.622 6.2011.5 1017 < 0.0900.040 14.414 54.251 CHEBAR 3CHE200383BAR20032 19942002 1716 1.46.1 < 0.610.83 < 1.540.61 19.02.3 5.913 15.316 < 0.0700.045 6.315 < 37.365 CHEBAR 3CHE200383BAR20032 19992007 206 5.48.9 0.600.86 0.132.95 12.421.9 13.56.3 11.720 < 0.0400.210 11.416.8 < 46.477.9 CHE 3CHE20038 2004 3 < 6.57 0.460 0.184 9.7 7.60 13 0.040 12 52 CHECEN 3CHE200383CEN20002 20091996 15010 5.3011.3 0.7701.80 1.8000.582 12.028.0 7.2022.4 29.311 < 0.0700.137 1749 10444 CHECEN 3CHE200803CEN20002 19942001 16119 15.12.0 < 1.011.61 < 2.540.26 < 24.13.0 19.59.7 < 13.721.5 < 0.1100.117 37.73.8 < 35.789 B CHECEN 3CHE200803CEN20002 19992006 15720 18.05.4 0.801.20 < 0.410.61 20.628 18.010 < 19.430 0.0480.420 1740 60.4109 CHECEN 3CHE200803CEN20004 20041996 12017 < 4.8912.6 0.2931.70 < 0.4890.597 32.37.2 5.6418.6 9.3728.4 0.0230.155 7.3641 13231 CHECEN 3CHE200803CEN20004 20092001 13012 5.3013.2 0.9001.68 1.5000.23 29.721 18.711 19.0024.5 < 0.1400.111 34.918 10481 B CHECEN 3CHE200813CEN20004 19942006 13112 15.01.8 < 0.591.40 3.140.35 5.631 18.718 42.428 < 0.0700.260 11.235 < 76.9110 CHECEN 3CHE200813CEN20007 19991996 689 8.19.0 1.201.60 1.120.79 28.629.7 33.316.5 62.823.8 < 0.100 24.837.9 212129 CHECEN 3CHE200813CEN20007 20042001 1070 < 4.408.5 0.2991.57 < 0.4400.44 25.76.7 7.2513.8 21.324 0.0180.089 8.5430.3 10147 B CHECEN 3CHE200813CEN20007 20092006 708 3.107.6 0.4301.10 1.5000.56 26.09.6 4.7011 2623 < 0.0800.220 1029 170101 CHECEN 3CHE200823CEN20008 19941996 1255 11.73.1 < 0.731.40 3.551.10 20.738.6 19.624 39.430.3 < 0.2200.100 15.048 < 68.1156 CHECEN 3CHE200823CEN20008 19992001 1563 10.99.8 1.201.30 0.390.74 26.234.8 18.020.5 25.127.1 0.0640.113 27.134.7 88.1125 B CHECEN 3CHE200823CEN20008 20042006 1365 1.603 0.3101.2 < 0.4700.59 33.06.7 7.6118 1127 0.0250.230 8.4130 13041 CHECEN 3CHE200823CEN20010 20091996 1250 9.207.1 1.3001.2 2.4000.44 26.525 18.423 26.826 < 0.1400.100 34.230 130 CHECEN 3CHE200833CEN20010 19942001 1357 2.57.2 < 0.561.2 3.650.20 21.29.1 17.52.7 21.823.7 0.0700.096 29.53.0 < 102.035.5 B CHECEN 3CHE200833CEN20010 19992006 1060 5.28.6 1.101.1 0.330.28 23.622.0 15.114.0 31.722.0 0.0840.210 15.828.0 104.0122 CHECEN 3CHE200833CEN20015 20042001 1085 < 4.1812.1 0.2841.58 < 0.4180.12 23.84.9 6.0619.9 21.512 0.0290.107 4.1535.6 86.750 B CHECEN 3CHE200833CEN20015 20092006 1078 4.3015.0 1.0001.5 1.7000.37 26.020 19.020 22.027 < 0.1200.290 15.0037.0 97.0150 CHECEN 3CHE200843CEN20036 19941996 175 1.67.0 < 0.560.8 2.371.54 31.02.9 19.37.6 15.925.2 < 0.0700.100 28.69.8 < 110.028.9 CHE 3CHE20084 1999 5 8.9 0.90 0.20 20.5 10 18.9 < 0.040 20.9 53.7 CORCHE 3CHE200843COR20002 20041995 624 7.977.42 0.9350.9 0.2950.449 16.317 13.812 18.128 0.0350.11 29.719 76.484 CORCHE 3CHE200843COR20002 20092000 624 7.125 1.3000.52 2.8000.22 20.921 15.110 17.220 < 0.0600.078 34.525 88.971 B CORCHE 3CHE200853COR20002 20042005 625 < 4.893.98 0.2740.280 < 0.4891.75 4.98.2 5.558.94 1210 0.0310.011 4.1118 48.059 COR 3COR20002 2010 70 7.7 0.970 2.1 20.0 16 17 < 0.050 33 91.0 CORJPP 3JPP200023COR20008 19941995 9536 7.654.9 < 2.041.3 0.3978.16 14.620.9 < 5.118 40.723.9 < 0.1500.205 20.233.8 < 83.310.3 CORJPP 3JPP200023COR20008 19992000 9535 3.906.8 < 1.300.4 0.180.17 24.28.0 14.48.37 26.29.3 0.0640.036 17.416 53.741.0 B CORJPP 3JPP200023COR20008 20042005 9636 8.8625 0.8260.614 < 2.432.31 21.812.0 1813 3218 0.0660.018 1324 77.096 CORJPP 3JPP200023COR20008 20092010 9637 8.906 1.6001.200 1.902.20 24.025 2016 2316 < 0.3700.050 2233 110.084 CORJPP 3JPP200033COR20010 19941995 7514 5.043.3 < 1.100.5 0.2756 13.69.0 < 2.87.6 10.639 < 0.1000.12 15.516.1 < 74.240.2 CORJPP 3JPP200033COR20010 19992000 7410 5.606.3 1.400.63 0.190.13 29.014.0 14.315.8 28.918.5 0.0640.068 2128 64.283.0 B CORJPP 3JPP200033COR20010 20042005 758 < 7.3310 0.2030.073 < 0.4411.15 4.75.9 3.855.76 6.135.9 < 0.0150.010 3.5912 33.020 CORJPP 3JPP200033COR20010 20092010 806 3.56.3 0.7201.2 2.001.4 15.020 13.0014 13.0017 < 0.3200.050 1628 74.078 CORJPP 3JPP200043COR20013 19941995 1510 3.276.4 1.070.6 0.516.2 18.311.9 16.69.5 45.816.1 < 0.1000.375 24.418.6 50.3109 CORJPP 3JPP200043COR20013 19992000 1330 5.74.1 < 1.200.4 0.2790.19 22.68.7 15.38.1 23.49.5 0.0680.038 18.917.2 63.544.3 B CORJPP 3JPP200043COR20013 20042005 1510 5.613.37 0.2430.207 < 0.4341.48 5.77.9 6.268.54 9.378.5 0.0290.030 4.4617 48.044 CORJPP 3JPP200043COR20013 20092010 1628 2.104.70 0.5201.0 1.2001.20 11.015 9.2014 9.5015 < 0.2000.050 1419 50.098 CORJPP 3JPP200053COR20016 20091995 2818 2.707.3 1.10.8 1.4000.64 17.717 12.416 17.019.2 < 0.2200.825 20.917 70.589 CORJPP 3JPP200063COR20016 19942000 18 4.95.9 1.790.36 0.289.7 37.516.8 11.134 84.416 0.2200.066 33.920.7 68.1183 B CORJPP 3JPP200063COR20016 19992005 1620 5.776.0 0.2901.30 0.6891.31 66.29.4 7.016.8 29.213 0.0700.034 16.612 65.445.0 CORJPP 3JPP200063COR20016 20042010 1820 7.356.60 0.5290.750 < 0.4901.70 18.025 4.3812 1716 < 0.0300.050 7.7720 65.040 JPP 3JPP20006 2009 22 1.80 1.0 1.200 17 14 17 < 0.200 12 92 DALJPP 3JPP200073DAL20002 19941995 13520 17.66.2 1.841.00 10.60.88 15.926 28.225.3 67.737.0 < 0.1600.663 46.069.8 129.0142 DALJPP 3JPP200073DAL20002 19992000 13019 13.85.4 1.100.65 0.280.62 26.821.5 11.726.9 21.731.3 0.0600.080 19.780.5 140.052.4 J DALJPP 3JPP200073DAL20002 20042005 13422 5.469.34 0.0850.29 < 0.491.04 8.334.6 5.856.80 8.014.80 0.1200.02 5.9920 36.326 DALJPP 3JPP200073DAL20002 20092010 13525 7.524 1.31.3 2.43.3 19.026.0 13.036 31.0016 < 0.2300.250 10021 180.069 DALJPP 3JPP200083DAL20004 19941995 10046 11.35 1.530.80 8.550.31 20.316.4 23.311.9 27.555 < 0.1200.528 26.834.0 82.3101 DALJPP 3JPP200083DAL20004 19992000 4595 9.14 0.321 0.160.3 21.216.2 12.914.1 21.320.1 0.0640.070 15.837.4 < 70.883.8 DALJPP 3JPP200083DAL20004 20042005 4598 5.4910 0.2560.058 < 0.4910.854 6.53.6 5.403.08 < 9.598.4 0.0220.056 5.198.34 2720 DALJPP 3JPP200083DAL20004 20092010 10046 2.6016 1.001 1.32.4 1628 1319 1419 < 0.2100.230 1448 12066 DALJPP 3JPP200093DAL20008 19941995 3750 12.16.2 1.791.10 10.20.45 30.725.1 25.813.5 76.825.2 < 0.1600.599 30.431.6 130107 DALJPP 3JPP200093DAL20008 19992000 4150 10.76.2 1.400.80 0.21 29.2 16.415.5 27.520.5 0.0640.080 21.333.0 < 68.2113 DALJPP 3JPP200093DAL20008 20042005 5056 7.2911 0.2350.081 < 0.4360.745 6.26.9 4.603.91 < 7.310 0.0190.135 3.977.73 2328 DALJPP 3JPP200093DAL20008 20092010 5558 122 0.9401.3 1.2002.2 1730 1217 1420 < 0.2600.190 1333 12081 DALJPP 3JPP200103DAL20009 19941995 2612 2.06.7 1.342.30 5.940.49 15.517.2 16.12.8 4017 0.1000.644 18.142.2 81.8133 DALJPP 3JPP200103DAL20009 19992000 2115 2.86.0 0.801.81 0.170.39 17.117 16.19.5 21.214.1 0.0600.070 11.151.4 < 40.5141 DALJPP 3JPP200103DAL20009 20042005 2320 4.085.45 0.1630.370 < 0.4300.924 4.75.8 3.664.14 < 9.736.3 0.0260.059 143 NA41 J DALJPP 3JPP200103DAL20009 20092010 3515 1.404 0.8900.730 61 1.01.1 16.016 6.1011 5.4015 < 0.0700.26 1119 6047 DALJPP 3JPP200113DAL20010 20091995 3515 2.504.6 1.3000.90 0.431.4 13.520 8.714 14.618 < 0.4970.27 22.815 < 63.591 DALJPP 3JPP200123DAL20010 20092000 1710 2.106.4 1.2001.00 0.421.4 17.031.8 13.613 1816 < 0.0600.23 39.614 < 10357 DAL 3DAL20010 2005 15 6.38 0.174 0.513 8.6 3.30 < 10 0.076 11 27 OLDDAL 3OLD200023DAL20010 19962010 7116 6.43.6 1.100.71 0.520.93 17.414.0 21.47.10 20.912 < 0.0900.10 29.114 93.242 OLDDAL 3OLD200023DAL20050 20011995 7060 10.67.0 1.201.70 0.260.53 17.522.3 21.416.2 20.827.7 0.6130.08 29.957.8 95.3138 B OLDDAL 3OLD200023DAL20050 20062000 6455 10.48.1 0.901.40 < 0.300.22 17.039.1 15.018.0 18.024.3 0.0800.24 64.127 < 14487 OLDDAL 3OLD200053DAL20050 19962005 5062 5.023 0.3630.70 0.301.02 11.48.6 6.028.8 11.47.82 < 0.0750.10 17.220 5649 OLDDAL 3OLD200053DAL20050 20012010 4562 5.913 0.882.1 0.232.7 12.136 14.822 14.022 < 0.1900.06 19.869 68.1170 B OLDDAL 3OLD200053DAL20051 20061995 5111 5.45.1 0.770.60 < 0.4960.26 14.913 10.213 16.715 0.5230.31 29.321 76.269 OLDDAL 3OLD200073DAL20051 19962000 158 4.26.8 0.600.21 0.190.35 10.422.7 12.25.5 14.49.4 < 0.0800.10 13.734.4 < 41.793.2 OLD 3OLD20007 2001 40 7.5 1.00 0.23 13.5 12.9 17.6 0.06 23.8 76.7 B OLDLAU 3OLD200073LAU20002 20061998 24571 6.58.1 0.870.92 0.221.4 1419 1118 20.915 0.0710.16 32.923 84.874 OLDLAU 3OLD200133LAU20002 19962003 24529 7.88.1 0.921.3 0.281.40 19.119 21.918 20.925 < 0.0700.1 27.432.9 < 88.284.8 OLDLAU 3OLD200133LAU20002 20012008 23626 < 8.18.7 1.001.4 < 0.502.61 1821 17.216.8 20.227.5 < 0.0590.050 24.835.2 73.994.1 B OLDLAU 3OLD200133LAU20005 20061998 13526 9.212 1.501.3 < 0.420.29 32.721 27.921 34.825 0.4200.080 54.927 13097 OLDLAU 3OLD200183LAU20005 19962003 14528 5.911 1.401.4 0.3311.40 19.625.2 22.631.1 24.827.4 < 0.1000.080 23.734.4 < 85.9139 OLDLAU 3OLD200183LAU20005 20012008 13823 < 159 1.301.5 < 2.500.5 18.625.2 21.624.8 22.226.2 < 0.0690.050 33.422 86.3117 B OLDLAU 3OLD200183LAU20006 20061998 17523 < 8.53.5 0.801.3 < 0.430.05 2217 9.321 14.526 0.0480.26 17.725 51.7102 OLDLAU 3OLD200203LAU20006 19962003 17536 7.88 1.101.1 0.381.30 17.619 23.521 22.821.2 < 0.0800.10 27.229.2 < 87.785.6 OLDLAU 3OLD200203LAU20006 20012008 17223 < 7.710 0.901.3 0.152.10 18.220 25.217.5 20.724 < 0.0750.050 27.529 98.376 B OLDLAU 3OLD200203LAU20007 20061998 2122 < 6.95.1 0.801.0 < 0.350.34 21.518 44.717 28.121 0.0880.23 23.325 13087 OLDLAU 3OLD200213LAU20007 19962003 1730 5.14 0.931.2 0.511.20 18.317 18.230.5 27.822.3 < 0.0900.10 15.124.8 < 97.8171 OLDLAU 3OLD200213LAU20007 20012008 2028 < 57 0.901.4 0.231.76 18.319.1 17.537.9 24.825.9 < 0.0860.050 28.318 93.2184 B OLD 3OLD20021 2006 20 < 6.7 1 < 0.34 19 13 23 0.22 18 100 MAROLD 3OLD200223MAR20002 19961997 2235 6.13.1 1.101 0.350.31 13.97.6 17.521.2 17.419.3 < 0.1000.059 24.231.7 82.768 MAROLD 3OLD200223MAR20002 20012002 2432 6.57.3 1.201.58 0.9030.19 15.219.8 18.229.2 19.220.3 0.0550.06 26.444.6 78.5153 B MAROLD 3OLD200223MAR20002 20062007 2433 6.91.6 0.941.39 < 4.8600.31 19.316 27.916 26.419 < 0.2000.240 34.424 13575 MAR 3MAR20004 1997 9 N: 227 1.8 227 0.80 227 0.230 227 4.6 227 11.1 227 28.7 227 0.035 227 9.7 226 41.4 MAR 3MAR20004 2002 Nondetects:10 23 4.1 14 0.96 34 0.646 2 11.6 2 16.3 6 14.3 78 0.041 0 20.1 31 82.6 B MAR 3MAR20004 2007 % Nondetect:10 10.13 1.8 6.17 1.07 15 3.630 0.881 15.6 0.881 23.8 2.643 20.7 34.36< 0.240 0 24.1 13.7 107 MAR 3MAR20005 USGS1997 Mean Baseline:24 8.12.3 1.60.8 0.2700.5 6.766 17.324 15.824 0.0450.08 24.128 66.2100 NOTES:MAR 3MAR20005 2002 22 5.7 1.22 0.756 17.4 23.1 16.9 0.043 36 120 B NA=NotMAR analyzed;3MAR20005 Less than (<)=Not2007 detected at 23reporting detection1.7 limit; J=estimated1.38 value, assumed4.9 less than19.9 contract required25.4 quantification26.7 < 0.240 35.7 137 limit MAR(CRQL), but3MAR20006 greater than or equal1997 to method 4detection limit (MDL);2.4 B=found0.8 in blank. 0.170 0.5 13.8 11.2 0.036 16.3 47.3 Bold=OutlierMAR , 3MAR20006per ProUCL assume2002 ND equal to 18detection limit. 6.6 1.28 0.801 17.5 26.2 17.1 0.045 35.8 126 B Shaded=exceedsMAR 3MAR20006 USGS mean baseline2007 concentration.10 2 0.84 2.850 11.6 20.2 16.3 < 0.240 12 44

