A New Genus of Horse from Pleistocene North America

Total Page:16

File Type:pdf, Size:1020Kb

A New Genus of Horse from Pleistocene North America A new genus of horse from Pleistocene North America The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Heintzman, P. D., G. D. Zazula, R. D. MacPhee, E. Scott, J. A. Cahill, B. K. McHorse, J. D. Kapp, et al. 2017. “A new genus of horse from Pleistocene North America.” eLife 6 (1): e29944. doi:10.7554/ eLife.29944. http://dx.doi.org/10.7554/eLife.29944. Published Version doi:10.7554/eLife.29944 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:34493380 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA RESEARCH ARTICLE A new genus of horse from Pleistocene North America Peter D Heintzman1,2*, Grant D Zazula3, Ross DE MacPhee4, Eric Scott5,6, James A Cahill1, Brianna K McHorse7, Joshua D Kapp1, Mathias Stiller1,8, Matthew J Wooller9,10, Ludovic Orlando11,12, John Southon13, Duane G Froese14, Beth Shapiro1,15* 1Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, United States; 2Tromsø University Museum, UiT - The Arctic University of Norway, Tromsø, Norway; 3Yukon Palaeontology Program, Government of Yukon, Whitehorse, Canada; 4Department of Mammalogy, Division of Vertebrate Zoology, American Museum of Natural History, New York, United States; 5Cogstone Resource Management, Incorporated, Riverside, United States; 6California State University San Bernardino, San Bernardino, United States; 7Department of Organismal and Evolutionary Biology, Harvard University, Cambridge, United States; 8Department of Translational Skin Cancer Research, German Consortium for Translational Cancer Research, Essen, Germany; 9College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Fairbanks, United States; 10Alaska Stable Isotope Facility, Water and Environmental Research Center, University of Alaska Fairbanks, Fairbanks, United States; 11Centre for GeoGenetics, Natural History Museum of Denmark, København K, Denmark; 12Universite´ Paul Sabatier, Universite´ de Toulouse, Toulouse, France; 13Keck-CCAMS Group, Earth System Science Department, University of California, Irvine, Irvine, United States; 14Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Canada; 15UCSC Genomics Institute, University of California, Santa Cruz, Santa Cruz, United States *For correspondence: [email protected] (PDH); [email protected] (BS) Competing interests: The Abstract The extinct ‘New World stilt-legged’, or NWSL, equids constitute a perplexing group authors declare that no of Pleistocene horses endemic to North America. Their slender distal limb bones resemble those of competing interests exist. Asiatic asses, such as the Persian onager. Previous palaeogenetic studies, however, have suggested Funding: See page 13 a closer relationship to caballine horses than to Asiatic asses. Here, we report complete mitochondrial and partial nuclear genomes from NWSL equids from across their geographic range. Received: 26 June 2017 Although multiple NWSL equid species have been named, our palaeogenomic and morphometric Accepted: 02 November 2017 Published: 28 November 2017 analyses support the idea that there was only a single species of middle to late Pleistocene NWSL equid, and demonstrate that it falls outside of crown group Equus. We therefore propose a new Reviewing editor: George H genus, Haringtonhippus, for the sole species H. francisci. Our combined genomic and phenomic Perry, Pennsylvania State approach to resolving the systematics of extinct megafauna will allow for an improved University, United States understanding of the full extent of the terminal Pleistocene extinction event. Copyright Heintzman et al. DOI: https://doi.org/10.7554/eLife.29944.001 This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use Introduction and redistribution provided that The family that includes modern horses, asses, and zebras, the Equidae, is a classic model of macro- the original author and source are ~ credited. evolution. The excellent fossil record of this family clearly documents its 55 million year evolution Heintzman et al. eLife 2017;6:e29944. DOI: https://doi.org/10.7554/eLife.29944 1 of 43 Research article Genomics and Evolutionary Biology eLife digest The horse family – which also includes zebras, donkeys and asses – is often featured on