Exopolysaccharides of The

Total Page:16

File Type:pdf, Size:1020Kb

Exopolysaccharides of The EXOPOLYSACCHARIDES OF THE PSEUDOMONAS AERUGINOSA BIOFILM MATRIX A Thesis Presented to The Honors Tutorial College Ohio University In Partial Fulfillment of the Requirements for Graduation from the Honors Tutorial College with the degree of Bachelor of Science in Biological Sciences by Elizabeth Mathias April 2014 This thesis has been approved by The Honors Tutorial College and the Department of Biological Sciences Dr. Donald Holzschu Associate Professor, Biological Sciences Thesis Adviser Dr. Soichi Tanda Honors Tutorial College, DOS Biological Sciences Jeremy Webster Dean, Honors Tutorial College 1 Table of Contents Abstract 2 Introduction 4 Pseudomonas aeruginosa Significance 4 Biofilms 12 The Matrix Exopolysaccharides 22 Alginate 22 Psl and Pel 35 Experimental Overview and Research Questions 49 Materials and Methods 52 Results 67 Discussion 82 Conclusion 88 Acknowledgements 89 References 90 2 Abstract Pseudomonas aeruginosa is a common bacterium in the environment. In humans, it is an opportunistic pathogen that is a prevalent cause of hospital-acquired infections. P. aeruginosa is also a frequent cause of pulmonary infections in patients with cystic fibrosis. The majority of patients with cystic fibrosis develop chronic infections of P. aeruginosa that cannot be eradicated. P. aeruginosa is the primary cause of pneumonia in patients with cystic fibrosis. Chronic infection of the cystic fibrosis lung with P. aeruginosa is associated with a major decline in lung function and eventually leads to death in most cases. P. aeruginosa infection of the lung is particularly difficult to treat because these bacteria typically grow in biofilms. Biofilms are complex bacterial communities in which the bacteria are encased in a thick matrix composed mostly of secreted exopolysaccharides. Bacteria within biofilms are protected from environmental stresses as well as from the host immune system and antimicrobials. P. aeruginosa produces three exopolysaccharides that contributes to the biofilm matrix: alginate, Psl, and Pel. Alginate confers additional protection to antimicrobials and the immune system while Psl and Pel contribute to aggregation and adherence. The goal of this research was to use a reporter gene under the control of key promoters from the exopolysaccharides’ biosynthetic operons to elucidate the regulation of exopolysaccharide production over the course of biofilm development. EGFP was placed under the control of the AlgD, PelA, and PslA reporters. Because the PelA and PslA reporters are not well defined, three variations of sequence length upstream of the transcriptional start site were used. These constructs were integrated 3 into P. aeruginosa strains of different morphotypes in order to examine whether promoter activity differs between strains and between biosynthetic operons. Biofilms were then microscopically imaged. However, significant changes in the expression of the reporter were not yet detected. 4 Introduction 1. Pseudomonas aeruginosa Significance Pseudomonas aeruginosa is a Gram-negative, aerobic gammaproteobacterium that is commonly found in soil and water (Iglewski 1996). It is one of the most well- known of the nearly 200 species in the genus Pseudomonas. Rod-shaped and measuring 0.5-0.8 µm by 1.5-3.0 µm, these bacteria typically have one polar flagellum for motility as well as pili. P. aeruginosa is a pathogen of both plants and humans. Not usually found in the normal flora of humans, it is opportunistic and typically affects damaged tissue or individuals who are immunocompromised. P. aeruginosa was first identified in the mid-19th century on surgical wound dressings due to blue and green discoloration on the bandages caused by pigments that these bacteria produce. Today, it is notorious as an antibiotic resistant pathogen. The frequency of the isolation of multidrug resistant P. aeruginosa has increased 10% in almost 20 years (Lister et al. 2009). With a fatality rate of 50%, P. aeruginosa causes 15% of Gram-negative bacteremia as well as 10% of hospital-acquired infections (Iglewski 1996; Aloush 2006). It is the fourth leading cause of nosocomial infections and the second most frequent cause of nosocomial pneumonia (Lister et al. 2009). P. aeruginosa is also a leading cause of pneumonia and chronic infection of the lung in individuals with cystic fibrosis (CF). In 80-95% of patients with CF, respiratory failure ultimately resulting in death is caused by chronic bacterial infection (Lyczak et al. 2002). Because of the incidence and clinical significance of P. aeruginosa infection, this pathogen is being widely studied. 