Geometric Algebra: a Computational Framework for Geometrical

Total Page:16

File Type:pdf, Size:1020Kb

Geometric Algebra: a Computational Framework for Geometrical Feature Tutorial Geometric Algebra: A Computational Framework For Geometrical Stephen Mann Applications University of Waterloo Leo Dorst Part 2 University of Amsterdam his is the second of a two-part tutorial on defines a rotation/dilation operator. Let us do a slight- Tgeometric algebra. In part one,1 we intro- ly simpler problem. In Figure 1a, if a and b have the duced blades, a computational algebraic representa- same norm, what is the vector x in the (a ∧ b) plane that tion of oriented subspaces, which are the basic elements is to c as the vector b is to a? Geometric algebra phras- of computation in geometric algebra. We also looked es this as xc–1 = ba–1 and solves it (see Equation 13 at the geometric product and two products derived from part one1) as from it, the inner and outer products. A crucial feature of the geometric product is that it is invertible. − 1 xbac= ( 1) =⋅+∧(ba b a) c From that first article, you should 2 have gathered that every vector a This second part of our space with an inner product has a b − φ geometric algebra, whether or not =−(cosφφIc sin ) = e I c (1) tutorial uses geometric you choose to use it. This article a shows how to call on this structure algebra to represent to define common geometrical con- Here Iφ is the angle in the I plane from a to b, so –Iφ is structs, ensuring a consistent com- the angle from b to a. Figure 1a suggests that we obtain rotations, intersections, and putational framework. The goal is to x from c by a rotation, so we should apparently inter- show you that this can be done and pret premultiplying by e–Iφ as a rotation operator in the differentiation. We show that it is compact, directly computa- I plane. tional, and transcends the dimen- The vector c in the I plane anticommutes with I: cI= how a small set of products sionality of subspaces. We will not –Ic—showing that I is not merely a complex number, use geometric algebra to develop even though I2 = –1. Using this to switch I and c in Equa- simplifies many geometrical new algorithms for graphics, but we tion 1, we obtain that the rotation is alternatively repre- hope to convince you that you can sentable as a postmultiplication: operations. automatically take care some of the lower level algorithmic aspects, − φ e I c =−cIccosφφ sin without tricks, exceptions, or hidden degenerate cases =+φφ =Iφ by using geometric algebra as a language. ccIcos sin ce (2) Rotations What is cI? First, temporarily introduce orthonormal Geometric algebra handles rotations of general sub- coordinates {e1, e2} in the I plane, with e1 along c, so m spaces in V through an interesting sandwiching prod- that c ≡ ce1. Then, I = e1 ∧ e2 = e1 e2. Therefore, cI = uct using geometric products. We introduce this ce1e1e2= ce2—it is c turned over a right angle, following construction gradually. the orientation of the 2-blade I (here anticlockwise). So c cosφ + cI sinφ is “a bit of c plus a bit of its anticlock- Rotations in 2D wise perpendicular,” and those amounts are precisely In the last article, we saw that the ratio of vectors right to make it equal to the rotation by φ (see Figure 1b). 58 July/August 2002 0272-1716/02/$17.00 © 2002 IEEE Angles as geometrical objects I-plane x c I I-plane In Equation 1, the combination Iφ is a full indication 1 (a) The rota- − φ φ of the angle between the two vectors. It denotes not only c Rc = e I c = ceI tion operator as the magnitude but also the plane in which the angle is a ratio between measured and even the angle’s orientation. If you ask vectors. (b) c for the scalar magnitude of Iφ in the plane –I (the plane Coordinate-free b from b to a rather than from a to b), it is –φ. Therefore, specification of the scalar value of the angle automatically gets the right a (a) (b) rotation. sign. The fact that the angle as expressed by Iφ is now a geometrical quantity independent of the convention used in its definition removes a major headache from many geometrical computations involving angles. We over π/2, we write out their rotors (using the shorthand call this true geometric quantity the bivector angle. (It is e23 = e2 ∧ e3 = e2 e3 and so on): just a 2-blade, of course, and not a new kind of