WOL 3WOL20002 1998 160 13 1.2 0.4 24 23.9 26.4 0.082 58 122 WOL 3WOL20002 2003 160 14 1.2 1.5 24 26 20 0.076 63 146 WOL 3WOL20002 2008 140 < 10 0.7 1.33 15 14.2 12.3 < 0.050 39.7 78.8 WOL 3WOL20004 1998 134 11.9 1.6 0.39 26.3 26.3 32.9 0.087 59 145 WOL 3WOL20004 2003 135 12 1.6 1.5 27 29 26 0.079 56 161 WOL 3WOL20004 2008 114 < 10 1.1 1.69 20.5 18.2 18.9 < 0.050 40.4 101 WOL 3WOL20006 1998 80 8 1.4 0.3 22 23 26 0.100 43 127 WOL 3WOL20006 2003 98 8 1.3 1.40 22 27 22 0.059 42 145 WOL 3WOL20006 2008 71 < 7.6 1.3 2.06 23.5 23.1 21.6 0.050 41 125 WOL 3WOL20007 1998 95 9 1.6 0.3 25 24 25 0.100 48 131 WOL 3WOL20007 2003 98 8.4 1.5 1.5 25 25 21 0.063 44 143 WOL 3WOL20007 2008 72 < 7.8 1.2 1.82 22.5 18.5 18.3 < 0.050 35 106 WOL 3WOL20010 1998 80 8 1 0.59 22 16.4 28.8 0.102 22.1 98 WOL 3WOL20010 2003 25 7.8 0.76 1.3 22 13 22 0.080 15 93 WOL 3WOL20010 2008 72 < 10 0.50 1.27 20.2 12.3 20 < 0.050 12.4 81.5 WOL 3WOL20011 1998 52 7.9 1 0.39 17 13.9 20.8 0.076 44.4 96.4 WOL 3WOL20011 2003 50 4.6 0.06 0.76 17 13 17 0.056 28 102 WOL 3WOL20011 2008 29 < 8.4 0.80 1.56 21.4 12.9 17 < 0.050 32.8 87.5 WOL 3WOL20047 1998 22 4.7 0.70 0.20 20 11.4 22 0.802 21.8 84.8 WOL 3WOL20047 2003 20 7.8 0.08 1.20 20 15 17 0.059 41 101 WOL 3WOL20047 2008 12 < 4.1 0.40 0.791 10.7 10.8 14.8 < 0.050 15.2 64.3

CHE 3CHE20002 1994 40 1.5 < 0.59 < 1.47 3.8 2.6 9.6 0.100 6.1 < 25.5 CHE 3CHE20002 1999 40 3.9 0.4 0.13 9.9 0.2 10.7 < 0.040 6.7 22.7 CHE 3CHE20002 2004 38 2.54 0.308 < 0.480 6.9 3.74 10 0.022 7.49 31 CHE 3CHE20002 2009 39 4.30 0.690 1.2 14 9.20 15 < 0.090 16 77 CHE 3CHE20005 1994 25 1.3 < 0.74 < 1.84 2.7 18.2 19.9 0.080 7.5 < 49.5 CHE 3CHE20005 1999 20 5.7 0.70 0.44 16.9 11 20.7 0.064 17.6 69.5 CHE 3CHE20005 2004 17 < 4.34 0.321 < 0.434 5.5 4.53 5.8 0.018 8.67 23.1 CHE 3CHE20005 2009 20 3.40 0.610 1.1 12 9.60 15.0 < 0.090 15 77 CHE 3CHE20008 1994 20 1.0 < 0.60 < 1.51 < 1.8 5.9 19.1 < 0.060 3.1 < 21.7 CHE 3CHE20008 1999 20 4.8 0.70 0.16 17.5 9.8 22.8 0.084 15.4 50 CHE 3CHE20008 2004 5 < 4.41 0.361 < 0.441 7.7 6.03 32 0.049 8.94 32 CHE 3CHE20008 2009 8 3.70 0.430 0.940 9.8 5.30 15 < 0.070 12 42 CHE 3CHE20012 1994 26 0.8 < 0.80 < 2 3.3 6.5 16.1 0.25 5.1 < 23.3 CHE 3CHE20012 1999 29 5.5 1.00 0.40 23.4 10.1 22.5 0.058 18.1 62.3 CHE 3CHE20012 2004 25 < 4.70 0.282 < 0.470 5.7 4.10 7.65 0.022 5.62 24 CHE 3CHE20012 2009 25 5.20 0.810 1.5 22 6.20 10 < 0.090 14 51 CHE 3CHE20038 1994 17 1.4 < 0.61 < 1.54 2.3 5.9 15.3 < 0.070 6.3 < 37.3 CHE 3CHE20038 1999 6 5.4 0.60 0.13 12.4 6.3 11.7 0.040 11.4 < 46.4 CHE 3CHE20038 2004 3 < 6.57 0.460 0.184 9.7 7.60 13 0.040 12 52 CHE 3CHE20038 2009 10 5.30 0.770 1.800 12.0 7.20 11 < 0.070 17 44 CHE 3CHE20080 1994 19 2.0 < 1.01 < 2.54 < 3.0 9.7 < 13.7 < 0.110 3.8 < 35.7 CHE 3CHE20080 1999 20 5.4 0.80 0.41 20.6 10 19.4 0.048 17 60.4 CHE 3CHE20080 2004 17 < 4.89 0.293 < 0.489 7.2 5.64 9.37 0.023 7.36 31 CHE 3CHE20080 2009 12 5.30 0.900 1.500 21 11 19.00 < 0.140 18 81 CHE 3CHE20081 1994 12 1.8 < 0.59 3.14 5.6 18.7 42.4 < 0.070 11.2 < 76.9 CHE 3CHE20081 1999 9 8.1 1.20 1.12 28.6 33.3 62.8 0.100 24.8 212 CHE 3CHE20081 2004 10 < 4.40 0.299 < 0.440 6.7 7.25 24 0.018 8.54 47 CHE 3CHE20081 2009 8 3.10 0.430 1.500 9.6 4.70 26 < 0.080 10 170 CHE 3CHE20082 1994 12 3.1 < 0.73 3.55 20.7 19.6 39.4 0.220 15.0 < 68.1 CHE 3CHE20082 1999 15 9.8 1.20 0.39 26.2 18.0 25.1 0.064 27.1 88.1 CHE 3CHE20082 2004 13 1.60 0.310 < 0.470 6.7 7.61 11 0.025 8.41 41 CHE 3CHE20082 2009 12 9.20 1.300 2.400 25 23 26 < 0.140 30 130 CHE 3CHE20083 1994 13 2.5 < 0.56 3.65 9.1 2.7 21.8 0.070 3.0 < 35.5 CHE 3CHE20083 1999 10 5.2 1.10 0.33 23.6 15.1 31.7 0.084 15.8 122 CHE 3CHE20083 2004 5 < 4.18 0.284 < 0.418 4.9 6.06 12 0.029 4.15 50 CHE 3CHE20083 2009 8 4.30 1.000 1.700 20 20 27 < 0.120 15.00 150 CHE 3CHE20084 1994 17 1.6 < 0.56 2.37 2.9 7.6 15.9 0.070 9.8 < 28.9 CHE 3CHE20084 1999 5 8.9 0.90 0.20 20.5 10 18.9 < 0.040 20.9 53.7 CHE 3CHE20084 2004 4 7.97 0.935 0.295 17 12 28 0.035 19 84 CHE 3CHE20084 2009 4 25 1.300 2.800 21 10 20 < 0.060 25 71 CHE 3CHE20085 2004 5 < 4.89 0.274 < 0.489 4.9 5.55 12 0.031 4.11 59

