Cellular Transporter Proteins in Cholesterol Metabolism
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
PLATFORM ABSTRACTS Abstract Abstract Numbers Numbers Tuesday, November 6 41
American Society of Human Genetics 62nd Annual Meeting November 6–10, 2012 San Francisco, California PLATFORM ABSTRACTS Abstract Abstract Numbers Numbers Tuesday, November 6 41. Genes Underlying Neurological Disease Room 134 #196–#204 2. 4:30–6:30pm: Plenary Abstract 42. Cancer Genetics III: Common Presentations Hall D #1–#6 Variants Ballroom 104 #205–#213 43. Genetics of Craniofacial and Wednesday, November 7 Musculoskeletal Disorders Room 124 #214–#222 10:30am–12:45 pm: Concurrent Platform Session A (11–19): 44. Tools for Phenotype Analysis Room 132 #223–#231 11. Genetics of Autism Spectrum 45. Therapy of Genetic Disorders Room 130 #232–#240 Disorders Hall D #7–#15 46. Pharmacogenetics: From Discovery 12. New Methods for Big Data Ballroom 103 #16–#24 to Implementation Room 123 #241–#249 13. Cancer Genetics I: Rare Variants Room 135 #25–#33 14. Quantitation and Measurement of Friday, November 9 Regulatory Oversight by the Cell Room 134 #34–#42 8:00am–10:15am: Concurrent Platform Session D (47–55): 15. New Loci for Obesity, Diabetes, and 47. Structural and Regulatory Genomic Related Traits Ballroom 104 #43–#51 Variation Hall D #250–#258 16. Neuromuscular Disease and 48. Neuropsychiatric Disorders Ballroom 103 #259–#267 Deafness Room 124 #52–#60 49. Common Variants, Rare Variants, 17. Chromosomes and Disease Room 132 #61–#69 and Everything in-Between Room 135 #268–#276 18. Prenatal and Perinatal Genetics Room 130 #70–#78 50. Population Genetics Genome-Wide Room 134 #277–#285 19. Vascular and Congenital Heart 51. Endless Forms Most Beautiful: Disease Room 123 #79–#87 Variant Discovery in Genomic Data Ballroom 104 #286–#294 52. -
Harnessing Low-Density Lipoprotein Receptor Protein 6 (LRP6) Genetic Variation and Wnt Signaling for Innovative Diagnostics in Complex Diseases
OPEN The Pharmacogenomics Journal (2018) 18, 351–358 www.nature.com/tpj REVIEW Harnessing low-density lipoprotein receptor protein 6 (LRP6) genetic variation and Wnt signaling for innovative diagnostics in complex diseases Z-M Wang1,2, J-Q Luo1,2, L-Y Xu3, H-H Zhou1,2 and W Zhang1,2 Wnt signaling regulates a broad variety of processes in both embryonic development and various diseases. Recent studies indicated that some genetic variants in Wnt signaling pathway may serve as predictors of diseases. Low-density lipoprotein receptor protein 6 (LRP6) is a Wnt co-receptor with essential functions in the Wnt/β-catenin pathway, and mutations in LRP6 gene are linked to many complex human diseases, including metabolic syndrome, cancer, Alzheimer’s disease and osteoporosis. Therefore, we focus on the role of LRP6 genetic polymorphisms and Wnt signaling in complex diseases, and the mechanisms from mouse models and cell lines. It is also highly anticipated that LRP6 variants will be applied clinically in the future. The brief review provided here could be a useful resource for future research and may contribute to a more accurate diagnosis in complex diseases. The Pharmacogenomics Journal (2018) 18, 351–358; doi:10.1038/tpj.2017.28; published online 11 July 2017 INTRODUCTION signaling pathways and expressed in various target organs.1 LDLR- The Wnt1 gene was identified in 1982. Ensuing studies in related proteins 5/6 (LRP5/6) belong to this large family and Drosophila and Xenopus unveiled a highly conserved Wnt/ function as co-receptors of the Wnt/β-catenin pathway. These β-catenin pathway, namely, canonical Wnt signaling. -
LRP5 Promotes Adipose Progenitor Cell Fitness and Adipocyte Insulin Sensitivity