element, but we use it as an angle, hence the name). − −Ie31π/4 1 e23 Re1 == Rotations in m dimensions 2 Equation 2 rotates only within the plane I. Generally, we would like to have rotations in space. For a vector x, and the outcome of a rotation RIφ should be − −Ie32π/4 1 e31 Re2 == RIφ x = x⊥ + RIφ x|| 2 where x⊥ and x|| are the perpendicular and parallel com- The total rotor is their product, and we rewrite it back to ponents of x relative to the rotation plane I, respective- the exponential form to find the axis: ly. We have seen that we can separate a vector into such components by commutation (as in Equations 31 and 32 ≡=−1 − RRR2 1(11ee 31)( 23 ) from part one1). As you can verify, the following formu- 2 la effects this separation and rotation simultaneously: 1 =−−+(1 eee) 2 23 31 12 –Iφ/2 Iφ/2 rotation over Iφ: x a RIφx = e x e (3) +− =−1 1 eee123 3 I3 φ 2 2 The operator e–I /2, used in this way, is called a rotor. 3 − π In the 2D rotation we treated before, xI= –Ix, and ≡ e Ia3 /3 moving either rotor to the other side of x retrieves Equa- tion 2 if x is in the I plane. Therefore, the total rotation is over the axis a=(e1+ Two successive rotations R1 and R2 are equivalent to e2 – e3)/√3, over the angle 2π/3. a single new rotation R of which the rotor R is the geo- Geometric algebra permits straightforward general- metric product of the rotors R2 and R1, since ization to the rotation of higher dimensional subspaces. We can apply a rotor immediately to an arbitrary blade o = −−1 1 (RR21)xxRR 211( R) R2 through the formula −1 = (RR) xx ( RR) = R R−1 general rotation: X a R X R–1 21 21 This lets you rotate a plane in one operation, for instance, with R = R2R1. Therefore, the combination of rotations using a rotation by R (as in the example we just saw): is a simple consequence of the application of the geo- metric product on rotors—that is, elements of the form − –Iφ/2 2 ∧ 1 = e = cos (φ/2) – I sin (φ/2), with I = –1. This is true RR(ee12) in any dimension greater than 1 (and even in dimension 1 −−+ ++− =− 1, if you realize that any bivector there is zero, so that (11eeee23 31 12) 12( eee 23 31 12) e 31 4 rotations do not exist). Let us see how it works in 3-space. In three dimensions, we are used to specifying rotations by a rotation axis a There is no need to decompose the plane into its span- rather than by a rotation plane I. Given a unit vector a for ning vectors first. an axis, we find the plane as the 2-blade complementary to it in the 3D space with volume element I3: I = Quaternions based on bivectors a I3 = aI3 = I3a. A rotation over an angle φ around an You might have recognized the last example as strong- axis with unit vector a is therefore represented by the ly similar to quaternion computations. Quaternions are φ/2 rotor e–I3a . indeed part of geometric algebra in the following For example, to compose a rotation R1 around the e1 straightforward manner. 3 axis of π/2 with a subsequent rotation R2 over the e2 axis Choose an orthonormal basis {ei}i=1. Construct out IEEE Computer Graphics and Applications 59 Feature Tutorial b ≡ B* Note that this is grade preserving—a k-blade transforms a I3 a ^ B a to a k-blade. We supplement this by stating what the extension does to scalars, which is simply f(α) = α. Geo- b × aa B metrically, this means that a linear transformation leaves the origin intact. Linear transformations are outermorphisms, which explains why we can generalize so many operations BBfrom vectors to general subspaces in a straightforward manner. (a) (b) Dual representation 2 (a) The dual B* of a bivector B and the cross product with a. (b) The Linear algebra often uses dual representations of same result using the inner product of blades (from part one1). hyperplanes to extend the scope of vector-based opera- tions. In geometric algebra, dualization is also impor- tant and in fact is a flexible tool to convert between of that a bivector basis {e12, e23, e31}. Note that these viewpoints of spanning and perpendicularity, for arbi- 2 2 2 elements satisfy e12=e23=e31=−1, e12 e23 = e31 (and trary subspaces. m cyclic), and also e12 e23 e31 = 1. In fact, setting i ≡ e23, Consider an m-dimensional space V and a blade A 2 2 2 m j ≡ –e31, and k ≡ e12, we find i = j = k = i j k = –1 and in it. The dual of the blade A in V is its complement, j i = k and cyclic.
