Interactions of Bacillus Subtilis Basement Spore Coat Layer Proteins
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Letters to Nature
letters to nature Received 7 July; accepted 21 September 1998. 26. Tronrud, D. E. Conjugate-direction minimization: an improved method for the re®nement of macromolecules. Acta Crystallogr. A 48, 912±916 (1992). 1. Dalbey, R. E., Lively, M. O., Bron, S. & van Dijl, J. M. The chemistry and enzymology of the type 1 27. Wolfe, P. B., Wickner, W. & Goodman, J. M. Sequence of the leader peptidase gene of Escherichia coli signal peptidases. Protein Sci. 6, 1129±1138 (1997). and the orientation of leader peptidase in the bacterial envelope. J. Biol. Chem. 258, 12073±12080 2. Kuo, D. W. et al. Escherichia coli leader peptidase: production of an active form lacking a requirement (1983). for detergent and development of peptide substrates. Arch. Biochem. Biophys. 303, 274±280 (1993). 28. Kraulis, P.G. Molscript: a program to produce both detailed and schematic plots of protein structures. 3. Tschantz, W. R. et al. Characterization of a soluble, catalytically active form of Escherichia coli leader J. Appl. Crystallogr. 24, 946±950 (1991). peptidase: requirement of detergent or phospholipid for optimal activity. Biochemistry 34, 3935±3941 29. Nicholls, A., Sharp, K. A. & Honig, B. Protein folding and association: insights from the interfacial and (1995). the thermodynamic properties of hydrocarbons. Proteins Struct. Funct. Genet. 11, 281±296 (1991). 4. Allsop, A. E. et al.inAnti-Infectives, Recent Advances in Chemistry and Structure-Activity Relationships 30. Meritt, E. A. & Bacon, D. J. Raster3D: photorealistic molecular graphics. Methods Enzymol. 277, 505± (eds Bently, P. H. & O'Hanlon, P. J.) 61±72 (R. Soc. Chem., Cambridge, 1997). -
Exploring the Chemistry and Evolution of the Isomerases
Exploring the chemistry and evolution of the isomerases Sergio Martínez Cuestaa, Syed Asad Rahmana, and Janet M. Thorntona,1 aEuropean Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom Edited by Gregory A. Petsko, Weill Cornell Medical College, New York, NY, and approved January 12, 2016 (received for review May 14, 2015) Isomerization reactions are fundamental in biology, and isomers identifier serves as a bridge between biochemical data and ge- usually differ in their biological role and pharmacological effects. nomic sequences allowing the assignment of enzymatic activity to In this study, we have cataloged the isomerization reactions known genes and proteins in the functional annotation of genomes. to occur in biology using a combination of manual and computa- Isomerases represent one of the six EC classes and are subdivided tional approaches. This method provides a robust basis for compar- into six subclasses, 17 sub-subclasses, and 245 EC numbers cor- A ison and clustering of the reactions into classes. Comparing our responding to around 300 biochemical reactions (Fig. 1 ). results with the Enzyme Commission (EC) classification, the standard Although the catalytic mechanisms of isomerases have already approach to represent enzyme function on the basis of the overall been partially investigated (3, 12, 13), with the flood of new data, an integrated overview of the chemistry of isomerization in bi- chemistry of the catalyzed reaction, expands our understanding of ology is timely. This study combines manual examination of the the biochemistry of isomerization. The grouping of reactions in- chemistry and structures of isomerases with recent developments volving stereoisomerism is straightforward with two distinct types cis-trans in the automatic search and comparison of reactions. -
SI Appendix Index 1
