Optical Pumping of Rubidium

Total Page:16

File Type:pdf, Size:1020Kb

Optical Pumping of Rubidium Optical Pumping of Rubidium A. J. Sternbach, and M. Pourmand Department of Physics, Boston University, Boston, Massachusetts 02215, USA We report on the observation of zero field-induced transition, weak field and quadratic Zeeman splitting in Rubidium. We begin with a theoretical description of the expected atomic spectra in the case of hydrogen. Noting the key differences we present, without derivation, the Breit-Rabi equation. From the weak-field Zeeman split spectral lines, we extract a measurement of the g! factor. In the hyperfine data, those key features from the Breit-Rabi equation, which were expected, were confirmed. This lab report was written with a dual purpose – to report on my findings in this experiment as a conclusion to this semesters work, and to serve as a starting point for future students who will utilize this apparatus in their own projects. As such, suggestions for experiments that were not tried, or not completed are included in the Appendix. I. INTRODUCTION unaffected by stray magnetic fields to first order. By some fortune of nature, emission The possessions of one valence electron in 2 2 from the 5 P1/2 to F=2 5 S1/2 transition in Alkali Metal atoms like Rubidium allow for 87 2 2 Rb is absorbed by the 5 P1/2 to F=3 5 S1/2 description similar to Hydrogen. This terrific transition in 85Rb. Although transitions back advantage allows us to employ the fully 2 to 5 S1/2 F=2 and F=1 states will occur at solved wave function of hydrogen to nearly equal rates, the filter provided by calculate the atomic spectra, without 85Rb thus leads, after many cycles, to a non- difficulties stemming from treatment of thermal population imbalance. This leads to many body coulomb interactions, which a relatively high transmitted intensity render, for many other atoms, the between the F=2 and F=1 states. The well- Schrödinger equation unsolvable. Utilizing defined transition frequency between time independent perturbation theory, we hyperfine levels is then phase sensitively can thus describe exactly the expected detected and a feedback loop is used to response of Rubidium, with the small stabilize the frequency of a crystal oscillator. addition of inclusion of nuclear structure. By this means, propagation times across Rubidium has found wide usage in 20,000 km from satellites are detected on the modern technology, mainly in its application order of nanoseconds and position is thus to GPS devices1. The Rubidium atom serves calibrated with extreme precision. as the foundation for this device, by creating Additionally, the population inversion found 87 an atomic clock. The 0-0 transition from the in filtered Rb vapor, gives it the key ingredient for which it is exploited in lasers. F=2, mF=0 to F=1, mF=0 hyperfine levels is The far-reaching application of GPS, which the fine structure corrections. First, there is a is widely employed, is but a demonstration relativistic correction to the energy levels, of the power behind a mastery of the subtle which can be shown to be: interworking of quantum mechanics. ! ! !(!!) !" E! = − 3 (2) II. THEORY !"!! !!!/! Within a Hydrogen atom, the relative Already, a dependence of energy on the l motion between electron and the orbital value has emerged. Secondly we must gives rise to a magnetic field. When this is consider the presence of spin orbit coupling. accounted for, time dependent perturbation In this case, there is a magnetic field due to theory predicts splitting of the formally the proton, and taking a classical approach, this field should be B = !!! where I = ! with degenerate energy levels. We will discuss !" ! this effect separated into three categories, T representing the period. Noting that the the fine structure that allows for zero field !"!!! angular momentum L = mvr = we transitions between states of different ! have: quantum number l, hyperfine structure, and the effect of Zeeman splitting. Since the ! ! B = ! ! L (3) mathematics is simplified by neglecting the !"!! !! ! nuclear structure of Rubidium, we will Classically, the magnetic dipole moment of neglect this in our discussion and note the an electron is easily shown to be: key differences in our concluding remarks. µ = ! S (4) 1) Zero field transition: !" In an unperturbed hydrogen atom, the wave Noting the presence of internal magnetic function may be exactly solved and the full field, the perturbing Hamiltonian becomes energy spectrum may be found. Borrowing H! = −µ • B (5) the solution from Griffiths2, one finds that in !" this case, where the potential is the coulomb Inserting the classically derived equations 3 repulsion, the energy levels are given by: and 6 into this Hamiltonian neglects the g- ! factor of the electron that gives a factor of 2, E = ! !! ; where E = −13.6 eV (1) ! !! ! and Thomas precession that gives a factor of ½. These terms conveniently cancel and thus This result, which