Recommended publications
  • Multivector Differentiation and Linear Algebra 0.5Cm 17Th Santaló
    Multivector differentiation and Linear Algebra 17th Santalo´ Summer School 2016, Santander Joan Lasenby Signal Processing Group, Engineering Department, Cambridge, UK and Trinity College Cambridge [email protected], www-sigproc.eng.cam.ac.uk/ s jl 23 August 2016 1 / 78 Examples of differentiation wrt multivectors. Linear Algebra: matrices and tensors as linear functions mapping between elements of the algebra. Functional Differentiation: very briefly... Summary Overview The Multivector Derivative. 2 / 78 Linear Algebra: matrices and tensors as linear functions mapping between elements of the algebra. Functional Differentiation: very briefly... Summary Overview The Multivector Derivative. Examples of differentiation wrt multivectors. 3 / 78 Functional Differentiation: very briefly... Summary Overview The Multivector Derivative. Examples of differentiation wrt multivectors. Linear Algebra: matrices and tensors as linear functions mapping between elements of the algebra. 4 / 78 Summary Overview The Multivector Derivative. Examples of differentiation wrt multivectors. Linear Algebra: matrices and tensors as linear functions mapping between elements of the algebra. Functional Differentiation: very briefly... 5 / 78 Overview The Multivector Derivative. Examples of differentiation wrt multivectors. Linear Algebra: matrices and tensors as linear functions mapping between elements of the algebra. Functional Differentiation: very briefly... Summary 6 / 78 We now want to generalise this idea to enable us to find the derivative of F(X), in the A ‘direction’ – where X is a general mixed grade multivector (so F(X) is a general multivector valued function of X). Let us use ∗ to denote taking the scalar part, ie P ∗ Q ≡ hPQi. Then, provided A has same grades as X, it makes sense to define: F(X + tA) − F(X) A ∗ ¶XF(X) = lim t!0 t The Multivector Derivative Recall our definition of the directional derivative in the a direction F(x + ea) − F(x) a·r F(x) = lim e!0 e 7 / 78 Let us use ∗ to denote taking the scalar part, ie P ∗ Q ≡ hPQi.
    [Show full text]
  • Determinants in Geometric Algebra
    Determinants in Geometric Algebra Eckhard Hitzer 16 June 2003, recovered+expanded May 2020 1 Definition Let f be a linear map1, of a real linear vector space Rn into itself, an endomor- phism n 0 n f : a 2 R ! a 2 R : (1) This map is extended by outermorphism (symbol f) to act linearly on multi- vectors f(a1 ^ a2 ::: ^ ak) = f(a1) ^ f(a2) ::: ^ f(ak); k ≤ n: (2) By definition f is grade-preserving and linear, mapping multivectors to mul- tivectors. Examples are the reflections, rotations and translations described earlier. The outermorphism of a product of two linear maps fg is the product of the outermorphisms f g f[g(a1)] ^ f[g(a2)] ::: ^ f[g(ak)] = f[g(a1) ^ g(a2) ::: ^ g(ak)] = f[g(a1 ^ a2 ::: ^ ak)]; (3) with k ≤ n. The square brackets can safely be omitted. The n{grade pseudoscalars of a geometric algebra are unique up to a scalar factor. This can be used to define the determinant2 of a linear map as det(f) = f(I)I−1 = f(I) ∗ I−1; and therefore f(I) = det(f)I: (4) For an orthonormal basis fe1; e2;:::; eng the unit pseudoscalar is I = e1e2 ::: en −1 q q n(n−1)=2 with inverse I = (−1) enen−1 ::: e1 = (−1) (−1) I, where q gives the number of basis vectors, that square to −1 (the linear space is then Rp;q). According to Grassmann n-grade vectors represent oriented volume elements of dimension n. The determinant therefore shows how these volumes change under linear maps.