SI Appendix Index Calculating chemical attributes using EC-BLAST ................................................................................ 2 Chemical attributes in isomerase reactions ............................................................................................ 3 Bond changes …..................................................................................................................................... 3 Reaction centres …................................................................................................................................. 5 Substrates and products …..................................................................................................................... 6 Comparative analysis …........................................................................................................................ 7 Racemases and epimerases (EC 5.1) ….................................................................................................. 7 Intramolecular oxidoreductases (EC 5.3) …........................................................................................... 8 Intramolecular transferases (EC 5.4) ….................................................................................................. 9 Supporting references …....................................................................................................................... 10 Fig. S1. Overview …............................................................................................................................ -
Hr0900030 Hr0900029 Hr0900028 23
imun nun ii HR0900030 HR0900029 HR0900028 features of substances. All the participants in the professional associations. He speaks German and English security chain have to be familiar with and consistently language. Special education: certificate for ISO auditor. obey the legal regulations. The manufacturer must know the features of the hazardous substance, supervisory services must be acquainted with the 7. THE CHARACTERISTICS OF EXOSPORIUM threat and potential danger. The hauler and ANTIGENS FROM DIFFERENT VACCINE intervention forces must, in case of accidents and STRAINS OF BACILLIUS ANTRACIS damage, be familiar with the emergency procedures in case of accidents and act properly regarding the threatening dangerous substance. Eugenia Baranova, Sergey Biketov, Igor Dunaytsev, Raisa Mironova, Ivan Dyatlov, State Research Center for Applied Microbiology and Key Words/ Phrases: danger, transport of hazardous Biotechnology, Obolensk, Moscow region, 142279, substances, security Russia ABSTRACT 6. HAZARDOUS SUBSTANCES SHIPPING AT INLAND WATER HARBORS To develop of both test-systems for rapid detection and identification of S. anthracis spores and a new Željko Benković subunit vaccine the antigens on the spore surface MS should be characterized. Sinaco d.o.o. Exosporium consists of two layers-basal and Savska cesta 41/XI11 peripheral and has been form by protein, amino- and 10000 Zagreb, Croatia neutral polysaccharides, lipids and ash. Number of anthrax exosporium proteins was described and Safety measures and regulations system covering the identified: glycoprotein BcIA, BclB, alanine racemase, aspects of fire protection, professional and ecological inosine hydrolase, glycosyl hydrolase, superoxid safety are aimed to create a safe working dismutase, ExsF, ExsY, ExsK.CotB.CotY and SoaA. environment, by detection and remedy of conditions So far no glycosilated proteins other then highly that are potentially hazardous for the wellbeing of the immunogenic glycoproteins BcIA, BclB were detected employees or are leading to certain undesired events. -
Bacterial Spores: Mechanisms of Stability and Targets for Modern Biotechnologies
Review Article ISSN: 2574 -1241 DOI: 10.26717/BJSTR.2019.20.003500 Bacterial Spores: Mechanisms of Stability and Targets for Modern Biotechnologies Andryukov BG1,2*, Karpenko AA3, Lyapun IN1, Matosova EV1 and Bynina MP1 1Somov Institute of Epidemiology and Microbiology, Russia 2Far Eastern Federal University, Russia 3A.V. Zhirmunsky Institute of Marine Biology, National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences (NSCMB FEB RAS), Vladivostok, Russia *Corresponding author: Andryukov Boris G, Somov Institute of Epidemiology and Microbiology, Far Eastern Federal University (FEFU), School of Biomedicine, Vladivostok, Russia ARTICLE INFO Abstract Received: August 09, 2019 Published: August 21, 2019 in two alternative states: vegetative and in the form of endospores, which are divided into Some gram-positive bacteria of the genus Bacillus spp. and Clostridium spp. can exist have been studied for a long time and yet they remain not fully recognized as objects of Citation: Andryukov BG, Karpenko AA, thetwo microworld.types: having These an outer resting shell (dormant) (exosporium) cells, and recognized not having