Taxonomy, Evolution, Pal Indicators

Total Page:16

File Type:pdf, Size:1020Kb

Taxonomy, Evolution, Pal Indicators TAXONOMY, EVOLUTION, BIOGEOGRAPHY AND PALAEOENVIRONMENTAL SIGNIFICANCE OF VICTORIAN PALEOGENE OSTRACODA Col Eglington Department of Earth and Planetary Sciences Faculty of Science Macquarie University Sydney This thesis is submitted to fulfil the requirements for the degree of Doctor of Philosophy from Macquarie University. All results and interpretations in this thesis are the original work of the author except where acknowledged in the customary manner. No part of this work has been submitted previously for a higher degree to any other university or institution. Col Eglington AUGUST, 2014 Department of Earth and Planetary Sciences Faculty of Science Macquarie University Sydney ii ABSTRACT Section 1. The Otway Basin of southeastern Australia, which formed as part of the Australo-Antarctic Gulf during separation of Australia and Antarctica, provided a congenial marine environment for Ostracoda (Crustacea) to flourish and diversify during the Cenozoic era. Ostracod genera and species evolved rapidly and were limited ecologically by depths and temperatures. The combination of rapid rates of evolution and high ecological sensitivity makes assemblages of these morphologically complex microscopic crustaceans highly useful as biostratigraphic and especially palaeoecologic tools. Balancing evolutionary and ecologic aspects, however, requires caution in making judgements about biostratigraphic implications of specific assemblages. Their biostratigraphic value is increased when considered in conjunction with foraminiferal associations, often the principal basis for making stratigraphic alignments. Though Cenozoic strata are widespread in western Victoria, they are generally masked by extensive Plio-Pleistocene lava sheets and are relatively rare in outcrop. Much information has been gained from the vast number of water and petroleum bores drilled through the basaltic cover into the Cenozoic sequences beneath, but relatively little of the vast amount of cores and cuttings has been subjected to palaeontologic study; none of the Paleogene intervals had previously been investigated for ostracods. The seven subsurface (from bores) and surface sections on which this study is based, are all located within the Otway Basin. Section 2. In Latrobe-1 bore, 22 samples from a 137 m interval, ranging in age from the Paleocene–Eocene boundary to Early Eocene produced 23 taxa from nine families; two species are new: Neobuntonia taylori sp. nov. and Tasmanocypris? latrobensis sp. nov. Because of insufficient material, 14 other taxa discussed are presented in open nomenclature. The study extends the time and geographic range of most of the genera and species obtained. Section 3. Early Eocene ostracod assemblages from the Rivernook Member of the Dilwyn Formation (Wangerrip Group) were obtained from two locations: one an outcrop, the other subsurface in Latrobe-1 bore. Samples from these sites yielded 33 taxa of which 24 were reinvestigated. Two new “dwarf” varieties, Neonesidea australis var. A and Glencoeleberis? thomsoni var. A, are proposed. Due to marked differences in faunal composition of each of the three substantial Rivernook outcrop assemblages, they could not be bulked together and treated as a single assemblage. Assemblages from the Pember Mudstone, Rivernook and Princetown members, and the Trochocyathus and Turritella beds provided data for palaeoenvironmental interpretation. Assemblage comparisons revealed a high degree of commonality between the Rivernook Member (RMA) and Pebble Point, the South Australian Late Eocene, and Late Eocene New Zealand assemblages. There was a very low degree of commonality when compared with an Eocene Antarctic assemblage. The only other bore to provide Late Paleocene/earliest Eocene ostracods, Heywood-10, had a very small latest Paleocene assemblage in the Pember Mudstone of the Dilwyn Formation. Ostracods from the Rivernook outcrop and Heywood-10 bore are the first from those locations. Section 4. A small group of Cytherella with non-typical valve overlaps (LV>RV) is endemic to the Australian and New Zealand region. Descendants of C. atypica Bate (1972), the ancestral form from the Western Australian Late Cretaceous, migrated into the Australo- Antarctic Gulf. Cytherella postatypica sp. nov., a direct descendant, is found in the Otway Basin from the Late Paleocene