Transfection of Mammalian Cells with Plasmid DNA by Scrape Loading and Sonication Loading (Gene Expression) MARCUS FECHHEIMER*, JOHN F
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Rnai in Primary Cells and Difficult-To-Transfect Cell Lines
Automated High Throughput Nucleofection® RNAi in Primary Cells and Difficult-to-Transfect Cell Lines Claudia Merz, Bayer Schering Pharma AG, Berlin, Germany; Andreas Schroers, amaxa AG, Cologne, Germany; Eric Willimann, Tecan AG, Männedorf, Switzerland. Introduction Materials & Methods - Workflow Using primary cells for RNAi based applications such as target identification or – validation, requires a highly efficient transfection displaying the essential steps of the automated Nucleofector® Process: technology in combination with a reliable and robust automation system. To accomplish these requirements we integrated the amaxa 1. Transfer of the cells to the Nucleocuvette™ plate, 96-well Shuttle® in a Tecan Freedom EVO® cell transfection workstation which is based on Tecan’s Freedom EVO® liquid handling 2. Addition of the siRNA, (Steps 1 and 2 could be exchanged), platform and include all the necessary components and features for unattended cell transfection. 3. Nucleofection® process, 4. Addition of medium, Count Cells 5. Transfer of transfected cells to cell culture plate for incubation ® Nucleofector Technology prior to analysis. Remove Medium The 96-well Shuttle® combines high-throughput compatibility with the Nucleofector® Technology, which is a non-viral transfection method ideally suited for primary cells and hard-to-transfect cell lines based on a combination of buffers and electrical parameters. Nucleocuvette Plate Add Nucleofector +– The basic principle and benefits of the (empty) Solution Cell of interest Gene of interest Nucleofector® -
Plant Molecular Farming: a Viable Platform for Recombinant Biopharmaceutical Production
plants Review Plant Molecular Farming: A Viable Platform for Recombinant Biopharmaceutical Production Balamurugan Shanmugaraj 1,2, Christine Joy I. Bulaon 2 and Waranyoo Phoolcharoen 1,2,* 1 Research Unit for Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand; [email protected] 2 Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences Chulalongkorn University, Bangkok 10330, Thailand; [email protected] * Correspondence: [email protected]; Tel.: +66-2-218-8359; Fax: +66-2-218-8357 Received: 1 May 2020; Accepted: 30 June 2020; Published: 4 July 2020 Abstract: The demand for recombinant proteins in terms of quality, quantity, and diversity is increasing steadily, which is attracting global attention for the development of new recombinant protein production technologies and the engineering of conventional established expression systems based on bacteria or mammalian cell cultures. Since the advancements of plant genetic engineering in the 1980s, plants have been used for the production of economically valuable, biologically active non-native proteins or biopharmaceuticals, the concept termed as plant molecular farming (PMF). PMF is considered as a cost-effective technology that has grown and advanced tremendously over the past two decades. The development and improvement of the transient expression system has significantly reduced the protein production timeline and greatly improved the protein yield in plants. The major factors that drive the plant-based platform towards potential competitors for the conventional expression system are cost-effectiveness, scalability, flexibility, versatility, and robustness of the system. Many biopharmaceuticals including recombinant vaccine antigens, monoclonal antibodies, and other commercially viable proteins are produced in plants, some of which are in the pre-clinical and clinical pipeline. -
Widespread Gene Transfection Into the Central Nervous System of Primates
