The Quadruple Bonding in C 2 Reproduces the Properties of the Molecule Sason Shaik, David Danovich, Benoît Braïda, Philippe C

Total Page:16

File Type:pdf, Size:1020Kb

The Quadruple Bonding in C 2 Reproduces the Properties of the Molecule Sason Shaik, David Danovich, Benoît Braïda, Philippe C The Quadruple Bonding in C 2 Reproduces the Properties of the Molecule Sason Shaik, David Danovich, Benoît Braïda, Philippe C. Hiberty To cite this version: Sason Shaik, David Danovich, Benoît Braïda, Philippe C. Hiberty. The Quadruple Bonding in C 2 Reproduces the Properties of the Molecule. Chemistry - A European Journal, Wiley-VCH Verlag, 2016, 22 (12), pp.4116–4128. 10.1002/chem.201600011. hal-01627878 HAL Id: hal-01627878 https://hal.archives-ouvertes.fr/hal-01627878 Submitted on 10 Nov 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The Quadruple Bonding in C2 Reproduces the Properties of the Molecule Sason Shaik,*[a] David Danovich,[a] Benoit Braida,[b] and Philippe C. Hiberty*[c] The paper is dedicated to Andreas Savin, a great scientist and a Mensch, on occasion of his 65th birthday Abstract: Ever since Lewis depicted the triple bond for acet- strength of which is estimated as 17–21 kcalmolÀ1. Alterna- ylene, triple bonding has been considered as the highest tive VB structures with double bonds; either two p bonds or limit of multiple bonding for main elements. Here we show one p bond and one s bond lie at 129.5 and 106.1 kcal À1 that C2 is bonded by a quadruple bond that can be distinctly mol , respectively, above the quadruply-bonded structure, characterized by valence-bond (VB) calculations. We demon- and they collapse to the latter structure given freedom to strate that the quadruply-bonded structure determines the improve their double bonding by dative s bonding. The use- key observables of the molecule, and accounts by itself for fulness of the quadruply-bonded model is underscored by 3 þ about 90% of the molecule’s bond dissociation energy, and “predicting” the properties of the Su state. C2’s very high re- for its bond lengths and its force constant. The quadruply- activity is rooted in its fourth weak bond. Thus, carbon and bonded structure is made of two strong p bonds, one first-row main elements are open to quadruple bonding! strong s bond and a weaker fourth s-type bond, the bond Introduction This fundamental question guided us ever since we started [6,7] the research on C2 and its isoelectronic species. Meanwhile, Ever since Cotton described the ReRe quadruple bonding in C2 is interesting also because of its chemistry and spectroscop- 2À [1] [8–10] Re2Cl8 , there has been a surge of interest in multiple bond- ic properties. Thus, C2 is no exotic curiosity, but an impor- ing,[2] reaching quintuple and even sextuple bonding in, for ex- tant chemical species.[11] It is responsible for the blue glow [3] [12] ample, Cr2,W2 and U2 complexes and dimers. In contrast to (“Swan bands”) emanating from hydrocarbon flames and for these high bond multiplicities among transition metals and cometic light.[8c,11] It is a constituent of solid-state carbides,[9] rare earths elements, we and our students with us have been and it is implicated in diamond growth[13] and in the formation [14] taught that the maximum bond multiplicity between two main of fullerenes. C2 is also one of the most strongly bound di- elements is a triple bond,[4] for example, as in acetylene, which atomic molecules in nature.[15] However, quite paradoxically, [4a] was asserted by Lewis to possess the highest possible union despite the strong bond in C2, this molecule is very highly re- between two atoms. Nevertheless, there are diatomic mole- active[8d,15] and is not isolable. Its reactivity may reflect the 3 [8d] cules, for example, C2, which possess eight valence electrons presence of the diradicaloid Pu state very close to the and a singlet ground state. Could it be that carbon breaks the ground state, or to simply originate from the multiply-bonded glass ceiling and has a quadruple bonding in this molecule?