to Middle Miocene. It is very similar in appearance to C. pinnata McKenzie et al. (1993), a species with a normal (RV>LV) overlap. Conspecificity was considered but rejected because of small, consistent differences in size, outline in lateral iii view, extent of overlap, central muscle scars, and shape of juveniles. Cytherella batei sp. nov. and six taxa in open nomenclature are all new left-valve-dominant Cytherella from various Otway Basin localities that range in age from Late Eocene to Early Miocene. Inversacytherella Swanson et al. (2005), erected to accommodate Cytherella with reversed valve overlap, but otherwise morphologically very close to Cytherella postatypica and C. pinnata, and the discovery of C. conturba sp. nov., an Oligocene species in which both left- dominant and right-dominant overlaps are found, are viewed as evidence for invalidity of that supposed new genus. Section 5. Early Eocene (Ypresian) ostracod assemblages are used for palaeoenvironmental interpretations at four locations in the northeastern part of the Australo- Antarctic Gulf. A controversial hypothesis for estimating benthic O2 levels using two ostracod groups, the platycopids and podocopids is applied to samples from bore and outcrop sections of the Pebble Point and Dilwyn formations (Wangerrip Group). In order to assess the validityt of the technique the results are compared to the foraminiferal data and presence of other ostracod taxa. It was found to concur in six instances, was contradicted in two and ambiguous in three, its veracity could not be definitively decided. Palaeoenvironmental interpretations based on ostracod and foraminiferan assemblages are presented. There was a high degree of variability in ventilation of the substrate, despite the generally highly restricted conditions existing in this broad shelf area of the Australo- Antarctic Gulf. The environment for the Late Paleocene Pebble Point Formation outcrop assemblage was cool and well-oxygenated, deeper than the younger Rivernook Member of the Dilwyn Formation. The very small Late Paleocene Pember Mudstone (Dilwyn Formation) assemblage from Heywood-10 bore survived in a warm, shallow, poorly-oxygenated, marginal marine location. Conditions were uniformly warm and shallow for the Early Eocene Dilwyn Formation locations, but the range of estimated benthic O2 from very low to very high, and variations in composition of the assemblages, illustrate the instability of local conditions in different strata of this marginal marine setting. Section 6. An Early Oligocene marine ostracod assemblage from the Narrawaturk Formation of the Nirranda Group occurs subsurface in the Heywood-10 bore. The sampled assemblage includes 32 taxa in 19 genera from 10 families. Two species and one subspecies are new; eight other taxa are reviewed in further detail, and eight kept in open nomenclature. The new taxa are Aversovalva hasta sp. nov., Xestoleberis heywoodensis sp. nov. and Oculocytheropteron ayressi Majoran, 1997 varius subsp. nov. The assemblage diversity was measured using the reciprocal of Simpson's Diversity Index. The Narrawaturk Formation assemblage had a lower level of diversity and abundance than the Late Oligocene Gellibrand Marl from the same locality, but a higher degree of diversity than an Early Oligocene assemblage from the Port Willunga Formation of South Australia. There was a very low level of commonality between the Narrawaturk Formation compared with the Victorian Oligocene Angahook Member. The assemblage characteristics indicate a well-ventilated inner-shelf environment with some degree of transportation. Although Australian Oligocene Ostracoda have been described from the Eocene/Oligocene boundary in South Australia, from Willunga Embayment cores, and from outcrops in the Aire and Torquay districts of southern Victoria, these specimens are the first described from the Narrawaturk Formation. Section 7. A Late Oligocene marine ostracod assemblage from the Gellibrand Marl of the Nirranda Group occurs subsurface in the Heywood-10 bore. The sampled assemblage includes 53 taxa from 33 genera across 17 families. Twenty-five taxa were reviewed and 21 placed in open nomenclature. The diverse assemblage indicates that this inner-shelf location was slightly deeper and farther from shore than the Early Oligocene Narrawaturk Formation iv from the same location. The water was warm, shallow and well-oxygenated. Previous Gellibrand Marl ostracod assemblages