as it. the Bacterial most stable controversies form of Lyapun IN, Matosova EV, Bynina MP. Bac terial Spores: Mechanisms of Stability - and Targets for Modern Biotechnologies. mainlife on distinguishing Earth, are formed feature in fromthe mother vegetative cell forms,with a andlack their of nutrients. life cycle The contributes extraordinary to the resistance of spores to extreme physical and chemical conditions of existence is the BJSTR. MS.ID.003500 Biomed J Sci & Tech Res 20(5)-2019. wide spread of spore-forming bacteria in various ecosystems. The unique properties Keywords: Bacterial Spores; Endospores; stateof bacterial for tens spores and hundreds cause increased of years. -
Biochemical Characterization of Alanine Racemase- a Spore Protein Produced by Bacillus Anthracis
BMB reports Biochemical characterization of Alanine racemase- a spore protein produced by Bacillus anthracis Shivani Kanodia1,*, Shivangi Agarwal1,*, Priyanka Singh1,*, Shivani Agarwal2, Preeti Singh1 & Rakesh Bhatnagar1,* 1Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi-110067, India, 2Gene Regulation Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi-110067, India Alanine racemase catalyzes the interconversion of L-alanine and racemization proceeds through a two-base mechanism that in- D-alanine and plays a crucial role in spore germination and cell volves lysine (pyridoxal 5'-phosphate binding residue) and ty- wall biosynthesis. In this study, alanine racemase produced by rosine (plays a role in binding/catalysis). Crystallographic analysis Bacillus anthracis was expressed and purified as a monomer in of B. stearothermophilus alanine racemase has shown that the resi- Escherichia coli and the importance of lysine 41 in the cofactor dues at the active site play a role in its racemization (5). Based on binding octapeptide and tyrosine 270 in catalysis was evaluated. its known structure, it is plausible that B. anthracis produces ala- The native enzyme exhibited an apparent Km of 3 mM for L-ala- nine racemase via an analogous catalytic site, wherein Lys41 and nine, and a Vmax of 295 μmoles/min/mg, with the optimum activ- Tyr270 remove α-hydrogen from the alanyl-PLP aldimine and pro- ity occurring at 37oC and a pH of 8-9. The activity observed in the tonate the carbanion to induce racemization. absence of exogenous pyridoxal 5 -phosphaté suggested that the Immunoproteome analysis of the spore antigens produced cofactor is bound to the enzyme. -
Cloning, Biochemical Characterization and Inhibition of Alanine Racemase from Streptococcus Iniae
bioRxiv preprint doi: https://doi.org/10.1101/611251; this version posted April 16, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Cloning, Biochemical Characterization and Inhibition of Alanine racemase from Streptococcus iniae Murtala Muhammad, Yangyang Li, Siyu Gong, Yanmin Shi, Jiansong Ju, Baohua Zhao*, Dong Liu* College of Life Science, Hebei Normal University, Shijiazhuang 050024, China; *Correspondence: Baohua Zhao and Dong Liu; E-mail: [email protected], [email protected]; College of Life Science, Hebei Normal University, Shijiazhuang 050024, China. Running Title: Inhibitors of alanine racemase Summary statement: Antimicrobial target 1 bioRxiv preprint doi: https://doi.org/10.1101/611251; this version posted April 16, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. ABSTRACT Streptococcus iniae is a pathogenic and zoonotic bacteria that impacted high mortality to many fish species, as well as capable of causing serious disease to humans. Alanine racemase (Alr, EC 5.1.1.1) is a pyridoxal-5′-phosphate (PLP)-containing homodimeric enzyme that catalyzes the racemization of L-alanine and D-alanine. In this study, we purified alanine racemase from the pathogenic strain of S. iniae, determined its biochemical characteristics and inhibitors. The alr gene has an open reading frame (ORF) of 1107 bp, encoding a protein of 369 amino acids, which has a molecular mass of 40 kDa. The optimal enzyme activity occurred at 35°C and a pH of 9.5. -
Α-Methylacyl-Coa Racemase and Argininosuccinate Lyase