[5–7] nature of the ground state (or its inverted weak s bond; see later). Indeed, based on experience, the reactivity of multiply- bonded CC-based molecules increases with the bond multiplic- [a] Prof. S. Shaik, Dr. D. Danovich ity, so that triple bonds are frequently more reactive than [8e] Institute of Chemistry and double bonds, and both multiple bonds, in turn, are more The Lise Meitner-Minerva Center for Computational Quantum Chemistry reactive than single bonds. And for all these fundamental and Hebrew University of Jerusalem, 91904, Jerusalem (Israel) practical reasons, it is very important to reach a consensus E-mail: [email protected] about the nature of its bonding. Bonding is after all at the [b] Dr. B. Braida UPMC Universit Paris 06, CNRS UMR 7616 heart of chemistry. Laboratoire de Chimie Thorique A simplified molecular orbital (MO) consideration of bond C. 137, 4 Place Jussieu, 75252 Paris Cedex 05 (France) orders (BOs) suggests that C2 possesses a p double bond, as in [c] Dr. P. C. Hiberty 1 in Scheme 1. There is no underlying s bonding in 1, because Laboratoire de Chimie Physique, UMR CNRS 8000, Bat. 349 presumably the occupied bonding and anti-bonding orbitals, Universit de Paris Sud, 91405 Orsay Cdex (France) E-mail: [email protected] 2sg and 2su, cancel one another and contribute zero to the total BO. A related doubly-bonded picture was supported from energy decomposition analysis of a DFT calculation.[16a] Howev- the CC bonds. These observable properties indicate that the bond in C2 is somewhere between those in ethylene and ace- tylene.[20a,b,21] In addition, theoretical indices such as EBOs,[21] bond-strength orders (BSOs),[21b] and BOs based on localized natural orbitals[22] indicate bond orders of slightly more than two, reaching 2.5–2.6 (note however the BO(C2) in referen- ces [22b,c] is as large as that of HCCH and larger than in NN.[22d]). Furthermore, the domain-averaged Fermi holes [22b,c] (DAFH) analysis suggests that C2 has only a residual sigma bonding akin to Be2 (so-called “a non-classical sigma compo- nent”[22c]). Thus, these studies dismiss a “genuine quadruple [23] bond” in C2 and suggest a species like 1, with a p double bond and “a residual s interaction”, which Hermann and Fren- Scheme 1. Bonding cartoons: the p doubly-bonded model for C (1) sug- 2 [21a] gested by bond order consideration of the MO diagram, and the quadruply- king suggest to be two weak dative s bonds, as described [24] bonded model for C2 (2) suggested by qualitative VB consideration. The in- in 5 in Scheme 2. Alternatively, Weinhold and Landis pro- verted bond in [1.1.1] propellane (3), and the bonding cartoon of the triplet posed a similar type of s interaction, called “n bonding” (6), 3Sþ state (4)ofC. u 2 which they did not define as weak or residual bonding (recall that BOs with NBO[17b] are close to 4). Thus, all the recent criti- [20a,b,21,22] cisms of the quadruple bonding idea in C2 agree on [21a,b] er, usage of standard DFT may be questioned, since C2 has a “double-bond-plus” model, and their major criticism is a multireference character.[16b] Similarly, usage of a full-valence that the proposed quadruple bonding model is, allegedly, dis- CASSCF and wave function or other correlated methods leads connected from any observable of the C2 molecule. to effective BO (EBO) values of 2.2–3.0.[6] Other BO (e.g., or Wi- berg’s WBI, NBO-based BO) or EBO determination methods reveal values of 3.30, 3.40, 3.51, 3.71, and 3.9,[6,17] raising the doubt whether the naı¨ve BO/EBO calculations are reliable methods for determining the bond multiplicity of a molecule like C2, because of the fuzzy status of 2su. Indeed, as argued [6,15, 18] several times, the 2su orbital is weakly antibonding if not simply non-bonding, and hence counting this orbital in BO/ EBO considerations may distort the bonding picture (see later). An alternative starting point to the qualitative MO picture in Scheme 2. The dative bonding model (5), and the n-bonding model (6). 1 is 2 (Scheme 1), which can be deduced from qualitative va- lence bond (VB) considerations. Thus, sp-hybridization at each carbon atom leads to the straightforward model of C2 shown Therefore, in order to respond to this challenge, we focus in 2. Here, C2 possesses a quadruple bond made of an inner herein on the quadruply-bonded structure of C2 with an aim of triple bond (one s and two p bonds) and an outer fourth establishing that this structure by itself determines the key ob- s bond made from the inverted hybrids in 2. servable properties of the molecule, while other VB structures At first sight, the inverted hybrids in 2 might look rather have a marginal effect on these properties. Moreover, VB poorly matched for bonding. However, similarly inverted hy- theory does not interpret the wave function, as done by usage brids as in [1.1.1]propellane, 3 (Scheme 1), were shown to of EBO or other indices, but rather it directly gives a snapshot bring about significant bonding.[19] So why dismiss the inverted description of the bonds in terms of chemical Lewis structures.