depends only on the our classically derived equations will luckily quantum number n, predicts that states with give the correct answer! One can now solve different values of the orbital quantum for fine structure corrections. In time number l are degenerate. Due to the independent perturbation theory, the presence of internal magnetic field, we will problem can be simplified to the non- shortly find this to be false. To understand degenerate predictions if we can find an why there is an energy difference between operator A such that [H, A] = [H’, A] = 0. In the 5S and 5P states at all, we must discuss this case, spin-orbit coupling between the proton and electron requires that we use the further neglect the important nuclear coupled representation, as A = J! will work. components for reasons that will become In this representation it can easily be shown clear in the final section of theory. Still, we that: may derive a descriptive picture of hyperfine atomic structure that will still yield a !(! )! ![! !!! !! !!! !!/! E! = ! (6) qualitative agreement to observations in !" !"!! !(!!!/!)(!!!) Rubidium. Employing our assumptions the Thus hyperfine Hamiltonian is: ! ! ! !!! ! ! ! ! E + E = 1 + − (7) H!" = −µ! • B! (8) !" !! !! !!!/! ! ! This equation has broken the degeneracy in where B! = ∇xA = ∇×µ!×r/r can easily l. Now, in order to obtain a bit of useful be derived. A little algebra shows that: information, we would like to calculate the ! ! !!! !! order of magnitude of the energy difference H!" = − ! S! • S! (9) !"!!!!! between relevant states. Rubidium has an atomic structure of Finally, noting that S • S = ! (S! − S! − ! ! ! ! 2 2 6 2 6 10 2 6 ! 1s 2s 2p 3s 3p 3d 4s 4p 5s S!), and that the electron and proton have spin of ½ we find a difference in energy With a single valence electron in the 5S between the singlet and triplet states of: state. Gearing our interest towards 2 2 !! ℏ! transitions between the 5 S1/2 and 5 P1/2 ! ∆E = ! ! ≈ O(µeV) (10) states of rubidium, these should have an !!!!!! energy difference of : Indeed, the F=2 to F=1 transition in 87Rb has 1 ! an energy difference of 28 µeV. Now that ∆E ≈ !!! ≈ O(meV) (10) !! we have obtained the hyperfine corrections we have found the expected energies of an 2) Hyperfine Structure unperturbed hydrogen system to an The Hyperfine structure comes from the extremely good approximation. interaction between the electron spin and 3) Weak Zeeman splitting magnetic moment of the nucleus. Although both nuclear and electronic structure play an For a constant magnetic field, we must be important role of the physics involved in aware of the relative magnitude of the Rubidium at this energy scale, we will applied field vs. the protons magnetic field employ a simplified where we consider before we begin a discussion of how to solve splitting of the l=0 state in the presence of for corrections. Utilizing the simplifying an applied field. This assumption simplifies assumption that L ≈ ℏ we find Bint ≈ 10 T, the problem greatly as we are able to neglect and thus we rightfully consider our applied the effect of spin-orbit coupling, and thus field, which is on the order of 10 Gauss, as a use spin coupled representation. We will weak perturbation. In this case, the coupled moments of the given by Landau and Lifshitz3. We will proton and electron will define the magnetic simply identify the difference between the moment in our Hamiltonian: Hamiltonian that leads to this equation, and that which we employed. Finally we will ! H! = −(µ! + µ!) • B!"# (11) then present the Breit-Rabi equation. The Hamiltonian, which considers both Again, this is solved in the coupled hyperfine structure and Zeeman splitting, representation. Omitting the details, one and allows for nuclear structure is given by: finds the energy level splitting from this 2 Hamiltonian to be : ! � = �!! + �! = �!!J • I − µ! • B − ! E! = µ!g!B!"#m! (12) µ! • B (13) The complete energy spectrum as a function Where, I is the Nuclear spin, J = L + S, and of corrections to the energy spectrum can be though it is not present in the above equation seen below in figure 1. F = J + I is the total atomic angular momentum. Solving this in the intermediate field region by diagonalization, and simplifying with a bit of algebra yields: !(!±,!!) = − ! ± ! 1 + !!! x + x! ∆!!" ! !"!! ! !"!! (14) 4 where x = g!µ!B ∆E!". We note that in this equation, the necessity of circularly polarized light becomes transparent if we note that in response to circularly polarized Figure 1: Energy level diagram for 87Rb. One can see the qualitative features discussed, where formally light, only transitions with Δm! = ±1 can unperturbed energy levels with orbital motion are split be induced. To see this, one only needs to by the fine structure corrections, each level is further consider n!l!m! [L , x] nlm and note that split by spin-spin corrections, and finally each of these ! 2 levels is further split by the presence of an external field.