the pages of textbooks about evolution. All living horses belong to a group, or genus, called Equus. The fossil record shows how the ancestors of these animals evolved from dog-sized, three-toed browsers to larger, one-toed grazers. This process took around 55 million years, and many members of the horse family tree went extinct along the way. Nevertheless, the details of the horse family tree over the past 2.5 million years remain poorly understood. In North America, horses from this period – which is referred to as the Pleistocene – have been classed into two major groups: stout-legged horses and stilt-legged horses. Both groups became extinct near the end of the Pleistocene in North America, and it was not clear how they relate to one another. Based on their anatomy, many scientists suggested that stilt-legged horses were most closely related to modern-day asses living in Asia. Yet, other studies using ancient DNA placed the stilt-legged horses closer to the stout-legged horses. Heintzman et al. set out to resolve where the stilt-legged horses sit within the horse family tree by examining more ancient DNA than the previous studies. The analyses showed that the stilt- legged horses were much more distinct than previously thought. In fact, contrary to all previous findings, these animals actually belonged outside of the genus Equus. Heintzman et al. named the new genus for the stilt-legged horses Haringtonhippus, and showed that all stilt-legged horses belonged to a single species within this genus, Haringtonhippus francisci. Together these new findings provide a benchmark for reclassifying problematic fossil groups across the tree of life. A similar approach could be used to resolve the relationships in other problematic groups of Pleistocene animals, such as mammoths and bison. This would give scientists a more nuanced understanding of evolution and extinction during this period. DOI: https://doi.org/10.7554/eLife.29944.002 from dog-sized hyracotheres through many intermediate forms and extinct offshoots to present-day Equus, which comprises all living equid species (MacFadden, 1992). The downside of this excellent fossil record is that many dubious fossil equid taxa have been erected, a problem especially acute within Pleistocene Equus of North America (Macdonald et al., 1992). While numerous species are described from the fossil record, molecular data suggest that most belonged to, or were closely related to, a single, highly variable stout-legged caballine species that includes the domestic horse, E. caballus (Weinstock et al., 2005). The enigmatic and extinct ‘New World stilt-legged’ (NWSL) forms, however, exhibit a perplexing mix of morphological characters, including slender, stilt-like dis- tal limb bones with narrow hooves reminiscent of extant Eurasian hemionines, the Asiatic wild asses (E. hemionus, E. kiang)(Eisenmann, 1992; Eisenmann et al., 2008; Harington and Clulow, 1973; Lundelius and Stevens, 1970; Scott, 2004), and dentitions that have been interpreted as more con- sistent with either caballine horses (Lundelius and Stevens, 1970) or hemionines (MacFadden, 1992). On the basis of their slender distal limb bones, the NWSL equids have traditionally been consid- ered as allied to hemionines (e.g. Eisenmann et al., 2008; Guthrie, 2003; Scott, 2004; Skinner and Hibbard, 1972). Palaeogenetic analyses based on mitochondrial DNA (mtDNA) have, however, con- sistently placed NWSL equids closer to caballine horses (Barro´n-Ortiz et al., 2017; Der Sarkissian et al., 2015; Orlando et al., 2008, 2009; Vilstrup et al., 2013; Weinstock et al., 2005). The current mtDNA-based phylogenetic model therefore suggests that the stilt-legged morphology arose inde- pendently in the New and Old Worlds (Weinstock et al., 2005) and may represent convergent adaptations to arid climates and habitats (Eisenmann, 1985). However, these models have been based on two questionable sources. The first is based on 15 short control region sequences (<1000 base pairs, bp; Barro´n-Ortiz et al., 2017; Weinstock et al., 2005), a data type that can be unreli- able for resolving the placement of major equid groups (Der Sarkissian et al., 2015; Orlando et al., 2009). The second consist of two mitochondrial genome sequences (Vilstrup et al., 2013) that are either incomplete or