have been of Miocene age; these specimens are the first described from the subsurface Oligocene Gellibrand Marl. Section 8. Glencoeleberis? thomsoni Hornibrook (1952), found in and above the latest Paleocene/earliest Eocene Pember Mudstone Member, Early Eocene Rivernook Member, and in Late Paleocene/Early Eocene dredged marine sediments from Fiordland in the South Island, New Zealand, provides evidence for an early breach of the Tasmanian land-bridge connecting Australia and Antarctica. Previous work suggested that breaching of the land bridge closing the eastern end of the Australo-Antarctic Gulf (that had prevented through- flow into the Tasman Sea) commenced in the mid-Late Eocene. The extension in distribution of this otherwise exclusively regional
Recommended publications
  • Volume 2, Chapter 10-2: Arthropods: Crustacea
    Glime, J. M. 2017. Arthropods: Crustacea – Ostracoda and Amphipoda. Chapt. 10-2. In: Glime, J. M. Bryophyte Ecology. Volume 2. 10-2-1 Bryological Interaction. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. Last updated 19 July 2020 and available at <http://digitalcommons.mtu.edu/bryophyte-ecology2/>. CHAPTER 10-2 ARTHROPODS: CRUSTACEA – OSTRACODA AND AMPHPODA TABLE OF CONTENTS CLASS OSTRACODA ..................................................................................................................................... 10-2-2 Adaptations ................................................................................................................................................ 10-2-3 Swimming to Crawling ....................................................................................................................... 10-2-3 Reproduction ....................................................................................................................................... 10-2-3 Habitats ...................................................................................................................................................... 10-2-3 Terrestrial ............................................................................................................................................ 10-2-3 Peat Bogs ............................................................................................................................................ 10-2-4 Aquatic ...............................................................................................................................................
    [Show full text]
  • Crustacea, Ostracoda), from Christmas Island (Indian Ocean) with Some Considerations on the Morphological Evolution of Ancient Asexuals
    Belg. J. Zool., 141 (2) : 55-74 July 2011 Description of a new genus and two new species of Darwinulidae (Crustacea, Ostracoda), from Christmas Island (Indian Ocean) with some considerations on the morphological evolution of ancient asexuals Giampaolo Rossetti1*, Ricardo L. Pinto 2 & Koen Martens 3 1 University of Panna, Department of Enviromnental Sciences, Viale G.P. Usberti 33 A, 1-43100 Panna, Italy 2 University of Brasilia, Institute of Geosciences, Laboratory of Micropaleontology, ICC, Campus Universitário Darcy Ribeiro Asa Norte, 70910-900 Brasilia, DF, Brazil 3 Royal Belgian Institute of Natural Sciences, Freshwater Biology, Vautierstraat 29, B-1000 Brussels, Belgium, and University of Ghent, Department of Biology, K.L. Ledeganckstraat 35, B-9000 Gent, Belgimn * Conesponding author: Giampaolo Rossetti. Mail: giampaolo.rosscttin unipr.it ABSTRACT. Darwinulidae is believed to be one of the few metazoan taxa in which fully asexual reproduction might have persisted for millions of years. Although rare males in a single darwinulid species have recently been found, they may be non-functional atavisms. The representatives of this family are characterized by a slow evolutionary rate, resulting in a conservative morphology in the different lineages over long time frames and across wide geographic ranges. Differences between species and genera, although often based on small details of valve morphology and chaetotaxy, are nevertheless well-recognizable. Five recent genera ( Darwinula, Alicenula, Vestcdemilct, Penthesilemila and Microdarwimda) and about 35 living species, including also those left in open nomenclature, are included in this family. Previous phylogenetic analyses using both morphological characters and molecular data confirmed that the five genera are good phyletic units.
