Localizing Globals and Statics to Make C Programs Thread-Safe

Total Page:16

File Type:pdf, Size:1020Kb

Localizing Globals and Statics to Make C Programs Thread-Safe Localizing Globals and Statics to Make C Programs Thread-Safe Adam R. Smith∗ Prasad A. Kulkarni University of Kansas Department of Electrical Engineering and Computer Science Lawrence, Kansas, USA [email protected]; [email protected] ABSTRACT General Terms Challenges emerging from the exponential growth in CPU power Performance, Languages dissipation and chip hot spots with increasing clock frequencies have forced manufacturers to employ multicore processors as the Keywords ubiquitous platform in all computing domains. Embedded mo- bile devices are increasingly adopting multicore processors to im- Thread-safe, Globals prove program performance and responsiveness at low power lev- els. However, harnessing these performance and power benefits 1. INTRODUCTION requires the construction of parallel programs, a task significantly A microprocessor operating at a higher clock frequency con- more complex than writing sequential code. Parallel code develop- sumes more power. The power wall, which is a limit to the amount ment is also made more difficult by differences in the use of sev- of power that a microprocessor chip can dissipate without failing, eral programming language constructs. Therefore, it is critical to proved to be an impregnable barrier to the further scaling of mi- provide programmers with tools to ease the formidable task of par- croprocessor clock frequencies, effectively ending the era of high- allelizing existing sequential code or developing new parallel code performance uniprocessor chips in the server and desktop PC do- for multicore processors. mains. Chip manufactures now exploit the continuous growth in In this work we focus on the use of static and global variables chip transistor count enabled by Moore’s law by placing multi- that are commonly employed in C/C++ programs, the languages ple simpler reduced clock-rate cores on a single processor die [2]. of choice for developing embedded systems applications. Unpro- Advanced embedded applications are rapidly becoming more com- tected use of such variables produces functions that are not thread- plex, and high-end embedded processors are facing the same power safe, thereby preventing the program from being parallelized. Man- constraints that were earlier seen in PC processors. Consequently, ually eliminating global and static variables from existing sequen- several embedded processor manufacturers and application devel- tial code is tedious, time-consuming and highly error-prone. While opers are advocating the use of symmetric multiprocessing (SMP) no good solution to this problem currently exists, researchers have systems to realize the scalable performance and power require- proposed partial mitigation techniques that require massive changes ments of existing and future embedded applications [11, 34]. to linkers and runtime systems. In this work we study the character- Unfortunately, scalable performance on multicore processors can istics and effects of static and global variables in traditional bench- only be achieved by parallel applications distributing their tasks mark programs, and propose, construct, and explore a compiler- across multiple threads. Consequently, the migration to multicore based, semi-automatic and interactive technique to handle such vari- processors requires software developers to address two formidable ables and generate thread-safe code for parallel programs. tasks: (a) generate new parallel applications, and (b) convert exist- ing sequential programs to use multiple threads. Unfortunately, it has been observed that writing scalable and error-free parallel code Categories and Subject Descriptors is often substantially more difficult, time-consuming, and costly D.3.4 [Programming Languages]: Processors—Compilers; D.2.3 as compared to writing an equivalent serial program [20]. Fur- [Software Engineering]: Coding Tools and Techniques thermore, programming language constructs that are routinely em- ployed during sequential coding may not be available or may re- quire special handling during the generation of parallel code. There- ∗ Currently, a graduate student in the department of Computer Sci- fore, software tools that can automatically manage such common ence at the University of Illinois, Urbana, IL programming obstacles can greatly ease the task of producing multi- threaded parallel applications for software developers. In this work we focus on the use of static and global variables in imperative language programs like C/C++. Global variables pro- Permission to make digital or hard copies of all or part of this work for vide a convenient (albeit, occasionally error-prone) mechanism to personal or classroom use is granted without fee provided that copies are share information between multiple functions in the same program. not made or distributed for profit or commercial advantage and that copies Static variables are also typically used to hold global state, but bear this notice and the full citation on the first page. To copy otherwise, to the compiler restricts their visibility to only the function or file republish, to post on servers or to redistribute to lists, requires prior specific where they are defined. Static and global variables are an indis- permission and/or a fee. CASES’11, October 9–14, 2011, Taipei, Taiwan. pensable programming construct employed by C/C++ developers Copyright 2011 ACM X-XXXXX-XX-X/XX/XX ...