Gene Therapy (2000) 7, 759–763 2000 Macmillan Publishers Ltd All rights reserved 0969-7128/00 $15.00 www.nature.com/gt NONVIRAL TRANSFER TECHNOLOGY RESEARCH ARTICLE Widespread gene transfection into the central nervous system of primates Y Hagihara1, Y Saitoh1, Y Kaneda2, E Kohmura1 and T Yoshimine1 1Department of Neurosurgery and 2Division of Gene Therapy Science, Department of Molecular Therapeutics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan We attempted in vivo gene transfection into the central ner- The lacZ gene was highly expressed in the medial temporal vous system (CNS) of non-human primates using the hem- lobe, brainstem, Purkinje cells of cerebellar vermis and agglutinating virus of Japan (HVJ)-AVE liposome, a newly upper cervical cord (29.0 to 59.4% of neurons). Intrastriatal constructed anionic type liposome with a lipid composition injection of an HVJ-AVE liposome–lacZ complex made a similar to that of HIV envelopes and coated by the fusogenic focal transfection around the injection sites up to 15 mm. We envelope proteins of inactivated HVJ. HVJ-AVE liposomes conclude that the infusion of HVJ-AVE liposomes into the containing the lacZ gene were applied intrathecally through cerebrospinal fluid (CSF) space is applicable for widespread the cisterna magna of Japanese macaques. Widespread gene delivery into the CNS of large animals. Gene Therapy transgene expression was observed mainly in the neurons. (2000) 7, 759–763. Keywords: central nervous system; primates; gene therapy; HVJ liposome Introduction ever, its efficiency has not been satisfactory in vivo. Recently HVJ-AVE liposome, a new anionic-type lipo- Despite the promising results in experimental animals, some with the envelope that mimics the human immuno- gene therapy has, so far, not been successful in clinical deficiency virus (HIV), has been developed.13 Based upon 1 situations. -
Therapeutic Recombinant Protein Production in Plants: Challenges and Opportunities
Received: 25 April 2019 | Revised: 23 July 2019 | Accepted: 20 August 2019 DOI: 10.1002/ppp3.10073 REVIEW Therapeutic recombinant protein production in plants: Challenges and opportunities Matthew J. B. Burnett1 | Angela C. Burnett2 1Yale Jackson Institute for Global Affairs, New Haven, CT, USA Societal Impact Statement 2Brookhaven National Laboratory, Upton, Therapeutic protein production in plants is an area of great potential for increasing NY, USA and improving the production of proteins for the treatment or prevention of disease Correspondence in humans and other animals. There are a number of key benefits of this technique Angela C. Burnett, Brookhaven National for scientists and society, as well as regulatory challenges that need to be overcome Laboratory, Upton, NY, USA. Email: [email protected] by policymakers. Increased public understanding of the costs and benefits of thera‐ peutic protein production in plants will be instrumental in increasing the acceptance, Funding information Biotechnology and Biological Sciences and thus the medical and veterinary impact, of this approach. Research Council; Margaret Claire Ryan Summary Fellowship Fund at the Yale Jackson Institute for Global Affairs; U.S. Department Therapeutic recombinant proteins are a powerful tool for combating many diseases of Energy, Grant/Award Number: DE‐ which have previously been hard to treat. The most utilized expression systems are SC0012704 Chinese Hamster Ovary cells and Escherichia coli, but all available expression sys‐ tems have strengths and weaknesses regarding development time, cost, protein size, yield, growth conditions, posttranslational modifications and regulatory approval. The plant industry is well established and growing and harvesting crops is easy and affordable using current infrastructure. -
Eukaryotic Expression
Molecular Biology Problem Solver: A Laboratory Guide. Edited by Alan S. Gerstein Copyright © 2001 by Wiley-Liss, Inc. ISBNs: 0-471-37972-7 (Paper); 0-471-22390-5 (Electronic) 16 Eukaryotic Expression John J. Trill, Robert Kirkpatrick, Allan R. Shatzman, and Alice Marcy Section A: A Practical Guide to Eukaryotic Expression . 492 Planning the Eukaryotic Expression Project . 493 What Is the Intended Use of the Protein and What Quantity Is Required? . 493 What Do You Know about the Gene and the Gene Product? . 496 Can You Obtain the cDNA? . 497 Expression Vector Design and Subcloning . 498 Selecting an Appropriate Expression Host . 501 Selecting an Appropriate Expression Vector . 506 Implementing the Eukaryotic Expression Experiment . 511 Media Requirements, Gene Transfer, and Selection . 511 Scale-up and Harvest . 514 Gene Expression Analysis . 515 Troubleshooting . 517 Confirm Sequence and Vector Design . 517 Investigate Alternate Hosts . 519 A Case Study of an Expressed Protein from cDNA to Harvest.......................................... 519 Summary . 521 Section B: Working with Baculovirus . 521 Planning the Baculovirus Experiment . 521 491 Is an Insect Cell System Suitable for the Expression of Your Protein? . 521 Should You Express Your Protein in an Insect Cell Line or Recombinant Baculovirus? . 522 Procedures for Preparing Recombinant Baculovirus . 524 Criteria for Selecting a Transfer Vector . 524 Which Insect Cell Host Is Most Appropriate for Your Situation? . 525 Implementing the Baculovirus Experiment . 527 What’s the Best Approach to Scale-Up? . 527 What Special Considerations Are There for Expressing Secreted Proteins? . 527 What Special Considerations Are There for Expressing Glycosylated Proteins? . 528 What Are the Options for Expressing More Than One Protein?.................................... -
