Sagnac Interferometer

Total Page:16

File Type:pdf, Size:1020Kb

Sagnac Interferometer Sagnac interferometer Mahesh Gandikota Lab partner: Srijit Paul March 12, 2014 Contents 1 History 2 1.1 Absolute rotation . 2 1.2 Sagnac's interferometer . 2 1.3 Michelson-Gale interferometer . 3 1.4 Gyroscopes . 4 2 Theory 5 2.1 Laser . 5 2.2 Fabry-Perot etalon . 7 2.3 Interferometer . 8 2.3.1 Kinematic analysis . 8 2.3.2 Langevin method . 9 2.3.3 Sagnac's formula . 10 2.3.4 Beats . 10 3 Procedure 11 4 Analysis 11 4.1 Beats . 11 4.2 Fourier transform graphs . 14 5 Observations 17 6 Conclusions 18 7 Acknowledgement 18 8 References 18 1 1 History 1.1 Absolute rotation A person moving with a uniform velocity in a vehicle over a road can find out that he is moving if he looks out of the window. However, by performing any experiment (mechanical/optical) inside the vehicle, he cannot conclude that he is in a state of uniform motion with respect to the ground. There are a set of frames which are called the inertial frames which are physically equivalent to each other. The co-ordinate transformations between such frames are given by the Lorentz transformations. However, when a disk is rotating, the motion is taken to be absolute1. An experimenter on the disk can conclude by the results of experiments that he is in a non-inertial rotating frame. He can also measure the angular velocity of the disk. Foucault[10], in 1852, standing on earth could conclude that the earth is rotating and measured it's angular speed using his pendulum. Sagnac interferometer is an optical analogue of Foucault's pendulum which was used by Michelson and Gale to measure the angular velocity of the earth. 1.2 Sagnac's interferometer In 1911, Franz Haress was working on his doctoral thesis and was trying to measure the Fresnel drag of light propagating through moving glass. He was getting an unexplained bias in his measurements which he could not account for. Figure 1: Haress's ring interferometer[2] Sagnac[1] in 1913 did an experiment where he had a rotating table of diameter of 50 cm which firmly anchored various parts of an interferometer: an electric lamp and a telescope which focusses the fringes onto a fine-grained photographic plate which records the image. The table rotated about a vertical axis with a maximum frequency of 2Hz. 1I guess that's the reason no one says that a disk is rotating with respect to a given inertial frame. They simply say that the disk is rotating. 2 Figure 2: Sagnac's original interferometer[2] For a rotational frequency of 2 turns per second, and an area enclosed by the circuit to be 860cm, for indigo light2, he found the fringe shift to be 0.07. He concluded that the results constitute a proof for the existence of a stationary aether. However Laue[6] had already showed that the results can alternately be explained by special relativity too which doesn't suppose the existence of aether. 1.3 Michelson-Gale interferometer Figure 3: Michelson-Gale interferometer[2] 2His lamp produced multi-coloured fringes. Indigo, having the least wavelength should be expected to show the best fringe shift. 3 Michelson[5] wrote, Suppose it were possible to transmit two pencils of light in opposite directions around the earth parallel to the equator, returning the pencils to the starting- point. If the rotation of the earth does not entrain the aether, it is clear that one of the two pencils will be accelerated and the other retarded (relatively to the observing apparatus) by a quantity proportional to the velocity of the earth's surface, and to the length of the parallel of latitude at the place; so that a measurement of the difference of time required for the two pencils to traverse the circuit would furnish a quantitative test of the entrainement. The experiment results gave one more proof against aether drag hypothesis. However, this experiment is consistent with both stationary aether concept and relativity. The experiment was a major optical achievement considering that the whole of the 1.2 miles of trajectory was maintained at vacuum. 1.4 Gyroscopes Gyroscope is a device for measuring or maintaining the orientation of a vehicle, satellite, etc[11]. In the 19th century, with the advent of electric motors, gyroscopes were built by using the principle of conservation of angular momentum. A ship for example had a heavy fly-wheel which was rotated by an electric motor with an angular velocity whose direction matched with the needle of the ship. Further into the sea, if the ship losed it's orientation (needle not matching the axis of flywheel), then the sailor would know that the ship is moving the wrong way. The axis of the fly-wheel wouldn't change to conserve the angular momentum. Figure 4: A ship moving away from the shore 4 In the 21st century, the principle of constancy of speed of light is used in making more precise and much lighter gyroscopes. These gyroscopes are Sagnac interferometers. 