    [Show full text]
  • Ostracoda, Crustacea) in Turkey
    LIMNOFISH-Journal of Limnology and Freshwater Fisheries Research 5(1): 47-59 (2019) Fossil and Recent Distribution and Ecology of Ancient Asexual Ostracod Darwinula stevensoni (Ostracoda, Crustacea) in Turkey Mehmet YAVUZATMACA * , Okan KÜLKÖYLÜOĞLU Department of Biology, Faculty of Arts and Science, Bolu Abant İzzet Baysal University, Turkey ABSTRACT ARTICLE INFO In order to determine distribution, habitat and ecological preferences of RESEARCH ARTICLE Darwinula stevensoni, data gathered from 102 samples collected in Turkey between 2000 and 2017 was evaluated. A total of 1786 individuals of D. Received : 28.08.2018 stevensoni were reported from eight different aquatic habitats in 14 provinces in Revised : 21.10.2018 six of seven geographical regions of Turkey. Although there are plenty of samples Accepted : 30.10.2018 from Central Anatolia Region, recent form of the species was not encountered. Unlike recent, fossil forms of species were encountered in all geographic regions Published : 25.04.2019 except Southeastern Anatolia. The oldest fossil record in Turkey was reported from the Miocene period (ca 23 mya). Species occurred in all climatic seasons in DOI:10.17216/LimnoFish.455722 Turkey. D. stevensoni showed high optimum and tolerance levels to different ecological variables. Results showed a positive and negative significant * CORRESPONDING AUTHOR correlations of the species with pH (P<0.05) and elevation (P<0.01), respectively. [email protected] It seems that the ecological preferences of the species are much wider than Phone : +90 537 769 46 28 previously known. Our results suggest that if D. stevensoni is used to estimate past and present environmental conditions, attention and care should be paid on its ecology and distribution.
    [Show full text]
  • On Two New Species of Darwinula BRADY & ROBERTSON, 1885
    BULLETIN DE L'INSTITUT ROYAL DES SCIENCES NATURELLES DE BELGIQUE, BIOLOGIE, 67: 57-66, 1997 '' BULLETIN VAN HET KONrNKLIJK BELGISCH INSTITUUT VOOR NATUURWETENSCHAPPEN, BIOLOGIE, 67: 57-66, 1997 On two new species of Darwinula BRADY & ROBERTSON, 1885 (Crustacea, Ostracoda) from South African dolomitic springs by Koen MARTENS & Giampaolo ROSSETTI Abstract 1968 (represented by only one extant spec1es, M. zimmeri) and the nominate genus Danvinula BRADY Two new Recent darwinulid ostrac ds (Darwinu/a molopoensis & ROB ERTSON, 1885. SOHN (1987) reported 23 living spec. nov. and D. inversa spec. nov.) are described from dolomitic species and 2 subspecies for Darwinula (D. dicastrii springs in the former North West Province (the former Transvaal), LOFFLER was missing from this list); amon·g these RSA. The two new taxa can be distinguished by both soft part species, only D. stevensoni can be considered truly and valve morphology. Darwinula molopoensis spec. nov. belongs ubiquitous. to the D. africana lineage (with D. incon5picua KuE as its Except for a few papers on D. stevensoni (McGREGOR & closest relative), D. inversa spec. nov. belongs into the D. serricaudata group. The synonymy of D. serricaudata espinosa WETZEL 1968, MCGREGOR 1969; RANTA, 1979), little is PINTO & KOTZIAN, 1961 with D. serricaudata KLIE, 1935 is known on the biology and ecology of the Darwinuloidea. discussed. Also taxonomic relationships within this group remain Key words: Ostracods, Darwinu/a mo/opoensis spec. nov., " "unclear, in s'pite of valuable contributions by DAN IELOPOL Darwinula inversa spec. nov., morphology, taxonomy, ancient (1968, 1970, 1980). Indeed, the morphological uniformity asexuals, parthenogenesis, biodiversity. of the Darwinuloidea makes it difficult to single out unequivocal characters suitable for discriminating species and genera.