Recommended publications
  • Bond Distances and Bond Orders in Binuclear Metal Complexes of the First Row Transition Metals Titanium Through Zinc
    Metal-Metal (MM) Bond Distances and Bond Orders in Binuclear Metal Complexes of the First Row Transition Metals Titanium Through Zinc Richard H. Duncan Lyngdoh*,a, Henry F. Schaefer III*,b and R. Bruce King*,b a Department of Chemistry, North-Eastern Hill University, Shillong 793022, India B Centre for Computational Quantum Chemistry, University of Georgia, Athens GA 30602 ABSTRACT: This survey of metal-metal (MM) bond distances in binuclear complexes of the first row 3d-block elements reviews experimental and computational research on a wide range of such systems. The metals surveyed are titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, and zinc, representing the only comprehensive presentation of such results to date. Factors impacting MM bond lengths that are discussed here include (a) n+ the formal MM bond order, (b) size of the metal ion present in the bimetallic core (M2) , (c) the metal oxidation state, (d) effects of ligand basicity, coordination mode and number, and (e) steric effects of bulky ligands. Correlations between experimental and computational findings are examined wherever possible, often yielding good agreement for MM bond lengths. The formal bond order provides a key basis for assessing experimental and computationally derived MM bond lengths. The effects of change in the metal upon MM bond length ranges in binuclear complexes suggest trends for single, double, triple, and quadruple MM bonds which are related to the available information on metal atomic radii. It emerges that while specific factors for a limited range of complexes are found to have their expected impact in many cases, the assessment of the net effect of these factors is challenging.
    [Show full text]
  • The Dicarbon Bonding Puzzle Viewed with Photoelectron Imaging
    The dicarbon bonding puzzle viewed with photoelectron imaging The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Laws, B.A., et al., "The dicarbon bonding puzzle viewed with photoelectron imaging." Nature Communications 10 (Nov. 2019): no. 5199 doi 10.1038/s41467-019-13039-y ©2019 Author(s) As Published 10.1038/s41467-019-13039-y Publisher Springer Science and Business Media LLC Version Final published version Citable link https://hdl.handle.net/1721.1/125929 Terms of Use Creative Commons Attribution 4.0 International license Detailed Terms https://creativecommons.org/licenses/by/4.0/ ARTICLE https://doi.org/10.1038/s41467-019-13039-y OPEN The dicarbon bonding puzzle viewed with photoelectron imaging B.A. Laws 1*, S.T. Gibson 1, B.R. Lewis1 & R.W. Field 2 Bonding in the ground state of C2 is still a matter of controversy, as reasonable arguments may be made for a dicarbon bond order of 2, 3,or4. Here we report on photoelectron spectra À of the C2 anion, measured at a range of wavelengths using a high-resolution photoelectron 1Σþ fi 3Π 1234567890():,; imaging spectrometer, which reveal both the ground X g and rst-excited a u electronic states. These measurements yield electron angular anisotropies that identify the character of two orbitals: the diffuse detachment orbital of the anion and the highest occupied molecular orbital of the neutral. This work indicates that electron detachment occurs from pre- σ π dominantly s-like (3 g) and p-like (1 u) orbitals, respectively, which is inconsistent with the predictions required for the high bond-order models of strongly sp-mixed orbitals.