    [Show full text]
  • Notices of the American Mathematical Society 35 Monticello Place, Pawtucket, RI 02861 USA American Mathematical Society Distribution Center
    ISSN 0002-9920 Notices of the American Mathematical Society 35 Monticello Place, Pawtucket, RI 02861 USA Society Distribution Center American Mathematical of the American Mathematical Society February 2012 Volume 59, Number 2 Conformal Mappings in Geometric Algebra Page 264 Infl uential Mathematicians: Birth, Education, and Affi liation Page 274 Supporting the Next Generation of “Stewards” in Mathematics Education Page 288 Lawrence Meeting Page 352 Volume 59, Number 2, Pages 257–360, February 2012 About the Cover: MathJax (see page 346) Trim: 8.25" x 10.75" 104 pages on 40 lb Velocity • Spine: 1/8" • Print Cover on 9pt Carolina AMS-Simons Travel Grants TS AN GR EL The AMS is accepting applications for the second RAV T year of the AMS-Simons Travel Grants program. Each grant provides an early career mathematician with $2,000 per year for two years to reimburse travel expenses related to research. Sixty new awards will be made in 2012. Individuals who are not more than four years past the comple- tion of the PhD are eligible. The department of the awardee will also receive a small amount of funding to help enhance its research atmosphere. The deadline for 2012 applications is March 30, 2012. Applicants must be located in the United States or be U.S. citizens. For complete details of eligibility and application instructions, visit: www.ams.org/programs/travel-grants/AMS-SimonsTG Solve the differential equation. t ln t dr + r = 7tet dt 7et + C r = ln t WHO HAS THE #1 HOMEWORK SYSTEM FOR CALCULUS? THE ANSWER IS IN THE QUESTIONS.
    [Show full text]
  • Introduction to Clifford's Geometric Algebra
    解説:特集 コンピューテーショナル・インテリジェンスの新展開 —クリフォード代数表現など高次元表現を中心として— Introduction to Clifford’s Geometric Algebra Eckhard HITZER* *Department of Applied Physics, University of Fukui, Fukui, Japan *E-mail: [email protected] Key Words:hypercomplex algebra, hypercomplex analysis, geometry, science, engineering. JL 0004/12/5104–0338 C 2012 SICE erty 15), 21) that any isometry4 from the vector space V Abstract into an inner-product algebra5 A over the field6 K can Geometric algebra was initiated by W.K. Clifford over be uniquely extended to an isometry7 from the Clifford 130 years ago. It unifies all branches of physics, and algebra Cl(V )intoA. The Clifford algebra Cl(V )is has found rich applications in robotics, signal process- the unique associative and multilinear algebra with this ing, ray tracing, virtual reality, computer vision, vec- property. Thus if we wish to generalize methods from tor field processing, tracking, geographic information algebra, analysis, calculus, differential geometry (etc.) systems and neural computing. This tutorial explains of real numbers, complex numbers, and quaternion al- the basics of geometric algebra, with concrete exam- gebra to vector spaces and multivector spaces (which ples of the plane, of 3D space, of spacetime, and the include additional elements representing 2D up to nD popular conformal model. Geometric algebras are ideal subspaces, i.e. plane elements up to hypervolume ele- to represent geometric transformations in the general ments), the study of Clifford algebras becomes unavoid- framework of Clifford groups (also called versor or Lip- able. Indeed repeatedly and independently a long list of schitz groups). Geometric (algebra based) calculus al- Clifford algebras, their subalgebras and in Clifford al- lows e.g., to optimize learning algorithms of Clifford gebras embedded algebras (like octonions 17))ofmany neurons, etc.
    [Show full text]
  • A Guided Tour to the Plane-Based Geometric Algebra PGA
    A Guided Tour to the Plane-Based Geometric Algebra PGA Leo Dorst University of Amsterdam Version 1.15{ July 6, 2020 Planes are the primitive elements for the constructions of objects and oper- ators in Euclidean geometry. Triangulated meshes are built from them, and reflections in multiple planes are a mathematically pure way to construct Euclidean motions. A geometric algebra based on planes is therefore a natural choice to unify objects and operators for Euclidean geometry. The usual claims of `com- pleteness' of the GA approach leads us to hope that it might contain, in a single framework, all representations ever designed for Euclidean geometry - including normal vectors, directions as points at infinity, Pl¨ucker coordinates for lines, quaternions as 3D rotations around the origin, and dual quaternions for rigid body motions; and even spinors. This text provides a guided tour to this algebra of planes PGA. It indeed shows how all such computationally efficient methods are incorporated and related. We will see how the PGA elements naturally group into blocks of four coordinates in an implementation, and how this more complete under- standing of the embedding suggests some handy choices to avoid extraneous computations. In the unified PGA framework, one never switches between efficient representations for subtasks, and this obviously saves any time spent on data conversions. Relative to other treatments of PGA, this text is rather light on the mathematics. Where you see careful derivations, they involve the aspects of orientation and magnitude. These features have been neglected by authors focussing on the mathematical beauty of the projective nature of the algebra.