otherwise problematic (see Results). Given continuing uncertainty regarding the phylogenetic placement of NWSL equids—which impedes our understanding of Pleistocene equid evolution in general—we therefore sought to resolve their position using multiple mitochondrial and Heintzman et al. eLife 2017;6:e29944. DOI: https://doi.org/10.7554/eLife.29944 2 of 43 Research article Genomics and Evolutionary Biology partial nuclear genomes from specimens representing as many parts of late Pleistocene North Amer- ica as possible. The earliest recognized NWSL equid fossils date to the late Pliocene/early Pleistocene (~2–3 mil- lion years ago, Ma) of New Mexico
Recommended publications
  • Three-Toed Browsing Horse Anchitherium (Equidae) from the Miocene of Panama
    J. Paleonl., 83(3), 2009, pp. 489-492 Copyright © 2009, The Paleontological Society 0022-3360/09/0083-489S03.00 THREE-TOED BROWSING HORSE ANCHITHERIUM (EQUIDAE) FROM THE MIOCENE OF PANAMA BRUCE J. MACFADDEN Florida Museum of Natural History, University of Florida, Gainesville FL 32611, <[email protected]> INTRODUCTION (CRNHT/APL); L, left; M, upper molar; R upper premolar; R, DURING THE Cenozoic, the New World tropics supported a rich right; TRN, greatest transverse width. biodiversity of mammals. However, because of the dense SYSTEMATIC PALEONTOLOGY vegetative ground cover, today relatively little is known about extinct mammals from this region (MacFadden, 2006a). In an Class MAMMALIA Linnaeus, 1758 exception to this generalization, fossil vertebrates have been col- Order PERISSODACTYLA Owen, 1848 lected since the second half of the twentieth century from Neo- Family EQUIDAE Gray, 1821 gene exposures along the Panama Canal. Whitmore and Stewart Genus ANCHITHERIUM Meyer, 1844 (1965) briefly reported on the extinct land mammals collected ANCHITHERIUM CLARENCI Simpson, 1932 from the Miocene Cucaracha Formation that crops out in the Gail- Figures 1, 2, Table 1 lard Cut along the southern reaches of the Canal. MacFadden Referred specimen.—UF 236937, partial palate (maxilla) with (2006b) formally described this assemblage, referred to as the L P1-M3, R P1-P3, and small fragment of anterointernal part of Gaillard Cut Local Fauna (L.E, e.g., Tedford et al., 2004), which P4 (Fig. 1). Collected by Aldo Rincon of the Smithsonian Tropical consists of at least 10 species of carnivores, artiodactyls (also see Research Institute, Republic of Panama, on 15 May 2008.
    [Show full text]
  • The Baltavar Hippotherium: a Mixed Feeding Upper Miocene Hipparion (Equidae, Perissodactyla) from Hungary (East- Central Europe)
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Beiträge zur Paläontologie Jahr/Year: 2006 Band/Volume: 30 Autor(en)/Author(s): Kaiser Thomas M., Bernor Raymond L. Artikel/Article: The Baltavar Hippotherium: A mixed feeding Upper Miocene hipparion (Equidae, Perissodactyla) from Hungary (East-Central Europe) 241-267 ©Verein zur Förderung der Paläontologie am Institut für Paläontologie, Geozentrum Wien Beitr. Paläont., 30:241-267, Wien 2006 The Baltavar Hippotherium: A mixed feeding Upper Miocene hipparion (Equidae, Perissodactyla) from Hungary (East- Central Europe) by Thomas M. Kaiser 1} & Raymond L. Bernor * 2) Kaiser , Th.M. & B ernor , R.L., 2006. The Baltavar Hippotherium. A mixed feeding Upper Miocene hipparion (Equidae, Perissodactyla) from Hungary (East-Central Europe). — Beitr. Palaont., 30:241-267, Wien. Abstract browse ratio of 50/50% in its diet. The impala lives in tropi­ cal east Africa in grass dominated open environments like The genus Hippotherium evolved in Central and Western bushland and Acacia savannahs but also in Acacia forests Europe following the “Hipparion Datum” and is particu­ and other deciduous woodlands. It further has one of the larly remarkable for its complexly ornamented enamel pli­ most abrasive diets among extant mixed feeders and is con­ cations on the maxillary and mandibular cheek teeth. The sistently classified next to the grazers in mesowear evalu­ Baltavar hipparion assemblage is of importance because it ation. The comparatively abrasive diet of H. “microdon” represents one of the latest known populations of Central suggests the presence of grass or other abrasive vegetation European Hippotherium. The Baltavar fauna accumulated in the Baltavar paleohabitat.