Recommended publications
  • Optical Pumping of Stored Atomic Ions (*)
    Ann. Phys. Fr. 10 (1985) 737-748 DhCEMBRE 1985, PAGE 131 Optical pumping of stored atomic ions (*) D. J. Wineland, W. M. Itano, J. C. Bergquist, J. J. Bollinger and J. D. Prestage Time and Frequency Division, National Bureau of Standards, Boulder, Colorado 80303, U.S.A. Resume. - Ce texte discute les expkriences de pompage optique sur des ions atomiques confints dans des pikges tlectromagnttiques. Du fait de la faible relaxation et des dtplacements d'energie trbs petits des ions confine$ on peut obtenir une trb haute rtsolution et une tres grande prkision dans les exptriences de pompage optique associt a la double rtsonance. Dans la ligne de l'idee de Kastler de (( lumino-rtfrigtration H (1950), l'tnergie cinttique des niveaux des ions confines peut Ctre pompke optiquement. Cette technique, appelee refroidissement laser, rtduit sensiblement les dtplacements de frtquence Doppler dans les spectres. Abstract. - Optical pumping experiments on atomic ions which are stored in ekG tromagnetic (( traps )) are discussed. Weak relaxation and extremely small energy shifts of the stored ions lead to very high resolution and accuracy in optical pumping- double resonance experiments. In the same spirit of Kastler's proposal for (( lumino refrigeration )) (1950), the kinetic energy levels of stored ions can be optically pumped. This technique, which has been called laser cooling significantly reduces Doppler frequency shifts in the spectra. 1. Introduction. For more than thirty years, the technique of optical pumping, as originally proposed by Alfred Kastler [I], has provided information about atomic structure, atom-atom interactions, and the interaction of atoms with external radiation. This technique continues today as one of the primary methods used in atomic physics.
    [Show full text]
  • H20 Maser Observations in W3 (OH): a Comparison of Two Epochs
    DePaul University Via Sapientiae College of Science and Health Theses and Dissertations College of Science and Health Summer 7-13-2012 H20 Maser Observations in W3 (OH): A comparison of Two Epochs Steven Merriman DePaul University, [email protected] Follow this and additional works at: https://via.library.depaul.edu/csh_etd Part of the Physics Commons Recommended Citation Merriman, Steven, "H20 Maser Observations in W3 (OH): A comparison of Two Epochs" (2012). College of Science and Health Theses and Dissertations. 31. https://via.library.depaul.edu/csh_etd/31 This Thesis is brought to you for free and open access by the College of Science and Health at Via Sapientiae. It has been accepted for inclusion in College of Science and Health Theses and Dissertations by an authorized administrator of Via Sapientiae. For more information, please contact [email protected]. DEPAUL UNIVERSITY H2O Maser Observations in W3(OH): A Comparison of Two Epochs by Steven Merriman A thesis submitted in partial fulfillment for the degree of Master of Science in the Department of Physics College of Science and Health July 2012 Declaration of Authorship I, Steven Merriman, declare that this thesis titled, `H2O Maser Observations in W3OH: A Comparison of Two Epochs' and the work presented in it are my own. I confirm that: This work was done wholly while in candidature for a masters degree at Depaul University. Where I have consulted the published work of others, this is always clearly attributed. Where I have quoted from the work of others, the source is always given. With the exception of such quotations, this thesis is entirely my own work.