    [Show full text]
  • Geometric Algebra Techniques for General Relativity
    Geometric Algebra Techniques for General Relativity Matthew R. Francis∗ and Arthur Kosowsky† Dept. of Physics and Astronomy, Rutgers University 136 Frelinghuysen Road, Piscataway, NJ 08854 (Dated: February 4, 2008) Geometric (Clifford) algebra provides an efficient mathematical language for describing physical problems. We formulate general relativity in this language. The resulting formalism combines the efficiency of differential forms with the straightforwardness of coordinate methods. We focus our attention on orthonormal frames and the associated connection bivector, using them to find the Schwarzschild and Kerr solutions, along with a detailed exposition of the Petrov types for the Weyl tensor. PACS numbers: 02.40.-k; 04.20.Cv Keywords: General relativity; Clifford algebras; solution techniques I. INTRODUCTION Geometric (or Clifford) algebra provides a simple and natural language for describing geometric concepts, a point which has been argued persuasively by Hestenes [1] and Lounesto [2] among many others. Geometric algebra (GA) unifies many other mathematical formalisms describing specific aspects of geometry, including complex variables, matrix algebra, projective geometry, and differential geometry. Gravitation, which is usually viewed as a geometric theory, is a natural candidate for translation into the language of geometric algebra. This has been done for some aspects of gravitational theory; notably, Hestenes and Sobczyk have shown how geometric algebra greatly simplifies certain calculations involving the curvature tensor and provides techniques for classifying the Weyl tensor [3, 4]. Lasenby, Doran, and Gull [5] have also discussed gravitation using geometric algebra via a reformulation in terms of a gauge principle. In this paper, we formulate standard general relativity in terms of geometric algebra. A comprehensive overview like the one presented here has not previously appeared in the literature, although unpublished works of Hestenes and of Doran take significant steps in this direction.
    [Show full text]
  • Download Grunberg's Meet and Join
    The Meet and Join, Constraints Between Them, and Their Transformation under Outermorphism A supplementary discussion by Greg Grunberg of Sections 5.1—5.7 of the textbook Geometric Algebra for Computer Science, by Dorst, Fontijne, & Mann (2007) Given two subspaces A and B of the overall vector space, the largest subspace common to both of them is called the meet of those subspaces, and as a set is the intersection A ∩ B of those subspaces. The join of the two given subspaces is the smallest superspace common to both of them, and as a set is the sum A + B = {x1 + x2 : x1 ∈ A and x2 ∈ B} of those subspaces. A + B is not usually a “direct sum” A B, as x1 x2 join the decomposition + of a nonzero element of the is uniquely determined only when A ∩ B= {0}. The system of subspaces, with its subset partial ordering and meet and join operations, is an example of the type of algebraic system called a “lattice”. Recall that a subspace A can be represented by a blade A, with A = {x : x ∧ A = 0}. If A is unoriented, then any scalar multiple αA (α = 0) also represents A; if A is oriented, then the scalar must be positive. Our emphasis is on the algebra of the representing blades, so hereafter we usually do not refer to A and B themselves but rather to their representatives A and B. When necessary we will abuse language and refer to the “subspace” A or B rather than to A or B. We will examine the meet and join of two given blades A and B, both before and after application of an (invertible) transformation f to get new blades A¯ = f [A] and B¯ = f [B].