JPP 3JPP20002 1994 95 4.9 < 2.04 8.16 14.6 < 5.1 40.7 < 0.150 20.2 < 83.3 JPP 3JPP20002 1999 95 6.8 1.30 0.18 24.2 14.4 26.2 0.064 17.4 53.7 JPP 3JPP20002 2004 96 25 0.826 < 2.43 21.8 18 32 0.066 13 96 JPP 3JPP20002 2009 96 6 1.600 1.90 25 20 23 < 0.370 22 84 JPP 3JPP20003 1994 75 3.3 < 1.10 6 13.6 < 2.8 39 < 0.100 15.5 < 74.2 JPP 3JPP20003 1999 74 6.3 1.40 0.19 29.0 14.3 28.9 0.064 21 64.2 JPP 3JPP20003 2004 75 7.33 0.203 < 0.441 4.7 3.85 5.9 0.015 3.59 20 JPP 3JPP20003 2009 80 3.5 1.2 1.4 20 14 17 < 0.320 16 78 JPP 3JPP20004 1994 15 3.27 1.07 6.2 18.3 16.6 45.8 < 0.100 24.4 109 JPP 3JPP20004 1999 13 5.7 1.20 0.279 22.6 15.3 23.4 0.068 18.9 63.5 JPP 3JPP20004 2004 15 5.61 0.243 < 0.434 5.7 6.26 8.5 0.029 4.46 44 JPP 3JPP20004 2009 16 2.10 1.0 1.200 15 14 15 < 0.200 14 98 JPP 3JPP20005 2009 28 2.70 1.1 1.400 17 16 17.0 < 0.220 17 89 JPP 3JPP20006 1994 18 4.9 1.79 9.7 37.5 34 84.4 0.220 33.9 183 JPP 3JPP20006 1999 16 6.0 1.30 0.689 66.2 6.8 29.2 0.070 16.6 65.4 JPP 3JPP20006 2004 18 7.35 0.529 < 0.490 25 4.38 17 0.030 7.77 40 JPP 3JPP20006 2009 22 1.80 1.0 1.200 17 14 17 < 0.200 12 92 JPP 3JPP20007 1994 20 6.2 1.84 10.6 26 28.2 67.7 < 0.160 46.0 142 JPP 3JPP20007 1999 19 5.4 1.10 0.28 26.8 11.7 21.7 0.060 19.7 52.4 JPP 3JPP20007 2004 22 5.46 0.29 < 0.49 8.33 5.85 8.01 0.02 5.99 26 JPP 3JPP20007 2009 25 7.5 1.3 2.4 19.0 13.0 16 < 0.230 21 69 JPP 3JPP20008 1994 46 5 1.53 8.55 20.3 23.3 55 < 0.120 26.8 101 JPP 3JPP20008 1999 45 4 1 0.3 21.2 12.9 21.3 0.064 15.8 70.8 JPP 3JPP20008 2004 45 5.49 0.256 < 0.491 6.5 5.40 8.4 0.022 5.19 27 JPP 3JPP20008 2009 46 2.60 1 1.3 16 13 14 < 0.210 14 66 JPP 3JPP20009 1994 37 6.2 1.79 10.2 30.7 25.8 76.8 < 0.160 30.4 130 JPP 3JPP20009 1999 41 6.2 1.40 0.21 29.2 16.4 27.5 0.064 21.3 68.2 JPP 3JPP20009 2004 50 7.29 0.235 < 0.436 6.2 4.60 7.3 0.019 3.97 23 JPP 3JPP20009 2009 55 2 0.940 1.200 17 12 14 < 0.260 13 81 JPP 3JPP20010 1994 26 2.0 1.34 5.94 15.5 2.8 40 0.100 18.1 81.8 JPP 3JPP20010 1999 21 2.8 0.80 0.17 17 9.5 21.2 0.060 11.1 40.5 JPP 3JPP20010 2004 23 4.08 0.163 < 0.430 4.7 3.66 6.3 0.026 3 NA J JPP 3JPP20010 2009 35 1.40 0.890 1.0 16 11 15 < 0.26 11 60 JPP 3JPP20011 2009 35 2.50 1.300 1.4 20 14 18 < 0.27 15 91 JPP 3JPP20012 2009 17 2.10 1.200 1.4 17.0 13 18 < 0.23 14 57

OLD 3OLD20002 1996 71 6.4 1.10 0.52 17.4 21.4 20.9 < 0.10 29.1 93.2 OLD 3OLD20002 2001 70 7.0 1.20 0.26 17.5 21.4 20.8 0.08 29.9 95.3 B OLD 3OLD20002 2006 64 8.1 0.90 < 0.30 17.0 15.0 18.0 0.24 27 87 OLD 3OLD20005 1996 50 5.0 0.70 0.30 11.4 8.8 11.4 < 0.10 17.2 56 OLD 3OLD20005 2001 45 5.9 0.88 0.23 12.1 14.8 14.0 0.06 19.8 68.1 B OLD 3OLD20005 2006 51 5.4 0.77 < 0.26 13 13 15 0.31 21 69 OLD 3OLD20007 1996 8 4.2 0.60 0.19 10.4 5.5 9.4 < 0.10 13.7 < 41.7 OLD 3OLD20007 2001 40 7.5 1.00 0.23 13.5 12.9 17.6 0.06 23.8 76.7 B OLD 3OLD20007 2006 71 6.5 0.87 0.22 14 11 15 0.16 23 74 OLD 3OLD20013 1996 29 7.8 1.3 0.28 19.1 21.9 25 < 0.1 27.4 88.2 OLD 3OLD20013 2001 26 8.1 1.4 < 0.50 18 17.2 20.2 0.059 24.8 73.9 B OLD 3OLD20013 2006 26 9.2 1.3 < 0.42 21 21 25 0.420 27 97 OLD 3OLD20018 1996 28 5.9 1.4 0.331 19.6 22.6 24.8 < 0.100 23.7 85.9 OLD 3OLD20018 2001 23 9 1.5 < 0.5 18.6 21.6 22.2 0.069 22 86.3 B OLD 3OLD20018 2006 23 < 8.5 1.3 < 0.43 22 21 26 0.26 25 102 OLD 3OLD20020 1996 36 8 1.1 0.38 17.6 23.5 22.8 < 0.10 27.2 87.7 OLD 3OLD20020 2001 23 7.7 1.3 0.15 18.2 25.2 20.7 0.075 27.5 98.3 B OLD 3OLD20020 2006 21 < 6.9 1.0 < 0.35 18 17 21 0.23 25 87 OLD 3OLD20021 1996 17 4 1.2 0.51 18.3 18.2 27.8 < 0.10 15.1 97.8 OLD 3OLD20021 2001 20 5 1.4 0.23 18.3 17.5 24.8 0.086 18 93.2 B OLD 3OLD20021 2006 20 < 6.7 1 < 0.34 19 13 23 0.22 18 100 OLD 3OLD20022 1996 22 6.1 1 0.35 13.9 17.5 17.4 < 0.100 24.2 68 OLD 3OLD20022 2001 24 6.5 1.20 0.19 15.2 18.2 19.2 0.06 26.4 78.5 B OLD 3OLD20022 2006 24 6.9 0.94 < 0.31 16 16 19 0.200 24 75 N: 227 227 227 227 227 227 227 227 226 Nondetects: 23 14 34 2 2 6 78 0 31 % Nondetect: 10.13 6.17 15 0.881 0.881 2.643 34.36 0 13.7 USGS Mean Baseline: 8.1 1.6 0.5 66 24 24 0.08 28 100 NOTES: NA=Not analyzed; Less than (<)=Not detected at reporting detection limit; J=estimated value, assumed less than contract required quantification limit (CRQL), but greater than or equal to method detection limit (MDL); B=found in blank. Bold=Outlier, per ProUCL assume ND equal to detection limit. Shaded=exceeds USGS mean baseline concentration. Sample Sediment Concentration, dry weight (mg/kg) Sample Depth As Be Cd Cr Cu Pb Hg Ni Zn Reservoir Station Year (feet) BAR 3BAR20002 1997 64 4.9 1.1 0.48 19.7 17.6 21.2 0.113 24 88.2 BAR 3BAR20002 2002 66 7.2 1.1 0.88 22 19 19 0.072 24 < 94 BAR 3BAR20002 2007 63 6.2 1.1 3.63 23.9 18.9 24.8 < 0.210 24.2 97.5 BAR 3BAR20005 1997 50 4.8 1 0.95 18.4 17.1 23.3 0.112 19.8 93.9 BAR 3BAR20005 2002 46 6.3 1.0 0.97 20 20 20 0.071 22 < 98 BAR 3BAR20005 2007 49 1 0.82 2.82 17.6 19.1 20 < 0.210 19.3 88.9 BAR 3BAR20006 1997 35 4.3 0.7 0.52 12.8 13.8 16.1 0.067 16.3 61.7 BAR 3BAR20006 2002 32 5.3 0.81 0.83 17 15 16 0.055 18 < 79 BAR 3BAR20006 2007 43 6.9 1 3.65 22 41.7 23.7 < 0.210 24.4 117 BAR 3BAR20007 1997 17 4.6 0.8 4.9 13.4 11.6 18.6 0.076 18 70.3 BAR 3BAR20007 2002 14 3.7 0.61 0.56 13 8.7 13 0.041 13 < 60 BAR 3BAR20007 2007 26 1.3 1.01 3.24 22.6 16.6 25.2 < 0.210 23.1 109 BAR 3BAR20031 1997 23 5.6 0.90 0.53 20.7 11.9 18.8 0.064 16.6 70.5 BAR 3BAR20031 2002 12 4.5 0.70 1.30 18 11 16 0.052 13 < 166 BAR 3BAR20031 2007 24 1.9 0.90 3.05 23.8 13.4 21.2 < 0.210 17.7 87.2 BAR 3BAR20032 1997 16 5.3 0.90 0.31 16.6 11.5 17 < 0.040 14.4 54.2 BAR 3BAR20032 2002 16 6.1 0.83 0.61 19.0 13 16 0.045 15 < 65 BAR 3BAR20032 2007 20 8.9 0.86 2.95 21.9 13.5 20 < 0.210 16.8 77.9

CEN 3CEN20002 1996 150 11.3 1.80 0.582 28.0 22.4 29.3 0.137 49 104 CEN 3CEN20002 2001 161 15.1 1.61 0.26 24.1 19.5 21.5 0.117 37.7 89 B CEN 3CEN20002 2006 157 18.0 1.20 < 0.61 28 18.0 < 30 0.420 40 109 CEN 3CEN20004 1996 120 12.6 1.70 0.597 32.3 18.6 28.4 0.155 41 132 CEN 3CEN20004 2001 130 13.2 1.68 0.23 29.7 18.7 24.5 0.111 34.9 104 B CEN 3CEN20004 2006 131 15.0 1.40 0.35 31 18 28 0.260 35 110 CEN 3CEN20007 1996 68 9.0 1.60 0.79 29.7 16.5 23.8 < 0.100 37.9 129 CEN 3CEN20007 2001 70 8.5 1.57 0.44 25.7 13.8 21.3 0.089 30.3 101 B CEN 3CEN20007 2006 70 7.6 1.10 0.56 26.0 11 23 0.220 29 101 CEN 3CEN20008 1996 55 11.7 1.40 1.10 38.6 24 30.3 < 0.100 48 156 CEN 3CEN20008 2001 63 10.9 1.30 0.74 34.8 20.5 27.1 0.113 34.7 125 B CEN 3CEN20008 2006 65 3 1.2 0.59 33.0 18 27 0.230 30 130 CEN 3CEN20010 1996 50 7.1 1.2 0.44 26.5 18.4 26.8 < 0.100 34.2 130 CEN 3CEN20010 2001 57 7.2 1.2 0.20 21.2 17.5 23.7 0.096 29.5 102.0 B CEN 3CEN20010 2006 60 8.6 1.1 0.28 22.0 14.0 22.0 0.210 28.0 104.0 CEN 3CEN20015 2001 108 12.1 1.58 0.12 23.8 19.9 21.5 0.107 35.6 86.7 B CEN 3CEN20015 2006 107 15.0 1.5 0.37 26.0 19.0 22.0 0.290 37.0 97.0 CEN 3CEN20036 1996 5 7.0 0.8 1.54 31.0 19.3 25.2 < 0.100 28.6 110.0