2 Theory 2.1 Laser Charged particles emit electromagnetic radiation when they accelerate. Thermal radia- tion is such EM radiation produced due to the thermal motion of charged particles. By keeping a radiating source inside, say a cubic box; at thermodynamic equilibrium, the radiation field E~ is stationary. The field can be described by the superposition of plane waves. By the virtue of interference of these plane waves, a stationary field configuration may be ensured only when the plane-waves superpose to give standing waves[9]. This imposes certain boundary conditions on the wavelengths that can occur in this square cavity at thermal equilibrium. The permitted wavelengths are: 2L λ = (1) p 2 2 2 n1 + n2 + n3 where L is the length of the cube and n1; n2; n3 are positive integers. These standing waves are called cavity modes. At large L, an almost continuous distribution of modes are possible. The density of modes that occur at a given ν can be derived to be, 8πν2 n(ν) = (2) c3 The radiation can be seen to be isotropic in space as no particular direction is pre- ferred. Planck introduced the concept of photons to explain the experimentally observed energy density for cavities which have attained thermal equilibrium. The energy density corresponding to different frequencies is derived to be, 8πν2 hν ρ(ν) = 3 hν (3) c e kT − 1 Lasers on the other hand represent an extreme case of a non-thermal and an anisotropic radiation source. The radiation field is concentrated in a few modes and most of the ra- diation energy is emitted into a small solid angle. Lasers consist of an active medium which contains a broad band of absorption states, a metastable state and a ground state. This forms a three level laser. The active medium is contained between two mirrors, one of them partially silvered. This geometry is called the resonant cavity. Through optical pumping, population inversion from ground state to the metastable state is achieved. A few photons which are spontaneously emitted due to electrons jumping from the metastable to ground state, stimulate more electrons in the metastable state to decay and emit photons. This is called stimulated emission which causes a chain reaction and an intense laser beam comes out from the partially silvered mirror. Like a radiating source in a box which is in thermal equilibrium has certain modes, even a laser has modes called resonant modes. These are the modes that survive after 5 the diffraction losses of other modes which initially exist but die after repeated internal reflections in the cavity. The condition for a standing wave configuration is mλm = 2L where L is the length of the cavity and m is a positive integer. Thus, the possible longitudinal modes in the resonant cavity are, 2L λ = (4) m m From the Kirchoff diffraction theory, it can be shown that transverse modes are possible too in the resonant cavity. Figure 5: The three level system [8] 6 Figure 6: Few TEM modes in a laser[8] 2.2 Fabry-Perot etalon To select a particular mode, a Fabry-Perot etalon is used. By changing the angle which the normal makes with the laser beam, the T00 mode may be selected. Figure 7: Etalon tuned to resonance - cw and ccw beam have same frequency [7] The cw and the ccw frequency are the same at the resonance orientation of the etalon. When the interferometer rotates, the frequencies of both change due to Doppler shift. 7 2.3 Interferometer In this section, the working formula of Sagnac effect will be derived by kinematic analysis and Langevin's[3] approach. The notations used are as in Post[2]. 2.3.1 Kinematic analysis Figure 8: Simplified Sagnac configuration [2] A platform of radius R is rotating with angular velocity Ω in clockwise direction. Two beams of light, one clockwise(cw), other counter clock-wise(ccw) beam leave the beam- splitter whose initial position is at C. We use here that the speed of light is independent of the source speed. The ccw beam has to travel a lesser distance to meet the beam-splitter at C0. The cw beam travels more distance to meet the beam-splitter at C00. 2πR − ∆s0 = cτ 0 (5) 2πR + ∆s00 = cτ 00 Also, ∆s0 = vτ 0 = ΩRτ 0 (6) ∆s00 = vτ 00 = ΩRτ 00 00 0 Defining ∆τs ≡ τ − τ to be the time-difference between the two beams reaching the beam-splitter, a little algebra gives 4AΩ τ = (7) s c2 − (ΩR)2 A = πR2 is the area of the circle.