    [Show full text]
  • Bonding in Molecules Michaelmas Term - Second Year 2019 These 8 Lectures Build on Material Presented in “Introduction to Molecular Orbitals” (HT Year 1)
    Bonding in Molecules Michaelmas Term - Second Year 2019 These 8 lectures build on material presented in “Introduction to Molecular Orbitals” (HT Year 1). They provide a basis for analysing the shapes, properties, spectra and reactivity of a wide range of molecules and transition metal compounds. The essentials of molecular orbital theory 1. The requirements for a good theory of bonding 2. The orbital approximation 3. The nature of molecular orbitals 4. The linear combination of atomic orbitals (LCAO) approach to molecular orbitals + Diatomic molecules: H2 ,H2 and AH + 5. The wave functions for H2 and H2 using an LCAO approach 6. MO schemes for AH molecules (A = second period atom, Li to F) Symmetry and molecular orbital diagrams for the first row hydrides AHn 7. The use of symmetry in polyatomic molecules 8. MO treatment of AH2 (C2v) 9. MO diagrams for AH3 (C3v) 10. MO diagrams for AH4 (Td) Photoelectron spectroscopy and experimental energy levels 11. Photoelectron spectroscopy and "experimental" MO diagrams 12. Photoelectron spectra of AHn molecules The use of Walsh diagrams in exploring molecular shapes 13. TheshapesofAH2 molecules + - 14. ThebondingandshapesofH3 and H3 : 3c-2e and 3c-4e bonds Molecular orbital diagrams for hyper-coordinate molecules 15. The bonding in XeF2 (and CO2) 16. 12-electron main group octahedral systems: SF6 as an example 2+ 2+ 17. Expanding the coordination sphere in carbon: [C(AuPR3)6] as an analogue of CH6 Fragment approach to bonding in electron deficient clusters 18. Build up of molecules from fragments 2– 19. Bonding in [B6H6] (from 6 equivalent BH fragments) and Wade’s rules , the concept of isolobality Complexes of the transition metals: octahedral, tetrahedral and square planar.
    [Show full text]
  • The Electronic Spectrum of Re2cl8 : a Theoretical Study
    Inorg. Chem. 2003, 42, 1599−1603 2- The Electronic Spectrum of Re2Cl8 : A Theoretical Study Laura Gagliardi*,† and Bjo1rn O. Roos‡ Dipartimento di Chimica Fisica F. Accascina, Viale delle ScienzesParco d’Orleans II, I-90128 Palermo, Italy, and Department of Theoretical Chemistry, Chemical Center, P.O. Box 124, S-221 00 Lund, Sweden Received October 14, 2002 2- One of the prototype compounds for metal−metal multiple bonding, the Re2Cl8 ion, has been studied theoretically using multiconfigurational quantum chemical methods. The molecular structure of the ground state has been determined. It is shown that the effective bond order of the Re−Re bond is close to three, due to the weakness of, in particular, the δ bond. The electronic spectrum has been calculated with the inclusion of spin−orbit coupling. Observed spectral features have been reproduced with good accuracy, and a number of new assignments are suggested. 1. Introduction In 1965, F. A. Cotton and C. B. Harris reported the crystal 1 structure of K2[Re2Cl8]‚2H2O. A surprisingly short Re-Re distance of 2.24 Å was found. This was the first example of 2- a multiple bond between two metal atoms, and the Re2Cl8 ion has since then become the prototype for this type of complexes. A new era of inorganic chemistry was born. Cotton analyzed the bonding using simple molecular orbital 2- (MO) theory and concluded that a quadruple Re-Re bond Figure 1. Structure of Re2Cl8 . 1,2 was formed. Two parallel ReCl4 units are connected by order depends on the relation between the occupation of the the Re-Re bond.
    [Show full text]
  • Theoretical Studies of the Chemical Bond in Ac2, Th2, Pa2, and U2
    Published on Web 12/06/2006 Exploring the Actinide-Actinide Bond: Theoretical Studies of the Chemical Bond in Ac2,Th2,Pa2, and U2 Bjo¨rn O. Roos,*,† Per-A° ke Malmqvist,† and Laura Gagliardi‡ Contribution from the Department of Theoretical Chemistry, UniVersity of Lund, Chemical Center, PO Box 124, S-221 00 Lund, Sweden, and Department of Physical Chemistry, Sciences II, UniVersity of GeneVa, 30 Quai Ernest Ansermet, CH-1211 GeneVa 4, Switzerland Received September 26, 2006; E-mail: [email protected] Abstract: Multiconfigurational quantum chemical methods (CASSCF/CASPT2) have been used to study the chemical bond in the actinide diatoms Ac2,Th2,Pa2, and U2. Scalar relativistic effects and spin-orbit coupling have been included in the calculations. In the Ac2 and Th2 diatoms the atomic 6d,7s, and 7p orbitals are the significant contributors to the bond, while for the two heavier diatoms, the 5f orbitals become 3 - + increasingly important. Ac2 is characterized by a double bond with a ∑g (0g ) ground state, a bond distance 3 of 3.64. Å, and a bond energy of 1.19 eV. Th2 has quadruple bond character with a Dg(1g) ground state. The bond distance is 2.76 Å and the bond energy (D0) 3.28 eV. Pa2 is characterized by a quintuple bond 3 - + with a ∑g (0g ) ground state. The bond distance is 2.37 Å and the bond energy 4.00 eV. The uranium 7 diatom has also a quintuple bond with a Og (8g) ground state, a bond distance of 2.43 Å, and a bond energy of 1.15 eV.