Food and Drug Law Journal
FOOD AND DRUG LAW JOURNAL EDITOR IN CHIEF Judy Rein EDITORIAL ADVISORY BOARD CHAIR VICE CHAIR FACULTY ADVISOR Laurie Lenkel Robert Giddings Joseph A. Page FDA – OC Hutchison PLLC Georgetown University Law Center ________________________________ Anthony Anscombe James Flaherty Francis Palumbo Sedgwick LLP Fresenius Medical University of Maryland School of Pharmacy Peter Barton Hutt Abraham Gitterman Covington & Burling Arnold & Porter LLP Sandra Retzky FDA – CTP Barbara Binzak Kimberly Gold Blumenfeld Norton Rose Fulbright Joan Rothenberg Buchanan Ingersoll & LLP FDA - CFSAN Rooney PC John Johnson Jodi Schipper Catherine Clements FDA Imports FDA – CDER Express Scripts Alan Katz Christopher van Gundy Kellie Combs toXcel, LLC Keller and Heckman Ropes & Gray LLP Sara Koblitz James Woodlee Nathan Cortez Fish & Richardson Kleinfeld Kaplan & Becker LLP Southern Methodist University Valerie Madamba Emily Wright Blue Apron Pfizer Brian Dahl Dahl Compliance Alan Minsk Kimberly Yocum Consulting LLC Arnall Golden Gregory TC Heartland LLC LLP Sandra dePaulis Lowell Zeta FDA – CVM Nicole Negowetti Hogan Lovells The Good Food Ian Fearon Institute Patricia Zettler British American Tobacco Georgia State James O’Reilly University Law School University of Cincinnati OFFICERS OF THE FOOD AND DRUG LAW INSTITUTE CHAIR: Allison M. Zieve, Public Citizen Litigation Group VICE CHAIR: Jeffrey N. Gibbs, Hyman, Phelps & McNamara, P.C. TREASURER: Frederick R. Ball, Duane Morris LLP GENERAL COUNSEL/SECRETARY: Joy J. Liu, Vertex Pharmaceuticals IMMEDIATE PAST CHAIR: Sheila Hemeon-Heyer, Heyer Regulatory Solutions LLC PRESIDENT & CEO: Amy Comstock Rick GEORGETOWN UNIVERSITY LAW CENTER STUDENT EDITOR IN CHIEF Dana Shaker STUDENT MANAGING EDITORS Jacob Klapholz Christine Rea STUDENT NOTES EDITOR SYMPOSIUM EDITOR Lauren Beegle Alexander P. -
The Art of Transfection (Poster / Pdf)
TRANSDUCTION NON-VIRAL TRANSFECTION Transduction is the process of using vectors including retroviruses, lentiviruses, adenoviruses, PACKAGE DELIVERY: Chemical Chemical transfection adeno-associated viruses, or hybrids to deliver genetic payloads into cells. Generally, a plasmid transfection reagent containing mRNA carrying genes flanked by viral sequences is first transfected into a producer cell with other reagent virus-associated (packaging) plasmids. In the producer cells, virions form that contain the gene The Art of Transfection of interest. For safety, no plasmid used in the process contains all of the necessary sequences Inserting genetic material into mammalian and insect cells without killing them can be a challenge, CHEMICAL TRANSFECTION for virion formation, and only the plasmid carrying the gene of interest contains signals that but scientists have developed several ways to perform this intricate task. Transfection is the process of Functional proteins or allow it to be packaged into virions. Researchers then extract, purify, and use the virions from Complexation structural components released Chemical carriers represent the most straightforward and widespread tools for gene delivery the producer cells to insert DNA into other cells to stably or transiently express the DNA of introducing nucleic acids (plasmid DNA or messenger, short interfering, or micro RNA) into a cell. from cell or into cytoplasm experiments in mammalian cells. Chemical transfection experiments follow a simple workflow and interest. The transferred genetic material, which lacks viral genes, cannot generate new viruses. Researchers accomplish this with nonviral methods (chemical or physical transfection), or with viral provide high efficiency nucleic acid delivery for the most commonly used cells as well as many methods, commonly referred to as transduction. -