5 P. aeruginosa is a notable pathogen not only because of the number and severity of P. aeruginosa infections, but also because of the wide range of tissues in which it causes infection. It is a significant cause of wound and urinary tract infections as well as pneumonia, otitis externa, keratitis, and folliculitis (Gellatly and Hancock 2013). Additionally, P. aeruginosa is a significant cause of hospital-acquired infection because its resistance to antimicrobials and its ability to survive in low- nutrient environments make it difficult to eradicate. The ability to infect many tissues and survive in both natural and hospital environments is due to the great adaptability of P. aeruginosa. P. aeruginosa is extremely metabolically versatile; it is able to catabolize a vast number of hydrocarbons, giving it the ability to survive in even the most nutrient poor settings, including surfaces in medical facilities and water lines. The P. aeruginosa genome contributes to its adaptability and metabolic versatility. P. aeruginosa has one of the largest known bacterial genomes, containing ‘core’ regions of conserved genes across different strains as well as regions of genomic plasticity. Within the genome, 10% of genes encode regulatory proteins (Gellatly and Hancock 2013). Many of these proteins are part of two-component regulatory systems, which are signal transduction pathways that facilitate rapid adaptation to environmental changes. Several regulatory systems control quorum sensing, biofilm formation, and virulence factors. This adaptability allows P. aeruginosa to survive in many environments, to be a pathogen of both plants and humans, and to colonize and cause infection in a wide range of tissues in humans. P. aeruginosa is a significant cause of chronic lung infection in patients with 6 CF. CF is a homozygous recessive disease that is caused by defects in the cystic fibrosis transmembrane conductance regulator (CFTR), which is a cAMP-dependent chloride channel in the apical membrane of epithelial cells (Goldberg and Pier 2000). Over 900 different homozygotic mutations in the CFTR gene can cause CF, and the effects can be seen in a wide range of tissues including pancreatic, gastrointestinal, and, most noticeably, pulmonary. Patients with CF are often diagnosed due to elevated salt levels in their sweat, and CF is associated with low body mass due to an inability to properly digest and absorb nutrients in the gut. In the lungs, CF is characterized by thickened airway surface liquid and a dehydrated mucus layer (Fig. 1). These secretions can harbor microbes and inhibit the ability of the immune response to eradicate them (Gellatly and Hancock 2013). Mucociliary clearance, an important mechanism for clearing microbes and other foreign substances in the lung, is inhibited because the mucus is more strongly adhered to the epithelial surface, thereby retarding the movement of beating cilia. Additionally, the high ionic strength of the mucus and lung secretions may inhibit the activity of antimicrobial peptides (Lyczak et al. 2002). Damage to the lung tissue associated with P. aeruginosa infection is largely caused by chronic inflammation (Lyczak et al. 2002). While P. aeruginosa from chronic lung infections typically downregulate virulence factors and lose inflammatory features, P. aeruginosa infection of the lung is marked by recruitment of neutrophils; these release reactive oxygen species and other molecules that, during the course of a chronic infection, lead to long-term inflammation and significant tissue damage. Proteases, exotoxin A, and the pigment pyocyanin secreted by P. aeruginosa 7 also contribute to this damage. P. aeruginosa infections of the CF lung that are untreated often lead to the early death of the patient; with extensive treatment, life expectancy is increased to 35 years (Gaspar et al. 2013). Fig. 1: Differences in the secretions of normal and CF-affected lungs (Lyczak et al. 2002). The dehydrated mucus layer of the CF lung results in increased bacterial adherence and decreased mucociliary clearance, causing chronic infection. Because of its prevalence, the development of P. aeruginosa infection in the CF lung has been well studied. It is thought that the lung is typically first exposed to P. aeruginosa from the environment within three years of birth; the lung is also exposed to other common pathogens including Staphylococcus aureus and Haemophilus influenza (Fig. 2; Lyczak et al. 2002). Pathogens are typically inhaled and then settle into the secretions in the obstructed airways of the lung (Lyczak et al. 2002; Gellatly and Hancock 2013). Serological studies have indicated that P. aeruginosa is present in CF patients prior to their fourth year of age in 97.5% of cases 8 (Burns et al. 2001). However, these bacteria are not often recovered from lung secretions, indicating that P. aeruginosa is being eradicated by the immune system. Through these early years of infection,