    [Show full text]
  • An Electronrich Molybdenummolybdenum
    Angewandte. Communications DOI: 10.1002/anie.201200122 Metal–Metal Multiple Bonds An Electron-Rich Molybdenum–Molybdenum Quintuple Bond Spanned by One Lithium Atom** Shin-Cheng Liu, Wei-Lun Ke, Jen-Shiang K. Yu,* Ting-Shen Kuo, and Yi-Chou Tsai* In the field of metal–metal multiple bonding, there are many factors that affect the metal–metal bond lengths. The most determinant cause is the structural configuration of com- plexes,[1] and this has been illustrated by the Group 6 metal– metal quadruple bonds. In the large number of tetragonal [1] quadruply bonded complexes [M2X8], the increase in the internal twist angle between two MX4 fragments leads to elongation of the metal–metal quadruple bond.[1,2] For Scheme 1. Three possible geometries for quintuply bonded complexes. example, those quadruply bonded dimolybdenum complexes with the torsion angles about the MoÀMo bond of 26–408 possess long MoÀMo bonds in the range of 2.18–2.19 , which metal–metal quintuple bonds spanned by two bidentate is because a major part of the d bonding has been abolished. nitrogen-based ligands. The existence of the CrÀCr quintuple In contrast to the relatively mature metal–metal triple- bond of the type II complex was recently corroborated by and quadruple-bond chemistry,[1, 3] quintuple bonding is in its charge-density studies.[9] Preliminary reactivity studies on the infancy. In contrast to the trigonal triply bonded and type II complexes indicate these univalent and low-coordi- tetragonal quadruply bonded dinuclear complexes, the geom- nate dinuclear species are reactive towards unsaturated etry of a quintuply bonded compound has been controversial.
    [Show full text]
  • Comprehending the Quadruple Bonding Conundrum in C2 from Excited State Potential Cite This: Chem
    Chemical Science View Article Online EDGE ARTICLE View Journal | View Issue Comprehending the quadruple bonding conundrum in C2 from excited state potential Cite this: Chem. Sci., 2020, 11, 7009 † All publication charges for this article energy curves have been paid for by the Royal Society of Chemistry Ishita Bhattacharjee, Debashree Ghosh * and Ankan Paul * The question of quadruple bonding in C2 has emerged as a hot button issue, with opinions sharply divided between the practitioners of Valence Bond (VB) and Molecular Orbital (MO) theory. Here, we have systematically studied the Potential Energy Curves (PECs) of low lying high spin sigma states of C2,N2, Be2 and HC^CH using several MO based techniques such as CASSCF, RASSCF and MRCI. The analyses 2S+1 of the PECs for the Sg/u (with 2S +1¼ 1, 3, 5, 7, 9) states of C2 and comparisons with those of relevant dimers and the respective wavefunctions were conducted. We contend that unlike in the case 7 + + of N2 and HC^CH, the presence of a deep minimum in the S state of C2 and CN suggests a latent quadruple bonding nature in these two dimers. Our investigations reveal that the number of bonds in the nd Creative Commons Attribution-NonCommercial 3.0 Unported Licence. ground state can be determined for 2 row dimers by figuring out at what value of spin symmetry a purely dissociative PEC is obtained. For N2 and HC^CH the purely dissociative PEC appears for the septet spin symmetry as compared to that for the nonet in C2. This is indicative of a higher number of Received 24th April 2020 bonds between the two 2nd row atoms in C as compared to those of N and HC^CH.