$10.00. in programs of all sizes. Indeed, the lack of these constructs will make it substantially more cumbersome and tedious to program in with the compiler transformation. such languages. By virtue of residing in the data region of the process address 2. RELATED WORK space, only a single copy of each global and static variable is shared Increasing availability of multicore/multiprocessor machines and among all threads in a multi-threaded process. Consequently, de- the growing demand for multi-threaded programs has resulted in pending on their purpose and use, each static or global variable several approaches to ease the task of writing parallel applications. in a multi-threaded program needs to be assigned separate thread- In this section we describe previous efforts for providing thread- local storage, or its use needs to be guarded (typically by using local storage, specifications for parallel languages, and other li- semaphores or mutexes) to enforce synchronized and atomic access brary, tool and runtime level support for parallel programming. by each thread. However, manually eliminating or synchronizing Several high-level languages provide standard or non-standard the use of statics and globals is extremely hard, time-consuming support for thread-local variants of traditional global and static vari- and tedious. At the same time, several programming idioms can ables. For example, Delphi provides the variable specifier thread- be naturally and more efficiently expressed using static and global var [27], GNU C/C++ provides the __thread specifier [33], the variables. Therefore, researchers are exploring various mechanisms unofficial new standard for C++ (C++0x) provides the thread_local to appropriately manage static and global variables in multi-threaded specifier [14], and C# allows variables to be marked with the Thread- programs without substantially restricting their use or significantly Static attribute [13] to specify thread-local storage for global data. changing their semantics. Most of these mechanisms require ma- In contrast, our interactive approach does not require any changes jor changes to existing threading libraries and the runtime system to the language specification. Additionally, more than the language to provide a new and distinct global storage area for each thread design, in this paper we focus on the implementation aspects of in the process address space [33, 14, 13]. Additionally, in most providing thread-local storage for static and global variables. cases the user still needs to use special keywords to help the com- Library and compiler implementation support is also available to piler/runtime place static and global variables in their appropriate create thread-specific data. Thus, the POSIX thread interface [10], storage locations. Windows libraries [4], and the boost C++ libraries [3] provide API In this paper we explore a new compiler-based semi-automatic functionality to create and manage thread-local storage for statics and interactive transformation to sanitize the use of static and global and globals. Apart from learning a new API, such implementation variables in multi-threaded C applications. Our approach is semi- approaches are often cumbersome to use [14] and require signifi- automatic since, similar to existing techniques, the user is required cant support from the linker, system libraries and the runtime sys- to indicate the category of each static or global variable as thread- tem [33]. Our tool employs a complementary and novel compiler- local, shared, or other. These categories are explained in more based approach that not only provides thread-local storage without detail in section 4. We develop an interactive framework to sim- any modifications to the library, linker, or runtime support, but can plify this categorization process. To handle variables in the thread- also automatically synchronize access for shared global variables. local category, our compiler-based transformation constructs the Researchers have also developed new programming languages program call-graph, finds the definitions and uses of each vari- and extensions to existing languages to enable easier specification
Recommended publications
  • Lecture 4 Resource Protection and Thread Safety
    Concurrency and Correctness – Resource Protection and TS Lecture 4 Resource Protection and Thread Safety 1 Danilo Piparo – CERN, EP-SFT Concurrency and Correctness – Resource Protection and TS This Lecture The Goals: 1) Understand the problem of contention of resources within a parallel application 2) Become familiar with the design principles and techniques to cope with it 3) Appreciate the advantage of non-blocking techniques The outline: § Threads and data races: synchronisation issues § Useful design principles § Replication, atomics, transactions and locks § Higher level concrete solutions 2 Danilo Piparo – CERN, EP-SFT Concurrency and Correctness – Resource Protection and TS Threads and Data Races: Synchronisation Issues 3 Danilo Piparo – CERN, EP-SFT Concurrency and Correctness – Resource Protection and TS The Problem § Fastest way to share data: access the same memory region § One of the advantages of threads § Parallel memory access: delicate issue - race conditions § I.e. behaviour of the system depends on the sequence of events which are intrinsically asynchronous § Consequences, in order of increasing severity § Catastrophic terminations: segfaults, crashes § Non-reproducible, intermittent bugs § Apparently sane execution but data corruption: e.g. wrong value of a variable or of a result Operative definition: An entity which cannot run w/o issues linked to parallel execution is said to be thread-unsafe (the contrary is thread-safe) 4 Danilo Piparo – CERN, EP-SFT Concurrency and Correctness – Resource Protection and TS To Be Precise: Data Race Standard language rules, §1.10/4 and /21: • Two expression evaluations conflict if one of them modifies a memory location (1.7) and the other one accesses or modifies the same memory location.