COR 3COR20002 1995 62 7.42 0.9 0.449 16.3 13.8 18.1 0.11 29.7 76.4 COR 3COR20002 2000 62 7.1 0.52 0.22 20.9 15.1 17.2 0.078 34.5 88.9 B COR 3COR20002 2005 62 3.98 0.280 1.75 8.2 8.94 10 0.011 18 48.0 COR 3COR20002 2010 70 7.7 0.970 2.1 20.0 16 17 < 0.050 33 91.0 COR 3COR20008 1995 36 7.65 1.3 0.397 20.9 18 23.9 0.205 33.8 10.3 COR 3COR20008 2000 35 3.90 < 0.4 0.17 8.0 8.37 9.3 0.036 16 41.0 B COR 3COR20008 2005 36 8.86 0.614 2.31 12.0 13 18 0.018 24 77.0 COR 3COR20008 2010 37 8.90 1.200 2.20 24.0 16 16 < 0.050 33 110.0 COR 3COR20010 1995 14 5.04 0.5 0.275 9.0 7.6 10.6 0.12 16.1 40.2 COR 3COR20010 2000 10 5.60 0.63 0.13 14.0 15.8 18.5 0.068 28 83.0 B COR 3COR20010 2005 8 < 10 0.073 1.15 5.9 5.76 6.13 < 0.010 12 33.0 COR 3COR20010 2010 6 6.3 0.720 2.00 15.0 13.00 13.00 < 0.050 28 74.0 COR 3COR20013 1995 10 6.4 0.6 0.51 11.9 9.5 16.1 0.375 18.6 50.3 COR 3COR20013 2000 30 4.1 < 0.4 0.19 8.7 8.1 9.5 0.038 17.2 44.3 B COR 3COR20013 2005 10 3.37 0.207 < 1.48 7.9 8.54 9.37 0.030 17 48.0 COR 3COR20013 2010 28 4.70 0.520 1.20 11.0 9.20 9.50 < 0.050 19 50.0 COR 3COR20016 1995 18 7.3 0.8 0.64 17.7 12.4 19.2 0.825 20.9 70.5 COR 3COR20016 2000 18 5.9 0.36 0.28 16.8 11.1 16 0.066 20.7 68.1 B COR 3COR20016 2005 20 5.77 0.290 1.31 9.4 7.01 13 0.034 12 45.0 COR 3COR20016 2010 20 6.60 0.750 1.70 18.0 12 16 < 0.050 20 65.0

DAL 3DAL20002 1995 135 17.6 1.00 0.88 15.9 25.3 37.0 0.663 69.8 129.0 DAL 3DAL20002 2000 130 13.8 0.65 0.62 21.5 26.9 31.3 0.080 80.5 140.0 J DAL 3DAL20002 2005 134 9.34 0.085 1.04 4.6 6.80 4.80 0.120 20 36.3 DAL 3DAL20002 2010 135 24 1.3 3.3 26.0 36 31.00 < 0.250 100 180.0 DAL 3DAL20004 1995 100 11.3 0.80 0.31 16.4 11.9 27.5 0.528 34.0 82.3 DAL 3DAL20004 2000 95 9.1 0.32 0.16 16.2 14.1 20.1 0.070 37.4 < 83.8 DAL 3DAL20004 2005 98 10 0.058 0.854 3.6 3.08 < 9.59 0.056 8.34 20 DAL 3DAL20004 2010 100 16 1.00 2.4 28 19 19 < 0.230 48 120 DAL 3DAL20008 1995 50 12.1 1.10 0.45 25.1 13.5 25.2 0.599 31.6 107 DAL 3DAL20008 2000 50 10.7 0.80 0.21 29.2 15.5 20.5 0.080 33.0 < 113 DAL 3DAL20008 2005 56 11 0.081 0.745 6.9 3.91 < 10 0.135 7.73 28 DAL 3DAL20008 2010 58 12 1.3 2.2 30 17 20 < 0.190 33 120 DAL 3DAL20009 1995 12 6.7 2.30 0.49 17.2 16.1 17 0.644 42.2 133 DAL 3DAL20009 2000 15 6.0 1.81 0.39 17.1 16.1 14.1 0.070 51.4 < 141 DAL 3DAL20009 2005 20 5.45 0.370 0.924 5.8 4.14 < 9.73 0.059 14 41 DAL 3DAL20009 2010 15 4 0.730 1.1 16.0 6.10 5.40 < 0.070 19 47 DAL 3DAL20010 1995 15 4.6 0.90 0.43 13.5 8.7 14.6 0.497 22.8 < 63.5 DAL 3DAL20010 2000 10 6.4 1.00 0.42 31.8 13.6 16 0.060 39.6 < 103 DAL 3DAL20010 2005 15 6.38 0.174 0.513 8.6 3.30 < 10 0.076 11 27 DAL 3DAL20010 2010 16 3.6 0.71 0.93 14.0 7.10 12 < 0.090 14 42 DAL 3DAL20050 1995 60 10.6 1.70 0.53 22.3 16.2 27.7 0.613 57.8 138 DAL 3DAL20050 2000 55 10.4 1.40 0.22 39.1 18.0 24.3 0.080 64.1 < 144 DAL 3DAL20050 2005 62 23 0.363 1.02 8.6 6.02 7.82 0.075 20 49 DAL 3DAL20050 2010 62 13 2.1 2.7 36 22 22 < 0.190 69 170 DAL 3DAL20051 1995 11 5.1 0.60 0.496 14.9 10.2 16.7 0.523 29.3 76.2 DAL 3DAL20051 2000 15 6.8 0.21 0.35 22.7 12.2 14.4 0.080 34.4 < 93.2

LAU 3LAU20002 1998 245 8.1 0.92 1.4 19 18 20.9 0.071 32.9 84.8 LAU 3LAU20002 2003 245 8.1 0.92 1.40 19 18 20.9 0.070 32.9 < 84.8 LAU 3LAU20002 2008 236 < 8.7 1.00 2.61 21 16.8 27.5 < 0.050 35.2 94.1 LAU 3LAU20005 1998 135 12 1.50 0.29 32.7 27.9 34.8 0.080 54.9 130 LAU 3LAU20005 2003 145 11 1.40 1.40 25.2 31.1 27.4 0.080 34.4 < 139 LAU 3LAU20005 2008 138 < 15 1.30 2.50 25.2 24.8 26.2 < 0.050 33.4 117 LAU 3LAU20006 1998 175 3.5 0.80 0.05 17 9.3 14.5 0.048 17.7 51.7 LAU 3LAU20006 2003 175 7.8 1.10 1.30 19 21 21.2 0.080 29.2 < 85.6 LAU 3LAU20006 2008 172 < 10 0.90 2.10 20 17.5 24 < 0.050 29 76 LAU 3LAU20007 1998 22 5.1 0.80 0.34 21.5 44.7 28.1 0.088 23.3 130 LAU 3LAU20007 2003 30 5.1 0.93 1.20 17 30.5 22.3 0.090 24.8 < 171 LAU 3LAU20007 2008 28 < 7 0.90 1.76 19.1 37.9 25.9 < 0.050 28.3 184

MAR 3MAR20002 1997 35 3.1 1.10 0.31 7.6 21.2 19.3 0.059 31.7 82.7 MAR 3MAR20002 2002 32 7.3 1.58 0.903 19.8 29.2 20.3 0.055 44.6 153 B MAR 3MAR20002 2007 33 1.6 1.39 4.860 19.3 27.9 26.4 < 0.240 34.4 135 MAR 3MAR20004 1997 9 1.8 0.80 0.230 4.6 11.1 28.7 0.035 9.7 41.4 MAR 3MAR20004 2002 10 4.1 0.96 0.646 11.6 16.3 14.3 0.041 20.1 82.6 B MAR 3MAR20004 2007 10 1.8 1.07 3.630 15.6 23.8 20.7 < 0.240 24.1 107 MAR 3MAR20005 1997 24 2.3 0.8 0.270 6.7 17.3 15.8 0.045 24.1 66.2 MAR 3MAR20005 2002 22 5.7 1.22 0.756 17.4 23.1 16.9 0.043 36 120 B MAR 3MAR20005 2007 23 1.7 1.38 4.9 19.9 25.4 26.7 < 0.240 35.7 137 MAR 3MAR20006 1997 4 2.4 0.8 0.170 0.5 13.8 11.2 0.036 16.3 47.3 MAR 3MAR20006 2002 18 6.6 1.28 0.801 17.5 26.2 17.1 0.045 35.8 126 B MAR 3MAR20006 2007 10 2 0.84 2.850 11.6 20.2 16.3 < 0.240 12 44

WOL 3WOL20002 1998 160 13 1.2 0.4 24 23.9 26.4 0.082 58 122 WOL 3WOL20002 2003 160 14 1.2 1.5 24 26 20 0.076 63 146 WOL 3WOL20002 2008 140 < 10 0.7 1.33 15 14.2 12.3 < 0.050 39.7 78.8 WOL 3WOL20004 1998 134 11.9 1.6 0.39 26.3 26.3 32.9 0.087 59 145 WOL 3WOL20004 2003 135 12 1.6 1.5 27 29 26 0.079 56 161 WOL 3WOL20004 2008 114 < 10 1.1 1.69 20.5 18.2 18.9 < 0.050 40.4 101 WOL 3WOL20006 1998 80 8 1.4 0.3 22 23 26 0.100 43 127 WOL 3WOL20006 2003 98 8 1.3 1.40 22 27 22 0.059 42 145 WOL 3WOL20006 2008 71 < 7.6 1.3 2.06 23.5 23.1 21.6 0.050 41 125 WOL 3WOL20007 1998 95 9 1.6 0.3 25 24 25 0.100 48 131 WOL 3WOL20007 2003 98 8.4 1.5 1.5 25 25 21 0.063 44 143 WOL 3WOL20007 2008 72 < 7.8 1.2 1.82 22.5 18.5 18.3 < 0.050 35 106 WOL 3WOL20010 1998 80 8 1 0.59 22 16.4 28.8 0.102 22.1 98 WOL 3WOL20010 2003 25 7.8 0.76 1.3 22 13 22 0.080 15 93 WOL 3WOL20010 2008 72 < 10 0.50 1.27 20.2 12.3 20 < 0.050 12.4 81.5 WOL 3WOL20011 1998 52 7.9 1 0.39 17 13.9 20.8 0.076 44.4 96.4 WOL 3WOL20011 2003 50 4.6 0.06 0.76 17 13 17 0.056 28 102 WOL 3WOL20011 2008 29 < 8.4 0.80 1.56 21.4 12.9 17 < 0.050 32.8 87.5 WOL 3WOL20047 1998 22 4.7 0.70 0.20 20 11.4 22 0.802 21.8 84.8 WOL 3WOL20047 2003 20 7.8 0.08 1.20 20 15 17 0.059 41 101 WOL 3WOL20047 2008 12 < 4.1 0.40 0.791 10.7 10.8 14.8 < 0.050 15.2 64.3