Recommended publications
  • The Sagnac Effect: Does It Contradict Relativity?
    The Sagnac Effect: Does it Contradict Relativity? By Doug Marett 2012 A number of authors have suggested that the Sagnac effect contradicts the original postulates of Special Relativity, since the postulate of the constancy of the speed of light is violated in rotating systems. [1,2,3] Sagnac himself designed the experiment of 1913 to prove the existence of the aether [4]. Other authors have attempted to explain the effect within the theoretical framework of relativity, even going as far as calling the effect “relativistic”.[5] However, we seek in this paper to show how the Sagnac effect contravenes in principle the concept of the relativity of time and motion. To understand how this happens and its wider implications, it is necessary to look first at the concept of absolute vs. relative motion, what the Sagnac effect implies about these motions, and what follows logically about the broader notions of space and time. Early Ideas Regarding Rotation and Absolute Motion: The fundamental distinction between translational and rotational motion was first pointed out by Sir Isaac Newton, and emphasized later by the work of Ernest Mach and Heinrich Hertz. One of the first experiments on the subject was Newton’s bucket experiment of 1689. It was an experiment to demonstrate that true rotational motion cannot be defined as relative rotation of a body with respect to surrounding bodies – that true motion and rest should be defined relative to absolute space instead. In Newton’s experiment, a bucket is filled with water and hung by a rope. If the rope is twisted around and around until it is tight and then released, the bucket begins to spin rapidly, not only with respect to the observers watching it, but also with respect to the water in the bucket, which at first doesn’t move and remains flat on its surface.
    [Show full text]
  • Theoretical Analysis of Generalized Sagnac Effect in the Standard Synchronization
    Theoretical Analysis of Generalized Sagnac Effect in the Standard Synchronization Yang-Ho Choi Department of Electrical and Electronic Engineering Kangwon National University Chunchon, Kangwon-do, 200-701, South Korea Abstract: The Sagnac effect has been shown in inertial frames as well as rotating frames. We solve the problem of the generalized Sagnac effect in the standard synchronization of clocks. The speed of a light beam that traverses an optical fiber loop is measured with respect to the proper time of the light detector, and is shown to be other than the constant c, though it appears to be c if measured by the time standard-synchronized. The fiber loop, which can have an arbitrary shape, is described by an infinite number of straight lines such that it can be handled by the general framework of Mansouri and Sexl (MS). For a complete analysis of the Sagnac effect, the motion of the laboratory should be taken into account. The MS framework is introduced to deal with its motion relative to a preferred reference frame. Though the one-way speed of light is other than c, its two-way speed is shown to be c with respect to the proper time. The theoretical analysis of the generalized Sagnac effect corresponds to the experimental results, and shows the usefulness of the standard synchronization. The introduction of the standard synchrony can make mathematical manipulation easy and can allow us to deal with relative motions between inertial frames without information on their velocities relative to the preferred frame. Keywords: Generalized Sagnac effect, Standard synchronization, Speed of light, Test theory, General framework for transformation PACS numbers: 03.30.+p, 02.10.Yn, 42.25.Bs This paper will be published in Can.
    [Show full text]
  • The Sagnac Effect and Pure Geometry Angelo Tartaglia and Matteo Luca Ruggiero
    The Sagnac effect and pure geometry Angelo Tartaglia and Matteo Luca Ruggiero Citation: American Journal of Physics 83, 427 (2015); doi: 10.1119/1.4904319 View online: http://dx.doi.org/10.1119/1.4904319 View Table of Contents: http://scitation.aip.org/content/aapt/journal/ajp/83/5?ver=pdfcov Published by the American Association of Physics Teachers Articles you may be interested in Temperature insensitive refractive index sensor based on single-mode micro-fiber Sagnac loop interferometer Appl. Phys. Lett. 104, 181906 (2014); 10.1063/1.4876448 Transmission and temperature sensing characteristics of a selectively liquid-filled photonic-bandgap-fiber-based Sagnac interferometer Appl. Phys. Lett. 100, 141104 (2012); 10.1063/1.3699026 Sagnac-loop phase shifter with polarization-independent operation Rev. Sci. Instrum. 82, 013106 (2011); 10.1063/1.3514984 Sagnac interferometric switch utilizing Faraday rotation J. Appl. Phys. 105, 07E702 (2009); 10.1063/1.3058627 Magnetic and electrostatic Aharonov–Bohm effects in a pure mesoscopic ring Low Temp. Phys. 23, 312 (1997); 10.1063/1.593401 This article is copyrighted as indicated in the article. Reuse of AAPT content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP: 130.192.119.93 On: Tue, 21 Apr 2015 17:40:31 The Sagnac effect and pure geometry Angelo Tartagliaa) and Matteo Luca Ruggiero DISAT, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, Italy and INFN, Sezione di Torino, Via Pietro Giuria 1, Torino, Italy (Received 24 July 2014; accepted 2 December 2014) The Sagnac effect is usually deemed to be a special-relativistic effect produced in an interferometer when the device is rotating.