    [Show full text]
  • Quantum Mechanics of Atoms and Molecules Lectures, the University of Manchester 2005
    Quantum Mechanics of Atoms and Molecules Lectures, The University of Manchester 2005 Dr. T. Brandes April 29, 2005 CONTENTS I. Short Historical Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1 I.1 Atoms and Molecules as a Concept . 1 I.2 Discovery of Atoms . 1 I.3 Theory of Atoms: Quantum Mechanics . 2 II. Some Revision, Fine-Structure of Atomic Spectra : : : : : : : : : : : : : : : : : : : : : 3 II.1 Hydrogen Atom (non-relativistic) . 3 II.2 A `Mini-Molecule': Perturbation Theory vs Non-Perturbative Bonding . 6 II.3 Hydrogen Atom: Fine Structure . 9 III. Introduction into Many-Particle Systems : : : : : : : : : : : : : : : : : : : : : : : : : 14 III.1 Indistinguishable Particles . 14 III.2 2-Fermion Systems . 18 III.3 Two-electron Atoms and Ions . 23 IV. The Hartree-Fock Method : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 24 IV.1 The Hartree Equations, Atoms, and the Periodic Table . 24 IV.2 Hamiltonian for N Fermions . 26 IV.3 Hartree-Fock Equations . 28 V. Molecules : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 35 V.1 Introduction . 35 V.2 The Born-Oppenheimer Approximation . 36 + V.3 The Hydrogen Molecule Ion H2 . 39 V.4 Hartree-Fock for Molecules . 45 VI. Time-Dependent Fields : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 48 VI.1 Time-Dependence in Quantum Mechanics . 48 VI.2 Time-dependent Hamiltonians . 50 VI.3 Time-Dependent Perturbation Theory . 53 VII.Interaction with Light : : : : : : : : : : : : : : : : : : : : : : :
    [Show full text]
  • Optical Pumping: a Possible Approach Towards a Sige Quantum Cascade Laser
    Institut de Physique de l’ Universit´ede Neuchˆatel Optical Pumping: A Possible Approach towards a SiGe Quantum Cascade Laser E3 40 30 E2 E1 20 10 Lasing Signal (meV) 0 210 215 220 Energy (meV) THESE pr´esent´ee`ala Facult´edes Sciences de l’Universit´ede Neuchˆatel pour obtenir le grade de docteur `essciences par Maxi Scheinert Soutenue le 8 octobre 2007 En pr´esence du directeur de th`ese Prof. J´erˆome Faist et des rapporteurs Prof. Detlev Gr¨utzmacher , Prof. Peter Hamm, Prof. Philipp Aebi, Dr. Hans Sigg and Dr. Soichiro Tsujino Keywords • Semiconductor heterostructures • Intersubband Transitions • Quantum cascade laser • Si - SiGe • Optical pumping Mots-Cl´es • H´et´erostructures semiconductrices • Transitions intersousbande • Laser `acascade quantique • Si - SiGe • Pompage optique i Abstract Since the first Quantum Cascade Laser (QCL) was realized in 1994 in the AlInAs/InGaAs material system, it has attracted a wide interest as infrared light source. Main applications can be found in spectroscopy for gas-sensing, in the data transmission and telecommuni- cation as free space optical data link as well as for infrared monitoring. This type of light source differs in fundamental ways from semiconductor diode laser, because the radiative transition is based on intersubband transitions which take place between confined states in quantum wells. As the lasing transition is independent from the nature of the band gap, it opens the possibility to a tuneable, infrared light source based on silicon and silicon compatible materials such as germanium. As silicon is the material of choice for electronic components, a SiGe based QCL would allow to extend the functionality of silicon into optoelectronics.
    [Show full text]
  • Optical Pumping
    Optical Pumping MIT Department of Physics (Dated: February 17, 2011) Measurement of the Zeeman splittings of the ground state of the natural rubidium isotopes; measurement of the relaxation time of the magnetization of rubidium vapor; and measurement of the local geomagnetic field by the rubidium magnetometer. Rubidium vapor in a weak (∼.01- 10 gauss) magnetic field controlled with Helmholtz coils is pumped with circularly polarized D1 light from a rubidium rf discharge lamp. The degree of magnetization of the vapor is inferred from a differential measurement of its opacity to the pumping radiation. In the first part of the experiment the energy separation between the magnetic substates of the ground-state hyperfine levels is determined as a function of the magnetic field from measurements of the frequencies of rf photons that cause depolarization and consequent greater opacity of the vapor. The magnetic moments of the ground states of the 85Rb and 87Rb isotopes are derived from the data and compared with the vector model for addition of electronic and nuclear angular momenta. In the second part of the experiment the direction of magnetization is alternated between nearly parallel and nearly antiparallel to the optic axis, and the effects of the speed of reversal on the amplitude of the opacity signal are observed and compared with a computer model. The time constant of the pumping action is measured as a function of the intensity of the pumping light, and the results are compared with a theory of competing rate processes - pumping versus collisional depolarization. I. PREPARATORY PROBLEMS II. INTRODUCTION 1. With reference to Figure 1 of this guide, estimate A.