Recommended publications
  • Insights Into the Pathogenicity of Burkholderia Pseudomallei
    REVIEWS Melioidosis: insights into the pathogenicity of Burkholderia pseudomallei W. Joost Wiersinga*, Tom van der Poll*, Nicholas J. White‡§, Nicholas P. Day‡§ and Sharon J. Peacock‡§ Abstract | Burkholderia pseudomallei is a potential bioterror agent and the causative agent of melioidosis, a severe disease that is endemic in areas of Southeast Asia and Northern Australia. Infection is often associated with bacterial dissemination to distant sites, and there are many possible disease manifestations, with melioidosis septic shock being the most severe. Eradication of the organism following infection is difficult, with a slow fever-clearance time, the need for prolonged antibiotic therapy and a high rate of relapse if therapy is not completed. Mortality from melioidosis septic shock remains high despite appropriate antimicrobial therapy. Prevention of disease and a reduction in mortality and the rate of relapse are priority areas for future research efforts. Studying how the disease is acquired and the host–pathogen interactions involved will underpin these efforts; this review presents an overview of current knowledge in these areas, highlighting key topics for evaluation. Melioidosis is a serious disease caused by the aerobic, rifamycins, colistin and aminoglycosides), but is usually Gram-negative soil-dwelling bacillus Burkholderia pseu- susceptible to amoxicillin-clavulanate, chloramphenicol, domallei and is most common in Southeast Asia and doxycycline, trimethoprim-sulphamethoxazole, ureido- Northern Australia. Melioidosis is responsible for 20% of penicillins, ceftazidime and carbapenems2,4. Treatment all community-acquired septicaemias and 40% of sepsis- is required for 20 weeks and is divided into intravenous related mortality in northeast Thailand. Reported cases are and oral phases2,4. Initial intravenous therapy is given likely to represent ‘the tip of the iceberg’1,2, as confirmation for 10–14 days; ceftazidime or a carbapenem are the of disease depends on bacterial isolation, a technique that drugs of choice.
    [Show full text]
  • Anaplasma Phagocytophilum Modifies Tick Cell Microrna Expression And
    www.nature.com/scientificreports OPEN Anaplasma phagocytophilum modifes tick cell microRNA expression and upregulates isc- Received: 18 February 2019 Accepted: 12 June 2019 mir-79 to facilitate infection by Published: xx xx xxxx targeting the Roundabout protein 2 pathway Sara Artigas-Jerónimo1, Pilar Alberdi1, Margarita Villar Rayo 1, Alejandro Cabezas-Cruz2, Pedro J. Espinosa Prados 1, Lourdes Mateos-Hernández1,2 & José de la Fuente 1,3 The microRNAs (miRNAs) are a class of small noncoding RNAs that have important regulatory roles in multicellular organisms including innate and adaptive immune pathways to control bacterial, parasite and viral infections, and pathogens could modify host miRNA profle to facilitate infection and multiplication. Therefore, understanding the function of host miRNAs in response to pathogen infection is relevant to characterize host-pathogen molecular interactions and to provide new targets for efective new interventions for the control infectious diseases. The objective of this study was to characterize the dynamics and functional signifcance of the miRNA response of the tick vector Ixodes scapularis in response to Anaplasma phagocytophilum infection, the causative agent of human and animal granulocytic anaplasmosis. To address this objective, the composition of tick miRNAs, functional annotation, and expression profling was characterized using high throughout RNA sequencing in uninfected and A. phagocytophilum-infected I. scapularis ISE6 tick cells, a model for tick hemocytes involved in pathogen infection. The results provided new evidences on the role of tick miRNA during pathogen infection, and showed that A. phagocytophilum modifes I. scapularis tick cell miRNA profle and upregulates isc-mir-79 to facilitate infection by targeting the Roundabout protein 2 (Robo2) pathway.