    [Show full text]
  • Cypris 2016-2017
    CYPRIS 2016-2017 Illustrations courtesy of David Siveter For the upper image of the Silurian pentastomid crustacean Invavita piratica on the ostracod Nymphateline gravida Siveter et al., 2007. Siveter, David J., D.E.G. Briggs, Derek J. Siveter, and M.D. Sutton. 2015. A 425-million-year- old Silurian pentastomid parasitic on ostracods. Current Biology 23: 1-6. For the lower image of the Silurian ostracod Pauline avibella Siveter et al., 2012. Siveter, David J., D.E.G. Briggs, Derek J. Siveter, M.D. Sutton, and S.C. Joomun. 2013. A Silurian myodocope with preserved soft-parts: cautioning the interpretation of the shell-based ostracod record. Proceedings of the Royal Society London B, 280 20122664. DOI:10.1098/rspb.2012.2664 (published online 12 December 2012). Watermark courtesy of Carin Shinn. Table of Contents List of Correspondents Research Activities Algeria Argentina Australia Austria Belgium Brazil China Czech Republic Estonia France Germany Iceland Israel Italy Japan Luxembourg New Zealand Romania Russia Serbia Singapore Slovakia Slovenia Spain Switzerland Thailand Tunisia United Kingdom United States Meetings Requests Special Publications Research Notes Photographs and Drawings Techniques and Methods Awards New Taxa Funding Opportunities Obituaries Horst Blumenstengel Richard Forester Franz Goerlich Roger Kaesler Eugen Kempf Louis Kornicker Henri Oertli Iraja Damiani Pinto Evgenii Schornikov Michael Schudack Ian Slipper Robin Whatley Papers and Abstracts (2015-2007) 2016 2017 In press Addresses Figure courtesy of Francesco Versino,
    [Show full text]
  • Crustacea: Ostracoda) De Pozas Temporales
    Heterocypris bosniaca (Petkowski et al., 2000): Ecología y ontogenia de un ostrácodo (Crustacea: Ostracoda) de pozas temporales. ESIS OCTORAL T D Josep Antoni Aguilar Alberola Departament de Microbiologia i Ecologia Universitat de València Programa de doctorat en Biodiversitat i Biologia Evolutiva Heterocypris bosniaca (Petkowski et al., 2000): Ecología y ontogenia de un ostrácodo (Crustacea: Ostracoda) de pozas temporales. Tesis doctoral presentada por Josep Antoni Aguilar Alberola 2013 Dirigida por Francesc Mesquita Joanes Imagen de cubierta: Vista lateral de la fase eclosionadora de Heterocypris bosniaca. Más detalles en el capítulo V. Tesis titulada "Heterocypris bosniaca (Petkowski et al., 2000): Ecología y ontogenia de un ostrácodo (Crustacea: Ostracoda) de pozas temporales" presentada por JOSEP ANTONI AGUILAR ALBEROLA para optar al grado de Doctor en Ciencias Biológicas por la Universitat de València. Firmado: Josep Antoni Aguilar Alberola Tesis dirigida por el Doctor en Ciencias Biológicas por la Universitat de València, FRANCESC MESQUITA JOANES. Firmado: F. Mesquita i Joanes Profesor Titular de Ecología Universitat de València A Laura, Paco, i la meua família Resumen Los ostrácodos son un grupo de pequeños crustáceos con amplia distribución mundial, cuyo cuerpo está protegido por dos valvas laterales que suelen preservarse con facilidad en el sedimento. En el presente trabajo se muestra la primera cita del ostrácodo Heterocypris bosniaca Petkowski, Scharf y Keyser, 2000 para la Península Ibérica. Se trata de una especie de cipridoideo muy poco conocida que habita pozas de aguas temporales. Se descubrió el año 2000 en Bosnia y desde entonces solo se ha reportado su presencia en Israel (2004) y en Valencia (presente trabajo).
