Natural Bioactive Thiazole-Based Peptides from Marine Resources: Structural and Pharmacological Aspects

Total Page:16

File Type:pdf, Size:1020Kb

Natural Bioactive Thiazole-Based Peptides from Marine Resources: Structural and Pharmacological Aspects marine drugs Review Natural Bioactive Thiazole-Based Peptides from Marine Resources: Structural and Pharmacological Aspects 1, , 2, , 3 4 Rajiv Dahiya * y , Sunita Dahiya * y, Neeraj Kumar Fuloria , Suresh Kumar , Rita Mourya 5, Suresh V. Chennupati 6, Satish Jankie 1, Hemendra Gautam 7, Sunil Singh 8, Sanjay Kumar Karan 9, Sandeep Maharaj 1, Shivkanya Fuloria 3, Jyoti Shrivastava 10, Alka Agarwal 11, Shamjeet Singh 1, Awadh Kishor 12, Gunjan Jadon 13 and Ajay Sharma 14 1 School of Pharmacy, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad & Tobago; [email protected] (S.J.); [email protected] (S.M.); [email protected] (S.S.) 2 Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936, USA 3 Department of Pharmaceutical Chemistry, Faculty of Pharmacy, AIMST University, Semeling, Bedong 08100, Kedah, Malaysia; [email protected] (N.K.F.); [email protected] (S.F.) 4 Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra 136119, Haryana, India; sureshmpharma@rediffmail.com 5 School of Pharmacy, College of Medicine and Health Sciences, University of Gondar, P.O. Box 196, Gondar 6200, Ethiopia; [email protected] 6 Department of Pharmacy, College of Medical and Health Sciences, Wollega University, P.O. Box 395, Nekemte, Ethiopia; sureshchennupati@rediffmail.com 7 Arya College of Pharmacy, Dr. A.P.J. Abdul Kalam Technical University, Nawabganj, Bareilly 243407, Uttar Pardesh, India; [email protected] 8 Department of Pharmaceutical Chemistry, Ideal Institute of Pharmacy, Wada, Palghar 421303, Maharashtra, India; [email protected] 9 Department of Pharmaceutical Chemistry, Seemanta Institute of Pharmaceutical Sciences, Jharpokharia, Mayurbhanj 757086, Orissa, India; sanjay_karan21@rediffmail.com 10 Department of Pharmaceutical Chemistry, The Oxford College of Pharmacy, Hongasandra, Bangalore 560068, Karnataka, India; [email protected] 11 Department of Pharmaceutical Chemistry, U.S. Ostwal Institute of Pharmacy, Mangalwad, Chittorgarh 313603, Rajasthan, India; [email protected] 12 Department of Pharmaceutical Biotechnology, Shrinathji Institute of Pharmacy, Nathdwara 313301, Rajsamand, Rajasthan, India; [email protected] 13 Department of Pharmaceutical Chemistry, Shrinathji Institute of Pharmacy, Nathdwara 313301, Rajsamand, Rajasthan, India; [email protected] 14 Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India; [email protected] * Correspondence: [email protected] (R.D.); [email protected] (S.D.); Tel.: +1-868-493-5655 (R.D.); +1-787-758-2525 (ext. 5413) (S.D.) These authors contributed equally to this work. y Received: 25 May 2020; Accepted: 19 June 2020; Published: 24 June 2020 Abstract: Peptides are distinctive biomacromolecules that demonstrate potential cytotoxicity and diversified bioactivities against a variety of microorganisms including bacteria, mycobacteria, and fungi via their unique mechanisms of action. Among broad-ranging pharmacologically active peptides, natural marine-originated thiazole-based oligopeptides possess peculiar structural features along with a wide spectrum of exceptional and potent bioproperties. Because of their complex nature and size divergence, thiazole-based peptides (TBPs) bestow a pivotal chemical platform in drug Mar. Drugs 2020, 18, 329; doi:10.3390/md18060329 www.mdpi.com/journal/marinedrugs Mar. Drugs 2020, 18, 329 2 of 43 discovery processes to generate competent scaffolds for regulating allosteric binding sites and peptide–peptide interactions. The present study dissertates on the natural reservoirs and exclusive structural components of marine-originated TBPs, with a special focus on their most pertinent pharmacological profiles, which may impart vital resources for the development of novel peptide-based therapeutic agents. Keywords: azole-based peptide; marine sponge; peptide synthesis; cytotoxicity; cyanobacteria; thiazole; bioactivity 1. Introduction Heterocycles are known to govern a lot of processes of vital significance inside our body, including transmission of nerve impulses, hereditary information, and metabolism. A variety of the naturally occurring congeners, including reserpine, morphine, papaverine, and quinine, are heterocycles in origin, and many of the synthetic bioactives viz. methotrexate and isoniazid contain heterocyclic