bioRxiv preprint doi: https://doi.org/10.1101/2020.03.04.976647; this version posted March 5, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. LRP5 promotes adipose progenitor cell fitness and adipocyte insulin sensitivity Short title: LRP5 and adipose tissue biology Authors: Nellie Y. Loh1, Senthil K. Vasan1, Manu Verma1, Agata Wesolowska-Andersen2, Matt J. Neville1,3, Clive Osmond4, Celia L. Gregson5, Fredrik Karpe1,3 and Constantinos Christodoulides1. Affiliations: 1 Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK 2 Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK 3 NIHR Oxford Biomedical Research Centre, OUH Foundation Trust, Oxford OX3 7LE, UK 4 MRC Lifecourse Epidemiology Unit, Southampton General Hospital, University of Southampton, Tremona Road, Southampton SO17 1BJ, UK 5 Musculoskeletal Research Unit, Translational Health Sciences, University of Bristol, Southmead Hospital, Bristol BS10 5NB, UK Address for correspondence to: Dr Constantinos Christodoulides Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford OX3 7LE, UK E-mail: [email protected] Phone: +44-1865-857111 Keywords: LRP5, adipose, adipogenesis, fat distribution, WNT, human. Word count: 3964 words, 4 figures, 2 tables 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.03.04.976647; this version posted March 5, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. -
Sortilin Expression Is Essential for Pro-Nerve Growth Factor-Induced Apoptosis of Rat Vascular Smooth Muscle Cells
Sortilin expression is essential for pro-nerve growth factor-induced apoptosis of rat vascular smooth muscle cells. Campagnolo, Luisa; Costanza, Gaetana; Francesconi, Arianna; Arcuri, Gaetano; Moscatelli, Ilana; Orlandi, Augusto Published in: PLoS ONE DOI: 10.1371/journal.pone.0084969 2014 Link to publication Citation for published version (APA): Campagnolo, L., Costanza, G., Francesconi, A., Arcuri, G., Moscatelli, I., & Orlandi, A. (2014). Sortilin expression is essential for pro-nerve growth factor-induced apoptosis of rat vascular smooth muscle cells. PLoS ONE, 9(1), [e84969]. https://doi.org/10.1371/journal.pone.0084969 Total number of authors: 6 General rights Unless other specific re-use rights are stated the following general rights apply: Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal Read more about Creative commons licenses: https://creativecommons.org/licenses/ Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove -
Prongf Induces Tnfα-Dependent Death of Retinal Ganglion Cells Through a P75ntr Non-Cell-Autonomous Signaling Pathway
ProNGF induces TNFα-dependent death of retinal ganglion cells through a p75NTR non-cell-autonomous signaling pathway Frédéric Lebrun-Juliena,1, Mathieu J. Bertrandb,1, Olivier De Backerc, David Stellwagend, Carlos R. Moralese, Adriana Di Polo a,2,3, and Philip A. Barker b,2 aDepartment of Pathology and Cell Biology and Groupe de Recherche sur le Système Nerveux Central, Université de Montréal, Montreal, Quebec H3C 3J7, Canada; bCentre for Neuronal Survival, Montreal Neurological Institute, Montreal, Quebec H3A 2B4, Canada; cFacultés Universitaires Notre-Dame de la Paix School of Medicine, University of Namur, Namur B-5000, Belgium; dCentre for Research in Neuroscience, Montreal, Quebec H3G 1A4; and eDepartment of Anatomy and Cell Biology McGill University, Montreal, Quebec H3A 2B2, Canada Edited by Moses V. Chao, Skirball Institute of Biomolecular Medicine, New York, New York, and accepted by the Editorial Board December 30, 2009 (received for review August 17, 2009) Neurotrophin binding to the p75 neurotrophin receptor (p75NTR) Müller glial cells. Therefore, proNGF-induced neuronal loss in the activates neuronal apoptosis following adult central nervous sys- adult retina occurs through a non-cell-autonomous mechanism. tem injury, but the underlying cellular mechanisms remain poorly defined. In this study, we show that the proform of nerve growth Results factor (proNGF) induces death of retinal ganglion cells in adult ProNGF Induces Death of Retinal Ganglion Cells in Adult Rodents. To rodents via a p75NTR-dependent signaling mechanism. Expression investigate whether proNGF promotes neuronal death in vivo, we of p75NTR in the adult retina is confined to Müller glial cells; there- first retrogradely labeled RGCs of adult rats by applying fluo- fore we tested the hypothesis that proNGF activates a non-cell- rogold to the surface of the superior colliculus and then provided autonomous signaling pathway to induce retinal ganglion cell a single intraocular injection of proNGF or vehicle. -
(LRP5) Is Essential for Normal Cholesterol Metabolism and Glucose-Induced Insulin Secretion