    [Show full text]
  • Correlation Structure of the Cheek Teeth Enamel Crown Patterns in the Genus Equus (Mammalia: Equidae): an Analysis by Geometric Morphometrics with Outline Points
    Russian J. Theriol. 20(1): 70–81 © RUSSIAN JOURNAL OF THERIOLOGY, 2021 Correlation structure of the cheek teeth enamel crown patterns in the genus Equus (Mammalia: Equidae): an analysis by geometric morphometrics with outline points Igor Ya. Pavlinov*, Natalia N. Spasskаya ABSTRACT. Correlation structure of the cheek teeth enamel crown patterns in the genus Equus was studied by means of geometric morphometrics using outline points as descriptors to reveal the levels of morpholog- ical integration of the toothrow elements. Crown patterns in 34 upper and 31 lower toothrows (260 teeth in total) from 30 horse species were analyzed, the respective sets of 70 to 150 outline points were processed using the elliptic Fourier, principal component, and cluster analyses. The most correlated were shown to be the serial homologous crown elements within premolar and molar toothrow portions and less across the total toothrow. Correlation between occluding upper and lower teeth was shown to be low. Such correlation structure allowed identifying several levels of integration of the cheek teeth crown patterns in the genus Equus. A possibility of considering the serial homologous crown elements as the modules of the evolutionary developmental structure of the equine toothrows was discussed. Certain perspectives of similar studies in the specialized artiodactyles were emphasized. How to cite this article: Pavlinov I.Ya., Spasskаya N.N. 2021. Correlation structure of the cheek teeth enamel crown patterns in the genus Equus (Mammalia: Equidae): an analysis by geometric morphometrics with outline points // Russian J. Theriol. Vol.20. No.1. P.70–81. doi: 10.15298/rusjtheriol.20.1.08. KEY WORDS: dentition, geometric morphometrics, outline points, Equus, levels of integration, evo-devo.
    [Show full text]
  • Evolution and Extinction of the Giant Rhinoceros Elasmotherium Sibiricum Sheds Light on Late Quaternary Megafaunal Extinctions
    ARTICLES https://doi.org/10.1038/s41559-018-0722-0 Evolution and extinction of the giant rhinoceros Elasmotherium sibiricum sheds light on late Quaternary megafaunal extinctions Pavel Kosintsev1, Kieren J. Mitchell2, Thibaut Devièse3, Johannes van der Plicht4,5, Margot Kuitems4,5, Ekaterina Petrova6, Alexei Tikhonov6, Thomas Higham3, Daniel Comeskey3, Chris Turney7,8, Alan Cooper 2, Thijs van Kolfschoten5, Anthony J. Stuart9 and Adrian M. Lister 10* Understanding extinction events requires an unbiased record of the chronology and ecology of victims and survivors. The rhi- noceros Elasmotherium sibiricum, known as the ‘Siberian unicorn’, was believed to have gone extinct around 200,000 years ago—well before the late Quaternary megafaunal extinction event. However, no absolute dating, genetic analysis or quantita- tive ecological assessment of this species has been undertaken. Here, we show, by accelerator mass spectrometry radiocarbon dating of 23 individuals, including cross-validation by compound-specific analysis, that E. sibiricum survived in Eastern Europe and Central Asia until at least 39,000 years ago, corroborating a wave of megafaunal turnover before the Last Glacial Maximum in Eurasia, in addition to the better-known late-glacial event. Stable isotope data indicate a dry steppe niche for E. sibiricum and, together with morphology, a highly specialized diet that probably contributed to its extinction. We further demonstrate, with DNA sequencing data, a very deep phylogenetic split between the subfamilies Elasmotheriinae and Rhinocerotinae that includes all the living rhinoceroses, settling a debate based on fossil evidence and confirming that the two lineages had diverged by the Eocene. As the last surviving member of the Elasmotheriinae, the demise of the ‘Siberian unicorn’ marked the extinction of this subfamily.