    [Show full text]
  • Diversity and Horizontal Transfer of Antarctic Pseudomonas Spp
    G C A T T A C G G C A T genes Article Diversity and Horizontal Transfer of Antarctic Pseudomonas spp. Plasmids Krzysztof Romaniuk 1, Michal Styczynski 1, Przemyslaw Decewicz 1 , Oliwia Buraczewska 1, Witold Uhrynowski 1 , Marco Fondi 2 , Marcin Wolosiewicz 1, Magdalena Szuplewska 1 and Lukasz Dziewit 1,* 1 Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; [email protected] (K.R.); [email protected] (M.St.); [email protected] (P.D.); [email protected] (O.B.); [email protected] (W.U.); [email protected] (M.W.); [email protected] (M.Sz.) 2 Department of Biology, University of Florence, via Madonna del Piano 6, Sesto Fiorentino, 50019 Florence, Italy; marco.fondi@unifi.it * Correspondence: [email protected]; Tel.: +48-225-541-406 Received: 12 September 2019; Accepted: 26 October 2019; Published: 28 October 2019 Abstract: Pseudomonas spp. are widely distributed in various environments around the world. They are also common in the Antarctic regions. To date, almost 200 plasmids of Pseudomonas spp. have been sequenced, but only 12 of them were isolated from psychrotolerant strains. In this study, 15 novel plasmids of cold-active Pseudomonas spp. originating from the King George Island (Antarctica) were characterized using a combined, structural and functional approach, including thorough genomic analyses, functional analyses of selected genetic modules, and identification of active transposable elements localized within the plasmids and comparative genomics. The analyses performed in this study increased the understanding of the horizontal transfer of plasmids found within Pseudomonas populations inhabiting Antarctic soils.
    [Show full text]
  • Strain-Dependent Diversity in the Pseudomonas Aeruginosa Quorum
    Strain-dependent diversity in the Pseudomonas PNAS PLUS aeruginosa quorum-sensing regulon Sudha Chugania, Byoung Sik Kimb, Somsak Phattarasukola, Mitchell. J. Brittnachera, Sang Ho Choib, Caroline S. Harwooda, and E. Peter Greenberga,1 aDepartment of Microbiology, University of Washington, Seattle, WA 98195; and bDepartment of Agricultural Biotechnology, Seoul National University, Seoul 151-921, South Korea Contributed by E. Peter Greenberg, August 17, 2012 (sent for review May 21, 2012) Quorum sensing allows bacteria to sense and respond to changes P. aeruginosa has been isolated from diverse environments. It in population density. Acyl-homoserine lactones serve as quorum- can be found in soil and water, as a member of the normal sensing signals for many Proteobacteria, and acyl-homoserine microbiota of eukaryotes or as an opportunistic pathogen in lactone signaling is known to control cooperative activities. a wide range of hosts including plants and humans. Comparative Quorum-controlled activities vary from one species to another. genomic analyses of multiple P. aeruginosa strains have identified Quorum-sensing controls a constellation of genes in the opportu- core (shared) and accessory (strain-variable) genome sequences nistic pathogen Pseudomonas aeruginosa, which thrives in a num- (4). Evidence indicates that accessory genes encode functions as- ber of habitats ranging from soil and water to animal hosts. We sociated with adaptation and niche diversification (4). P. aeruginosa hypothesized that there would be significant variation in quorum- has a quorum-sensing system comprising two AHL synthases and sensing regulons among strains of P. aeruginosa isolated from three receptors. The LasI synthase produces 3OC12-HSL, for different habitats and that differences in the quorum-sensing reg- which there are two receptors, LasR and QscR.
    [Show full text]
  • Pseudomonas Aeruginosa: an Audacious Pathogen with an Adaptable Arsenal of Virulence Factors
    International Journal of Molecular Sciences Review Pseudomonas aeruginosa: An Audacious Pathogen with an Adaptable Arsenal of Virulence Factors Irene Jurado-Martín † , Maite Sainz-Mejías † and Siobhán McClean * School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield, Dublin 4 D04 V1W8, Ireland; [email protected] (I.J.-M.); [email protected] (M.S.-M.) * Correspondence: [email protected] † These authors contributed equally to this review. Abstract: Pseudomonas aeruginosa is a dominant pathogen in people with cystic fibrosis (CF) contribut- ing to morbidity and mortality. Its tremendous ability to adapt greatly facilitates its capacity to cause chronic infections. The adaptability and flexibility of the pathogen are afforded by the extensive number of virulence factors it has at its disposal, providing P. aeruginosa with the facility to tailor its response against the different stressors in the environment. A deep understanding of these virulence mechanisms is crucial for the design of therapeutic strategies and vaccines against this multi-resistant pathogen. Therefore, this review describes the main virulence factors of P. aeruginosa and the adap- tations it undergoes to persist in hostile environments such as the CF respiratory tract. The very large P. aeruginosa genome (5 to 7 MB) contributes considerably to its adaptive capacity; consequently, genomic studies have provided significant insights into elucidating P. aeruginosa evolution and its interactions with the host throughout the course of infection. Citation: Jurado-Martín, I.; Keywords: Pseudomonas aeruginosa; virulence factors; adaptation; cystic fibrosis; diversity; genomics; Sainz-Mejías, M.; McClean, S. lung environment Pseudomonas aeruginosa: An Audacious Pathogen with an Adaptable Arsenal of Virulence Factors.