    [Show full text]
  • Mikro-Originale Sammlung BGR/LBEG Hannover
    Mikro-Originale Sammlung BGR/LBEG Hannover Al-Abawi, T. (1973) Miozäne Foraminiferen aus dem NE-Irak. (Miocene foraminifera from the NE Iraq). N.Jb. Geol. Paläont. Abh., 144, 1: 1-23, 9 Abb.; Stuttgart. ? Dorothia sp. Belegexemplar Ammonia acuta n. sp. Abb. 6, Fig. 55 Belegexemplar Ammonia acuta n. sp. Abb. 6, Fig. 47 Belegexemplar Ammonia acuta n. sp. Abb. 6, Fig. 48 Belegexemplar Ammonia acuta n. sp. Abb. 6, Fig. 49 Belegexemplar Ammonia acuta n. sp. Abb. 6, Fig. 50 Belegexemplar Ammonia acuta n. sp. Abb. 6, Fig. 51 Belegexemplar Ammonia acuta n. sp. Abb. 6, Fig. 52 Belegexemplar Ammonia acuta n. sp. Abb. 6, Fig. 62 Belegexemplar Ammonia acuta n. sp. Abb. 6, Fig. 54 Belegexemplar Ammonia acuta n. sp. Abb. 5, Fig. 42c Belegexemplar Ammonia acuta n. sp. Abb. 6, Fig. 56 Belegexemplar Ammonia acuta n. sp. Abb. 6, Fig. 57 Belegexemplar Ammonia acuta n. sp. Abb. 6, Fig. 58 Belegexemplar Ammonia acuta n. sp. Abb. 6, Fig. 59 Belegexemplar Ammonia acuta n. sp. Abb. 6, Fig. 60 Belegexemplar Ammonia acuta n. sp. Abb. 6, Fig. 61 Belegexemplar Ammonia acuta n. sp. Abb. 6, Fig. 53 Belegexemplar Ammonia acuta n. sp. Abb. 5, Fig. 35c Belegexemplar Ammonia acuta n. sp. Abb. 5, Fig. 27a-c Holotypus Ammonia acuta n. sp. Abb. 5, Fig. 28a-c Paratypus Ammonia acuta n. sp. Abb. 5, Fig. 29a-c Paratypus Ammonia acuta n. sp. Abb. 5, Fig. 30a-c Belegexemplar Ammonia acuta n. sp. Abb. 5, Fig. 31c Belegexemplar Ammonia acuta n. sp. Abb. 5, Fig. 32c Belegexemplar Ammonia acuta n.
    [Show full text]
  • Supplement of Holocene Ostracod Assemblages from the Co to Islands, Northeastern Vietnam
    Supplement of J. Micropalaeontol., 38, 97–111, 2019 https://doi.org/10.5194/jm-38-97-2019-supplement © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License. Supplement of Holocene ostracod assemblages from the Co To Islands, northeastern Vietnam Sota Niiyama et al. Correspondence to: Sota Niiyama ([email protected]) The copyright of individual parts of the supplement might differ from the CC BY 4.0 License. Synonym list Class OSTRACODA Latreille, 1802 Order PODOCOPIDA Sars, 1866 Suborder Podocopina Sars, 1866 5 Family Bairdiidae Sars, 1866 Genus Neonesidea Maddocks, 1969 Neonesidea elegans s.l. (Brady, 1869) Figure. 3 (1) 10 1869 Bairdia elegans Brady: 156, pl. 16, figs. 11, 12. 1869 Bairdia subdeltoidea (Münster); Brady: 155. ?1978 Bairdia haikangensis Guan in Hubei Institute of Geology and Science: 155, fig. 17; pl. 38. figs. 8-11. ?1981 Bairdia haikangensis Guan; Gou et al.: 148, pl. 74. figs. 1-4. ?1983 Bairdia haikangensis Guan; Gou et al.: 14, pl.1. figs. 1-9. 15 ?1985 Neonesidea haikangensis (Guan); Wang and Zhao: 82, fig. 16; pl. 6. figs. 4, 5. ?1985 Neonesidea haikangensis (Guan); Zhao et al.: 204, fig. 21; pl. 19. figs. 3, 4. 1986 Neonesidea haikangensis (Guan); Zhao et al.: pl. 2, figs. 5, 6. 1987 Bairdia haikangensis Guan; Cai and Chen: pl. 2, fig. 7. 1987 Neonesidea haikangensis (Guan); Wang Q. and Zhang: 290, pl. 1, figs. 2, 3. 20 1987a Neonesidea elegans (Brary); Whatley and Zhao: 24, pl. 1, figs. 3-7 1988 Neonesidea haikangensis (Guan); Ruan and Hao: pl.