    [Show full text]
  • Genomics and the Evolutionary History of Equids Pablo Librado, Ludovic Orlando
    Genomics and the Evolutionary History of Equids Pablo Librado, Ludovic Orlando To cite this version: Pablo Librado, Ludovic Orlando. Genomics and the Evolutionary History of Equids. Annual Review of Animal Biosciences, Annual Reviews, 2021, 9 (1), 10.1146/annurev-animal-061220-023118. hal- 03030307 HAL Id: hal-03030307 https://hal.archives-ouvertes.fr/hal-03030307 Submitted on 30 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Annu. Rev. Anim. Biosci. 2021. 9:X–X https://doi.org/10.1146/annurev-animal-061220-023118 Copyright © 2021 by Annual Reviews. All rights reserved Librado Orlando www.annualreviews.org Equid Genomics and Evolution Genomics and the Evolutionary History of Equids Pablo Librado and Ludovic Orlando Laboratoire d’Anthropobiologie Moléculaire et d’Imagerie de Synthèse, CNRS UMR 5288, Université Paul Sabatier, Toulouse 31000, France; email: [email protected] Keywords equid, horse, evolution, donkey, ancient DNA, population genomics Abstract The equid family contains only one single extant genus, Equus, including seven living species grouped into horses on the one hand and zebras and asses on the other. In contrast, the equine fossil record shows that an extraordinarily richer diversity existed in the past and provides multiple examples of a highly dynamic evolution punctuated by several waves of explosive radiations and extinctions, cross-continental migrations, and local adaptations.
    [Show full text]
  • U.S. Department of the Interior Bureau of Land Management
    U.S. Department of the Interior Bureau of Land Management Final Environmental Assessment DOI-BLM-NV0S010-2009-1014-EA May 2016 Eastern Nevada Transmission Project APPLICANT Silver State Energy Association GENERAL LOCATION Clark County, Nevada BLM CASE FILE SERIAL NUMBER N-086357 PREPARING OFFICE U.S. Department of the Interior Bureau of Land Management Las Vegas Field Office 4701 N. Torrey Pines Drive Las Vegas, NV 89130 Phone: (702) 515-5172 Fax: (702) 515-5010 This page intentionally left blank. Table of Contents Chapter 1 - Purpose and Need ...................................................................................................1 1.1 Introduction ....................................................................................................................1 1.2 Project Background ........................................................................................................1 1.3 Purpose and Need for Action .........................................................................................2 1.4 Decisions to be Made .....................................................................................................7 1.5 BLM Policies, Plans, Authorizing Actions, and Permit Requirements .........................7 Chapter 2 - Proposed Action and Alternatives ........................................................................9 2.1 Introduction ....................................................................................................................9 2.1.1 Regulatory Framework for Alternatives
    [Show full text]
  • Barren Ridge FEIS-Volume IV Paleo Tech Rpt Final March
    March 2011 BARREN RIDGE RENEWABLE TRANSMISSION PROJECT Paleontological Resources Assessment Report PROJECT NUMBER: 115244 PROJECT CONTACT: MIKE STRAND EMAIL: [email protected] PHONE: 714-507-2710 POWER ENGINEERS, INC. PALEONTOLOGICAL RESOURCES ASSESSMENT REPORT Paleontological Resources Assessment Report PREPARED FOR: LOS ANGELES DEPARTMENT OF WATER AND POWER 111 NORTH HOPE STREET LOS ANGELES, CA 90012 PREPARED BY: POWER ENGINEERS, INC. 731 EAST BALL ROAD, SUITE 100 ANAHEIM, CA 92805 DEPARTMENT OF PALEOSERVICES SAN DIEGO NATURAL HISTORY MUSEUM PO BOX 121390 SAN DIEGO, CA 92112 ANA 032-030 (PER-02) LADWP (MARCH 2011) SB 115244 POWER ENGINEERS, INC. PALEONTOLOGICAL RESOURCES ASSESSMENT REPORT TABLE OF CONTENTS 1.0 INTRODUCTION ........................................................................................................................... 1 1.1 STUDY PERSONNEL ....................................................................................................................... 2 1.2 PROJECT DESCRIPTION .................................................................................................................. 2 1.2.1 Construction of New 230 kV Double-Circuit Transmission Line ........................................ 4 1.2.2 Addition of New 230 kV Circuit ......................................................................................... 14 1.2.3 Reconductoring of Existing Transmission Line .................................................................. 14 1.2.4 Construction of New Switching Station .............................................................................