    [Show full text]
  • Targeting the Burkholderia Cepacia Complex
    viruses Review Advances in Phage Therapy: Targeting the Burkholderia cepacia Complex Philip Lauman and Jonathan J. Dennis * Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada; [email protected] * Correspondence: [email protected]; Tel.: +1-780-492-2529 Abstract: The increasing prevalence and worldwide distribution of multidrug-resistant bacterial pathogens is an imminent danger to public health and threatens virtually all aspects of modern medicine. Particularly concerning, yet insufficiently addressed, are the members of the Burkholderia cepacia complex (Bcc), a group of at least twenty opportunistic, hospital-transmitted, and notoriously drug-resistant species, which infect and cause morbidity in patients who are immunocompromised and those afflicted with chronic illnesses, including cystic fibrosis (CF) and chronic granulomatous disease (CGD). One potential solution to the antimicrobial resistance crisis is phage therapy—the use of phages for the treatment of bacterial infections. Although phage therapy has a long and somewhat checkered history, an impressive volume of modern research has been amassed in the past decades to show that when applied through specific, scientifically supported treatment strategies, phage therapy is highly efficacious and is a promising avenue against drug-resistant and difficult-to-treat pathogens, such as the Bcc. In this review, we discuss the clinical significance of the Bcc, the advantages of phage therapy, and the theoretical and clinical advancements made in phage therapy in general over the past decades, and apply these concepts specifically to the nascent, but growing and rapidly developing, field of Bcc phage therapy. Keywords: Burkholderia cepacia complex (Bcc); bacteria; pathogenesis; antibiotic resistance; bacterio- phages; phages; phage therapy; phage therapy treatment strategies; Bcc phage therapy Citation: Lauman, P.; Dennis, J.J.
    [Show full text]
  • Gene Regulation by a Novel Two-Component System Conserved Among Gammaproteobacteria Kristin M
    Northern Michigan University NMU Commons All NMU Master's Theses Student Works 8-2015 Gene Regulation by a Novel Two-Component System Conserved Among Gammaproteobacteria Kristin M. Jacob Northern Michigan University, [email protected] Follow this and additional works at: https://commons.nmu.edu/theses Part of the Microbiology Commons Recommended Citation Jacob, Kristin M., "Gene Regulation by a Novel Two-Component System Conserved Among Gammaproteobacteria" (2015). All NMU Master's Theses. 66. https://commons.nmu.edu/theses/66 This Open Access is brought to you for free and open access by the Student Works at NMU Commons. It has been accepted for inclusion in All NMU Master's Theses by an authorized administrator of NMU Commons. For more information, please contact [email protected],[email protected]. GENE REGULATION BY A NOVEL TWO-COMPONENT SYSTEM CONSERVED AMONG γ-PROTEOBACTERIA By Kristin M. Jacob THESIS Submitted to Northern Michigan University In partial fulfillment of the requirements For the degree of MASTERS OF BIOLOGY Office of Graduate Education and Research August 2015 SIGNATURE APPROVAL FORM Title of Thesis: Gene Regulation by a Novel Two-Component System Conserved Among γ-Proteobacteria. This thesis by Kristin Jacob is recommended for approval by the student’s Thesis Committee and Department Head in the Department of Biology and by the Assistant Provost of Graduate Education and Research. ____________________________________________________________ Committee Chair: Dr. Josh Sharp Date ____________________________________________________________ First Reader: Dr. Erich Ottem Date ____________________________________________________________ Second Reader: Dr. Donna Becker Date ____________________________________________________________ Department Head: Dr. John Rebers Date ____________________________________________________________ Dr. Brian D. Cherry Date Assistant Provost of Graduate Education and Research ABSTRACT GENE REGULATION BY A NOVEL TWO-COMPONENT SYSTEM CONSERVED AMONG γ-PROTEOBACTERIA By Kristin M.