    [Show full text]
  • Completed by Dufour & Prunier(1942)
    Sagnac(1913) completed by Dufour & Prunier(1942) Robert Bennett [email protected] Abstract The 1913 Sagnac test proved to be a critical experiment that refuted Special Relativity (as Sagnac intended) and supported a model of aether that could be entrained like material fluids. But it also generated more questions, such as: What is the Speed of Light(SoL) in the lab frame? What if the optical components of the interferometer were moving relative to each other..some in the lab frame, some in the rotor frame…testing the emission model of light transmission? What if the half beams were directed above the plane of the rotor? All these questions were answered in an extension of the Sagnac test done 29 years after the SagnacX by D&P. An analytic review of On a Fringe Movement Registered on a Platform in Uniform Motion (1942). Dufour and F. Prunier J. de Physique. Radium 3 , 9 (1942) P 153-162 On a Fringe Movement Registered on a Platform in Uniform Motion (1942). A Review .. we used an optical circuit entirely fixed to the rotating platform, as did Sagnac. Under these same conditions we found that the movement of fringes observed are similar within 6%, whether the light source and photographic receiver be dragged in the rotation of the platform, as in the experiments of Sagnac, or they remain fixed in the laboratory. Sagnac and D&P both found SoL = c +- v in the rotor frame. D&P found SoL = c +- v also, in the lab frame (optical bench at rest, empty platform spinning below it) This alone disproves Special Relativity, as SoL <> c The second series of experiments described here was aimed to explore the fringe displacement due to rotation, in entirely new conditions where the optical circuit of the two superimposed interfering beams is composed of two parts in series, one of which remains fixed in relation to the laboratory while the other is attached to the rotating platform.
    [Show full text]
  • Sagnac Effect: the Ballistic Interpretation
    Sagnac Effect: The Ballistic Interpretation A. A. Faraj [email protected] Abstract: The primary objective, in the present investigation, is to calculate time-of-flight differences between the co-rotating beam and the counter-rotating beam, over the optical square loop of the Sagnac interferometer, in accordance with the assumption of velocity of light dependent upon the velocity of the light source; and then to compare the obtained results to the computed time-of-flight differences between the same two beams, based on the assumption of velocity of light independent of the velocity of the light source. And subsequently, on the basis of the numerical results of those calculations, it's concluded that, because of the presence of ballistic beaming, the Sagnac interferometer, and rotating interferometers, generally, are incapable of providing any conclusive experimental evidence for or against either one of the two diametrically opposed assumptions, under investigation. In the 1913 Sagnac experiment, for instance, the numerical values of the time-of-flight differences, as predicted by these two propositions, differ from each other by no more than an infinitesimal fraction equal to about 10-30 of a second. Keywords: Sagnac effect; fringe shift; constant speed of light; angular velocity; ballistic speed of light; headlight effect; rotating interferometer; ballistic beaming. Introduction: Undoubtedly, one of the most common oversights in the calculations of Sagnac effect and related phenomena, on the basis of the proposition of ballistic velocity of light, in the published literature, is the incorrect assumption that light traveling at the velocity of c and light traveling at the velocity resultant of c & v must always have together and share in harmony the same exact light path.