pharmacophores [1]. Among heterocycles, thiazoles have received special attention as promising scaffolds in the area of medicinal chemistry because this azole has been found alone or incorporated into the diversity of therapeutic active agents such as sulfathiazole, combendazole, niridazole, fanetinol, bleomycin, and ritonavir, which are associated with antibiotic, fungicidal, schistozomicidal, anti-inflammatory, anticancer, and anti-HIV properties [2,3]. Peptides are bioactive compounds of natural origin available in all living organisms and are known for their vital contribution in a wide array of biological activity. Due to their therapeutic abilities, peptides have received growing interest in recent years. In the human body, peptides perform a lot of essential functions including the engagement of peptide hormones like insulin, glucagon-like peptide-1 (GLP-1), and glucagon and in blood glucose regulation and are used to treat novel targets for certain disease conditions, including Alzheimer’s disease, diabetes mellitus type 2, and obesity [4–7]. As unique structural features make azole-containing heterocyclic peptides (especially thiazoles) attractive lead compounds for drug development as well as nice tools for advance research, efforts should be made by scientists to develop biologically active thiazole-based peptide derivatives (TBPs). TBPs are obtained from diverse resources, primarily from cyanobacteria, sponges, and tunicates. A thiazole ring can be part of a cyclic structure or connected in a linear chain of peptides either alone or with other heterocycles like oxazole (e.g., thiopeptide antibiotics), imidazole, and indole (in the forms of histidine and tryptophan), thiazoline, oxazoline, etc. Cyclic peptides have an advantage over their linear counterparts as cyclization offers a reduction in conformational freedom, resulting in higher receptor-binding affinities. Understanding the structure–activity relationship (SAR), different modes of action, and routes of synthesis as tools are of vital significance for the study of complex molecules like heterocyclic bioactive peptides, which have a broad spectrum of pharmacological activities associated with them. Further, the sudden increase in the number of peptide drug products is another good reason to study this particular category of compounds on a priority basis. Keeping in view the vital significance of TBPs, the current article focuses on different bioactive marine-derived thiazole-based polypeptides with complex structures and their potent resources, synthetic methodologies, stereochemical aspects, structural activity relationships, diverse modes of action, and bioproperties. 1.1. Resources Various natural sources of TBPs and other heterocyclic rings containing cyclopolypeptides comprise cyanobacteria [8–40], ascidians [41–62], marine sponges [63–70], and sea slugs [71–73]. Moreover, actinomycetes, sea hare, red alga, and higher plants [74–80] were found to be other potential resources of TBPs. Mar. Drugs 2020, 18, 329 3 of 43 1.2. Linear vs. Cyclic Peptides In linear peptides with amino acid units between 10 to 20, secondary structures like α-helices and β-strands begin to form, which impose constraints that reduce the free energy of linear peptides. Compared to linear peptides, cyclopeptides are typically considered to have even greater potential as therapeutic agents due to their increased chemical and enzymatic stability, receptor selectivity, and improved pharmacodynamic properties. Although peptide cyclization generally induces structural constraints, the site of cyclization within the sequence can affect the binding affinity of cyclic peptides. Cyclization is a well-known technique to increase the potency and in vivo half-life of peptide molecules by locking their conformation. Hence, both the biological activity and the stability of peptides can be improved by cyclization. The reduction in conformational freedom brought about by cyclization often results in higher receptor-binding affinities. Overall, cyclization of peptides is a vital tool for structure–activity studies and drug development because ring formation limits the flexibility of the peptide chain and allows for the induction or stabilization of active conformations. Moreover, cyclic peptides are less sensitive to enzymatic degradation [81]. The cyclization process often increases the stability of peptides, can prolong their bioeffect, and can create peptides with the ability to penetrate tumors in order to enhance the potency of anticancer drugs [82,83]. Cyclization is envisioned to enhance the selective binding, uptake, potency, and stability of linear precursors. The prolonged activity may even be the result of additional resistance to enzymatic degradation by exoproteases. Cyclic peptides are of considerable interest as potential protein ligands and might be more cell permeable than their linear counterparts due to their reduced conformational flexibility. Further, cyclic nature