Low-density lipoprotein receptor-related protein 5 (LRP5) is essential for normal cholesterol metabolism and glucose-induced insulin secretion Takahiro Fujinoa,b, Hiroshi Asabab,c, Man-Jong Kangb,d, Yukio Ikedaa,b,c, Hideyuki Sonea,b, Shinji Takadae,f,g, Dong-Ho Kima, Ryoichi X. Iokaa, Masao Onoh, Hiroko Tomoyorii, Minoru Okuboj, Toshio Murasej, Akihisa Kamatakia, Joji Yamamotoa,c, Kenta Magooria, Sadao Takahashik, Yoshiharu Miyamotoh, Hisashi Oishih, Masato Noseh, Mitsuyo Okazakil, Shinichi Usuil, Katsumi Imaizumii, Masashi Yanagisawac,m, Juro Sakaia,c,n, and Tokuo T. Yamamotoa aGene Research Center and Division of Nephrology, Endocrinology, and Vascular Medicine, Department of Medicine, Tohoku University, Sendai 980-8574, Japan; cYanagisawa Orphan Receptor Project, Exploratory Research for Advanced Technology, Japan Science and Technology Corporation, Tokyo 135-0064, Japan; dDepartment of Animal Science, College of Agriculture, Chonnam National University, Kwangju 500-600, Korea; eGraduate School of Science, Kyoto University, Kyoto 606-8502, Japan; fKondoh Differentiation Signaling Project, Exploratory Research for Advanced Technology, Japan Science and Technology Corporation, Kyoto 606-8305, Japan; gCenter for Integrative Bioscience, Okazaki, Aichi 444-8585, Japan; hDepartments of Pathology and Orthopedics, Ehime University School of Medicine, Ehime 791-0295, Japan; iLaboratory of Nutritional Chemistry, Graduate School of Agriculture, Kyusyu University, Fukuoka 812-8581, Japan; jDepartment of Endocrinology and Metabolism, Toranomon Hospital, Tokyo 105-8470, Japan; kThird Department of Internal Medicine, Fukui Medical University, Fukui 910-1193, Japan; lLaboratory of Chemistry, College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Chiba 282-0827, Japan; and mHoward Hughes Medical Institute, Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75235-9050 Edited by Michael S. -
Associations of Apolipoprotein E and Low‐Density Lipoprotein
J Periodont Res 2015; 50: 509–518 © 2014 John Wiley & Sons A/S. All rights reserved Published by John Wiley & Sons Ltd JOURNAL OF PERIODONTAL RESEARCH doi:10.1111/jre.12237 H. Gao*, Y. Tian*, H. Meng, J. Hou, Associations of L. Xu, L. Zhang, D. Shi, R. Lu, X. Feng, X. Wang, Z. Chen Department of Periodontology, Peking apolipoprotein E and University School and Hospital of Stomatology, Beijing, China low-density lipoprotein receptor-related protein 5 polymorphisms with dyslipidemia and generalized aggressive periodontitis in a Chinese population Gao H, Tian Y, Meng H, Hou J, Xu L, Zhang L, Shi D, Lu R, Feng X, Wang X, Chen Z. Associations of apolipoprotein E and low-density lipoprotein receptor- related protein 5 polymorphisms with dyslipidemia and generalized aggressive periodontitis in a Chinese population. J Periodont Res 2015; 50: 509–518. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd Background and Objective: Dyslipidemia is associated with aggressive periodonti- tis, a condition characterized by the rapid destruction of the periodontium. Apo- lipoprotein E (APOE) and low-density lipoprotein receptor-related protein 5 (LRP5) are involved in immunomodulation and inflammatory activity. We eval- uated the association of LRP5 and APOE polymorphisms with serum lipid con- centrations and generalized aggressive periodontitis within a Chinese population. Material and Methods: Mean serum lipid concentrations were compared across LRP5 and APOE polymorphisms, among cases (n = 185) and controls (n = 138). Multivariable logistic regression was used to evaluate the independent and combined associations of LRP5 and APOE polymorphisms with generalized Huanxin Meng, BDS, MS, PhD, Peking aggressive periodontitis. -
NTR3/Sortilin [G11]: MC0188 Intended Use: for Research Use Only