    [Show full text]
  • Optical Pumping 1
    Optical Pumping 1 OPTICAL PUMPING OF RUBIDIUM VAPOR Introduction The process of optical pumping is a beautiful example of the interaction between light and matter. In the Advanced Lab experiment, you use circularly polarized light to pump a particular level in rubidium vapor. Then, using magnetic fields and radio-frequency excitations, you manipulate the population of the pumped state in a manner similar to that used in the Spin Echo experiment. You will determine the energy separation between the magnetic substates (Zeeman levels) in rubidium as well as determine the Bohr magneton and observe two-photon transitions. Although the experiment is relatively simple to perform, you will need to understand a fair amount of atomic physics and experimental technique to appreciate the signals you witness. A simple example of optical pumping Let’s imagine a nearly trivial atom: no nuclear spin and only one electron. For concreteness, you can think of the 4He+ ion, which is similar to a Hydrogen atom, but without the nuclear spin of the proton. Its ground state is 1S1=2 (n = 1,S = 1=2,L = 0, J = 1=2). Photon absorption can excite it to the 2P1=2 (n = 2,S = 1=2,L = 1, J = 1=2) state. If you place it in a magnetic field, the energy levels become split as indicated in Figure 1. In effect, each original level really consists of two levels with the same energy; when you apply a field, the “spin up” state becomes higher in energy, the “spin down” lower. The spin energy splitting is exaggerated on the figure.
    [Show full text]
  • Spin Coherence and Optical Properties of Alkali-Metal Atoms in Solid Parahydrogen
    Spin coherence and optical properties of alkali-metal atoms in solid parahydrogen Sunil Upadhyay,1 Ugne Dargyte,1 Vsevolod D. Dergachev,2 Robert P. Prater,1 Sergey A. Varganov,2 Timur V. Tscherbul,1 David Patterson,3 and Jonathan D. Weinstein1, ∗ 1Department of Physics, University of Nevada, Reno NV 89557, USA 2Department of Chemistry, University of Nevada, Reno NV 89557, USA 3Broida Hall, University of California, Santa Barbara, Santa Barbara, California 93106, USA We present a joint experimental and theoretical study of spin coherence properties of 39K, 85Rb, 87Rb, and 133Cs atoms trapped in a solid parahydrogen matrix. We use optical pumping to prepare the spin states of the implanted atoms and circular dichroism to measure their spin states. Optical pumping signals show order-of-magnitude differences depending on both matrix growth conditions ∗ and atomic species. We measure the ensemble transverse relaxation times (T2) of the spin states ∗ of the alkali-metal atoms. Different alkali species exhibit dramatically different T2 times, ranging 87 2 39 from sub-microsecond coherence times for high mF states of Rb, to ∼ 10 microseconds for K. ∗ These are the longest ensemble T2 times reported for an electron spin system at high densities 16 −3 (n & 10 cm ). To interpret these observations, we develop a theory of inhomogenous broadening of hyperfine transitions of 2S atoms in weakly-interacting solid matrices. Our calculated ensemble transverse relaxation times agree well with experiment, and suggest ways to longer coherence times in future work. I. INTRODUCTION In this work, we compare the optical pumping prop- ∗ erties and ensemble transverse spin relaxation time (T2) Addressable solid-state electron spin systems are of in- for potassium, rubidium, and cesium in solid H2.