    [Show full text]
  • Distribution and Statistical Aspects of Ostracoda from the Pulicat Lagoon,Tamil Nadu
    Proc Indian Natn Sci Acad 86 No. 2 June 2020 pp. 1083-1095 Printed in India. DOI: 10.16943/ptinsa/2019/49713 Research Paper Distribution and Statistical Aspects of Ostracoda from the Pulicat Lagoon, Tamil Nadu: Implications on Siltation and Microenvironment S M HUSSAIN*, P MAHALAKSHMI and K RADHAKRISHNAN Department of Geology, University of Madras, Guindy Campus, Chennai 600 025, India (Received on 19 August 2017; Revised on 16 August 2018; Accepted on 16 August 2019) Ostracods are bivalved tiny Crustaceans; inhabit almost all types of aquatic environments. In order to study the systematic and distribution of recent brackish water Ostracoda from the Pulicat lagoon, near Chennai, Tamil Nadu, a total of twelve surface sediment samples and one core were collected from Pulicat lagoon. A total of a total of 37 ostracod taxa belonging to 24 genera, 14 families, 2 superfamilies, and 2 suborders of the order Podocopida have been identified. Among these, Cytherelloidea leroyi belong to suborder Platycopa and the remaining 36 species to suborder Podocopa are recorded from Pulicat lagoon. Geochemical and sedimentological parameters such as CaCO3, Organic matter and sand-silt-clay ratio were estimated. An attempt has been made to study the relation between the sediment characteristics (the substrate of the Pulicat lagoon samples consists of sand and silty-sand) and Ostracoda population, and evaluate the favourable substrate for the population abundance in the area. From the distribution of Ostracoda, it is inferred that the sandy substrate is congenial sediment type for the population abundance and distribution. The implications of the proxies like Ostracod surface ornamentation, carapace and valve ratio and other environmental interpretations from the Pulicat lagoon are presented in this paper.
    [Show full text]
  • Ostracod Assemblages in the Frasassi Caves and Adjacent Sulfidic Spring and Sentino River in the Northeastern Apennines of Italy
    D.E. Peterson, K.L. Finger, S. Iepure, S. Mariani, A. Montanari, and T. Namiotko – Ostracod assemblages in the Frasassi Caves and adjacent sulfidic spring and Sentino River in the northeastern Apennines of Italy. Journal of Cave and Karst Studies, v. 75, no. 1, p. 11– 27. DOI: 10.4311/2011PA0230 OSTRACOD ASSEMBLAGES IN THE FRASASSI CAVES AND ADJACENT SULFIDIC SPRING AND SENTINO RIVER IN THE NORTHEASTERN APENNINES OF ITALY DAWN E. PETERSON1,KENNETH L. FINGER1*,SANDA IEPURE2,SANDRO MARIANI3, ALESSANDRO MONTANARI4, AND TADEUSZ NAMIOTKO5 Abstract: Rich, diverse assemblages comprising a total (live + dead) of twenty-one ostracod species belonging to fifteen genera were recovered from phreatic waters of the hypogenic Frasassi Cave system and the adjacent Frasassi sulfidic spring and Sentino River in the Marche region of the northeastern Apennines of Italy. Specimens were recovered from ten sites, eight of which were in the phreatic waters of the cave system and sampled at different times of the year over a period of five years. Approximately 6900 specimens were recovered, the vast majority of which were disarticulated valves; live ostracods were also collected. The most abundant species in the sulfidic spring and Sentino River were Prionocypris zenkeri, Herpetocypris chevreuxi,andCypridopsis vidua, while the phreatic waters of the cave system were dominated by two putatively new stygobitic species of Mixtacandona and Pseudolimnocythere and a species that was also abundant in the sulfidic spring, Fabaeformiscandona ex gr. F. fabaeformis. Pseudocandona ex gr. P. eremita, likely another new stygobitic species, is recorded for the first time in Italy. The relatively high diversity of the ostracod assemblages at Frasassi could be attributed to the heterogeneity of groundwater and associated habitats or to niche partitioning promoted by the creation of a chemoautotrophic ecosystem based on sulfur-oxidizing bacteria.