CHE 3CHE20002 1994 40 1.5 < 0.59 < 1.47 3.8 2.6 9.6 0.100 6.1 < 25.5 CHE 3CHE20002 1999 40 3.9 0.4 0.13 9.9 0.2 10.7 < 0.040 6.7 22.7 CHE 3CHE20002 2004 38 2.54 0.308 < 0.480 6.9 3.74 10 0.022 7.49 31 CHE 3CHE20002 2009 39 4.30 0.690 1.2 14 9.20 15 < 0.090 16 77 CHE 3CHE20005 1994 25 1.3 < 0.74 < 1.84 2.7 18.2 19.9 0.080 7.5 < 49.5 CHE 3CHE20005 1999 20 5.7 0.70 0.44 16.9 11 20.7 0.064 17.6 69.5 CHE 3CHE20005 2004 17 < 4.34 0.321 < 0.434 5.5 4.53 5.8 0.018 8.67 23.1 CHE 3CHE20005 2009 20 3.40 0.610 1.1 12 9.60 15.0 < 0.090 15 77 CHE 3CHE20008 1994 20 1.0 < 0.60 < 1.51 < 1.8 5.9 19.1 < 0.060 3.1 < 21.7 CHE 3CHE20008 1999 20 4.8 0.70 0.16 17.5 9.8 22.8 0.084 15.4 50 CHE 3CHE20008 2004 5 < 4.41 0.361 < 0.441 7.7 6.03 32 0.049 8.94 32 CHE 3CHE20008 2009 8 3.70 0.430 0.940 9.8 5.30 15 < 0.070 12 42 CHE 3CHE20012 1994 26 0.8 < 0.80 < 2 3.3 6.5 16.1 0.25 5.1 < 23.3 CHE 3CHE20012 1999 29 5.5 1.00 0.40 23.4 10.1 22.5 0.058 18.1 62.3 CHE 3CHE20012 2004 25 < 4.70 0.282 < 0.470 5.7 4.10 7.65 0.022 5.62 24 CHE 3CHE20012 2009 25 5.20 0.810 1.5 22 6.20 10 < 0.090 14 51 CHE 3CHE20038 1994 17 1.4 < 0.61 < 1.54 2.3 5.9 15.3 < 0.070 6.3 < 37.3 CHE 3CHE20038 1999 6 5.4 0.60 0.13 12.4 6.3 11.7 0.040 11.4 < 46.4 CHE 3CHE20038 2004 3 < 6.57 0.460 0.184 9.7 7.60 13 0.040 12 52 CHE 3CHE20038 2009 10 5.30 0.770 1.800 12.0 7.20 11 < 0.070 17 44 CHE 3CHE20080 1994 19 2.0 < 1.01 < 2.54 < 3.0 9.7 < 13.7 < 0.110 3.8 < 35.7 CHE 3CHE20080 1999 20 5.4 0.80 0.41 20.6 10 19.4 0.048 17 60.4 CHE 3CHE20080 2004 17 < 4.89 0.293 < 0.489 7.2 5.64 9.37 0.023 7.36 31 CHE 3CHE20080 2009 12 5.30 0.900 1.500 21 11 19.00 < 0.140 18 81 CHE 3CHE20081 1994 12 1.8 < 0.59 3.14 5.6 18.7 42.4 < 0.070 11.2 < 76.9 CHE 3CHE20081 1999 9 8.1 1.20 1.12 28.6 33.3 62.8 0.100 24.8 212 CHE 3CHE20081 2004 10 < 4.40 0.299 < 0.440 6.7 7.25 24 0.018 8.54 47 CHE 3CHE20081 2009 8 3.10 0.430 1.500 9.6 4.70 26 < 0.080 10 170 CHE 3CHE20082 1994 12 3.1 < 0.73 3.55 20.7 19.6 39.4 0.220 15.0 < 68.1 CHE 3CHE20082 1999 15 9.8 1.20 0.39 26.2 18.0 25.1 0.064 27.1 88.1 CHE 3CHE20082 2004 13 1.60 0.310 < 0.470 6.7 7.61 11 0.025 8.41 41 CHE 3CHE20082 2009 12 9.20 1.300 2.400 25 23 26 < 0.140 30 130 CHE 3CHE20083 1994 13 2.5 < 0.56 3.65 9.1 2.7 21.8 0.070 3.0 < 35.5 CHE 3CHE20083 1999 10 5.2 1.10 0.33 23.6 15.1 31.7 0.084 15.8 122 CHE 3CHE20083 2004 5 < 4.18 0.284 < 0.418 4.9 6.06 12 0.029 4.15 50 CHE 3CHE20083 2009 8 4.30 1.000 1.700 20 20 27 < 0.120 15.00 150 CHE 3CHE20084 1994 17 1.6 < 0.56 2.37 2.9 7.6 15.9 0.070 9.8 < 28.9 CHE 3CHE20084 1999 5 8.9 0.90 0.20 20.5 10 18.9 < 0.040 20.9 53.7 CHE 3CHE20084 2004 4 7.97 0.935 0.295 17 12 28 0.035 19 84 CHE 3CHE20084 2009 4 25 1.300 2.800 21 10 20 < 0.060 25 71 CHE 3CHE20085 2004 5 < 4.89 0.274 < 0.489 4.9 5.55 12 0.031 4.11 59

JPP 3JPP20002 1994 95 4.9 < 2.04 8.16 14.6 < 5.1 40.7 < 0.150 20.2 < 83.3 JPP 3JPP20002 1999 95 6.8 1.30 0.18 24.2 14.4 26.2 0.064 17.4 53.7 JPP 3JPP20002 2004 96 25 0.826 < 2.43 21.8 18 32 0.066 13 96 JPP 3JPP20002 2009 96 6 1.600 1.90 25 20 23 < 0.370 22 84 JPP 3JPP20003 1994 75 3.3 < 1.10 6 13.6 < 2.8 39 < 0.100 15.5 < 74.2 JPP 3JPP20003 1999 74 6.3 1.40 0.19 29.0 14.3 28.9 0.064 21 64.2 JPP 3JPP20003 2004 75 7.33 0.203 < 0.441 4.7 3.85 5.9 0.015 3.59 20 JPP 3JPP20003 2009 80 3.5 1.2 1.4 20 14 17 < 0.320 16 78 JPP 3JPP20004 1994 15 3.27 1.07 6.2 18.3 16.6 45.8 < 0.100 24.4 109 JPP 3JPP20004 1999 13 5.7 1.20 0.279 22.6 15.3 23.4 0.068 18.9 63.5 JPP 3JPP20004 2004 15 5.61 0.243 < 0.434 5.7 6.26 8.5 0.029 4.46 44 JPP 3JPP20004 2009 16 2.10 1.0 1.200 15 14 15 < 0.200 14 98 JPP 3JPP20005 2009 28 2.70 1.1 1.400 17 16 17.0 < 0.220 17 89 JPP 3JPP20006 1994 18 4.9 1.79 9.7 37.5 34 84.4 0.220 33.9 183 JPP 3JPP20006 1999 16 6.0 1.30 0.689 66.2 6.8 29.2 0.070 16.6 65.4 JPP 3JPP20006 2004 18 7.35 0.529 < 0.490 25 4.38 17 0.030 7.77 40 JPP 3JPP20006 2009 22 1.80 1.0 1.200 17 14 17 < 0.200 12 92 JPP 3JPP20007 1994 20 6.2 1.84 10.6 26 28.2 67.7 < 0.160 46.0 142 JPP 3JPP20007 1999 19 5.4 1.10 0.28 26.8 11.7 21.7 0.060 19.7 52.4 JPP 3JPP20007 2004 22 5.46 0.29 < 0.49 8.33 5.85 8.01 0.02 5.99 26 JPP 3JPP20007 2009 25 7.5 APPENDIX1.3 2.4 A 19.0 13.0 16 < 0.230 21 69 JPP 3JPP20008 1994 46 5 1.53 8.55 20.3 23.3 55 < 0.120 26.8 101 JPP 3JPP20008 1999 SUMMAR45 4Y OF CRB1 SEDIMENT0.3 21.2 12.9DATA21.3 0.064 15.8 70.8 JPP 3JPP20008 2004 45 5.49 0.256 < 0.491 6.5 5.40 8.4 0.022 5.19 27 JPP 3JPP20008 2009 46 2.60 1 1.3 16 13 14 < 0.210 14 66 JPP 3JPP20009 1994 37 6.2 1.79 10.2 30.7 25.8 76.8 < 0.160 30.4 130 JPP 3JPP20009 1999 41 6.2 1.40 0.21 29.2 16.4 27.5 0.064 21.3 68.2 Sediment Concentration, dry weight (mg/kg) JPP 3JPP20009 2004 Sample50 7.29 0.235 < 0.436 6.2 4.60 7.3 0.019 3.97 23 JPP 3JPP20009 Sample2009 Depth55 As 2 Be0.940 Cd1.200 Cr 17 Cu 12 Pb 14 < Hg0.260 Ni 13 Zn81 ReservoirJPP 3JPP20010Station 1994Year (feet)26 2.0 1.34 5.94 15.5 2.8 40 0.100 18.1 81.8 BARJPP 3JPP200103BAR20002 19991997 2164 2.84.9 0.801.1 0.170.48 19.717 17.69.5 21.2 0.0600.113 11.124 40.588.2 BARJPP 3JPP200103BAR20002 20042002 2366 4.087.2 0.1631.1 < 0.4300.88 4.722 3.6619 6.319 0.0260.072 243 < NA94 J BARJPP 3JPP200103BAR20002 20092007 3563 1.406.2 0.8901.1 3.631.0 23.916 18.911 24.815 < 0.2100.26 24.211 97.560 BARJPP 3JPP200113BAR20005 20091997 3550 2.504.8 1.3001 0.951.4 18.420 17.114 23.318 < 0.1120.27 19.815 93.991 BARJPP 3JPP200123BAR20005 20092002 1746 2.106.3 1.2001.0 0.971.4 17.020 1320 1820 < 0.0710.23 1422 < 5798 BAR 3BAR20005 2007 49 1 0.82 2.82 17.6 19.1 20 < 0.210 19.3 88.9 OLDBAR 3OLD200023BAR20006 19961997 7135 6.44.3 1.100.7 0.52 17.412.8 21.413.8 20.916.1 < 0.0670.10 29.116.3 93.261.7 OLDBAR 3OLD200023BAR20006 20012002 7032 7.05.3 1.200.81 0.260.83 17.517 21.415 20.816 0.0550.08 29.918 < 95.379 B OLDBAR 3OLD200023BAR20006 20062007 6443 8.16.9 0.901 < 0.303.65 17.022 15.041.7 18.023.7 < 0.2100.24 24.427 11787 OLDBAR 3OLD200053BAR20007 19961997 5017 5.04.6 0.700.8 0.304.9 11.413.4 11.68.8 11.418.6 < 0.0760.10 17.218 70.356 OLDBAR 3OLD200053BAR20007 20012002 4514 5.93.7 0.880.61 0.230.56 12.113 14.88.7 14.013 0.0410.06 19.813 < 68.160 B OLDBAR 3OLD200053BAR20007 20062007 5126 5.41.3 0.771.01 < 0.263.24 22.613 16.613 25.215 < 0.2100.31 23.121 10969 OLDBAR 3OLD200073BAR20031 19961997 238 4.25.6 0.600.90 0.190.53 10.420.7 11.95.5 18.89.4 < 0.0640.10 13.716.6 < 41.770.5 OLDBAR 3OLD200073BAR20031 20012002 4012 7.54.5 1.000.70 0.231.30 13.518 12.911 17.616 0.0520.06 23.813 < 76.7166 B OLDBAR 3OLD200073BAR20031 20062007 7124 6.51.9 0.870.90 0.223.05 23.814 13.411 21.215 < 0.2100.16 17.723 87.274 OLDBAR 3OLD200133BAR20032 19961997 2916 7.85.3 0.901.3 0.280.31 19.116.6 21.911.5 2517 < 0.0400.1 27.414.4 88.254.2 OLDBAR 3OLD200133BAR20032 20012002 2616 8.16.1 0.831.4 < 0.500.61 19.018 17.213 20.216 0.0590.045 24.815 < 73.965 B OLDBAR 3OLD200133BAR20032 20062007 2620 9.28.9 0.861.3 < 0.422.95 21.921 13.521 2520 < 0.4200.210 16.827 77.997 OLD 3OLD20018 1996 28 5.9 1.4 0.331 19.6 22.6 24.8 < 0.100 23.7 85.9 OLDCEN 3OLD200183CEN20002 20011996 15023 11.39 1.801.5 < 0.5820.5 18.628.0 21.622.4 22.229.3 0.0690.137 2249 86.3104 B OLDCEN 3OLD200183CEN20002 20062001 16123 < 15.18.5 1.611.3 < 0.430.26 24.122 19.521 21.526 0.1170.26 37.725 10289 B OLDCEN 3OLD200203CEN20002 19962006 15736 18.08 1.201.1 < 0.380.61 17.628 23.518.0 < 22.830 < 0.4200.10 27.240 87.7109 OLDCEN 3OLD200203CEN20004 20011996 12023 12.67.7 1.701.3 0.5970.15 18.232.3 25.218.6 20.728.4 0.0750.155 27.541 98.3132 B OLDCEN 3OLD200203CEN20004 20062001 13021 < 13.26.9 1.681.0 < 0.350.23 29.718 18.717 24.521 0.1110.23 34.925 10487 B OLDCEN 3OLD200213CEN20004 19962006 13117 15.04 1.401.2 0.510.35 18.331 18.218 27.828 < 0.2600.10 15.135 97.8110 OLDCEN 3OLD200213CEN20007 20011996 2068 9.05 1.601.4 0.230.79 18.329.7 17.516.5 24.823.8 < 0.0860.100 37.918 93.2129 B OLDCEN 3OLD200213CEN20007 20062001 2070 < 6.78.5 1.571 < 0.340.44 25.719 13.813 21.323 0.0890.22 30.318 100101 B OLDCEN 3OLD200223CEN20007 19962006 2270 6.17.6 1.101 0.350.56 13.926.0 17.511 17.423 < 0.1000.220 24.229 10168 OLDCEN 3OLD200223CEN20008 20011996 2455 11.76.5 1.201.40 0.191.10 15.238.6 18.224 19.230.3 < 0.1000.06 26.448 78.5156 B OLDCEN 3OLD200223CEN20008 20062001 2463 10.96.9 0.941.30 < 0.310.74 34.816 20.516 27.119 0.2000.113 34.724 12575 B CEN 3CEN20008 2006 65 N: 227 3 227 1.2 227 0.59 227 33.0 227 18 227 27 227 0.230 227 30 226 130 CEN 3CEN20010 1996 Nondetects:50 23 7.1 14 1.2 34 0.44 2 26.5 2 18.4 6 26.8 78< 0.100 0 34.2 31 130 CEN 3CEN20010 2001 % Nondetect:57 10.13 7.2 6.17 1.2 15 0.20 0.881 21.2 0.881 17.5 2.643 23.7 34.36 0.096 0 29.5 13.7 102.0 B CEN 3CEN20010 USGS2006 Mean Baseline:60 8.18.6 1.61.1 0.280.5 22.066 14.024 22.024 0.2100.08 28.028 104.0100 NOTES:CEN 3CEN20015 2001 108 12.1 1.58 0.12 23.8 19.9 21.5 0.107 35.6 86.7 B NA=NotCEN analyzed;3CEN20015 Less than (<)=Not2006 detected at107 reporting detection15.0 limit; J=estimated1.5 value, assumed0.37 less than26.0 contract required19.0 quantification22.0 0.290 37.0 97.0 limit CEN(CRQL), but3CEN20036 greater than or equal1996 to method 5detection limit (MDL);7.0 B=found0.8 in blank. 1.54 31.0 19.3 25.2 < 0.100 28.6 110.0 Bold=Outlier, per ProUCL assume ND equal to detection limit. Shaded=exceedsCOR 3COR20002 USGS mean baseline1995 concentration.62 7.42 0.9 0.449 16.3 13.8 18.1 0.11 29.7 76.4 COR 3COR20002 2000 62 7.1 0.52 0.22 20.9 15.1 17.2 0.078 34.5 88.9 B COR 3COR20002 2005 62 3.98 0.280 1.75 8.2 8.94 10 0.011 18 48.0 COR 3COR20002 2010 70 7.7 0.970 2.1 20.0 16 17 < 0.050 33 91.0 COR 3COR20008 1995 36 7.65 1.3 0.397 20.9 18 23.9 0.205 33.8 10.3 COR 3COR20008 2000 35 3.90 < 0.4 0.17 8.0 8.37 9.3 0.036 16 41.0 B COR 3COR20008 2005 36 8.86 0.614 2.31 12.0 13 18 0.018 24 77.0 COR 3COR20008 2010 37 8.90 1.200 2.20 24.0 16 16 < 0.050 33 110.0 COR 3COR20010 1995 14 5.04 0.5 0.275 9.0 7.6 10.6 0.12 16.1 40.2 COR 3COR20010 2000 10 5.60 0.63 0.13 14.0 15.8 18.5 0.068 28 83.0 B COR 3COR20010 2005 8 < 10 0.073 1.15 5.9 5.76 6.13 < 0.010 12 33.0 COR 3COR20010 2010 6 6.3 0.720 2.00 15.0 13.00 13.00 < 0.050 28 74.0 COR 3COR20013 1995 10 6.4 0.6 0.51 11.9 9.5 16.1 0.375 18.6 50.3 COR 3COR20013 2000 30 4.1 < 0.4 0.19 8.7 8.1 9.5 0.038 17.2 44.3 B COR 3COR20013 2005 10 3.37 0.207 < 1.48 7.9 8.54 9.37 0.030 17 48.0 COR 3COR20013 2010 28 4.70 0.520 1.20 11.0 9.20 9.50 < 0.050 19 50.0 COR 3COR20016 1995 18 7.3 0.8 0.64 17.7 12.4 19.2 0.825 20.9 70.5 COR 3COR20016 2000 18 5.9 0.36 0.28 16.8 11.1 16 0.066 20.7 68.1 B COR 3COR20016 2005 20 5.77 0.290 1.31 9.4 7.01 13 0.034 12 45.0 COR 3COR20016 2010 20 6.60 0.750 1.70 18.0 12 16 < 0.050 20 65.0