    [Show full text]
  • Redalyc.Study of Cedral Horses and Their Place in the Mexican Quaternary
    Revista Mexicana de Ciencias Geológicas ISSN: 1026-8774 [email protected] Universidad Nacional Autónoma de México México Alberdi, María Teresa; Arroyo-Cabrales, Joaquín; Marín-Leyva, Alejandro H.; Polaco, Oscar J. Study of Cedral Horses and their place in the Mexican Quaternary Revista Mexicana de Ciencias Geológicas, vol. 31, núm. 2, 2014, pp. 221-237 Universidad Nacional Autónoma de México Querétaro, México Available in: http://www.redalyc.org/articulo.oa?id=57231524006 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative REVISTA MEXICANA DE CIENCIAS GEOLÓGICAS v. 31, núm. 2, 2014,Cedral p. 221-237horses Study of Cedral Horses and their place in the Mexican Quaternary María Teresa Alberdi1, Joaquín Arroyo-Cabrales2, Alejandro H. Marín-Leyva3, and Oscar J. Polaco2† 1 Departamento de Paleobiología, Museo Nacional de Ciencias Naturales, CSIC, José Gutiérrez Abascal, 2, 28006 Madrid, España. 2 Laboratorio de Arqueozoología “M. en C. Ticul Álvarez Solórzano”, Moneda 16, Col. Centro, 06060 México, D. F., Mexico. 3 Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, Mexico. * [email protected] ABSTRACT tral; y un nuevo caballo de pequeño tamaño Equus cedralensis sp. nov., conocido hasta ahora sólo en localidades mexicanas. El conocimiento A detailed study has been undertaken with an unique horse de la presencia conjunta de estas tres especies en el Pleistoceno tardío de bone deposit at Cedral, San Luis Potosí, central Mexico. Morphologi- México (género Equus sp.) es importante para entender los modelos de cal and morphometrical characters are used, as well as bivariate and diversidad y extinción en los primeros tiempos de la presencia humana multivariate statistics for both cranial and postcranial elements, and en el continente.