    [Show full text]
  • Bimetallic Complexes
    University of the Pacific Scholarly Commons University of the Pacific Theses and Dissertations Graduate School 2018 Bimetallic complexes: The fundamental aspects of metal-metal interactions, ligand sterics and application Michael Bernard Pastor University of the Pacific, [email protected] Follow this and additional works at: https://scholarlycommons.pacific.edu/uop_etds Part of the Inorganic Chemistry Commons, and the Medicinal and Pharmaceutical Chemistry Commons Recommended Citation Pastor, Michael Bernard. (2018). Bimetallic complexes: The fundamental aspects of metal-metal interactions, ligand sterics and application. University of the Pacific, Dissertation. https://scholarlycommons.pacific.edu/uop_etds/3559 This Dissertation is brought to you for free and open access by the Graduate School at Scholarly Commons. It has been accepted for inclusion in University of the Pacific Theses and Dissertations by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. 1 BIMETALLIC COMPLEXES: THE FUNDAMENTAL ASPECTS OF METAL- METAL INTERACTIONS, LIGAND STERICS AND APPLICATION by Michael B. Pastor A Dissertation Submitted to the In Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY Department of Chemistry Pharmaceutical and Chemical Sciences University of the Pacific Stockton, CA 2018 2 BIMETALLIC COMPLEXES: THE FUNDAMENTAL ASPECTS OF METAL- METAL INTERACTIONS, LIGAND STERICS AND APPLICATION by Michael B. Pastor APPROVED BY: Dissertation Advisor: Qinliang Zhao, Ph.D Committee Member: Anthony Dutoi, Ph.D. Committee Member: Xin Guo, Ph.D. Committee Member: Jianhua Ren, Ph.D. Committee Member: Balint Sztáray, Ph.D. Department Chairs: Jianhua Ren, Ph.D.; Jerry Tsai, PhD. Dean of Graduate Studies: Thomas Naehr, Ph.D. 3 BIMETALLIC COMPLEXES: THE FUNDAMENTAL ASPECTS OF METAL- METAL INTERACTIONS, LIGAND STERICS AND APPLICATION Copyright 2018 by Michael B.
    [Show full text]
  • Synthesis and Electrodeposition of Mixed Metal Trinuclear Clusters of Molybdenum and Chromium in Ionic Liquid Onto a Platinum Electrode
    Wright State University CORE Scholar Browse all Theses and Dissertations Theses and Dissertations 2013 Synthesis and Electrodeposition of Mixed Metal Trinuclear Clusters of Molybdenum and Chromium in Ionic Liquid onto a Platinum Electrode Lynn Renee Frock Wright State University Follow this and additional works at: https://corescholar.libraries.wright.edu/etd_all Part of the Chemistry Commons Repository Citation Frock, Lynn Renee, "Synthesis and Electrodeposition of Mixed Metal Trinuclear Clusters of Molybdenum and Chromium in Ionic Liquid onto a Platinum Electrode" (2013). Browse all Theses and Dissertations. 679. https://corescholar.libraries.wright.edu/etd_all/679 This Thesis is brought to you for free and open access by the Theses and Dissertations at CORE Scholar. It has been accepted for inclusion in Browse all Theses and Dissertations by an authorized administrator of CORE Scholar. For more information, please contact [email protected]. SYNTHESIS AND ELECTRODEPOSITION OF MIXED METAL TRINUCLEAR CLUSTERS OF MOLYBDENUM AND CHROMIUM IN IONIC LIQUID ONTO A PLATINUM ELECTRODE. A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science By Lynn Renee Frock A.S., Chemistry, Sinclair Community College, 1996 B.S., Psychology, Kennesaw State University, 2003 2012 Wright State University WRIGHT STATE UNIVERSITY GRADUATE SCHOOL DECEMBER 14, 2012 I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY Lynn Renee Frock ENTITLED Synthesis and Electrodeposition of Mixed Metal Trinuclear Clusters of Molybdenum and Chromium in Ionic Liquid onto a Platinum Electrode BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Science. ____________________________ Vladimir Katovic, Ph.D.