    [Show full text]
  • Geometric Algebra for Mathematicians
    Geometric Algebra for Mathematicians Kalle Rutanen 09.04.2013 (this is an incomplete draft) 1 Contents 1 Preface 4 1.1 Relation to other texts . 4 1.2 Acknowledgements . 6 2 Preliminaries 11 2.1 Basic definitions . 11 2.2 Vector spaces . 12 2.3 Bilinear spaces . 21 2.4 Finite-dimensional bilinear spaces . 27 2.5 Real bilinear spaces . 29 2.6 Tensor product . 32 2.7 Algebras . 33 2.8 Tensor algebra . 35 2.9 Magnitude . 35 2.10 Topological spaces . 37 2.11 Topological vector spaces . 39 2.12 Norm spaces . 40 2.13 Total derivative . 44 3 Symmetry groups 50 3.1 General linear group . 50 3.2 Scaling linear group . 51 3.3 Orthogonal linear group . 52 3.4 Conformal linear group . 55 3.5 Affine groups . 55 4 Algebraic structure 56 4.1 Clifford algebra . 56 4.2 Morphisms . 58 4.3 Inverse . 59 4.4 Grading . 60 4.5 Exterior product . 64 4.6 Blades . 70 4.7 Scalar product . 72 4.8 Contraction . 74 4.9 Interplay . 80 4.10 Span . 81 4.11 Dual . 87 4.12 Commutator product . 89 4.13 Orthogonality . 90 4.14 Magnitude . 93 4.15 Exponential and trigonometric functions . 94 2 5 Linear transformations 97 5.1 Determinant . 97 5.2 Pinors and unit-versors . 98 5.3 Spinors and rotors . 104 5.4 Projections . 105 5.5 Reflections . 105 5.6 Adjoint . 107 6 Geometric applications 107 6.1 Cramer’s rule . 108 6.2 Gram-Schmidt orthogonalization . 108 6.3 Alternating forms and determinant .
    [Show full text]
  • Geometric Algebra and Its Application to Mathematical Physics
    Geometric Algebra and its Application to Mathematical Physics Chris J. L. Doran Sidney Sussex College A dissertation submitted for the degree of Doctor of Philosophy in the University of Cambridge. February 1994 Preface This dissertation is the result of work carried out in the Department of Applied Mathematics and Theoretical Physics between October 1990 and October 1993. Sections of the dissertation have appeared in a series of collaborative papers [1] —[10]. Except where explicit reference is made to the work of others, the work contained in this dissertation is my own. Acknowledgements Many people have given help and support over the last three years and I am grateful to them all. I owe a great debt to my supervisor, Nick Manton, for allowing me the freedom to pursue my own interests, and to my two principle collaborators, Anthony Lasenby and Stephen Gull, whose ideas and inspiration were essential in shaping my research. I also thank David Hestenes for his encouragement and his company on an arduous journey to Poland. Above all, I thank Julie Cooke for the love and encouragement that sustained me through to the completion of this work. Finally, I thank Stuart Rankin and Margaret James for many happy hours in the Mill, Mike and Rachael, Tim and Imogen, Paul, Alan and my other colleagues in DAMTP and MRAO. I gratefully acknowledge financial support from the SERC, DAMTP and Sidney Sussex College. To my parents Contents 1 Introduction 1 1.1 Some History and Recent Developments . 4 1.2 Axioms and Definitions . 9 1.2.1 The Geometric Product .
    [Show full text]
  • Geometric Algebra: a Computational Framework for Geometrical Applications (Part II: Applications)
    Geometric algebra: a computational framework for geometrical applications (part II: applications) Leo Dorst∗ and Stephen Manny Abstract Geometric algebra is a consistent computational framework in which to de- fine geometric primitives and their relationships. This algebraic approach contains all geometric operators and permits coordinate-free specification of computational constructions. It contains primitives of any dimensionality (rather than just vec- tors). This second paper on the subject uses the basic products to represent ro- tations (naturally incorporating quaternions), intersections, and differentiation. It shows how using well-chosen geometric algebra models, we can eliminate special cases in incidence relationships, yet still have the efficiency of the Plucker¨ coordi- nate intersection computations. Keywords: geometric algebra, Clifford algebra, rotation reprensentation, quaternions, dualization, meet, join, Plucker¨ coordinates, homogeneous coordinates, geometric dif- ferentiation, computational geometry 1 Introduction This is the second of two papers introducing geometric algebra. In the previous paper, we introduced blades, a computational algebraic representation of oriented subspaces, which are the basic element of computation in geometric algebra. We also looked at the geometric product, and two products derived from the geometric product, the inner and outer products. A crucial feature of the geometric product is that it is invertible. From that first paper, you should have gathered that every vector space with an in- ner product has a geometric algebra, whether you choose to use it or not. This paper shows how to call upon this structure for the definition of common geometrical con- structs, ensuring a totally consistent computational framework. The goal is to show ∗Informatics Institute, University of Amsterdam, Kruislaan 403, 1098 SJ Amsterdam, The Netherlands yComputer Science Department, University of Waterloo, Waterloo, Ontario, N2L 3G1, CANADA 0 c 2002 IEEE.