    [Show full text]
  • Carbapenem-Resistant Enterobacteriaceae a Microbiological Overview of (CRE) Carbapenem-Resistant Enterobacteriaceae
    PREVENTION IN ACTION MY bugaboo Carbapenem-resistant Enterobacteriaceae A microbiological overview of (CRE) carbapenem-resistant Enterobacteriaceae. by Irena KennelEy, PhD, aPRN-BC, CIC This agar culture plate grew colonies of Enterobacter cloacae that were both characteristically rough and smooth in appearance. PHOTO COURTESY of CDC. GREETINGS, FELLOW INFECTION PREVENTIONISTS! THE SCIENCE OF infectious diseases involves hundreds of bac- (the “bug parade”). Too much information makes it difficult to teria, viruses, fungi, and protozoa. The amount of information tease out what is important and directly applicable to practice. available about microbial organisms poses a special problem This quarter’s My Bugaboo column will feature details on the CRE to infection preventionists. Obviously, the impact of microbial family of bacteria. The intention is to convey succinct information disease cannot be overstated. Traditionally the teaching of to busy infection preventionists for common etiologic agents of microbiology has been based mostly on memorization of facts healthcare-associated infections. 30 | SUMMER 2013 | Prevention MULTIDRUG-resistant GRAM-NEGative ROD ALert: After initial outbreaks in the northeastern U.S., CRE bacteria have THE CDC SAYS WE MUST ACT NOW! emerged in multiple species of Gram-negative rods worldwide. They Carbapenem-resistant Enterobacteriaceae (CRE) infections come have created significant clinical challenges for clinicians because they from bacteria normally found in a healthy person’s digestive tract. are not consistently identified by routine screening methods and are CRE bacteria have been associated with the use of medical devices highly drug-resistant, resulting in delays in effective treatment and a such as: intravenous catheters, ventilators, urinary catheters, and high rate of clinical failures.
    [Show full text]
  • Pseudomonas Aeruginosa
    Pseudomonas aeruginosa Artistic rendering of a Pseudomonas aeruginosa bacterium. Samples: Environmental swabs Preserved in sample buffer Tissue sample Preserved in sample buffer Fluid specimens Preserved in sample buffer Notes: Send all samples at room temperature, preferably preserved in sample buffer MD Submission Form Interpretation of PCR Results: Positive Pseudomonas aeruginosa infection/contamination (> 10 copies/ml >4 copies/sample) Negative Pseudomonas aeruginosa not detected Pseudomonas (P.) aeruginosa Pseudomonas (P.) aeruginosa is a gram-negative, aerobic, rod-shaped bacterium. It is ubiquitous in soil and water but occurs regularly on the surfaces of plants and occasionally on the surfaces of animals. Pseudomonas aeruginosa is metabolically extremely versatile, forms highly resistant biofilms on moist surfaces, and has become increasingly recognized as an emerging opportunistic pathogen of clinical relevance. Several epidemiological studies track its occurrence as a nosocomial pathogen and indicate that antibiotic resistance is rapidly increasing in clinical isolates. P. aeruginosa is also recognized as serious contaminant of pharmaceutical products. Clinical Signs P. aeruginosa infections typically are contracted from heavily infested surfaces such as tubing or water tubs, and virtually any animal can contract these opportunistic infections. Depending on the site of infection, clinical symptoms typically appear as localized purulent inflammation. Secondarily, these infections may become disseminated via the bloodstream, leading to symptoms of severe or fatal gram-negative septicemia such as disseminated intravascular coagulation. Cystic fibrosis patients frequently suffer from pneumonia caused by P. aeruginosa. Similarly, patients with burn wounds or immunocompromised individuals frequently contract localized or systemic P. aeruginosa infections. Standard Diagnostic Methods P. aeruginosa infections are usually diagnosed by isolating the organism from clinical or environmental samples by standard bacteriological culture on blood agar plates.
    [Show full text]
  • The Structural Complexity of the Gammaproteobacteria Flagellar Motor Is Related to the 2 Type of Its Torque-Generating Stators 3
    bioRxiv preprint doi: https://doi.org/10.1101/369397; this version posted July 14, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 The structural complexity of the Gammaproteobacteria flagellar motor is related to the 2 type of its torque-generating stators 3 4 Mohammed Kaplan1, Debnath Ghosal1, Poorna Subramanian1, Catherine M. Oikonomou1, Andreas Kjær1*, Sahand 5 Pirbadian2, Davi R. Ortega1, Mohamed Y. El-Naggar2 and Grant J. Jensen1,3,4 6 1Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125. 7 2Department of Physics and Astronomy, Biological Sciences, and Chemistry, University of Southern California, Los 8 Angeles, CA 90089. 9 3Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125. 10 *Present address: Rex Richards Building, South Parks Road, Oxford OX1 3QU 11 4Corresponding author: [email protected]. 12 Abstract: 13 14 The bacterial flagellar motor is a cell-envelope-embedded macromolecular machine that functions as a propeller to 15 move the cell. Rather than being an invariant machine, the flagellar motor exhibits significant variability between 16 species, allowing bacteria to adapt to, and thrive in, a wide range of environments. For instance, different torque- 17 generating stator modules allow motors to operate in conditions with different pH and sodium concentrations and 18 some motors are adapted to drive motility in high-viscosity environments. How such diversity evolved is unknown.