Recommended publications
  • FMB Ch05-Gerwick.Indd
    PB Marine Cyanobacteria Ramaswamy et al. 175 5 The Secondary Metabolites and Biosynthetic Gene Clusters of Marine Cyanobacteria. Applications in Biotechnology Aishwarya V. Ramaswamy, Patricia M. Flatt, Daniel J. Edwards, T. Luke Simmons, Bingnan Han and William H. Gerwick* Abstract Marine cyanobacteria have proven to be one of the most versatile marine producers of secondary metabolites. Many of these metabolites demonstrate antiproliferative activity (e.g. curacin A, dolastatins), acute cytotoxic activity (e.g. apratoxin, hectochlorin) or have specific neurotoxic activity (e.g. kalkitoxin, antillatoxin), making them invaluable as potential therapeutic leads or pharmacological tools. The predominant biogenetic theme in cyanobacterial natural products chemistry is the integration of polyketide synthases (PKS) and nonribosomal peptide synthetases (NRPS) along with a variety of unusual tailoring or modifying enzymes, and accounts for the tremendous structural diversity of their metabolites. Only recently has the genetic architecture of several cyanobacterial biosynthetic gene clusters been determined, and studies to understand and exploit this biosynthentic machinery present an exciting new frontier. This chapter will summarize the properties of several notable metabolites from marine cyanobacteria that have clinical or pharmacological applications followed by a detailed account of their biosyntheses at the molecular genetic level and their potential applications in biotechnology. 1. Introduction Cyanobacteria, also known as blue-green algae, are ancient (ca. 2 x 109 years) photosynthetic prokaryotes which inhabit a wide diversity of habitats including *For correspondence email [email protected] 176 Marine Cyanobacteria Ramaswamy et al. 177 open oceans, tropical reefs, shallow water environments, terrestrial substrates, aerial environments such as in trees and rock faces, and fresh water ponds, streams and puddles (Whitton and Potts, 2000) .
    [Show full text]
  • Patellamide a and C Biosynthesis by a Microcin-Like Pathway in Prochloron Didemni, the Cyanobacterial Symbiont of Lissoclinum Patella
    Patellamide A and C biosynthesis by a microcin-like pathway in Prochloron didemni, the cyanobacterial symbiont of Lissoclinum patella Eric W. Schmidt*†, James T. Nelson*, David A. Rasko‡, Sebastian Sudek§, Jonathan A. Eisen‡, Margo G. Haygood§, and Jacques Ravel‡ *Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112; ‡The Institute for Genomic Research, Rockville, MD 20850; and §Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA 92093 Edited by Robert Haselkorn, University of Chicago, Chicago, IL, and approved April 7, 2005 (received for review February 18, 2005) Prochloron spp. are obligate cyanobacterial symbionts of many a project to sequence the genome of Prochloron didemni, isolated didemnid family ascidians. It has been proposed that the cyclic from the ascidian Lissoclinum patella. peptides of the patellamide class found in didemnid extracts are The patellamides and trunkamide (another didemnid product) synthesized by Prochloron spp., but studies in which host and are peptides that exemplify both the unique structural features and symbiont cells are separated and chemically analyzed to identify potent bioactivities of didemnid ascidian natural products (Fig. 1). the biosynthetic source have yielded inconclusive results. As part Both groups have clinical potential, because patellamides are of the Prochloron didemni sequencing project, we identified pa- typically moderately cytotoxic, and patellamides B, C, and D tellamide biosynthetic genes and confirmed their function by reportedly reverse multidrug resistance (15, 16), whereas trunka- heterologous expression of the whole pathway in Escherichia coli. mide was initially isolated because of specific and unusual activity The primary sequence of patellamides A and C is encoded on a against the multidrug-resistant UO-31 renal cell line (17).