    [Show full text]
  • 71St Annual Meeting Society of Vertebrate Paleontology Paris Las Vegas Las Vegas, Nevada, USA November 2 – 5, 2011 SESSION CONCURRENT SESSION CONCURRENT
    ISSN 1937-2809 online Journal of Supplement to the November 2011 Vertebrate Paleontology Vertebrate Society of Vertebrate Paleontology Society of Vertebrate 71st Annual Meeting Paleontology Society of Vertebrate Las Vegas Paris Nevada, USA Las Vegas, November 2 – 5, 2011 Program and Abstracts Society of Vertebrate Paleontology 71st Annual Meeting Program and Abstracts COMMITTEE MEETING ROOM POSTER SESSION/ CONCURRENT CONCURRENT SESSION EXHIBITS SESSION COMMITTEE MEETING ROOMS AUCTION EVENT REGISTRATION, CONCURRENT MERCHANDISE SESSION LOUNGE, EDUCATION & OUTREACH SPEAKER READY COMMITTEE MEETING POSTER SESSION ROOM ROOM SOCIETY OF VERTEBRATE PALEONTOLOGY ABSTRACTS OF PAPERS SEVENTY-FIRST ANNUAL MEETING PARIS LAS VEGAS HOTEL LAS VEGAS, NV, USA NOVEMBER 2–5, 2011 HOST COMMITTEE Stephen Rowland, Co-Chair; Aubrey Bonde, Co-Chair; Joshua Bonde; David Elliott; Lee Hall; Jerry Harris; Andrew Milner; Eric Roberts EXECUTIVE COMMITTEE Philip Currie, President; Blaire Van Valkenburgh, Past President; Catherine Forster, Vice President; Christopher Bell, Secretary; Ted Vlamis, Treasurer; Julia Clarke, Member at Large; Kristina Curry Rogers, Member at Large; Lars Werdelin, Member at Large SYMPOSIUM CONVENORS Roger B.J. Benson, Richard J. Butler, Nadia B. Fröbisch, Hans C.E. Larsson, Mark A. Loewen, Philip D. Mannion, Jim I. Mead, Eric M. Roberts, Scott D. Sampson, Eric D. Scott, Kathleen Springer PROGRAM COMMITTEE Jonathan Bloch, Co-Chair; Anjali Goswami, Co-Chair; Jason Anderson; Paul Barrett; Brian Beatty; Kerin Claeson; Kristina Curry Rogers; Ted Daeschler; David Evans; David Fox; Nadia B. Fröbisch; Christian Kammerer; Johannes Müller; Emily Rayfield; William Sanders; Bruce Shockey; Mary Silcox; Michelle Stocker; Rebecca Terry November 2011—PROGRAM AND ABSTRACTS 1 Members and Friends of the Society of Vertebrate Paleontology, The Host Committee cordially welcomes you to the 71st Annual Meeting of the Society of Vertebrate Paleontology in Las Vegas.
    [Show full text]
  • Framing Contemporary U.S. Wild Horse and Burro Management Processes in a Dynamic Ecological, Sociological, and Political Environment
    Human–Wildlife Interactions 12(1):31–45, Spring 2018 Synthesis Framing contemporary U.S. wild horse and burro management processes in a dynamic ecological, sociological, and political environment J. Dˎ˛ˎ˔ Sˌˊ˜˝ˊ, Department of Ecosystem Science and Management, University of Wyoming, 1000 E. University Ave., Laramie, WY 82071, USA [email protected] Jˊˌ˘ˋ D. Hˎ˗˗˒ː, Department of Ecosystem Science and Management, University of Wyoming, 1000 E. University Ave., Laramie, WY 82071, USA Jˎˏˏ˛ˎˢ L. Bˎˌ˔, Department of Ecosystem Science and Management, University of Wyoming, 1000 E. University Ave., Laramie, WY 82071, USA Abstract: The Wild Free-Roaming Horses and Burros Act (WFRHBA) of 1971 established all “unbranded or unclaimed” equids on U.S. public lands as “living symbols of the historic and pioneer spirit of the West.” Today, >72,000 feral horses (Equus ferus caballus) and burros (E. asinus; WHB) live on western U.S. public rangelands. The number of WHBs exceeds the Bureau of Land Management’s maximum Appropriate Management Level (AML) of 26,715 by a factor of approximately 2.7 and has nearly doubled from 2007–2015. The AML was set to balance WHB numbers with rangeland health and support other uses such as wildlife habitat and livestock grazing. Thus, public land management agencies must manage WHB under the multiple-use context. This becomes more problematic when WHB populations go largely unmanaged and excessive equid grazing negatively impacts rangeland vegetation, native wildlife, and livestock forage. In addition, approximately 46,000 WHBs exist in off -range holding facilities, further straining federal budgets. Contemporary management actions are being constrained by: (1) litigation that has stymied federal government WFRHBA enforcement eff orts, (2) public emotional concerns that lack reconciliation with the current situation, and (3) increasing complexity in the laws and subsequent amendments shaping WHB management policy.