    [Show full text]
  • Linear and Geometric Algebra October 2020 Printing
    Linear and Geometric Algebra October 2020 printing Alan Macdonald Luther College, Decorah, IA 52101 USA [email protected] faculty.luther.edu/~macdonal Geometry without algebra is dumb! - Algebra without geometry is blind! - David Hestenes The principal argument for the adoption of geometric algebra is that it provides a single, simple mathematical framework which elimi- nates the plethora of diverse mathematical descriptions and tech- niques it would otherwise be necessary to learn. - Allan McRobie and Joan Lasenby To David Hestenes, founder, chief theoretician, and most forceful advocate for modern geometric algebra and calculus, and inspiration for this book. To my Grandchildren, Aida, Pablo, Miles, Graham. Copyright © 2010 Alan Macdonald Contents Contents iii Preface vii To the Student xi I Linear Algebra1 1 Vectors3 1.1 Oriented Lengths...........................3 1.2 Rn ................................... 12 2 Vector Spaces 15 2.1 Vector Spaces............................. 15 2.2 Subspaces............................... 20 2.3 Linear Combinations......................... 22 2.4 Linear Independence......................... 24 2.5 Bases................................. 27 2.6 Dimension............................... 30 3 Matrices 33 3.1 Matrices................................ 33 3.2 Systems of Linear Equations..................... 45 4 Inner Product Spaces 51 4.1 Oriented Lengths........................... 51 4.2 Rn ................................... 56 4.3 Inner Product Spaces......................... 57 4.4 Orthogonality............................
    [Show full text]
  • Geometric Algebra: an Introduction with Applications in Euclidean and Conformal Geometry
    San Jose State University SJSU ScholarWorks Master's Theses Master's Theses and Graduate Research Fall 2013 Geometric Algebra: An Introduction with Applications in Euclidean and Conformal Geometry Richard Alan Miller San Jose State University Follow this and additional works at: https://scholarworks.sjsu.edu/etd_theses Recommended Citation Miller, Richard Alan, "Geometric Algebra: An Introduction with Applications in Euclidean and Conformal Geometry" (2013). Master's Theses. 4396. DOI: https://doi.org/10.31979/etd.chd4-za3f https://scholarworks.sjsu.edu/etd_theses/4396 This Thesis is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been accepted for inclusion in Master's Theses by an authorized administrator of SJSU ScholarWorks. For more information, please contact [email protected]. GEOMETRIC ALGEBRA: AN INTRODUCTION WITH APPLICATIONS IN EUCLIDEAN AND CONFORMAL GEOMETRY A Thesis Presented to The Faculty of the Department of Mathematics and Statistics San Jos´eState University In Partial Fulfillment of the Requirements for the Degree Master of Science by Richard A. Miller December 2013 ⃝c 2013 Richard A. Miller ALL RIGHTS RESERVED The Designated Thesis Committee Approves the Thesis Titled GEOMETRIC ALGEBRA: AN INTRODUCTION WITH APPLICATIONS IN EUCLIDEAN AND CONFORMAL GEOMETRY by Richard A. Miller APPROVED FOR THE DEPARTMENT OF MATHEMATICS AND STATISTICS SAN JOSE´ STATE UNIVERSITY December 2013 Dr. Richard Pfiefer Department of Mathematics and Statistics Dr. Richard Kubelka Department of Mathematics and Statistics Dr. Wasin So Department of Mathematics and Statistics ABSTRACT GEOMETRIC ALGEBRA: AN INTRODUCTION WITH APPLICATIONS IN EUCLIDEAN AND CONFORMAL GEOMETRY by Richard A. Miller This thesis presents an introduction to geometric algebra for the uninitiated.
    [Show full text]