A460etukansi.fm Page 1 Friday, May 26, 2006 11:40 AM A 460 OULU 2006 A 460 UNIVERSITY OF OULU P.O. Box 7500 FI-90014 UNIVERSITY OF OULU FINLAND ACTA UNIVERSITATIS OULUENSIS ACTA UNIVERSITATIS OULUENSIS ACTA A SERIES EDITORS SCIENTIAE RERUM Prasenjit Bhaumik NATURALIUM Prasenjit Bhaumik Prasenjit ASCIENTIAE RERUM NATURALIUM Professor Mikko Siponen PROTEIN CRYSTALLOGRAPHIC BHUMANIORA STUDIES TO UNDERSTAND Professor Harri Mantila THE REACTION MECHANISM CTECHNICA Professor Juha Kostamovaara OF ENZYMES: DMEDICA α Professor Olli Vuolteenaho -METHYLACYL-CoA RACEMASE AND ESCIENTIAE RERUM SOCIALIUM Senior assistant Timo Latomaa ARGININOSUCCINATE LYASE FSCRIPTA ACADEMICA Communications Officer Elna Stjerna GOECONOMICA Senior Lecturer Seppo Eriksson EDITOR IN CHIEF Professor Olli Vuolteenaho EDITORIAL SECRETARY Publication Editor Kirsti Nurkkala FACULTY OF SCIENCE, DEPARTMENT OF BIOCHEMISTRY, BIOCENTER OULU, ISBN 951-42-8090-3 (Paperback) UNIVERSITY OF OULU ISBN 951-42-8091-1 (PDF) ISSN 0355-3191 (Print) ISSN 1796-220X (Online) ACTA UNIVERSITATIS OULUENSIS A Scientiae Rerum Naturalium 460 PRASENJIT BHAUMIK PROTEIN CRYSTALLOGRAPHIC STUDIES TO UNDERSTAND THE REACTION MECHANISM OF ENZYMES: α-METHYLACYL-COA RACEMASE AND ARGININOSUCCINATE LYASE Academic Dissertation to be presented with the assent of the Faculty of Science, University of Oulu, for public discussion in Kuusamonsali (Auditorium YB210), Linnanmaa, on June 6th, 2006, at 12 noon OULUN YLIOPISTO, OULU 2006 Copyright © 2006 Acta Univ. Oul. A 460, 2006 Supervised by Professor Rik Wierenga Reviewed -
Photogenerated Glycan Arrays Identify Immunogenic Sugar Moieties of Bacillus Anthracis Exosporium
180 DOI 10.1002/pmic.200600478 Proteomics 2007, 7, 180–184 RAPID COMMUNICATION Photogenerated glycan arrays identify immunogenic sugar moieties of Bacillus anthracis exosporium Denong Wang1, 2, 3, Gregory T. Carroll4, Nicholas J. Turro4, Jeffrey T. Koberstein5, Pavol Kovácˇ 6, Rina Saksena6, Roberto Adamo6, Leonore A. Herzenberg2, Leonard A. Herzenberg2 and Lawrence Steinman3 1 Carbohydrate Microarray Laboratory, Stanford University School of Medicine, Stanford, CA, USA 2 Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA 3 Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA 4 Department of Chemistry, Columbia University, New York, NY, USA 5 Department of Chemical Engineering, Columbia University, New York, NY, USA 6 NIDDK, LMC, National Institutes of Health, Bethesda, MD, USA Using photogenerated glycan arrays, we characterized a large panel of synthetic carbohydrates Received: July 4, 2006 for their antigenic reactivities with pathogen-specific antibodies. We discovered that rabbit IgG Revised: September 2, 2006 antibodies elicited by Bacillus anthracis spores specifically recognize a tetrasaccharide chain that Accepted: October 17, 2006 decorates the outermost surfaces of the B. anthracis exosporium. Since this sugar moiety is highly specific for the spores of B. anthracis, it appears to be a key biomarker for detection of B. anthracis spores and development of novel vaccines that target anthrax spores. Keywords: Antibody / Bacteria / Biomarker / Carbohydrates / Sugar chips Anthrax is a fatal infectious disease caused by the Gram- the outermost surfaces of B. anthracis spores is of utmost positive, rod-shaped bacterium B. anthracis. Anthrax infec- importance. tion is initiated by the entry of spores into the mammalian Substantial effort has been made to study the structure host via intradermal inoculation, ingestion, or inhalation [1]. -
A Putative Exosporium Lipoprotein GBAA0190 of Bacillus Anthracis As
Jeon et al. BMC Immunology (2021) 22:20 https://doi.org/10.1186/s12865-021-00414-y RESEARCH ARTICLE Open Access A putative exosporium lipoprotein GBAA0190 of Bacillus anthracis as a potential anthrax vaccine candidate Jun Ho Jeon†, Yeon Hee Kim†, Kyung Ae Kim, Yu-Ri Kim, Sun-Je Woo, Ye Jin Choi and Gi-eun Rhie* Abstract Background: Bacillus ancthracis causes cutaneous, pulmonary, or gastrointestinal forms of anthrax. B. anthracis is a pathogenic bacterium that is potentially to be used in bioterrorism because it can be produced in the form of spores. Currently, protective antigen (PA)-based vaccines are being used for the prevention of anthrax, but it is necessary to develop more safe and effective vaccines due to their prolonged immunization schedules and adverse reactions. Methods: We selected the lipoprotein GBAA0190, a potent inducer of host immune response, present in