Appendix a Global Aris.Xlsx

Total Page:16

File Type:pdf, Size:1020Kb

Appendix a Global Aris.Xlsx Average recurrence intervals (50%ile data completeness) Explosive eruptions: Name Volcano ID Latitude Longitude Volcano type Country Any VEI VEI <=3 VEI 4 VEI 5 VEI 6 VEI 7 Buckle Island 390010 -66.78 163.25 Large cone Antarctica 120 130 1710 6000 25000 26700 Deception Island 390030 -62.97 -60.65 Caldera Antarctica 28 33 350 705 1410 5870 Erebus 390020 -77.53 167.17 Large cone Antarctica 12 13 170 600 2500 2670 Hudson Mountains 390028 -74.33 -99.42 Large cone Antarctica 2220 2440 31800 111200 463100 494000 Melbourne 390015 -74.35 164.7 Large cone Antarctica 265 290 3760 13200 54800 58400 Penguin Island 390031 -62.1 -57.93 Large cone Antarctica 165 180 2360 8250 34400 36700 Takahe 390027 -76.28 -112.08 Shield Antarctica 3020 3150 100700 487300 1510500 3021000 Huanquihue Group 357123 -39.88 -71.58 Large cone Argentina 260 285 3680 12900 53700 57300 Tromen 357072 -37.142 -70.03 Large cone Argentina 280 305 3990 14000 58200 62100 Viedma 358061 -49.358 -73.28 Caldera Argentina 25 29 315 625 1250 5210 Porak 214090 40.02 45.78 Large cone Armenia-Azerbaijan 3260 3580 46600 163100 679500 724800 Tskhouk-Karckar 214100 39.73 46.02 Small cone Armenia-Azerbaijan 5010 5330 100300 626600 - - Heard 234010 -53.106 73.513 Large cone Australia 37 41 535 1870 7800 8320 McDonald Islands 234011 -53.03 72.6 Large cone Australia 87 96 1250 4370 18200 19400 Newer Volcanics Province 259010 -37.77 142.5 Shield Australia 2620 2730 87400 422700 1310500 2621000 Cameroon 224010 4.203 9.17 Large cone Cameroon 13 14 185 645 2680 2860 Edziza 320060 57.72 -130.63 Large cone Canada 1330 1460 19000 66700 277700 296200 Garibaldi 320200 49.85 -123 Large cone Canada 10100 11100 143900 503700 2098500 2238400 Iskut-Unuk River Cones 320090 56.58 -130.55 Small cone Canada 4420 4700 88400 552700 - - Meager 320180 50.63 -123.5 Large cone Canada 2670 2930 38100 133300 - - Nazko 320140 52.9 -123.73 Small cone Canada 7230 7690 144700 904100 - - Tseax River Cone 320100 55.12 -128.9 Small cone Canada 335 355 6670 41700 - - Wells Gray-Clearwater 320150 52.33 -120.57 Small cone Canada 3830 4080 76600 478900 - - Fogo 384010 14.95 -24.35 Large cone Cape Verde 23 25 325 1140 4740 5050 Aguilera 358062 -50.33 -73.75 Large cone Chile 4620 5080 66000 231200 963100 1027300 Antillanca Group 357153 -40.771 -72.153 Large cone Chile 1490 1630 21200 74300 309700 330300 Antuco 357080 -37.406 -71.349 Large cone Chile 31 34 435 1530 6380 6800 Arenales 358059 -47.2 -73.48 Large cone Chile 380 420 5430 19000 79200 84400 Azul, Cerro 357060 -35.653 -70.761 Large cone Chile 22 24 310 1080 4510 4820 Burney, Monte 358070 -52.33 -73.4 Large cone Chile 245 270 3530 12400 51600 55000 Caburgua-Huelemolle 357112 -39.25 -71.7 Small cone Chile 7060 7510 141300 882900 - - Calbuco 358020 -41.326 -72.614 Large cone Chile 27 30 390 1360 5670 6050 Callaqui 357091 -37.92 -71.45 Large cone Chile 125 140 1810 6330 26400 28100 Carran-Los Venados 357140 -40.35 -72.07 Small cone Chile 95 