    [Show full text]
  • The Synergy Between Theory and Experiment
    This paper is published as part of a Dalton Transactions themed issue on: The Synergy between Theory and Experiment Guest Editor John McGrady University of Glasgow, UK Published in issue 30, 2009 of Dalton Transactions Image reproduced with permission of Christophe Coperet Papers published in this issue include: A combined picture from theory and experiments on water oxidation, oxygen reduction and proton pumping Per E. M. Siegbahn and Margareta R. A. Blomberg, Dalton Trans., 2009, DOI: 10.1039/b903007g Mechanisms of C–H bond activation: rich synergy between computation and experiment Youcef Boutadla, David L. Davies, Stuart A. Macgregor and Amalia I. Poblador-Bahamonde, Dalton Trans., 2009, DOI: 10.1039/b904967c Are tetrathiooxalate and diborinate bridged compounds related to oxalate bridged quadruply bonded compounds of molybdenum? Malcolm H. Chisholm and Namrata Singh, Dalton Trans., 2009 DOI: 10.1039/b901734h Molecular recognition in Mn-catalyzed C–H oxidation. Reaction mechanism and origin of selectivity from a DFT perspective David Balcells, Pamela Moles, James D. Blakemore, Christophe Raynaud, Gary W. Brudvig, Robert H. Crabtree and Odile Eisenstein, Dalton Trans., 2009 DOI: 10.1039/b905317d Visit the Dalton Transactions website for more cutting-edge inorganic and organometallic research www.rsc.org/dalton PAPER www.rsc.org/dalton | Dalton Transactions Crystal structure of octabromoditechnetate(III) and a multi-configurational quantum chemical study of the d → d* transition in quadruply bonded 2- [M2X8] dimers (M = Tc, Re; X = Cl, Br)† Frederic Poineau,*a Laura Gagliardi,b,c Paul M. Forster,a Alfred P. Sattelbergera,d and Kenneth R. Czerwinskia Received 2nd February 2009, Accepted 3rd April 2009 First published as an Advance Article on the web 8th May 2009 DOI: 10.1039/b902106j The technetium(III) compound (n-Bu4N)2[Tc2Br8] was prepared by metathesis of (n-Bu4N)2[Tc2Cl8] with concentrated aqueous HBr in acetone and recrystallized from acetone–diethyl ether solution (2 : 1 v/v).
    [Show full text]
  • Insights from Full Configuration Interaction and Valence Bond Studies
    University of Groningen Bonding in B-2 and B-2(+) Rashid, Zahid; van Lenthe, Joop H.; Havenith, Remco W. A. Published in: Computational and Theoretical Chemistry DOI: 10.1016/j.comptc.2017.02.001 IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2017 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Rashid, Z., van Lenthe, J. H., & Havenith, R. W. A. (2017). Bonding in B-2 and B-2(+): Insights from full configuration interaction and valence bond studies. Computational and Theoretical Chemistry, 1116, 92-95. https://doi.org/10.1016/j.comptc.2017.02.001 Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 23-09-2021 Computational and Theoretical Chemistry 1116 (2017) 92–95 Contents lists available at ScienceDirect Computational and Theoretical Chemistry journal homepage: www.elsevier.com/locate/comptc + Bonding in B2 and B2: Insights from full configuration interaction and valence bond studies ⇑ Zahid Rashid a,b, Joop H.
    [Show full text]
  • Metal Cluster 3
    1 Subject Chemistry 11, Inorganic Chemistry –III (Metal π-Complexes Paper No and Title and Metal Clusters) Module No and Module 33: Preparation, structure and bonding of Title compounds having M-M multiple bonds Module Tag CHE_P11_M33 CHEMISTRY 11. Inorganic Chemistry–III (Metal π-Complexes and Metal Clusters) Module 33: Preparation, structure and bonding of compounds having M-M multiple bonds 2 TABLE OF CONTENTS 1. Learning outcomes 2. Introduction 3. Preparation of organometallic carbonyl clusters. 4. Preparation of inorganic metal clusters. 5. Structure and bonding in cluster containing metal-metal multiple bonds. 6. Summary CHEMISTRY 11. Inorganic Chemistry–III (Metal π-Complexes and Metal Clusters) Module 33: Preparation, structure and bonding of compounds having M-M multiple bonds 3 1. Learning Outcomes After studying this module, you shall be able to know about Metal cluster compounds. Preparative methods for metal cluster compounds containing single and multiple metal-metal bonds. Type of bonding and molecular orbital picture of the M-M bonds in such cluster. 2. Introduction Metal-metal multiple bonding is an important feature of the chemistry of many transition elements andis very important to the field of metal cluster chemistry. They constitute an important class of multiple bonds unlike multiple bonds between the main group elements and multiple metal-ligand bonds. Multiple metal-metal bonds of the order 2, 2.5, 3, 3.5 and 4 are well- known. The Re=Re double bond was the first ever observation of a metal-metal multiple bond in 3- [Re3Cl12] . A typical property of metals is that rather than forming straight chains or rings, metals tend to agglomerate so as to form maximum number of bonds with minimum number of adjacent metal atoms, giving rise to either metal-metal multiple bonds or metal cluster compounds.
    [Show full text]