DAL 3DAL20002 1995 135 17.6 1.00 0.88 15.9 25.3 37.0 0.663 69.8 129.0 DAL 3DAL20002 2000 130 13.8 0.65 0.62 21.5 26.9 31.3 0.080 80.5 140.0 J DAL 3DAL20002 2005 134 9.34 0.085 1.04 4.6 6.80 4.80 0.120 20 36.3 DAL 3DAL20002 2010 135 24 1.3 3.3 26.0 36 31.00 < 0.250 100 180.0 DAL 3DAL20004 1995 100 11.3 0.80 0.31 16.4 11.9 27.5 0.528 34.0 82.3 DAL 3DAL20004 2000 95 9.1 0.32 0.16 16.2 14.1 20.1 0.070 37.4 < 83.8 DAL 3DAL20004 2005 98 10 0.058 0.854 3.6 3.08 < 9.59 0.056 8.34 20 DAL 3DAL20004 2010 100 16 1.00 2.4 28 19 19 < 0.230 48 120 DAL 3DAL20008 1995 50 12.1 1.10 0.45 25.1 13.5 25.2 0.599 31.6 107 DAL 3DAL20008 2000 50 10.7 0.80 0.21 29.2 15.5 20.5 0.080 33.0 < 113 DAL 3DAL20008 2005 56 11 0.081 0.745 6.9 3.91 < 10 0.135 7.73 28 DAL 3DAL20008 2010 58 12 1.3 2.2 30 17 20 < 0.190 33 120 DAL 3DAL20009 1995 12 6.7 2.30 0.49 17.2 16.1 17 0.644 42.2 133 DAL 3DAL20009 2000 15 6.0 1.81 0.39 17.1 16.1 14.1 0.070 51.4 < 141 DAL 3DAL20009 2005 20 5.45 0.370 0.924 5.8 4.14 < 9.73 0.059 14 41 DAL 3DAL20009 2010 15 4 0.730 1.1 16.0 6.10 5.40 < 0.070 19 47 DAL 3DAL20010 1995 15 4.6 0.90 0.43 13.5 8.7 14.6 0.497 22.8 < 63.5 DAL 3DAL20010 2000 10 6.4 1.00 62 0.42 31.8 13.6 16 0.060 39.6 < 103 DAL 3DAL20010 2005 15 6.38 0.174 0.513 8.6 3.30 < 10 0.076 11 27 DAL 3DAL20010 2010 16 3.6 0.71 0.93 14.0 7.10 12 < 0.090 14 42 DAL 3DAL20050 1995 60 10.6 1.70 0.53 22.3 16.2 27.7 0.613 57.8 138 DAL 3DAL20050 2000 55 10.4 1.40 0.22 39.1 18.0 24.3 0.080 64.1 < 144 DAL 3DAL20050 2005 62 23 0.363 1.02 8.6 6.02 7.82 0.075 20 49 DAL 3DAL20050 2010 62 13 2.1 2.7 36 22 22 < 0.190 69 170 DAL 3DAL20051 1995 11 5.1 0.60 0.496 14.9 10.2 16.7 0.523 29.3 76.2 DAL 3DAL20051 2000 15 6.8 0.21 0.35 22.7 12.2 14.4 0.080 34.4 < 93.2

LAU 3LAU20002 1998 245 8.1 0.92 1.4 19 18 20.9 0.071 32.9 84.8 LAU 3LAU20002 2003 245 8.1 0.92 1.40 19 18 20.9 0.070 32.9 < 84.8 LAU 3LAU20002 2008 236 < 8.7 1.00 2.61 21 16.8 27.5 < 0.050 35.2 94.1 LAU 3LAU20005 1998 135 12 1.50 0.29 32.7 27.9 34.8 0.080 54.9 130 LAU 3LAU20005 2003 145 11 1.40 1.40 25.2 31.1 27.4 0.080 34.4 < 139 LAU 3LAU20005 2008 138 < 15 1.30 2.50 25.2 24.8 26.2 < 0.050 33.4 117 LAU 3LAU20006 1998 175 3.5 0.80 0.05 17 9.3 14.5 0.048 17.7 51.7 LAU 3LAU20006 2003 175 7.8 1.10 1.30 19 21 21.2 0.080 29.2 < 85.6 LAU 3LAU20006 2008 172 < 10 0.90 2.10 20 17.5 24 < 0.050 29 76 LAU 3LAU20007 1998 22 5.1 0.80 0.34 21.5 44.7 28.1 0.088 23.3 130 LAU 3LAU20007 2003 30 5.1 0.93 1.20 17 30.5 22.3 0.090 24.8 < 171 LAU 3LAU20007 2008 28 < 7 0.90 1.76 19.1 37.9 25.9 < 0.050 28.3 184

MAR 3MAR20002 1997 35 3.1 1.10 0.31 7.6 21.2 19.3 0.059 31.7 82.7 MAR 3MAR20002 2002 32 7.3 1.58 0.903 19.8 29.2 20.3 0.055 44.6 153 B MAR 3MAR20002 2007 33 1.6 1.39 4.860 19.3 27.9 26.4 < 0.240 34.4 135 MAR 3MAR20004 1997 9 1.8 0.80 0.230 4.6 11.1 28.7 0.035 9.7 41.4 MAR 3MAR20004 2002 10 4.1 0.96 0.646 11.6 16.3 14.3 0.041 20.1 82.6 B MAR 3MAR20004 2007 10 1.8 1.07 3.630 15.6 23.8 20.7 < 0.240 24.1 107 MAR 3MAR20005 1997 24 2.3 0.8 0.270 6.7 17.3 15.8 0.045 24.1 66.2 MAR 3MAR20005 2002 22 5.7 1.22 0.756 17.4 23.1 16.9 0.043 36 120 B MAR 3MAR20005 2007 23 1.7 1.38 4.9 19.9 25.4 26.7 < 0.240 35.7 137 MAR 3MAR20006 1997 4 2.4 0.8 0.170 0.5 13.8 11.2 0.036 16.3 47.3 MAR 3MAR20006 2002 18 6.6 1.28 0.801 17.5 26.2 17.1 0.045 35.8 126 B MAR 3MAR20006 2007 10 2 0.84 2.850 11.6 20.2 16.3 < 0.240 12 44

WOL 3WOL20002 1998 160 13 1.2 0.4 24 23.9 26.4 0.082 58 122 WOL 3WOL20002 2003 160 14 1.2 1.5 24 26 20 0.076 63 146 WOL 3WOL20002 2008 140 < 10 0.7 1.33 15 14.2 12.3 < 0.050 39.7 78.8 WOL 3WOL20004 1998 134 11.9 1.6 0.39 26.3 26.3 32.9 0.087 59 145 WOL 3WOL20004 2003 135 12 1.6 1.5 27 29 26 0.079 56 161 WOL 3WOL20004 2008 114 < 10 1.1 1.69 20.5 18.2 18.9 < 0.050 40.4 101 WOL 3WOL20006 1998 80 8 1.4 0.3 22 23 26 0.100 43 127 WOL 3WOL20006 2003 98 8 1.3 1.40 22 27 22 0.059 42 145 WOL 3WOL20006 2008 71 < 7.6 1.3 2.06 23.5 23.1 21.6 0.050 41 125 WOL 3WOL20007 1998 95 9 1.6 0.3 25 24 25 0.100 48 131 WOL 3WOL20007 2003 98 8.4 1.5 1.5 25 25 21 0.063 44 143 WOL 3WOL20007 2008 72 < 7.8 1.2 1.82 22.5 18.5 18.3 < 0.050 35 106 WOL 3WOL20010 1998 80 8 1 0.59 22 16.4 28.8 0.102 22.1 98 WOL 3WOL20010 2003 25 7.8 0.76 1.3 22 13 22 0.080 15 93 WOL 3WOL20010 2008 72 < 10 0.50 1.27 20.2 12.3 20 < 0.050 12.4 81.5 WOL 3WOL20011 1998 52 7.9 1 0.39 17 13.9 20.8 0.076 44.4 96.4 WOL 3WOL20011 2003 50 4.6 0.06 0.76 17 13 17 0.056 28 102 WOL 3WOL20011 2008 29 < 8.4 0.80 1.56 21.4 12.9 17 < 0.050 32.8 87.5 WOL 3WOL20047 1998 22 4.7 0.70 0.20 20 11.4 22 0.802 21.8 84.8 WOL 3WOL20047 2003 20 7.8 0.08 1.20 20 15 17 0.059 41 101 WOL 3WOL20047 2008 12 < 4.1 0.40 0.791 10.7 10.8 14.8 < 0.050 15.2 64.3