Recent Advances in Genome Editing Tools in Medical Mycology Research
Journal of Fungi Review Recent Advances in Genome Editing Tools in Medical Mycology Research Sanaz Nargesi 1 , Saeed Kaboli 2,3,* , Jose Thekkiniath 4,*, Somayeh Heidari 5 , Fatemeh Keramati 6, Seyedmojtaba Seyedmousavi 5,7 and Mohammad Taghi Hedayati 1,5,* 1 Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari 481751665, Iran; [email protected] 2 Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan 4513956111, Iran 3 Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan 4513956111, Iran 4 Fuller Laboratories, 1312 East Valencia Drive, Fullerton, CA 92831, USA 5 Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari 481751665, Iran; [email protected] (S.H.); [email protected] (S.S.) 6 Department of Pathobiology, Faculty of Veterinary Medicine, Urmia University, Urmia 5756151818, Iran; [email protected] 7 Clinical Center, Microbiology Service, Department of Laboratory Medicine, National Institutes of Health, Bethesda, MD 20892, USA * Correspondence: [email protected] (S.K.); [email protected] (J.T.); [email protected] (M.T.H.) Abstract: Manipulating fungal genomes is an important tool to understand the function of tar- get genes, pathobiology of fungal infections, virulence potential, and pathogenicity of medically important fungi, and to develop novel diagnostics and therapeutic targets. Here, we provide an overview of recent advances in genetic manipulation techniques used in the field of medical mycol- Citation: Nargesi, S.; Kaboli, S.; ogy. Fungi use several strategies to cope with stress and adapt themselves against environmental Thekkiniath, J.; Heidari, S.; Keramati, effectors. For instance, mutations in the 14 alpha-demethylase gene may result in azole resistance in F.; Seyedmousavi, S.; Hedayati, M.T. -
An Improved Syringe Agroinfiltration Protocol to Enhance Transformation Efficiency by Combinative Use of 5-Azacytidine, Ascorbat
plants Article An Improved Syringe Agroinfiltration Protocol to Enhance Transformation Efficiency by Combinative Use of 5-Azacytidine, Ascorbate Acid and Tween-20 Huimin Zhao 1, Zilong Tan 2, Xuejing Wen 2 and Yucheng Wang 1,2,* 1 State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; [email protected] 2 Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; [email protected] (Z.T.); [email protected] (X.W.) * Correspondence: [email protected]; Tel.: +86-451-82190607 Academic Editor: Milan S. Stankovic Received: 1 January 2017; Accepted: 9 February 2017; Published: 14 February 2017 Abstract: Syringe infiltration is an important transient transformation method that is widely used in many molecular studies. Owing to the wide use of syringe agroinfiltration, it is important and necessary to improve its transformation efficiency. Here, we studied the factors influencing the transformation efficiency of syringe agroinfiltration. The pCAMBIA1301 was transformed into Nicotiana benthamiana leaves for investigation. The effects of 5-azacytidine (AzaC), Ascorbate acid (ASC) and Tween-20 on transformation were studied. The β-glucuronidase (GUS) expression and GUS activity were respectively measured to determine the transformation efficiency. AzaC, ASC and Tween-20 all significantly affected the transformation efficiency of agroinfiltration, and the optimal concentrations of AzaC, ASC and Tween-20 for the transgene expression were identified. Our results showed that 20 µM AzaC, 0.56 mM ASC and 0.03% (v/v) Tween-20 is the optimal concentration that could significantly improve the transformation efficiency of agroinfiltration. -
Micro-RNA Modulation of Insect Virus Replication Verna Monsanto-Hearne and Karyn N
Micro-RNA Modulation of Insect Virus Replication Verna Monsanto-Hearne and Karyn N. Johnson* School of Biological Sciences, University of Queensland, Brisbane, Australia. *Correspondence: [email protected] htps://doi.org/10.21775/cimb.034.061 Abstract Saleh, 2012; Xu and Cherry, 2014; Mussabekova Te outcome of virus infection in insects is impacted et al., 2017). Many molecular components medi- by regulation of both host and virus gene expres- ate and are mediated by this host–virus cross-talk, sion. A class of small RNAs called micro-RNAs including microRNAs. (miRNA) have emerged as important regulators of microRNAs (miRNAs) are a large class of highly gene expression that can infuence the outcome of conserved, ≈ 22 nt non-coding RNAs that regulate virus infection. miRNA