Medaysis Enable Innovation DATA SHEET Mouse Anti-NTR3/Sortilin [G11]: MC0188 Intended Use: For Research Use Only Description: Neurotensin (NT) initiates an intracellular response by interacting with the G protein-coupled receptors NTR1 (NTS1 receptor, high affinity NTR) and NTR2 (NTS2 receptor, levocabastine-sensitive neurotensin receptor), and the type I receptor NTR3 (NTS3 receptor, sortilin-1, Gp95). NT has a wide distribution in regions of the brain and in peripheral tissues where NT receptors can contribute to hypotension, hyperglycemia, hypothermia, antinociception and regulation of intestinal motility and secretion. HL-60 cells express NTR1, which can couple to Gq, Gi/o, or Gs. Alternative splicing of rat NTR2 can generate a 5-transmembrane domain variant isoform that is co-expressed with the fulllength NTR2 throughout the brain and spinal cord. NTR3 activation in the murine microglial cell line N11 induces MIP-2, Specifications Clone: G11 Source: Mouse Isotype: IgG1k Reactivity: Human, mouse, rat Localization: Membrane, cytoplasm Formulation: Purified antibody in PBS pH7.4, containing BSA and ≤ 0.09% sodium azide (NaN3) Storage: Store at 2°- 8°C Applications: ELISA, IHC, IF, IP, WB Package: Description Catalog No. Size NTR3/Sortilin Concentrated MC0188 1 ml IHC Procedure* Positive Control Tissue: Brain Concentrated Dilution: 50-200 Pretreatment: Citrate pH6.0 or EDTA pH8.0, 15 minutes using Pressure Cooker, or 30-60 minutes using water bath at 95°-99°C Incubation Time and Temp: 30-60 minutes @ RT Detection: Refer to the detection system manual * Result should be confirmed by an established diagnostic procedure. FFPE human epididymis tissue stained with anti- NTR3/Sortilin using DAB References: 1. -
Clinical Utility Gene Card For: Sitosterolaemia
European Journal of Human Genetics (2017) 25, doi:10.1038/ejhg.2016.187 & 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved 1018-4813/17 www.nature.com/ejhg CLINICAL UTILITY GENE CARD Clinical utility gene card for: Sitosterolaemia Amanda J Hooper1,2,3, Damon A Bell1,2, Robert A Hegele4 and John R Burnett*,1,2 European Journal of Human Genetics (2017) 25, doi:10.1038/ejhg.2016.187; published online 28 December 2016 1. DISEASE CHARACTERISTICS Japanese and Indian patients with sitosterolaemia (20% of known cases), 1.1 Name of the disease (synonyms) it is mainly owing to ABCG5 mutations.4 On the basis of allele Sitosterolaemia (phytosterolaemia; Mediterranean stomatocytosis/ frequencies of loss-of-function variants (frameshift, nonsense and macrothrombocytopenia). splicing only; not missense) in the ExAC database, sitosterolaemia has a global prevalence of at least 1 in 2.6 million for ABCG5 and 1 in 1.2 OMIM# of the disease 360 000 for ABCG8; the most common loss-of-function variant 210250. appears to be ABCG8 c.1083G4A (p.(Trp361Ter)) (Exome Aggrega- tion Consortium; http://exac.broadinstitute.org/) 1.3 Name of the analysed genes or DNA/chromosome segments ABCG5 ABCG8 , . 1.9 Diagnostic setting 1.4 OMIM# of the gene(s) 605459, 605460. Yes No. A. (Differential) diagnostics ⊠ □ 1.5 Mutational spectrum B. Predictive testing □ ⊠ □ ⊠ The sitosterolaemia genes ABCG5 (NM_022436.2) and ABCG8 C. Risk assessment in relatives □ ⊠ (NM_022437.2) lie ‘head to head’ on chromosome 2.1–3 They each D. Prenatal contain 13 exons and encode a half-transporter (sterolin-1 and sterolin-2, respectively), with the C-terminus only containing 6 of Comment: Use of genetic testing is essentially limited to confirmatory 3 the usual 12 transmembrane domains of the other ABC transporters. -
TRAP1 Regulates Wnt/-Catenin Pathway Through LRP5/6 Receptors
International Journal of Molecular Sciences Article TRAP1 Regulates Wnt/β-Catenin Pathway through LRP5/6 Receptors Expression Modulation 1, 1, 1 1 Giacomo Lettini y, Valentina Condelli y, Michele Pietrafesa , Fabiana Crispo , Pietro Zoppoli 1 , Francesca Maddalena 1, Ilaria Laurenzana 1 , Alessandro Sgambato 1, Franca Esposito 2,* and Matteo Landriscina 1,3,* 1 Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, PZ, Italy; [email protected] (G.L.); [email protected] (V.C.); [email protected] (M.P.); [email protected] (F.C.); [email protected] (P.Z.); [email protected] (F.M.); [email protected] (I.L.); [email protected] (A.S.) 2 Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy 3 Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy * Correspondence: [email protected] (F.E.); [email protected] (M.L.); Tel.: +39-081-7463-145 (F.E.); +39-0881-736-426 (M.L.) These authors have contributed equally to this work. y Received: 4 September 2020; Accepted: 10 October 2020; Published: 13 October 2020 Abstract: Wnt/β-Catenin signaling is involved in embryonic development, regeneration, and cellular differentiation and is responsible for cancer stemness maintenance. The HSP90 molecular chaperone TRAP1 is upregulated in 60–70% of human colorectal carcinomas (CRCs) and favors stem cells maintenance, modulating the Wnt/β-Catenin pathway and preventing β-Catenin phosphorylation/degradation. The role of TRAP1 in the regulation of Wnt/β-Catenin signaling was further investigated in human CRC cell lines, patient-derived spheroids, and CRC specimens. -