CHE 3CHE20002 1994 40 1.5 < 0.59 < 1.47 3.8 2.6 9.6 0.100 6.1 < 25.5 CHE 3CHE20002 1999 40 3.9 0.4 0.13 9.9 0.2 10.7 < 0.040 6.7 22.7 CHE 3CHE20002 2004 38 2.54 0.308 < 0.480 6.9 3.74 10 0.022 7.49 31 CHE 3CHE20002 2009 39 4.30 0.690 1.2 14 9.20 15 < 0.090 16 77 CHE 3CHE20005 1994 25 1.3 < 0.74 < 1.84 2.7 18.2 19.9 0.080 7.5 < 49.5 CHE 3CHE20005 1999 20 5.7 0.70 0.44 16.9 11 20.7 0.064 17.6 69.5 CHE 3CHE20005 2004 17 < 4.34 0.321 < 0.434 5.5 4.53 5.8 0.018 8.67 23.1 CHE 3CHE20005 2009 20 3.40 0.610 1.1 12 9.60 15.0 < 0.090 15 77 CHE 3CHE20008 1994 20 1.0 < 0.60 < 1.51 < 1.8 5.9 19.1 < 0.060 3.1 < 21.7 CHE 3CHE20008 1999 20 4.8 0.70 0.16 17.5 9.8 22.8 0.084 15.4 50 CHE 3CHE20008 2004 5 < 4.41 0.361 < 0.441 7.7 6.03 32 0.049 8.94 32 CHE 3CHE20008 2009 8 3.70 0.430 0.940 9.8 5.30 15 < 0.070 12 42 CHE 3CHE20012 1994 26 0.8 < 0.80 < 2 3.3 6.5 16.1 0.25 5.1 < 23.3 CHE 3CHE20012 1999 29 5.5 1.00 0.40 23.4 10.1 22.5 0.058 18.1 62.3 CHE 3CHE20012 2004 25 < 4.70 0.282 < 0.470 5.7 4.10 7.65 0.022 5.62 24 CHE 3CHE20012 2009 25 5.20 0.810 1.5 22 6.20 10 < 0.090 14 51 CHE 3CHE20038 1994 17 1.4 < 0.61 < 1.54 2.3 5.9 15.3 < 0.070 6.3 < 37.3 CHE 3CHE20038 1999 6 5.4 0.60 0.13 12.4 6.3 11.7 0.040 11.4 < 46.4 CHE 3CHE20038 2004 3 < 6.57 0.460 0.184 9.7 7.60 13 0.040 12 52 CHE 3CHE20038 2009 10 5.30 0.770 1.800 12.0 7.20 11 < 0.070 17 44 CHE 3CHE20080 1994 19 2.0 < 1.01 < 2.54 < 3.0 9.7 < 13.7 < 0.110 3.8 < 35.7 CHE 3CHE20080 1999 20 5.4 0.80 0.41 20.6 10 19.4 0.048 17 60.4 CHE 3CHE20080 2004 17 < 4.89 0.293 < 0.489 7.2 5.64 9.37 0.023 7.36 31 CHE 3CHE20080 2009 12 5.30 0.900 1.500 21 11 19.00 < 0.140 18 81 CHE 3CHE20081 1994 12 1.8 < 0.59 3.14 5.6 18.7 42.4 < 0.070 11.2 < 76.9 CHE 3CHE20081 1999 9 8.1 1.20 1.12 28.6 33.3 62.8 0.100 24.8 212 CHE 3CHE20081 2004 10 < 4.40 0.299 < 0.440 6.7 7.25 24 0.018 8.54 47 CHE 3CHE20081 2009 8 3.10 0.430 1.500 9.6 4.70 26 < 0.080 10 170 CHE 3CHE20082 1994 12 3.1 < 0.73 3.55 20.7 19.6 39.4 0.220 15.0 < 68.1 CHE 3CHE20082 1999 15 9.8 1.20 0.39 26.2 18.0 25.1 0.064 27.1 88.1 CHE 3CHE20082 2004 13 1.60 0.310 < 0.470 6.7 7.61 11 0.025 8.41 41 CHE 3CHE20082 2009 12 9.20 1.300 2.400 25 23 26 < 0.140 30 130 CHE 3CHE20083 1994 13 2.5 < 0.56 3.65 9.1 2.7 21.8 0.070 3.0 < 35.5 CHE 3CHE20083 1999 10 5.2 1.10 0.33 23.6 15.1 31.7 0.084 15.8 122 CHE 3CHE20083 2004 5 < 4.18 0.284 < 0.418 4.9 6.06 12 0.029 4.15 50 CHE 3CHE20083 2009 8 4.30 1.000 1.700 20 20 27 < 0.120 15.00 150 CHE 3CHE20084 1994 17 1.6 < 0.56 2.37 2.9 7.6 15.9 0.070 9.8 < 28.9 CHE 3CHE20084 1999 5 8.9 0.90 0.20 20.5 10 18.9 < 0.040 20.9 53.7 CHE 3CHE20084 2004 4 7.97 0.935 0.295 17 12 28 0.035 19 84 CHE 3CHE20084 2009 4 25 1.300 2.800 21 10 20 < 0.060 25 71 CHE 3CHE20085 2004 5 < 4.89 0.274 < 0.489 4.9 5.55 12 0.031 4.11 59

JPP 3JPP20002 1994 95 4.9 < 2.04 8.16 14.6 < 5.1 40.7 < 0.150 20.2 < 83.3 JPP 3JPP20002 1999 95 6.8 1.30 0.18 24.2 14.4 26.2 0.064 17.4 53.7 JPP 3JPP20002 2004 96 25 0.826 < 2.43 21.8 18 32 0.066 13 96 JPP 3JPP20002 2009 96 6 1.600 1.90 25 20 23 < 0.370 22 84 JPP 3JPP20003 1994 75 3.3 < 1.10 6 13.6 < 2.8 39 < 0.100 15.5 < 74.2 JPP 3JPP20003 1999 74 6.3 1.40 0.19 29.0 14.3 28.9 0.064 21 64.2 JPP 3JPP20003 2004 75 7.33 0.203 < 0.441 4.7 3.85 5.9 0.015 3.59 20 JPP 3JPP20003 2009 80 3.5 1.2 1.4 20 14 17 < 0.320 16 78 JPP 3JPP20004 1994 15 3.27 1.07 6.2 18.3 16.6 45.8 < 0.100 24.4 109 JPP 3JPP20004 1999 13 5.7 1.20 0.279 22.6 15.3 23.4 0.068 18.9 63.5 JPP 3JPP20004 2004 15 5.61 0.243 < 0.434 5.7 6.26 8.5 0.029 4.46 44 JPP 3JPP20004 2009 16 2.10 1.0 1.200 15 14 15 < 0.200 14 98 JPP 3JPP20005 2009 28 2.70 1.1 1.400 17 16 17.0 < 0.220 17 89 JPP 3JPP20006 1994 18 4.9 1.79 9.7 37.5 34 84.4 0.220 33.9 183 JPP 3JPP20006 1999 16 6.0 1.30 0.689 66.2 6.8 29.2 0.070 16.6 65.4 JPP 3JPP20006 2004 18 7.35 0.529 < 0.490 25 4.38 17 0.030 7.77 40 JPP 3JPP20006 2009 22 1.80 1.0 1.200 17 14 17 < 0.200 12 92 JPP 3JPP20007 1994 20 6.2 1.84 10.6 26 28.2 67.7 < 0.160 46.0 142 JPP 3JPP20007 1999 19 5.4 1.10 0.28 26.8 11.7 21.7 0.060 19.7 52.4 JPP 3JPP20007 2004 22 5.46 0.29 < 0.49 8.33 5.85 8.01 0.02 5.99 26 JPP 3JPP20007 2009 25 7.5 1.3 2.4 19.0 13.0 16 < 0.230 21 69 JPP 3JPP20008 1994 46 5 1.53 8.55 20.3 23.3 55 < 0.120 26.8 101 JPP 3JPP20008 1999 45 4 1 0.3 21.2 12.9 21.3 0.064 15.8 70.8 JPP 3JPP20008 2004 45 5.49 0.256 < 0.491 6.5 5.40 8.4 0.022 5.19 27 JPP 3JPP20008 2009 46 2.60 1 1.3 16 13 14 < 0.210 14 66 JPP 3JPP20009 1994 37 6.2 1.79 10.2 30.7 25.8 76.8 < 0.160 30.4 130 JPP 3JPP20009 1999 41 6.2 1.40 0.21 29.2 16.4 27.5 0.064 21.3 68.2 JPP 3JPP20009 2004 50 7.29 0.235 < 0.436 6.2 4.60 7.3 0.019 3.97 23 JPP 3JPP20009 2009 55 2 0.940 1.200 17 12 14 < 0.260 13 81 JPP 3JPP20010 1994 26 2.0 1.34 5.94 15.5 2.8 40 0.100 18.1 81.8 JPP 3JPP20010 1999 21 2.8 0.80 0.17 17 9.5 21.2 0.060 11.1 40.5 JPP 3JPP20010 2004 23 4.08 0.163 < 0.430 4.7 3.66 6.3 0.026 3 NA J JPP 3JPP20010 2009 35 1.40 0.890 1.0 16 11 15 < 0.26 11 60 JPP 3JPP20011 2009 35 2.50 1.300 1.4 20 14 18 < 0.27 15 91 JPP 3JPP20012 2009 17 2.10 1.200 1.4 17.0 13 18 < 0.23 14 57

OLD 3OLD20002 1996 71 6.4 1.10 0.52 17.4 21.4 20.9 < 0.10 29.1 93.2 OLD 3OLD20002 2001 70 7.0 1.20 0.26 17.5 21.4 20.8 0.08 29.9 95.3 B OLD 3OLD20002 2006 64 8.1 0.90 < 0.30 17.0 15.0 18.0 0.24 27 87 OLD 3OLD20005 1996 50 5.0 0.70 0.30 11.4 8.8 11.4 < 0.10 17.2 56 OLD 3OLD20005 2001 45 5.9 0.88 0.23 12.1 14.8 14.0 0.06 19.8 68.1 B OLD 3OLD20005 2006 51 5.4 0.77 < 0.26 13 13 15 0.31 21 69 OLD 3OLD20007 1996 8 4.2 0.60 0.19 10.4 5.5 9.4 < 0.10 13.7 < 41.7 OLD 3OLD20007 2001 40 7.5 1.00 0.23 13.5 12.9 17.6 0.06 23.8 76.7 B OLD 3OLD20007 2006 71 6.5 0.87 0.22 14 11 15 0.16 23 74 OLD 3OLD20013 1996 29 7.8 1.3 0.28 19.1 21.9 25 < 0.1 27.4 88.2 OLD 3OLD20013 2001 26 8.1 1.4 < 0.50 18 17.2 20.2 0.059 24.8 73.9 B OLD 3OLD20013 2006 26 9.2 1.3 < 0.42 21 21 25 0.420 27 97 OLD 3OLD20018 1996 28 5.9 1.4 0.331 19.6 22.6 24.8 < 0.100 23.7 85.9 OLD 3OLD20018 2001 23 9 1.5 < 0.5 18.6 21.6 22.2 0.069 22 86.3 B OLD 3OLD20018 2006 23 < 8.5 1.3 < 0.43 22 21 26 0.26 25 102 OLD 3OLD20020 1996 36 8 1.1 0.38 17.6 23.5 22.8 < 0.10 27.2 87.7 OLD 3OLD20020 2001 23 7.7 1.3 0.15 18.2 25.2 20.7 0.075 27.5 98.3 B OLD 3OLD20020 2006 21 < 6.9 1.0 < 0.35 18 17 21 0.23 25 87 OLD 3OLD20021 1996 17 4 1.2 0.51 18.3 18.2 27.8 < 0.10 15.1 97.8 OLD 3OLD20021 2001 20 5 1.4 0.23 18.3 17.5 24.8 0.086 18 93.2 B OLD 3OLD20021 2006 20 < 6.7 1 < 0.34 19 13 23 0.22 18 100 OLD 3OLD20022 1996 22 6.1 1 0.35 13.9 17.5 17.4 < 0.100 24.2 68 OLD 3OLD20022 2001 24 6.5 1.20 0.19 15.2 18.2 19.2 0.06 26.4 78.5 B OLD 3OLD20022 2006 24 6.9 0.94 < 0.31 16 16 19 0.200 24 75 N: 227 227 227 227 227 227 227 227 226 Nondetects: 23 14 34 2 2 6 78 0 31 % Nondetect: 10.13 6.17 15 0.881 0.881 2.643 34.36 0 13.7 USGS Mean Baseline: 8.1 1.6 0.5 66 24 24 0.08 28 100 NOTES: NA=Not analyzed; Less than (<)=Not detected at reporting detection limit; J=estimated value, assumed less than contract required quantification limit (CRQL), but greater than or equal to method detection limit (MDL); B=found in blank. Bold=Outlier, per ProUCL assume ND equal to detection limit. Shaded=exceeds USGS mean baseline concentration. REFERENCES

ATSDR (Agency for Toxic Substances and Disease Registry), 2011. http://www.atsdr.cdc.gov/.

Brigham, M. E., Krabbenhoft, D. P., and P.A. Hamilton, 2003. Mercury in stream ecosystems -- new studies initiated by the U.S. Geological Survey. Fact Sheet 016-03, http://pubs.usgs.gov/fs/fs-016-03/.

Brown, L.R., Cuffney, T.F., Coles, J.F., Fitzpatrick, F., McMahon, G., Steuer, J., Bell, A.H., and J.T May, 2009. Urban streams across the USA: lessons learned from studies in nine metropolitan areas. Journal of the North American Benthological Society, 28(4):1051–1069.

Callendar, E. and K. C. Rice, 2000. The urban environmental gradient: anthropogenic influences on the spatial and temporal distributions of lead and zinc in sediments. Environmental Science & Technology, 34(2): 232-238.