    [Show full text]
  • Antimicrobial Properties of the Polyaniline Composites Against Pseudomonas Aeruginosa and Klebsiella Pneumoniae
    Journal of Functional Biomaterials Article Antimicrobial Properties of the Polyaniline Composites against Pseudomonas aeruginosa and Klebsiella pneumoniae Moorthy Maruthapandi 1, Arumugam Saravanan 1, John H. T. Luong 2 and Aharon Gedanken 1,* 1 Department of Chemistry, Bar-Ilan Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel; [email protected] (M.M.); [email protected] (A.S.) 2 School of Chemistry, University College Cork, Cork T12 YN60, Ireland; [email protected] * Correspondence: [email protected]; Tel.: +97-235-318-315; Fax: +97-237-384-053 Received: 15 July 2020; Accepted: 18 August 2020; Published: 19 August 2020 Abstract: CuO, TiO2, or SiO2 was decorated on polyaniline (PANI) by a sonochemical method, and their antimicrobial properties were investigated for two common Gram-negative pathogens: Pseudomonas aeruginosa (PA) and Klebsiella pneumoniae (KP). Without PANI, CuO, TiO2, or SiO2 with a concentration of 220 µg/mL exhibited no antimicrobial activities. In contrast, PANI-CuO and PANI-TiO2 (1 mg/mL, each) completely suppressed the PA growth after 6 h of exposure, compared to 12 h for the PANI-SiO2 at the same concentration. The damage caused by PANI-SiO2 to KP was less effective, compared to that of PANI-TiO2 with the eradication time of 12 h versus 6 h, respectively. This bacterium was not affected by PANI-CuO. All the composites bind tightly to the negative groups of bacteria cell walls to compromise their regular activities, leading to the damage of the cell wall envelope and eventual cell lysis. Keywords: antimicrobials; polyaniline (PANI); CuO; TiO2; SiO2; ultrasonication; carbon dots; PANI-composites; Pseudomonas aeruginosa; Klebsiella pneumoniae 1.
    [Show full text]
  • 15.9 News & Views 325 MH
    NEWS & VIEWS NATURE|Vol 437|15 September 2005 MICROBIOLOGY vesicle production virtually ceased. Addition of extra PQS restored vesicle formation, even if protein synthesis was blocked by an antibiotic. Bacterial speech bubbles So, whatever PQS is doing, it is probably hap- Stephen C. Winans pening at the post-translational level, rather than causing alterations in gene expression. Many bacteria socialize using diffusible signals. But some of these Most of the added PQS was found in vesicles, messages are poorly soluble, so how do they move between bacteria? which also contained other quinolones pos- sessing antimicrobial activity. It seems that It seems they can be wrapped up in membrane packages instead. when PQS is inserted into the outer membrane — whether it was made by that bac- On page 422 of this issue, Mashburn and terium or added from another source — Whiteley1 describe the unexpected con- it can destabilize the membrane and vergence of two seemingly unrelated areas spontaneously form vesicles containing of microbiological research: how bacteria itself, other quinolones and presumably talk to their friends, and how they attack endotoxin and periplasmic proteins. EYE OF SCIENCE/SPL their enemies. The authors studied the These vesicles can then signal to other bacterial pathogen Pseudomonas aerugi- pseudomonads, kill unrelated bacteria, nosa, which releases a hydrophobic mole- and deliver toxic lipopolysaccharides cule called the ‘pseudomonas quinolone and proteins to host cells. signal’ (PQS) to send messages to other Pseudomonas aeruginosa is an oppor- bacteria of the same species. The surprise tunistic human pathogen that is a par- is that, rather than being secreted as single ticular problem in the lungs of cystic molecules, PQS is released in bubble-like fibrosis patients.
    [Show full text]