    [Show full text]
  • Quantum State Detection of a Superconducting Flux Qubit Using A
    PHYSICAL REVIEW B 71, 184506 ͑2005͒ Quantum state detection of a superconducting flux qubit using a dc-SQUID in the inductive mode A. Lupașcu, C. J. P. M. Harmans, and J. E. Mooij Kavli Institute of Nanoscience, Delft University of Technology, P.O. Box 5046, 2600 GA Delft, The Netherlands ͑Received 27 October 2004; revised manuscript received 14 February 2005; published 13 May 2005͒ We present a readout method for superconducting flux qubits. The qubit quantum flux state can be measured by determining the Josephson inductance of an inductively coupled dc superconducting quantum interference device ͑dc-SQUID͒. We determine the response function of the dc-SQUID and its back-action on the qubit during measurement. Due to driving, the qubit energy relaxation rate depends on the spectral density of the measurement circuit noise at sum and difference frequencies of the qubit Larmor frequency and SQUID driving frequency. The qubit dephasing rate is proportional to the spectral density of circuit noise at the SQUID driving frequency. These features of the back-action are qualitatively different from the case when the SQUID is used in the usual switching mode. For a particular type of readout circuit with feasible parameters we find that single shot readout of a superconducting flux qubit is possible. DOI: 10.1103/PhysRevB.71.184506 PACS number͑s͒: 03.67.Lx, 03.65.Yz, 85.25.Cp, 85.25.Dq I. INTRODUCTION A natural candidate for the measurement of the state of a flux qubit is a dc superconducting quantum interference de- An information processor based on a quantum mechanical ͑ ͒ system can be used to solve certain problems significantly vice dc-SQUID .
    [Show full text]
  • Quantum Mechanics Department of Physics and Astronomy University of New Mexico
    Preliminary Examination: Quantum Mechanics Department of Physics and Astronomy University of New Mexico Fall 2004 Instructions: • The exam consists two parts: 5 short answers (6 points each) and your pick of 2 out 3 long answer problems (35 points each). • Where possible, show all work, partial credit will be given. • Personal notes on two sides of a 8X11 page are allowed. • Total time: 3 hours Good luck! Short Answers: S1. Consider a free particle moving in 1D. Shown are two different wave packets in position space whose wave functions are real. Which corresponds to a higher average energy? Explain your answer. (a) (b) ψ(x) ψ(x) ψ(x) ψ(x) ψ = 0 ψ(x) S2. Consider an atom consisting of a muon (heavy electron with mass m ≈ 200m ) µ e bound to a proton. Ignore the spin of these particles. What are the bound state energy eigenvalues? What are the quantum numbers that are necessary to completely specify an energy eigenstate? Write out the values of these quantum numbers for the first excited state. sr sr H asr sr S3. Two particles of spins 1 and 2 interact via a potential ′ = 1 ⋅ 2 . a) Which of the following quantities are conserved: sr sr sr 2 sr 2 sr sr sr sr 2 1 , 2 , 1 , 2 , = 1 + 2 , ? b) If s1 = 5 and s2 = 1, what are the possible values of the total angular momentum quantum number s? S4. The energy levels En of a symmetric potential well V(x) are denoted below. V(x) E4 E3 E2 E1 E0 x=-b x=-a x=a x=b (a) How many bound states are there? (b) Sketch the wave functions for the first three levels (n=0,1,2).
    [Show full text]
  • Molecular Column Density Calculation
    Molecular Column Density Calculation Jeffrey G. Mangum National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903, USA [email protected] and Yancy L. Shirley Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721, USA [email protected] May 29, 2013 Received ; accepted – 2 – ABSTRACT We tell you how to calculate molecular column density. Subject headings: ISM: molecules – 3 – Contents 1 Introduction 5 2 Radiative and Collisional Excitation of Molecules 5 3 Radiative Transfer 8 3.1 The Physical Meaning of Excitation Temperature . 11 4 Column Density 11 5 Degeneracies 14 5.1 Rotational Degeneracy (gJ)........................... 14 5.2 K Degeneracy (gK)................................ 14 5.3 Nuclear Spin Degeneracy (gI ).......................... 15 5.3.1 H2CO and C3H2 ............................. 16 5.3.2 NH3 and CH3CN............................. 16 5.3.3 c–C3H and SO2 .............................. 18 6 Rotational Partition Functions (Qrot) 18 6.1 Linear Molecule Rotational Partition Function . 19 6.2 Symmetric and Asymmetric Rotor Molecule Rotational Partition Function . 21 2 7 Dipole Moment Matrix Elements (|µjk| ) and Line Strengths (S) 24 – 4 – 8 Linear and Symmetric Rotor Line Strengths 26 8.1 (J, K) → (J − 1, K) Transitions . 28 8.2 (J, K) → (J, K) Transitions . 29 9 Symmetry Considerations for Asymmetric Rotor Molecules 29 10 Hyperfine Structure and Relative Intensities 30 11 Approximations to the Column Density Equation 32 11.1 Rayleigh-Jeans Approximation . 32 11.2 Optically Thin Approximation . 34 11.3 Optically Thick Approximation . 34 12 Molecular Column Density Calculation Examples 35 12.1 C18O........................................ 35 12.2 C17O........................................ 37 + 12.3 N2H ....................................... 42 12.4 NH3 .......................................