Chalmers, A.T., Van Metre, P.C., and E. Callendar, 2007. The chemical response of particle-associated contaminants in aquatic sediments to urbanization in New England, U.S.A. Journal of Contaminant Hydrology, 91 (2007) 4–25.

Chapman, P.M., Wang, F., Janssen, C.R., Goulet, R.R, and C.N. Kamunde, 2003. Conducting ecological risk assessments of inorganic metals and metalloids: current status. Human and Ecological Risk Assessment, 9 (4): 641-697.

Councell T.B., Duckenfield, K.U., Landa, E.R., and E. Callender, 2004. Tire-wear particles as a source of zinc to the environment. Environmental Science & Technology, 38:4206–4214. de Smith, M.J., Goodchild, M.F., and P.A. Longley, 2006. Geospatial analysis: a comprehensive guide to principles, techniques and software tools, third edition, http://www.spatialanalysisonline.com/.

ESRI, 2008. ArcGIS 9.3 Data and Maps. CD of geospatial data accompanying ArcView 9.3 license.

Gilbert, R.O., 1987. Statistical Methods for Environmental Pollution Monitoring, Van Nostrand Reinhold, New York.

Gleick, P.H., 2003. Global freshwater resources: soft-path solutions for the 21st century. Science, 302:1524-1528.

Helsel, D.R., 1990. Less than obvious: statistical treatment of data below the detection limit. Environmental Science & Technology, 24(12):1766–74.

63

Helsel, D.R., 2005. More than obvious: better methods for interpreting nondetect data. Environmental Science & Technology, 39 (20), 419A–423A.

Helsel, D.R., 2010. Much ado about next to nothing: incorporating nondetects in science, Annals of Occupational Hygiene, 54(3): 257–262.

Hollister, J.W., August, P.V., and J. F. Paul, 2008. Effects of spatial extent on landscape structure and sediment metal concentration relationships in small estuarine systems of the United States’ Mid-Atlantic Coast. Landscape Ecology, 23:91–106.

Hornberger, G.M., Raffensperger, J.P., Wiberg, P.L., and K.N. Eshleman, 1998. Elements of Physical Hydrology. The Johns Hopkins University Press.

Horowitz, A.J. and V.C Stephens, 2008. The effects of land use on fluvial sediment chemistry for the conterminous U.S.: Results from the first cycle of the NAWAQ program: trace elements, phosphorus, carbon, and sulfur. Science of the Total Environment, 400:290-314.

KDEP (Kentucky Department of Environmental Protection), 2008. Final 2008 Integrated Report to Congress on the Condition of Water Resources in Kentucky, Volume II., 303(d) List of Surface Waters, http://water.ky.gov/waterquality/303d%20Lists/2008volume2final.pdf.

MacDonald D.D., Ingersoll C.G., Berger T.A., 2000. Development and evaluation of consensus-based quality guidelines for freshwater ecosystems. Archives of Environmental Contamination and Toxicology, 39:20–31.

MacDonald, D.D. and C. G. Ingersoll, 2002. A Guidance Manual to Support the Assessment of Contaminated Sediments in Freshwater Ecosystems, Volume II – Design and Implementation of Sediment Quality Investigations, EPA-905-B02-001-B, for the U.S. Environmental Protection Agency, Great Lakes National Program Office, http://www.epa.gov/greatlakes/sediment/Vol2.pdf.

Mahler, B.J., P.C. Van Metre, and E. Callendar, 2006. Trends in metals in urban and reference lake sediments across the United States, 1970 to 2001. Environmental Toxicology and Chemistry, 25(7):1698–1709.

McGrew J. C. and C.B. Monroe, 2000. An Introduction to Statistical Problem-Solving in Geography, 2nd edition. McGraw Hill, Boston.

Mitchell, A., 1999. The ESRI Guide To GIS Analysis, Volume I: Geographic Patterns And Relationships. ESRI Press, Redlands, CA.

64

Moltz, H.L., Rast, W., Lopes, V.L., and S.J. Ventura, 2011. Use of spatial surrogates to assess the potential for non-point source pollution in large watersheds, Lakes & Reservoirs: Research and Management, 16:3-13.

MRLC (Multi-Resolution Land Cover Consortium), 2011. National land cover dataset, 2006 http://www.mrlc.gov/nlcd2006.php.

Novotny,V., and H. Olem, 1994. Water Quality: Prevention, Identification, and Management of Diffuse Pollution. Van Nostrand Reinhold, New York.

Ongley, E. D., 1996. Chapter 13, Sediment Measurements, IN: Water Quality Monitoring: A Practical Guide To The Design And Implementation Of Freshwater Quality Studies and Monitoring Programmes, pages 317-332, United Nations Environment Programme and the World Health Organization. Bartram, J. and R. Ballance (eds).

Paul, M.J. and J.L. Meyer, 2001. Streams in the urban landscape. Annual Review of Ecology, Evolution, and Systematics, 32: 333–65.

Percival, R.V., Schroeder, C.H., Miller, A.S., and J.P. Leape (eds.), 2009. Environmental Regulation: Law, Science, and Policy, 6th edition, Aspen Publishing, Wolters Kluwer, Austin, Texas.

Rice, K.C., 1999. Trace-element concentrations in streambed sediment across the conterminous United States. Environmental Science & Technology, 33: 2499-2504.

Rijsberman, F.R., 2006. Water scarcity: fact or fiction? Agricultural Water Management, 80:5-22.

Roy, A.H., Dybas, A.L., Fritz, K.M., and H.R. Lubbers, 2009. Urbanization affects the extent and hydrologic permanence of headwater streams in a midwestern US metropolitan area. Journal of the North American Benthological Society, 28(4):911–928.

Singh, A., 2006. On the Computation of a 95%Upper Confidence Limit of the Unknown Population Mean Based Upon Data Sets with Below Detection Limit Observations, EPA/600/R-06/022, http://www.epa.gov/esd/tsc/appendix/EPA600R-06-022.pdf.

Sneed, R., 2006. Personal Communication with L. Benneyworth and Robert Sneed of USACE, Nashville District.

Sneed, R., 2011. Personal Communication with L. Benneyworth and Robert Sneed of USACE, Nashville District.

TDEC (Tennessee Department of Environmental Conservation), 2010. Draft 2010 303 (d) List, May 2010, www.state.tn.us/environment/ water.shtml.

65

Tippit, R. and M. Campbell, 2011. Personal Communication with L. Benneyworth, Richard Tippit, and Mark Campbell of USACE, Nashville District.

UNEP (United Nations Environment Programme), 1999. Division of Technology, Industry and Economics. Newsletter and Technical Publications. Planning and management of lakes and reservoirs: an integrated approach to eutrophication (TP-11), http://www.unep.or.jp/ietc/Publications/techpublications/TechPub-11/.

UNEP (United Nations Environment Programme), 2000. Division of Technology, Industry and Economics. Newsletter and Technical Publications Short Series. Lakes and reservoirs - similarities, differences and importance (SS-1), http://www.unep.or.jp/ietc/publications/short_series /lakereservoirs-1/index.asp.

USACE (U.S. Army Corps of Engineers), 1994. USACE guidance #1110-2-26, Water Quality Investigations and Control Activities. [not available online]

USACE (U.S. Army Corps of Engineers), 1996. Operational Assessment, Cumberland River Basin, Ohio River Division, Nashville District. [not available online]

USACE (U.S. Army Corps of Engineers), 2010. After Action Report: May 2010 Flood Event, Cumberland River Basin, 1-3 May 2010, Great Lakes and Ohio River Division, http://www.orn.usace.army.mil/LRN_pdf/AAR/LRN%20AAR%20Final.pdf

U.S. Census Bureau, 2002. Federal Register, 67(84): 21962-21967, May 1, 2002.

U.S. Census Bureau, 2011. Census 2000, urban and rural classification, http://www.census.gov/geo/www/ua/ua_2k.html.

USDOE (U.S. Department of Energy), 1996. Toxic substances from coal combustion: a comprehensive assessment. Quarterly Report 7/1/96 to 9/30/96, PSI-1245, DOE/PC/95101-T4.

USEPA (U.S. Environmental Protection Agency), 1989. Risk Assessment Guidance for Superfund Volume I, Human Health Evaluation Manual (Part A), Interim Final, EPA/540/1-89/002, http://www.epa.gov/oswer/riskassessment/ragsa/pdf/preface.pdf.

USEPA (U.S. Environmental Protection Agency), 1994. Test Methods for Evaluating Solid Waste, Physical/Chemical Methods,SW846, as revised 2007, http://www.epa.gov/epawaste/hazard/testmethods/sw846/index.htm.

USEPA (U.S. Environmental Protection Agency), 1997. The Incidence and Severity of Sediment Contamination in Surface Waters of the United States, volume 1-National Sediment Survey, EPA-823-R-97-006, http://water.epa.gov/polwaste/sediments/cs/report1997_index.cfm.

66

USEPA (U.S. Environmental Protection Agency), 2002. National Water Quality Inventory: 2000 Report to Congress, EPA-841-R-02-001, nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=20004R2T.txt

USEPA (U.S. Environmental Protection Agency), 2004. The Incidence and Severity of Sediment Contamination in Surface Waters of the United States, 2nd ed., EPA-823-R-04- 007, http://water.epa.gov/polwaste/sediments/cs/report2004_index.cfm.

USEPA (U.S. Environmental Protection Agency), 2005. National Management Measures to Control Nonpoint Source Pollution from Urban Areas, EPA-841-B-05-004, http://www.epa.gov/owow/NPS/urbanmm/pdf/urban_guidance.pdf.

USEPA (U.S. Environmental Protection Agency), 2009a. National Lakes Assessment: A Collaborative Survey of the Nation’s Lakes, EPA 841-R-09-001, http://www.epa.gov/owow/LAKES/lakessurvey/pdf/nla_chapter0.pdf.

USEPA (U.S. Environmental Protection Agency), 2009b. Characterization of Coal Combustion Residues from Electric Utilities – Leaching and Characterization Data, EPA-600/R-09/151, http://www.epa.gov/nrmrl/pubs/600r09151/600r09151.pdf.

USEPA (U.S. Environmental Protection Agency), 2009c. National Water Quality Inventory: 2004 Report to Congress, EPA 841-R-08-001, http://www.epa.gov/owow/305b/2004report/2004_305Breport.pdf.

USEPA (U.S. Environmental Protection Agency), 2010. ProUCL Version 4.1 User Guide (Draft): Statistical Software for Environmental Applications for Data Sets With and Without Nondetect Observations, EPA/600/R-07/041, http://www.epa.gov/osp/hstl/tsc/ProUCL_v4.1_user.pdf.

USEPA (U.S. Environmental Protection Agency), USEPA, 2011a. Water Quality Assessment and Total Maximum Daily Loads Information, Watershed Assessment, Tracking & Environmental Results (WATERS), http://www.epa.gov/waters/ir/.

USEPA (U.S. Environmental Protection Agency), USEPA, 2011b. ProUCL Webinar, ORD Site Characterization and Monitoring Technical Support Center. Part 1 (3/9/11), http://www.clu-in.org/conf/tio/ProUCLBasic_030911/; and Part 2 (3/16/11), http://www.clu-in.org/conf/tio/ProUCLAdv_031611/.

USEPA (U.S. Environmental Protection Agency), USEPA, 2011c. ProUCLVersion 4.1.00 Technical Guide, Draft. EPA/600/R-07/041, http://www.epa.gov/osp/hstl/tsc/ProUCL_v4.1_tech.pdf.

USEPA (U.S. Environmental Protection Agency), USEPA, 2011d. Online Geospatial Database updated April 2011, http://www.epa.gov/enviro/geo_data.html.

67

USGS (U.S. Geological Survey), 2009. Derivation of Nationally Consistent Indices Representing Urban Intensity Within and Across Nine Metropolitan Areas of the Conterminous United States, Scientific Investigations Report 2008-5095, http://pubs.usgs.gov/sir/2008/5095/.

USGS (U.S. Geological Survey), 2011. Sampling trace elements in urban environmental settings, National Water Quality Assessment Program. http://co.water.usgs.gov/nawqa/urbanPortal /html/traceelements_urban.html.

Van Metre P.C., Mahler B.J., 2003. The contribution of particles washed from rooftops to contaminant loading to urban streams. Chemosphere, 52:1727–1741.

Van Metre, P. C. and B. J. Mahler, 2004. Contaminant trends in reservoir sediment cores as records of influent stream quality. Environmental Science & Technology, 38(11):2978-2984.

WES (U.S. Army Engineer Research and Development Center, Waterways Experiment Station), 1998. The WES Handbook on Water Quality Enhancement Techniques for Reservoirs and Tailwaters, http://chl.erdc.usace.army.mil/chl.aspx?p=s&a=Publications!26.

68