    [Show full text]
  • Development of Novel Imaging System by Using Firefly Bioluminescence
    A Thesis for the Degree of Ph.D. (Science) Development of novel imaging system by using firefly bioluminescence March 2017 Graduate School of Science and Technology Keio University Shuji Ioka Contents Chapter 1. Introduction 1 1-1. Chemistry of bioluminescence 2 1-2. Firefly bioluminescence 6 1-3. Applications of firefly bioluminescence 8 1-4. Structure activity relationship of firefly luciferin 12 Chapter 2. Synthesis of firefly luciferin analogues and evaluation of the luminescent properties 15 2-1. Introduction 16 2-2. Results and discussion 2-2-1. Synthesis of firefly luciferin analogues 18 2-2-2. Bioluminescence 22 2-2-3. Chemiluminescence 26 2-2-4. Inhibitory activity of bioluminescence 28 2-2-5. Adenylation of synthetic compound 30 2-2-6. Bioluminescence in vivo 33 2-3. Summary 35 Chapter 3. Development of a luminescence-controllable firefly luciferin analogue using selective enzymatic cyclization 37 3-1. Introduction 38 3-2. Results and discussion 3-2-1. Synthesis of N-Ac-γ-glutamate luciferin 40 3-2-2. Cyclization with aminoacylase 41 3-2-3. Reaction rate of cyclization 43 3-2-4. Bioluminescence with aminoacylase 45 3-3. Summary 48 Chapter 4. Conclusion 49 Experimental Section 53 References 81 Acknowledgements 87 Abbreviations Ac acetyl Ala alanine AMP adenosine monophosphate aq aqueous ATP adenosine triphosphate BFP blue fluorescent protein BRET bioluminescence resonance energy transfer Boc tert-butoxycarbonyl Bu butyl BL bioluminescence Co. cooperation DAL diaminophenylpropyl-aminoluciferin DAST diethylaminosulfur trifluoride DCC dicyclohexylcarbodiimide DMAP N,N-dimethyl-4-aminopyridine DMF N,N-dimethylformamide DMSO dimethyl sulfoxide ESI electrospray ionization Et ethyl ffLuc fluorescent protein fused luciferase GFP green fluorescent protein Gly glycine HPLC high performance liquid chromatography isoAm isoamyl Imd.
    [Show full text]
  • Structural and Mutational Analysis of the Nonribosomal Peptide Synthetase Heterocyclization Domain Provides Insight Into Catalysis
    Structural and mutational analysis of the nonribosomal peptide synthetase heterocyclization domain provides insight into catalysis Kristjan Bloudoffa, Christopher D. Fageb, Mohamed A. Marahielb, and T. Martin Schmeinga,1 aDepartment of Biochemistry, McGill University, Montreal, QC H3G 0B1, Canada; and bDepartment of Chemistry/Biochemistry, LOEWE Center for Synthetic Microbiology, Philipps-Universität Marburg, 35032 Marburg, Germany Edited by Peter B. Moore, Yale University, New Haven, CT, and approved November 30, 2016 (received for review August 31, 2016) Nonribosomal peptide synthetases (NRPSs) are a family of multido- rings are found in many peptides with important clinical and re- main, multimodule enzymes that synthesize structurally and func- search utility, such as the antibiotics bacitracin A (6) and zelko- tionally diverse peptides, many of which are of great therapeutic or vamycin (13), the antitumor agents bleomycin (14) and epothilone commercial value. The central chemical step of peptide synthesis is (8), the immunosuppressant argyrin (15), the siderophores myco- amide bond formation, which is typically catalyzed by the conden- bactin (16) and yersiniabactin (17), and the microbiome genotoxin sation (C) domain. In many NRPS modules, the C domain is replaced colibactin (18). Introduction of the five-membered heterocyclic by the heterocyclization (Cy) domain, a homologous domain that ring makes the peptide resistant to proteolytic cleavage and can performs two consecutive reactions by using hitherto unknown induce conformations in the peptide that favor interaction with catalytic mechanisms. It first catalyzes amide bond formation, and biological targets (19). then the intramolecular cyclodehydration between a Cys, Ser, or Thr In NRPSs that synthesize these heterocycle-containing products, side chain and the backbone carbonyl carbon to form a thiazoline, the module specific for the Cys, Ser, or Thr monomer substrate oxazoline, or methyloxazoline ring.