    [Show full text]
  • Special Relativity: a Centenary Perspective
    Special Relativity: A Centenary Perspective Clifford M. Will McDonnell Center for the Space Sciences and Department of Physics Washington University, St. Louis MO 63130 USA Contents 1 Introduction 1 2 Fundamentals of special relativity 2 2.1 Einstein’s postulates and insights . ....... 2 2.2 Timeoutofjoint ................................. 3 2.3 SpacetimeandLorentzinvariance . ..... 5 2.4 Special relativistic dynamics . ...... 7 3 Classic tests of special relativity 7 3.1 The Michelson-Morley experiment . ..... 7 3.2 Invariance of c ................................... 9 3.3 Timedilation ................................... 9 3.4 Lorentz invariance and quantum mechanics . ....... 10 3.5 Consistency tests of special relativity . ......... 10 4 Special relativity and curved spacetime 12 4.1 Einstein’s equivalence principle . ....... 13 4.2 Metrictheoriesofgravity. .... 14 4.3 Effective violations of local Lorentz invariance . ........... 14 5 Is gravity Lorentz invariant? 17 arXiv:gr-qc/0504085v1 19 Apr 2005 6 Tests of local Lorentz invariance at the centenary 18 6.1 Frameworks for Lorentz symmetry violations . ........ 18 6.2 Modern searches for Lorentz symmetry violation . ......... 20 7 Concluding remarks 21 References........................................ 21 1 Introduction A hundred years ago, Einstein laid the foundation for a revolution in our conception of time and space, matter and energy. In his remarkable 1905 paper “On the Electrodynamics of Moving Bodies” [1], and the follow-up note “Does the Inertia of a Body Depend upon its Energy-Content?” [2], he established what we now call special relativity as one of the two pillars on which virtually all of physics of the 20th century would be built (the other pillar being quantum mechanics). The first new theory to be built on this framework was general relativity [3], and the successful measurement of the predicted deflection of light in 1919 made both Einstein the person and relativity the theory internationally famous.
    [Show full text]
  • Relativistic Effects on Satellite Navigation
    Ž. Hećimivić Relativistički utjecaji na satelitsku navigaciju ISSN 1330-3651 (Print), ISSN 1848-6339 (Online) UDC/UDK 531.395/.396:530.12]:629.056.8 RELATIVISTIC EFFECTS ON SATELLITE NAVIGATION Željko Hećimović Subject review The base of knowledge of relativistic effects on satellite navigation is presented through comparison of the main characteristics of the Newtonian and the relativistic space time and by a short introduction of metric of a gravity field. Post-Newtonian theory of relativity is presented as a background in numerical treating of satellite navigation relativistic effects. Time as a crucial parameter in relativistic satellite navigation is introduced through coordinate and proper time as well as terrestrial time and clocks synchronization problem. Described are relativistic effects: on time dilation, on time differences because of the gravity field, on frequency, on path range effects, caused by the Earth rotation, due to the orbit eccentricity and because of the acceleration of the satellite in the theory of relativity. Overviews of treatment of relativistic effects on the GPS, GLONASS, Galileo and BeiDou satellite systems are given. Keywords: satellite navigation, GNSS, post-Newton theory of relativity, relativistic effects, GPS, GLONASS, Galileo, BeiDou Relativistički utjecaji na satelitsku navigaciju Pregledni rad Osnovna znanja o relativističkim utjecajima na satelitsku navigaciju objašnjena su usporedbom glavnih karakteristika Newtonovog i relativističkog prostora vremena te kratkim uvodom u metriku gravitacijskog polja. Post-Newtonova teorija relativnosti objašnjena je kao osnova pri numeričkoj obradi relativističkih utjecaja u području satelitske navigacije. Vrijeme, kao vrlo važan parametar u relativističkoj satelitskoj navigaciji, objašnjeno je kroz koordinatno i vlastito vrijeme te kroz terestičko vrijeme i problem sinkronizacije satova.