    [Show full text]
  • Clojure, Given the Pun on Closure, Representing Anything Specific
    dynamic, functional programming for the JVM “It (the logo) was designed by my brother, Tom Hickey. “It I wanted to involve c (c#), l (lisp) and j (java). I don't think we ever really discussed the colors Once I came up with Clojure, given the pun on closure, representing anything specific. I always vaguely the available domains and vast emptiness of the thought of them as earth and sky.” - Rich Hickey googlespace, it was an easy decision..” - Rich Hickey Mark Volkmann [email protected] Functional Programming (FP) In the spirit of saying OO is is ... encapsulation, inheritance and polymorphism ... • Pure Functions • produce results that only depend on inputs, not any global state • do not have side effects such as Real applications need some changing global state, file I/O or database updates side effects, but they should be clearly identified and isolated. • First Class Functions • can be held in variables • can be passed to and returned from other functions • Higher Order Functions • functions that do one or both of these: • accept other functions as arguments and execute them zero or more times • return another function 2 ... FP is ... Closures • main use is to pass • special functions that retain access to variables a block of code that were in their scope when the closure was created to a function • Partial Application • ability to create new functions from existing ones that take fewer arguments • Currying • transforming a function of n arguments into a chain of n one argument functions • Continuations ability to save execution state and return to it later think browser • back button 3 ..
    [Show full text]
  • Java Concurrency in Practice
    Java Concurrency in practice Chapters: 1,2, 3 & 4 Bjørn Christian Sebak ([email protected]) Karianne Berg ([email protected]) INF329 – Spring 2007 Chapter 1 - Introduction Brief history of concurrency Before OS, a computer executed a single program from start to finnish But running a single program at a time is an inefficient use of computer hardware Therefore all modern OS run multiple programs (in seperate processes) Brief history of concurrency (2) Factors for running multiple processes: Resource utilization: While one program waits for I/O, why not let another program run and avoid wasting CPU cycles? Fairness: Multiple users/programs might have equal claim of the computers resources. Avoid having single large programs „hog“ the machine. Convenience: Often desirable to create smaller programs that perform a single task (and coordinate them), than to have one large program that do ALL the tasks What is a thread? A „lightweight process“ - each process can have many threads Threads allow multiple streams of program flow to coexits in a single process. While a thread share process-wide resources like memory and files with other threads, they all have their own program counter, stack and local variables Benefits of threads 1) Exploiting multiple processors 2) Simplicity of modeling 3) Simplified handling of asynchronous events 4) More responsive user interfaces Benefits of threads (2) Exploiting multiple processors The processor industry is currently focusing on increasing number of cores on a single CPU rather than increasing clock speed. Well-designed programs with multiple threads can execute simultaneously on multiple processors, increasing resource utilization.
    [Show full text]
  • C/C++ Thread Safety Analysis
    C/C++ Thread Safety Analysis DeLesley Hutchins Aaron Ballman Dean Sutherland Google Inc. CERT/SEI Email: [email protected] Email: [email protected] Email: [email protected] Abstract—Writing multithreaded programs is hard. Static including MacOS, Linux, and Windows. The analysis is analysis tools can help developers by allowing threading policies currently implemented as a compiler warning. It has been to be formally specified and mechanically checked. They essen- deployed on a large scale at Google; all C++ code at Google is tially provide a static type system for threads, and can detect potential race conditions and deadlocks. now compiled with thread safety analysis enabled by default. This paper describes Clang Thread Safety Analysis, a tool II. OVERVIEW OF THE ANALYSIS which uses annotations to declare and enforce thread safety policies in C and C++ programs. Clang is a production-quality Thread safety analysis works very much like a type system C++ compiler which is available on most platforms, and the for multithreaded programs. It is based on theoretical work analysis can be enabled for any build with a simple warning on race-free type systems [3]. In addition to declaring the flag: −Wthread−safety. The analysis is deployed on a large scale at Google, where type of data ( int , float , etc.), the programmer may optionally it has provided sufficient value in practice to drive widespread declare how access to that data is controlled in a multithreaded voluntary adoption. Contrary to popular belief, the need for environment. annotations has not been a liability, and even confers some Clang thread safety analysis uses annotations to declare benefits with respect to software evolution and maintenance.