The Rat STSL Locus: Characterization, Chromosomal Assignment, And
BMC Cardiovascular Disorders BioMed Central Research article Open Access The rat STSL locus: characterization, chromosomal assignment, and genetic variations in sitosterolemic hypertensive rats Hongwei Yu1, Bhaswati Pandit1, Eric Klett1, Mi-Hye Lee1, Kangmo Lu1, Khalil Helou2,3, Ikuo Ikeda4, Nami Egashira4, Masao Sato4, Richard Klein1, Ashok Batta5, Gerald Salen5 and Shailendra B Patel*1 Address: 1Division of Endocrinology, Diabetes and Medical Genetics, Medical University of South Carolina, STR 541, 114 Doughty Street, Charleston, SC 29403, USA, 2Genetics Branch, Center for Cancer Research, National Cancer, Institute/NIH, Bethesda, Maryland 20892, USA, 3Department of Oncology, Institute of Selected Clinical Sciences, Goteborg University, SE 413 45, Gothenburg, Sweden, 4Laboratory of Nutrition Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School Kyushu University, Fukuoka, 812-8581, Japan and 5Research Service and Medical Service, Department of Veterans Affairs Medical Center, East Orange, NJ, USA Email: Hongwei Yu - [email protected]; Bhaswati Pandit - [email protected]; Eric Klett - [email protected]; Mi-Hye Lee - [email protected]; Kangmo Lu - [email protected]; Khalil Helou - [email protected]; Ikuo Ikeda - [email protected]; Nami Egashira - [email protected]; Masao Sato - [email protected]; Richard Klein - [email protected]; Ashok Batta - [email protected]; Gerald Salen - [email protected]; Shailendra B Patel* - [email protected] * Corresponding author Published: 3 June 2003 Received: 24 January 2003 Accepted: 3 June 2003 BMC Cardiovascular Disorders 2003, 3:4 This article is available from: http://www.biomedcentral.com/1471-2261/3/4 © 2003 Yu et al; licensee BioMed Central Ltd. -
Independent and Epistatic Effects of Variants in VPS10-D Receptors on Alzheimer Disease Risk and Processing of the Amyloid Precursor Protein (APP)
Citation: Transl Psychiatry (2013) 3, e256; doi:10.1038/tp.2013.13 & 2013 Macmillan Publishers Limited All rights reserved 2158-3188/13 www.nature.com/tp Independent and epistatic effects of variants in VPS10-d receptors on Alzheimer disease risk and processing of the amyloid precursor protein (APP) C Reitz1,2,3, G Tosto2, B Vardarajan4, E Rogaeva5, M Ghani5, RS Rogers2, C Conrad2, JL Haines6, MA Pericak-Vance7, MD Fallin8, T Foroud9, LA Farrer4,10,11,12,13,14, GD Schellenberg15, PS George-Hyslop5,16,17, R Mayeux1,2,3,18,19,20 and the Alzheimer’s Disease Genetics Consortium (ADGC) Genetic variants in the sortilin-related receptor (SORL1) and the sortilin-related vacuolar protein sorting 10 (VPS10) domain- containing receptor 1 (SORCS1) are associated with increased risk of Alzheimer’s disease (AD), declining cognitive function and altered amyloid precursor protein (APP) processing. We explored whether other members of the (VPS10) domain-containing receptor protein family (the sortilin-related VPS10 domain-containing receptors 2 and 3 (SORCS2 and SORCS3) and sortilin (SORT1)) would have similar effects either independently or together. We conducted the analyses in a large Caucasian case control data set (n ¼ 11 840 cases, 10 931 controls) to determine the associations between single nucleotide polymorphisms (SNPs) in all the five homologous genes and AD risk. Evidence for interactions between SNPs in the five VPS10 domain receptor family genes was determined in epistatic statistical models. We also compared expression levels of SORCS2, SORCS3 and SORT1 in AD and control brains using microarray gene expression analyses and assessed the effects of these genes on c-secretase processing of APP.