    [Show full text]
  • Experiments on the Speed of Light
    Journal of Applied Mathematics and Physics, 2019, 7, 1240-1249 http://www.scirp.org/journal/jamp ISSN Online: 2327-4379 ISSN Print: 2327-4352 Experiments on the Speed of Light José R. Croca1,2, Rui Moreira1, Mário Gatta1,3, Paulo Castro1 1Center for Philosophy of Sciences of the University of Lisbon (CFCUL), Lisbon, Portugal 2Department of Physics, Faculty of Sciences, University of Lisbon, Lisbon, Portugal 3CINAV and Escola Naval (Portuguese Naval Academy), Lisbon, Portugal How to cite this paper: Croca, J.R., Mo- Abstract reira, R., Gatta, M. and Castro, P. (2019) Experiments on the Speed of Light. Journal Many experiments concerning the determination of the speed of light have of Applied Mathematics and Physics, 7, been proposed and done. Here two important experiments, Michel- 1240-1249. son-Morley and Sagnac, will be discussed. A linear moving variation of Mi- https://doi.org/10.4236/jamp.2019.75084 chelson-Morley and Sagnac devices will then be proposed for probing expe- Received: February 21, 2019 rimentally the invariance of the speed of light. Accepted: May 28, 2019 Published: May 31, 2019 Keywords Copyright © 2019 by author(s) and Speed of Light, Michelson-Morley Experiment, Sagnac Experiment, One-Arm Scientific Research Publishing Inc. Linear Moving Michelson-Morley and One-Beam Sagnac Interferometer This work is licensed under the Creative Variants Commons Attribution International License (CC BY 4.0). http://creativecommons.org/licenses/by/4.0/ Open Access 1. Introduction Starting with Galileo, many experiments to study the speed of light have been proposed and done. One of the most famous, designed to study the existence of a hypothetical luminiferous aether, was undoubtedly the Michelson and Morley experiment [1].
    [Show full text]
  • Non-Hermitian Ring Laser Gyroscopes with Enhanced Sagnac Sensitivity
    Non-Hermitian Ring Laser Gyroscopes with Enhanced Sagnac Sensitivity Mohammad P. Hokmabadi1, Alexander Schumer1,2, Demetrios N. Christodoulides1, Mercedeh Khajavikhan1* 1CREOL, College of Optics & Photonics, University of Central Florida, Orlando, Florida 32816, USA 2Institute for Theoretical Physics, Vienna University of Technology (TU Wien), 1040, Vienna, Austria, EU *Corresponding author: [email protected] Gyroscopes play a crucial role in many and diverse applications associated with navigation, positioning, and inertial sensing [1]. In general, most optical gyroscopes rely on the Sagnac effect- a relativistically induced phase shift that scales linearly with the rotational velocity [2,3]. In ring laser gyroscopes (RLGs), this shift manifests itself as a resonance splitting in the emission spectrum that can be detected as a beat frequency [4]. The need for ever-more precise RLGs has fueled research activities towards devising new approaches aimed to boost the sensitivity beyond what is dictated by geometrical constraints. In this respect, attempts have been made in the past to use either dispersive or nonlinear effects [5-8]. Here, we experimentally demonstrate an altogether new route based on non-Hermitian singularities or exceptional points in order to enhance the Sagnac scale factor [9-13]. Our results not only can pave the way towards a new generation of ultrasensitive and compact ring laser gyroscopes, but they may also provide practical approaches for developing other classes of integrated sensors. Sensing involves the detection of the signature that a perturbing agent leaves on a system. In optics and many other fields, resonant sensors are intentionally made to be as lossless as possible so as to exhibit high quality factors [14-17].
    [Show full text]
  • Quantum Enhancement of the Zero-Area Sagnac Interferometer Topology for Gravitational Wave Detection
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE week endingprovided by MPG.PuRe PRL 104, 251102 (2010) PHYSICAL REVIEW LETTERS 25 JUNE 2010 Quantum Enhancement of the Zero-Area Sagnac Interferometer Topology for Gravitational Wave Detection Tobias Eberle,1,2 Sebastian Steinlechner,1 Jo¨ran Bauchrowitz,1 Vitus Ha¨ndchen,1 Henning Vahlbruch,1 Moritz Mehmet,1,2 Helge Mu¨ller-Ebhardt,1 and Roman Schnabel1,* 1Max-Planck-Institut fu¨r Gravitationsphysik (Albert-Einstein-Institut) and Institut fu¨r Gravitationsphysik der Leibniz Universita¨t Hannover, Callinstraße 38, 30167 Hannover, Germany 2Centre for Quantum Engineering and Space-Time Research–QUEST, Leibniz Universita¨t Hannover, Welfengarten 1, 30167 Hannover, Germany (Received 26 February 2010; published 22 June 2010) Only a few years ago, it was realized that the zero-area Sagnac interferometer topology is able to perform quantum nondemolition measurements of position changes of a mechanical oscillator. Here, we experimentally show that such an interferometer can also be efficiently enhanced by squeezed light. We achieved a nonclassical sensitivity improvement of up to 8.2 dB, limited by optical loss inside our inter- ferometer. Measurements performed directly on our squeezed-light laser output revealed squeezing of 12.7 dB. We show that the sensitivity of a squeezed-light enhanced Sagnac interferometer can surpass the standard quantum limit for a broad spectrum of signal frequencies without the need for filter cavities as required for Michelson interferometers. The Sagnac topology is therefore a powerful option for future gravitational-wave detectors, such as the Einstein Telescope, whose design is currently being studied.