regulation occurs at a com- gene expression. Compared to the more upstream paratively late stage of gene expression, allowing for regulatory mechanisms such as transcriptional rapid control and fne-tuning of gene expression regulation and chromatin remodelling, regulation levels. Here we discuss the biogenesis of miRNAs by miRNA occurs at a later stage of gene expres- from both host and virus genomes, the interactions sion, allowing for rapid control and fne-tuning of that lead to regulation of gene expression, and the gene expression levels (Chen et al., 2013). Comple- miRNA–mRNA interactions that lead to either mentary binding of at least the seed region (second antivirus or provirus consequences in the course of to eighth nucleotide from the 5′-end) of the ≈ 22 nt virus -
Highly Efficient Protoplast Isolation and Transient Expression System
International Journal of Molecular Sciences Article Highly Efficient Protoplast Isolation and Transient Expression System for Functional Characterization of Flowering Related Genes in Cymbidium Orchids Rui Ren 1 , Jie Gao 1, Chuqiao Lu 1, Yonglu Wei 1, Jianpeng Jin 1, Sek-Man Wong 2,3,4, Genfa Zhu 1,* and Fengxi Yang 1,* 1 Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; [email protected] (R.R.); [email protected] (J.G.); [email protected] (C.L.); [email protected] (Y.W.); [email protected] (J.J.) 2 Department of Biological Sciences, National University of Singapore (NUS), 14 Science Drive 4, Singapore 117543, Singapore; [email protected] 3 National University of Singapore Suzhou Research Institute (NUSRI), Suzhou Industrial Park, Suzhou 215000, China 4 Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore 117604, Singapore * Correspondence: [email protected] (G.Z.); [email protected] (F.Y.) Received: 28 February 2020; Accepted: 24 March 2020; Published: 25 March 2020 Abstract: Protoplast systems have been proven powerful tools in modern plant biology. However, successful preparation of abundant viable protoplasts remains a challenge for Cymbidium orchids. Herein, we established an efficient protoplast isolation protocol from orchid petals through optimization of enzymatic conditions. It requires optimal D-mannitol concentration (0.5 M), enzyme concentration (1.2 % (w/v) cellulose and 0.6 % (w/v) macerozyme) and digestion time (6 h). With this protocol, the highest yield (3.50 107/g fresh weight of orchid tissue) and viability (94.21%) of × protoplasts were obtained from flower petals of Cymbidium. -
Grapevine Protoplasts As a Transient Expression System for Comparison
Grapevine Protoplasts as a Transient Expression System for Comparison of Stilbene Synthase Genes Containing cGMP-Responsive Promoter Elements Ilka Brehm, Regina Preisig-Müller and Helmut Kindi Fachbereich Chemie der Philipps-Universität, D-35032 Marburg, Germany Z. Naturforsch. 54c, 220-229 (1999) received December 15, 1998/January 7, 1999 cGMP, Grapevine Protoplasts, Pine, Promoter, Elicitor-Responsive, Stilbene Synthase Gene, Vitis A method for preparing elicitor-responsive protoplasts from grapevine cells kept in suspen sion culture was established. The protoplasts were employed in order to perform transient gene expression experiments produced by externally added plasmids. Using the gene coding for bacterial ß-glucuronidase as the reporter gene, the transient expression under the control of various promoters of stilbene synthase genes were analyzed. The elicitor-responsiveness of promoters from grapevine genes and heterologous promoters were assayed: the grapevine stilbene synthase gene VST-1 and pine stilbene synthase genes PST-1, PST-2 and PST-3. Compared to the expression effected by the cauliflower mosaic virus 35S RNA-promoter, the stilbene synthase promoters caused a 2-5-fold increase in GUS-activity. Incubation of transformed protoplasts with fungal cell wall further stimulated the stilbene synthase promot ers but not the 35S RNA-promoter. An even more pronounced differentiation between the promoters was observed when cGMP was included in the transient expression assays. Instead of treating transformed protoplasts with fungal cell wall we administered simultaneously cGMP and the plasmid to be tested. The cGMP-responsive increase was (a) specific concern ing the nucleotide applied, (b) characteristic of grapevine protoplasts, and (c) not seen with shortened promoter-GUS constructs or GUS under the control of the 35S RNA-promoter.