    [Show full text]
  • Crustacea, Ostracoda), from Christmas Island (Indian Ocean) with Some Considerations on the Morphological Evolution of Ancient Asexuals
    Belg. J. Zool., 141 (2) : 55-74 July 2011 Description of a new genus and two new species of Darwinulidae (Crustacea, Ostracoda), from Christmas Island (Indian Ocean) with some considerations on the morphological evolution of ancient asexuals Giampaolo Rossetti1*, Ricardo L. Pinto2 & Koen Martens3 1 University of Parma, Department of Environmental Sciences, Viale G.P. Usberti 33A, I-43100 Parma, Italy 2 University of Brasília, Institute of Geosciences, Laboratory of Micropaleontology, ICC, Campus Universitário Darcy Ribeiro Asa Norte, 70910-900 Brasilia, DF, Brazil 3 Royal Belgian Institute of Natural Sciences, Freshwater Biology, Vautierstraat 29, B-1000 Brussels, Belgium, and University of Ghent, Department of Biology, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium * Corresponding author: Giampaolo Rossetti. Mail: [email protected] ABSTRACT. Darwinulidae is believed to be one of the few metazoan taxa in which fully asexual reproduction might have persisted for millions of years. Although rare males in a single darwinulid species have recently been found, they may be non-functional atavisms. The representatives of this family are characterized by a slow evolutionary rate, resulting in a conservative morphology in the different lineages over long time frames and across wide geographic ranges. Differences between species and genera, although often based on small details of valve morphology and chaetotaxy, are nevertheless well-recognizable. Five recent genera (Darwinula, Alicenula, Vestalenula, Penthesilenula and Microdarwinula) and about 35 living species, including also those left in open nomenclature, are included in this family. Previous phylogenetic analyses using both morphological characters and molecular data confirmed that the five genera are good phyletic units. Here, we report on the results of a study on darwinulid ostracods from Christmas Island (Indian Ocean).
    [Show full text]
  • 62 Anuário Do Instituto De Geociências
    Anuário do Instituto de Geociências - UFRJ www.anuario.igeo.ufrj.br A Fauna da Formação Brejo Santo, Neojurássico da Bacia do Araripe, Brasil: Interpretações Paleoambientais The Brejo Santo Formation Fauna, Neojurassic from Araripe Basin, Brazil: Paleoenvironmental Interpretations Bruno Gonçalves Vieira de Melo & Ismar de Souza Carvalho Universidade Federal do Rio de Janeiro, Centro de Ciências Matemáticas e da Natureza, Instituto de Geociências, Departamento de Geologia, Avenida Athos da Silveira Ramos, 274, Bloco F, Ilha do Fundão – Cidade Universitária, Rio de Janeiro, RJ, 21949-900, Brasil E-mails: [email protected]; [email protected] Recebido em: 12/09/2017 Aprovado em:10/10/2017 DOI: http://dx.doi.org/10.11137/2017_3_62_74 Resumo A Bacia do Araripe teve sua origem e evolução relacionadas aos eventos tectônicos que culminaram com o rifteamento do Gondwana e abertura do oceano Atlântico Sul. Os depósitos do Neojurássico da bacia estão inseridos na Tectonossequência Pré-Rifte e compreendem a Formação Brejo Santo. Os macrofósseis e microfósseis incluem peixes Mawsonia gigas e Lepidotes sp., Crocodyliformes, Dinosauria, e invertebrados como ostracodes, conchostráceos, gastrópode, biválvio, além de icnofósseis. A associação fossilífera, aliada às observações sedimentológicas dos aloramentos, torna possível caracterizar o ambiente deposicional. O predomínio de camadas lutíticas vermelhasred beds) ( evidencia a deposição em corpos d’água rasos, em condições oxidantes, de áreas alagadas da planície de inundação, em clima árido, associados a momentos esporádicos de inundação luvial. A ocorrência de níveis carbonáticos e a diversidade de ostracodes mixohalinos (citeráceos), sugerem que as áreas alagadas eram caracterizadas por águas salobras (salinidade entre 1 e 24,7 %), temperadas ou quentes e com pH alcalino.
    [Show full text]