    [Show full text]
  • On the Validity of Equus Laurentius Hay, 1913 Eric Scott, Division of Geological Sciences, San Bernardino County Museum, Redlands, California Thomas W
    On the Validity of Equus laurentius Hay, 1913 Eric Scott, Division of Geological Sciences, San Bernardino County Museum, Redlands, California Thomas W. Stafford, Jr., Stafford Research Laboratories, Boulder, Colorado Russell W. Graham, Department of Earth and Space Sciences, Denver Museum of Nature and Sciences, Denver, Colorado Larry D. Martin, Division of Vertebrate Paleontology, Natural History Museum and Biodiversity Research Center, University of Kansas, Lawrence, Kansas ABSTRACT BACKGROUND The species Equus laurentius Hay, 1913 has been controversial since its The species Equus laurentius was named from an associated skull and mandible recovered from a sandbar on the north side of the Kansas River near Lawrence in Douglas County, inception. Authorities have differed over the interpretation of this taxon; Kansas (Hay, 1913). The specimen (KUVP 347) was presumed to be of Pleistocene age, as it was found in apparent association with a femur assigned to Smilodon from the same some have considered it a legitimate Pleistocene horse species, while sandbar and appeared mineralized. E. laurentius was considered by Hay (1913) to be a horse similar in size to smaller domestic breeds, with rather small cheek teeth that exhibited others have proposed that the name is invalid on the basis that the relatively simple enamel infoldings or plications. Measurements provided by Hay (1913) for KUVP 347 did not distinguish the specimen from extant E. caballus (Hay, 1927). holotype specimen is a mineralized skull of a recent horse. As the taxon is still frequently employed in studies of Pleistocene equids, it is important Several subsequent authors (Matthew, 1926; Savage, 1951; Winans, 1985, 1989) considered the holotype of Equus laurentius to be a skull of a modern horse, Equus caballus to correctly assess its validity.
    [Show full text]
  • Horse Tooth Enamel Ultrastructure: a Review of Evolutionary, Morphological, and Dentistry Approaches
    e-ISSN 1734-9168 Folia Biologica (Kraków), vol. 69 (2021), No2 http://www.isez.pan.krakow.pl/en/folia-biologica.html https://doi.org/10.3409/fb_69-2.09 Horse Tooth Enamel Ultrastructure: A Review of Evolutionary, Morphological, and Dentistry Approaches Vitalii DEMESHKANT , Przemys³aw CWYNAR and Kateryna SLIVINSKA Accepted June 15, 2021 Published online July 13, 2021 Issue online July 13, 2021 Review article DEMESHKANT V., CWYNAR P., SLIVINSKA K. 2021. Horse tooth enamel ultrastructure: a review of evolutionary, morphological, and dentistry approaches. Folia Biologica (Kraków) 69: 67-79. This review searches for and analyzes existing knowledge on horse tooth anatomy in terms of evolutionary and morphological changes, feeding habits, breeding practices, and welfare. More than 150 articles from relevant databases were analyzed, taking into account the issues of our experimental research on the ultrastructure of Equidae tooth enamel. After our analysis, the knowledge on this subject accumulated up in the past, almost 50 years has been logically arranged into three basic directions: evolutionary-palaeontological, morpho-functional, and dentistic, which is also demonstrated by the latest trends in the study of enamel morphology and in the practice of equine dentistry. The obtained data show that in recent years we have observed a rapid increase in publications and a thematic expansion of the scope of research. It is caused by the need to deepen knowledge in theory and in the practice of feeding species in nature and in captivity as well as the possibility of using new technical resources to improve the excellence of such research. It is a summary of the knowledge of a certain stage of equine tooth enamel studies for this period of time, which serves as the basis for our experimental research (the materials are prepared for publication) and at the same time, defines research perspectives for the next stage of development.
    [Show full text]