    [Show full text]
  • Critique of Special Relativity (Prp-1)
    CRITIQUE OF SPECIAL RELATIVITY (PRP-1) INTRODUCTION In 1887 Michelson and Morley attempted to measure the ether drift caused by the motion of the earth (at 30 km/s) in its orbit around the sun. The null result surprised everybody and for 18 years physicists tried unsuccessfully to explain the enigma. Finally, in 1905, Einstein published his revolutionary Special Theory of Relativity (STR) which rejected the ether and was quite controversial. It survived because a better solution has never been found. This may now gradually be changing. The present “Critique of Special Relativity” (PRP-1) is the first in a series of papers about “Post-Relativity Physics” (PRP). It is organized in 3 parts: Part I discusses alternative solutions in PRP for experiments and observation explained by STR. Part II discusses false arguments in favor of Special Relativity. It shows how the Sagnac effect and the GPS system have a natural explanation in classical physics, thus eliminating the need for alternative explanations in Relativity. In addition it shows that the proposed alternatives cannot work due to a fundamental flaw in Special Relativity so that the Sagnac effect and the GPS system actually disprove Relativity. Part III discusses experiments and observations which clearly disprove Special Relativity. PART I - ALTERNATIVE SOLUTIONS IN PRP FOR EXPERIMENTS EXPLAINED IN STR 1. THE ASSUMPTION OF ATOMIC RESONANCE CONTRACTION (ARC) Atomic Resonance Contraction (ARC) is a surprisingly simple alternative to STR’s kinematics. If we assume that atoms and therefore all solid objects contract by a factor 1/γ 2 in the direction of motion through the ether and by a factor 1/γ perpendicular to that motion (where γ = 1/(1-β2)1/2 with β = vc/ ) most ether drift experiments can easily be explained in classical physics.
    [Show full text]
  • Planck Mass Plasma Vacuum Conjecture
    Planck Mass Plasma Vacuum Conjecture F. Winterberg University of Nevada, Reno, Nevada, USA Reprint requests to Prof. F. W.; Fax: (775)784-1398 Z. Naturforsch. 58a, 231 – 267 (2003); received July 22, 2002 As an alternative to string field theories in R10 (or M theory in R11) with a large group and a very large number of possible vacuum states, we propose SU2 as the fundamental group, assuming that nature works like a computer with a binary number system. With SU2 isomorphic to SO3, the rotation group in R3, explains why R3 is the natural space. Planck’s conjecture that the fundamental equations of physics should contain as free parameters only the Planck length, mass and time, requires to replace differentials by rotation – invariant finite difference operators in R3. With SU2 as the fundamental group, there should be negative besides positive Planck masses, and the freedom in the sign of the Planck force permits to construct in a unique way a stable Planck mass plasma composed of equal numbers of positive and negative Planck mass particles, with each Planck length volume in the average occupied by one Planck mass particle, with Planck mass particles of equal sign repelling and those of opposite sign attracting each other by the Planck force over a Planck length. From the thusly constructed Planck mass plasma one can derive quantum mechanics and Lorentz invariance, the latter for small energies compared to the Planck energy. In its lowest state the Planck mass plasma has dilaton and quantized vortex states, with Maxwell’s and Einstein’s field equations derived from the antisymmetric and symmetric modes of a vortex sponge.
    [Show full text]