anthrax spores as a novel potential vaccine candidate. Then, we evaluated its immune-stimulating activity in the bone marrow-derived macrophages (BMDMs) using enzyme-linked immunosorbent assay (ELISA) and Western blot analysis. Protective efficacy of GBAA0190 was evaluated in the guinea pig (GP) model. Results: The recombinant GBAA0190 (r0190) protein induced the expression of various inflammatory cytokines including tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), monocyte chemoattractant protein-1 (MCP-1), and macrophage inflammatory protein-1α (MIP-1α) in the BMDMs. These immune responses were mediated through toll-like receptor 1/2 via activation of mitogen-activated protein (MAP) kinase and Nuclear factor-κB (NF-κB) pathways. We demonstrated that not only immunization of r0190 alone, but also combined immunization with r0190 and recombinant PA showed significant protective efficacy against B. -
Surface Architecture of Endospores of the Bacillus Cereus/Anthracis/Thuringiensis Family at the Subnanometer Scale
Surface architecture of endospores of the Bacillus cereus/anthracis/thuringiensis family at the subnanometer scale Lekshmi Kailasa, Cassandra Terrya,1, Nicholas Abbotta, Robert Taylora, Nic Mullinb, Svetomir B. Tzokova, Sarah J. Todda, B. A. Wallacec, Jamie K. Hobbsb, Anne Moira, and Per A. Bullougha,2 aKrebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom; bDepartment of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, United Kingdom; and cDepartment of Crystallography, Institute of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX, United Kingdom Edited by Richard M. Losick, Harvard University, Cambridge, MA, and approved August 5, 2011 (received for review June 14, 2011) Bacteria of the Bacillus cereus family form highly resistant spores, carbohydrate (9). Proteins of the exosporium are likely to have which in the case of the pathogen B. anthracis act as the agents of intimate interactions with the environment and are also potential infection. The outermost layer, the exosporium, enveloping spores candidates for vaccines and ligands for spore detection (10, 11). of the B. cereus family as well as a number of Clostridia, plays roles in Two exosporium glycoproteins, BclA and BclB, have been spore adhesion, dissemination, targeting, and germination control. identified in B. anthracis (8, 12, 13). These contain a central tri- We have analyzed two naturally crystalline layers associated with meric collagen-like domain, a processed N-terminal domain an- the exosporium, one representing the “basal” layer to which the choring the protein to the basal layer, and a C-terminal head outermost spore layer (“hairy nap”) is attached, and the other likely domain whose structure has been elucidated to atomic resolution representing a subsurface (“parasporal”) layer. -
Drug Discovery Targeting Amino Acid Racemases Paola Conti, Lucia Tamborini, Andrea Pinto, Arnaud Blondel, Paola Minoprio, Andrea Mozzarelli, Carlo De Micheli
Drug Discovery Targeting Amino Acid Racemases Paola Conti, Lucia Tamborini, Andrea Pinto, Arnaud Blondel, Paola Minoprio, Andrea Mozzarelli, Carlo de Micheli To cite this version: Paola Conti, Lucia Tamborini, Andrea Pinto, Arnaud Blondel, Paola Minoprio, et al.. Drug Discovery Targeting Amino Acid Racemases. Chemical Reviews, American Chemical Society, 2011, 111 (11), pp.6919-6946. 10.1021/cr2000702. pasteur-02510858 HAL Id: pasteur-02510858 https://hal-pasteur.archives-ouvertes.fr/pasteur-02510858 Submitted on 7 Apr 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Drug Discovery Targeting Amino Acid Racemases Paola Conti,a Lucia Tamborini, a Andrea Pinto,a Arnaud Blondel,b Paola Minoprio,c Andrea Mozzarellid and Carlo De Micheli a* aDipartimento di Scienze Farmaceutiche ‘P. Pratesi’, via Mangiagalli 25, 20133 Milano, Italy; bUnité de Bioinformatique Structurale, CNRS-URA 2185, Département de Biologie Structurale et Chimie, 25 rue du Dr. Roux, 75724 Paris, France. cInstitut Pasteur, Laboratoire des Processus Infectieux à Trypanosoma; Départment d’Infection and Epidémiologie; 25 rue du Dr. Roux, 75724 Paris, France dDipartimento di Biochimica e Biologia Molecolare, via G. P. Usberti 23/A, 43100 Parma, Italy and Istituto di Biostrutture e Biosistemi, viale Medaglie d’oro, Rome, Italy.