    [Show full text]
  • Introduction to Biomolecular Electron Paramagnetic Resonance Theory
    Introduction to Biomolecular Electron Paramagnetic Resonance Theory E. C. Duin Content Chapter 1 - Basic EPR Theory 1.1 Introduction 1-1 1.2 The Zeeman Effect 1-1 1.3 Spin-Orbit Interaction 1-3 1.4 g-Factor 1-4 1.5 Line Shape 1-6 1.6 Quantum Mechanical Description 1-12 1.7 Hyperfine and Superhyperfine Interaction, the Effect of Nuclear Spin 1-13 1.8 Spin Multiplicity and Kramers’ Systems 1-24 1.9 Non-Kramers’ Systems 1-32 1.10 Characterization of Metalloproteins 1-33 1.11 Spin-Spin Interaction 1-35 1.12 High-Frequency EPR Spectroscopy 1-40 1.13 g-Strain 1-42 1.14 ENDOR, ESEEM, and HYSCORE 1-43 1.15 Selected Reading 1-51 Chapter 2 - Practical Aspects 2.1 The EPR Spectrometer 2-1 2.2 Important EPR Spectrometer Parameters 2-3 2.3 Sample Temperature and Microwave Power 2-9 2.4 Integration of Signals and Determination of the Signal Intensity 2-15 2.5 Redox Titrations 2-19 2.6 Freeze-quench Experiments 2-22 2.7 EPR of Whole Cells and Organelles 2-25 2.8 Selected Reading 2-28 Chapter 3 - Simulations of EPR Spectra 3.1 Simulation Software 3-1 3.2 Simulations 3-3 3.3 Work Sheets 3-17 i Chapter 4: Selected samples 4.1 Organic Radicals in Solution 4-1 4.2 Single Metal Ions in Proteins 4-2 4.3 Multi-Metal Systems in Proteins 4-7 4.4 Iron-Sulfur Clusters 4-8 4.5 Inorganic Complexes 4-17 4.6 Solid Particles 4-18 Appendix A: Rhombograms Appendix B: Metalloenzymes Found in Methanogens Appendix C: Solutions for Chapter 3 ii iii 1.
    [Show full text]
  • Optical Pumping on Rubidium
    Optical Pumping on Rubidium E. Lance (Dated: March 27, 2011) By means of optical pumping the values of gf and nuclear spin for Rubidium were determined. 85 87 85 For Rb gf was found to be .35. For Rb gf was found to be .50. The nuclear spin for Rb was found to be 2.35 with a theoretical value of 2.5, for Rb87 the nuclear spin was found to be 1.5 with a theoretical value of 1.5. Quadratic Zeeman effect resonances were observed around magnetic fields of 6.98 gauss and RF of 4.064 MHz. I. INTRODUCTION Rabi equation: Optical pumping refers to the redistribution of oc- cupied energy states, in thermal equilibrium, inside an ∆W µ ∆W 4M 1=2 W (F; M) = − − j BM± 1+ x+x2 : atom. The redistribution is achieved by polarizing inci- 2(2I + 1) I 2 2I + 1 dent light, therefor, pumping electrons to less absorbent (4) energy states. By confining electrons in less absorbent A plot of Breit-Rabi equation is shown in figure 2, this energy states we can then study the relationship between plot shows how when the magnetic field becomes large, magnetic fields and Zeeman splitting. the energy splittings stop behaving in a linear fashion and a quadratic Zeeman effect can be seen. II. THEORY We will be dealing with Rubidium atoms which can, essentially, be conceived as a hydrogen like single elec- tron atoms. The single valence electron in Rubidium can be described by a total angular momentum vector J which couples the orbital angular momentum L with the spin orbital angular momentum S.
    [Show full text]