    [Show full text]
  • Programming Clojure Second Edition
    Extracted from: Programming Clojure Second Edition This PDF file contains pages extracted from Programming Clojure, published by the Pragmatic Bookshelf. For more information or to purchase a paperback or PDF copy, please visit http://www.pragprog.com. Note: This extract contains some colored text (particularly in code listing). This is available only in online versions of the books. The printed versions are black and white. Pagination might vary between the online and printer versions; the content is otherwise identical. Copyright © 2010 The Pragmatic Programmers, LLC. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher. The Pragmatic Bookshelf Dallas, Texas • Raleigh, North Carolina Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and The Pragmatic Programmers, LLC was aware of a trademark claim, the designations have been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade- marks of The Pragmatic Programmers, LLC. Every precaution was taken in the preparation of this book. However, the publisher assumes no responsibility for errors or omissions, or for damages that may result from the use of information (including program listings) contained herein. Our Pragmatic courses, workshops, and other products can help you and your team create better software and have more fun.
    [Show full text]
  • Efficient Scalable Thread-Safety-Violation Detection Finding Thousands of Concurrency Bugs During Testing
    Efficient Scalable Thread-Safety-Violation Detection Finding thousands of concurrency bugs during testing Guangpu Li Shan Lu Madanlal Musuvathi University of Chicago University of Chicago Microsoft Research Suman Nath Rohan Padhye Microsoft Research University of California, Berkeley Abstract Keywords thread-safety violation; concurrency bugs; Concurrency bugs are hard to find, reproduce, and debug. debugging; reliability; scalability They often escape rigorous in-house testing, but result in ACM Reference Format: large-scale outages in production. Existing concurrency- Guangpu Li, Shan Lu, Madanlal Musuvathi, Suman Nath, bug detection techniques unfortunately cannot be part and Rohan Padhye. 2019. Efficient Scalable Thread-Safety- of industry’s integrated build and test environment due Violation Detection: Finding thousands of concurrency bugs to some open challenges: how to handle code developed during testing. In ACM SIGOPS 27th Symposium on Oper- by thousands of engineering teams that uses a wide ating Systems Principles (SOSP ’19), October 27–30, 2019, variety of synchronization mechanisms, how to report lit- Huntsville, ON, Canada. ACM, New York, NY, USA, 19 pages. https://doi.org/10.1145/3341301.3359638 tle/no false positives, and how to avoid excessive testing resource consumption. This paper presents TSVD, a thread-safety violation detector that addresses these challenges through a new design point in the domain of active testing. Unlike pre- 1 Introduction vious techniques that inject delays randomly or employ Concurrency bugs are hard to find, reproduce, and debug. expensive synchronization analysis, TSVD uses light- Race conditions can hide in rare thread interleavings weight monitoring of the calling behaviors of thread- that do not occur during testing but nevertheless show unsafe methods, not any synchronization operations, to up in production.
    [Show full text]
  • A Comparison of Concurrency in Rust and C
    A Comparison of Concurrency in Rust and C Josh Pfosi Riley Wood Henry Zhou [email protected] [email protected] [email protected] Abstract tion. One rule that Rust enforces is the concept of ownership As computer architects are unable to scale clock frequency due to a to ensure memory safety. When a variable binding is assigned, power wall, parallel architectures have begun to proliferate. With this such as let x = y, the ownership of the data referenced by shift, programmers will need to write increasingly concurrent applica- y is transferred to x. Any subsequent usages of y are invalid. tions to maintain performance gains. Parallel programming is difficult In this way, Rust enforces a one-to-one binding between sym- for programmers and so Rust, a systems programming language, has bols and data. Ownership is also transferred when passing data been developed to statically guarantee memory- and thread-safety and to functions. Data can be borrowed, meaning it is not deallo- catch common concurrency errors. This work draws comparisons be- cated when its binding goes out of scope, but the programmer tween the performance of concurrency features and idioms in Rust, and must make this explicit. Data can be borrowed as mutable or im- the low level and distinctly unsafe implementation of Pthreads in C. We mutable, also specified explicitly, and the compiler makes sure find that while Rust catches common concurrency errors and does not that permissions to borrowed data are not violated by the bor- demonstrate additional threading overhead, it generally executes slower rower.