    [Show full text]
  • The Structural Biology of Patellamide Biosynthesis
    Available online at www.sciencedirect.com ScienceDirect The structural biology of patellamide biosynthesis 1 1 2,3 Jesko Koehnke , Andrew F Bent , Wael E Houssen , 1 2 1 Greg Mann , Marcel Jaspars and James H Naismith The biosynthetic pathways for patellamide and related natural the pharmaceutical armory for treating diseases ranging products have recently been studied by structural biology. from bacterial infection to cancer to immune suppression These pathways produce molecules that have a complex [4]. Synthetic biology promises, amongst other deliver- framework and exhibit a diverse array of activity due to the ables, the ability to tailor enzymes in biosynthetic pathways variability of the amino acids that are found in them. As these to create natural product variants with desirable properties molecules are difficult to synthesize chemically, exploitation of in the quantities required for drug development [5]. their properties has been modest. The patellamide pathway involves amino acid heterocyclization, peptide cleavage, Peptide based natural products are particularly attractive peptide macrocyclization, heterocycle oxidation and from a chemical point of view; amino acids share a common epimerization; closely related products are also prenylated. standard in connectivity (the amide bond) with an almost Enzyme activities have been identified for all these infinitely configurable element (the side chain). One can transformations except epimerization, which may be thus ‘dial’ in chemical and structural properties into a spontaneous. This review highlights the recent structural and shared basic design. Crucially, in the same way as no mechanistic work on amino acid heterocyclization, peptide two proteins need to share any biological property, pep- cleavage and peptide macrocyclization.
    [Show full text]
  • The Structural Biology of Patellamide Biosynthesis
    Available online at www.sciencedirect.com ScienceDirect The structural biology of patellamide biosynthesis 1 1 2,3 Jesko Koehnke , Andrew F Bent , Wael E Houssen , 1 2 1 Greg Mann , Marcel Jaspars and James H Naismith The biosynthetic pathways for patellamide and related natural the pharmaceutical armory for treating diseases ranging products have recently been studied by structural biology. from bacterial infection to cancer to immune suppression These pathways produce molecules that have a complex [4]. Synthetic biology promises, amongst other deliver- framework and exhibit a diverse array of activity due to the ables, the ability to tailor enzymes in biosynthetic pathways variability of the amino acids that are found in them. As these to create natural product variants with desirable properties molecules are difficult to synthesize chemically, exploitation of in the quantities required for drug development [5]. their properties has been modest. The patellamide pathway involves amino acid heterocyclization, peptide cleavage, Peptide based natural products are particularly attractive peptide macrocyclization, heterocycle oxidation and from a chemical point of view; amino acids share a common epimerization; closely related products are also prenylated. standard in connectivity (the amide bond) with an almost Enzyme activities have been identified for all these infinitely configurable element (the side chain). One can transformations except epimerization, which may be thus ‘dial’ in chemical and structural properties into a spontaneous. This review highlights the recent structural and shared basic design. Crucially, in the same way as no mechanistic work on amino acid heterocyclization, peptide two proteins need to share any biological property, pep- cleavage and peptide macrocyclization.
    [Show full text]