    [Show full text]
  • Thread Safety Annotations for Clang
    Thread Safety Annotations for Clang DeLesley Hutchins <[email protected]> Google Confidential and Proprietary Outline of Talk ● Why... we need thread annotations. ● What... the annotations are, and what they do. ● How... thread annotations are implemented in clang. ● Huh? (Current challenges and future work). Google Confidential and Proprietary Why... ...we need thread safety annotations Google Confidential and Proprietary The problem with threads... ● Everybody wants to write multi-threaded code. ○ ... multi-core ... Moore's law ... power wall ... etc. ● Threading bugs (i.e. race conditions) are insidious. ● Race conditions are hard to see in source code: ○ Caused by interactions with other threads. ○ Not locally visible when examining code. ○ Not necessarily caught by code review. ● Race conditions are hard to find and eliminate: ○ Bugs are intermittent. ○ Hard to reproduce, especially in debugger. ○ Often don't appear in unit tests. Google Confidential and Proprietary Real World Example: ● Real world example at Google. ● Several man-weeks spent tracking down this bug. // a global shared cache class Cache { public: // find value, and pin within cache Value* lookup(Key *K); // allow value to be reclaimed void release(Key *K); }; Mutex CacheMutex; Cache GlobalCache; Google Confidential and Proprietary Example (Part II): A Helper... // Automatically release key when variable leaves scope class ScopedLookup { public: ScopedLookup(Key* K) : Ky(K), Val(GlobalCache.lookup(K)) { } ~ScopedLookup() { GlobalCache.release(Ky); } Value* getValue() { return Val; } private: Key* Ky; Value* Val; }; Google Confidential and Proprietary Example (Part III): The Bug ● Standard threading pattern: ○ lock, do something, unlock... void bug(Key* K) { CacheMutex.lock(); ScopedLookup lookupVal(K); doSomethingComplicated(lookupVal.getValue()); CacheMutex.unlock(); // OOPS! }; Google Confidential and Proprietary The Fix void bug(Key* K) { CacheMutex.lock(); { ScopedLookup lookupVal(K); doSomethingComplicated(lookupVal.getValue()); // force destructor to be called here..
    [Show full text]
  • Understanding Memory and Thread Safety Practices and Issues in Real-World Rust Programs
    Understanding Memory and Thread Safety Practices and Issues in Real-World Rust Programs Boqin Qin∗ Yilun Chen2 Zeming Yu BUPT, Pennsylvania State University Purdue University Pennsylvania State University USA USA USA Linhai Song Yiying Zhang Pennsylvania State University University of California, San Diego USA USA Abstract Keywords: Rust; Memory Bug; Concurrency Bug; Bug Study Rust is a young programming language designed for systems ACM Reference Format: software development. It aims to provide safety guarantees Boqin Qin, Yilun Chen, Zeming Yu, Linhai Song, and Yiying Zhang. like high-level languages and performance efficiency like 2020. Understanding Memory and Thread Safety Practices and low-level languages. The core design of Rust is a set of strict Issues in Real-World Rust Programs. In Proceedings of the 41st safety rules enforced by compile-time checking. To support ACM SIGPLAN International Conference on Programming Language more low-level controls, Rust allows programmers to bypass Design and Implementation (PLDI ’20), June 15ś20, 2020, London, UK. ACM, New York, NY, USA, 17 pages. https://doi.org/10.1145/ these compiler checks to write unsafe code. 3385412.3386036 It is important to understand what safety issues exist in real Rust programs and how Rust safety mechanisms impact 1 Introduction programming practices. We performed the first empirical study of Rust by close, manual inspection of 850 unsafe code Rust [30] is a programming language designed to build ef- usages and 170 bugs in five open-source Rust projects, five ficient and safe low-level software [8, 69, 73, 74]. Its main widely-used Rust libraries, two online security databases, and idea is to inherit most features in C and C’s good runtime the Rust standard library.
    [Show full text]
  • Fully Automatic and Precise Detection of Thread Safety Violations
    Fully Automatic and Precise Detection of Thread Safety Violations Michael Pradel and Thomas R. Gross Department of Computer Science ETH Zurich 1 Motivation Thread-safe classes: Building blocks for concurrent programs 2 Motivation Thread-safe classes: Building blocks for concurrent programs 2 Motivation Thread-safe classes: Building blocks for concurrent programs 2 Example from JDK StringBuffer b = new StringBuffer() b.append("abc") Thread 1 Thread 2 b.insert(1, b) b.deleteCharAt(1) 3 Example from JDK StringBuffer b = new StringBuffer() b.append("abc") Thread 1 Thread 2 b.insert(1, b) b.deleteCharAt(1) ! IndexOutOfBoundsException Confirmed as bug: Issue #7100996 3 Example from JDK StringBuffer b = new StringBuffer() b.append("abc") ThreadHow 1 toThread test 2 b.insert(1,thread b) b.deleteCharAt(1) safety? ! IndexOutOfBoundsException Confirmed as bug: Issue #7100996 3 Goal Automatic and precise bug detection Thread Class Tool safety violations 4 Goal Automatic and precise bug detection Tests Thread Class Tool safety violations Formal False specs positives 4 Goal Automatic and precise bug detection Thread Class Tool safety violations 4 Thread-Safe Classes “behaves correctly when accessed from multiple threads ... with no additional synchronization ... (in the) calling code” page 18 5 Thread-Safe Classes “behaves correctly when accessed from multiple threads ... with no additional synchronization ... (in the) calling code” page 18 5 Thread-Safe Classes “behaves correctly when accessed from multiple threads ... with no additional synchronization ... (in the) calling code” page 18 5 Thread-Safe Classes “behaves correctly when accessed from multiple threads ... with no additional synchronization ... (in the) calling code” page 18 “operations ... behave as if they occur in some serial order that is consistent with the order of the method calls made by each of the individual threads” StringBuffer API documentation, JDK 6 5 Thread-Safe Classes “behaves correctly when accessed from multiple threads ..
    [Show full text]
  • Issues in Developing a Thread-Safe MPI Implementation
    Issues in Developing a Thread-Safe MPI Implementation William Gropp and Rajeev Thakur Mathematics and Computer Science Division Argonne National Laboratory Argonne, IL 60439, USA {gropp, thakur}@mcs.anl.gov Abstract. The MPI-2 Standard has carefully specified the interaction between MPI and user-created threads, with the goal of enabling users to write multithreaded programs while also enabling MPI implementations to deliver high performance. In this paper, we describe and analyze what the MPI Standard says about thread safety and what it implies for an im- plementation. We classify the MPI functions based on their thread-safety requirements and discuss several issues to consider when implementing thread safety in MPI. We use the example of generating new context ids (required for creating new communicators) to demonstrate how a sim- ple solution for the single-threaded case cannot be used when there are multiple threads and how a na¨ıve thread-safe algorithm can be expen- sive. We then present an algorithm for generating context ids that works efficiently in both single-threaded and multithreaded cases. 1 Introduction With SMP machines being commonly available and multicore chips becoming the norm, the mixing of the message-passing programming model with multithread- ing on a single multicore chip or SMP node is becoming increasingly important. The MPI-2 Standard has clearly defined the interaction between MPI and user- created threads in an MPI program [5]. This specification was written with the goal of enabling users to write multithreaded MPI programs easily, without un- duly burdening MPI implementations to support more than what a user might need.
    [Show full text]
  • Principles of Software Construction: Objects, Design, and Concurrency
    Principles of Software Construction: Objects, Design, and Concurrency Concurrency: Safety Christian Kästner Bogdan Vasilescu School of Computer Science 15-214 1 15-214 2 Example: Money-Grab public class BankAccount { private long balance; public BankAccount(long balance) { this.balance = balance; } static void transferFrom(BankAccount source, BankAccount dest, long amount) { source.balance -= amount; dest.balance += amount; } public long balance() { return balance; } } 15-214 3 What would you expect this to print? public static void main(String[] args) throws InterruptedException { BankAccount bugs = new BankAccount(100); BankAccount daffy = new BankAccount(100); Thread bugsThread = new Thread(()-> { for (int i = 0; i < 1000000; i++) transferFrom(daffy, bugs, 100); }); Thread daffyThread = new Thread(()-> { for (int i = 0; i < 1000000; i++) transferFrom(bugs, daffy, 100); }); bugsThread.start(); daffyThread.start(); bugsThread.join(); daffyThread.join(); System.out.println(bugs.balance() + daffy.balance()); } 15-214 4 What went wrong? • Daffy & Bugs threads were stomping each other • Transfers did not happen in sequence • Constituent reads and writes interleaved randomly • Random results ensued 15-214 5 Fix: Synchronized access (visibility) @ThreadSafe public class BankAccount { @GuardedBy(“this”) private long balance; public BankAccount(long balance) { this.balance = balance; } static synchronized void transferFrom(BankAccount source, BankAccount dest, long amount) { source.balance -= amount; dest.balance += amount; } public synchronized
    [Show full text]