100 1900 11900 - - Cayutue-La Vigueria 358012 -41.25 -72.27 Small cone Chile 3060 3260 61300 382900 - - Chaiten 358041 -42.833 -72.646 Caldera Chile 380 445 4750 9500 19000 79200 Chillan, Nevados de 357070 -36.863 -71.377 Large cone Chile 14 15 195 685 2860 3050 Corcovado 358050 -43.18 -72.8 Large cone Chile 4330 4750 61800 216300 901400 961400 Descabezado Grande 357050 -35.58 -70.75 Large cone Chile 380 420 5430 19000 79200 84400 Fueguino 358090 -54.95 -70.25 Lava dome Chile 380 515 1810 9500 38000 - Guallatiri 355020 -18.42 -69.092 Large cone Chile 63 70 905 3170 13200 14100 Hudson, Cerro 358057 -45.9 -72.97 Large cone Chile 135 150 1960 6870 28600 30500 Huequi 358030 -42.377 -72.578 Large cone Chile 48 52 680 2380 9900 10600 Name Volcano ID Latitude Longitude Volcano type Country Any VEI VEI <=3 VEI 4 VEI 5 VEI 6 VEI 7 Isluga 355030 -19.15 -68.83 Large cone Chile 54 60 775 2710 11300 12100 Lascar 355100 -23.37 -67.73 Large cone Chile 11 12 160 555 2320 2480 Lautaro 358060 -49.02 -73.55 Large cone Chile 14 15 200 705 2930 3130 Llaima 357110 -38.692 -71.729 Large cone Chile 5 6 75 260 1090 1160 Longavi, Nevado de 357063 -36.193 -71.161 Large cone Chile 6900 7590 98600 345200 1438100 1534000 Lonquimay 357100 -38.377 -71.58 Large cone Chile 63 70 905 3170 13200 14100 Maca 358056 -45.1 -73.17 Large cone Chile 1600 1760 22900 80200 334000 356200 Melimoyu 358052 -44.08 -72.88 Large cone Chile 1420 1560 20200 70800 295100 314800 Mentolat 358054 -44.7 -73.08 Large cone Chile 7020 7720 100300 351200 1463100 1560700 Minchinmavida 358040 -42.793 -72.439 Large cone Chile 130 145 1880 6590 27500 29300 Mocho-Choshuenco 357130 -39.927 -72.027 Large cone Chile 63 70 905 3170 13200 14100 Osorno 358010 -41.1 -72.493 Large cone Chile 38 41 535 1880 7830 8360 Planchon-Peteroa 357040 -35.24 -70.57 Large cone Chile 19 21 270 950 3960 4220 Puntiagudo-Cordon Cenizos 357160 -40.969 -72.264 Large cone Chile 380 420 5430 19000 79200 84400 Puyehue-Cordon Caulle 357150 -40.59 -72.117 Large cone Chile 26 29 375 1320 5500 5860 Quetrupillan 357121 -39.5 -71.7 Large cone Chile 380 420 5430 19000 79200 84400 Reclus 358063 -50.964 -73.585 Small cone Chile 89 95 1790 11200 - - Robinson Crusoe 356020 -33.658 -78.85 Shield Chile 380 395 12700 61300 190000 380000 San Pedro 355070 -21.88 -68.4 Large cone Chile 48 52 680 2380 9900 10600 Sollipulli 357111 -38.97 -71.52 Caldera Chile 775 910 9660 19300 38700 161000 Taapaca 355011 -18.1 -69.5 Large cone Chile 1240 1360 17700 62000 258200 275400 Tinguiririca 357030 -34.814 -70.352 Large cone Chile 380 420 5430 19000 79200 84400 Villarrica 357120 -39.42 -71.93 Large cone Chile 4 5 61 215 895 955 Yanteles 358049 -43.5 -72.8 Large cone Chile 4630 5080 66100 231300 963900 1028100 Copahue 357090 -37.85 -71.17 Large cone Chile-Argentina 34 37 485 1700 7080 7550 Lanin 357122 -39.633 -71.5 Large cone Chile-Argentina 1610 1770 23000 80400 334900 357200 Llullaillaco 355110 -24.72 -68.53 Large cone Chile-Argentina 140 155 2000 6980 29100 31000 Maipo 357021 -34.161 -69.833 Caldera Chile-Argentina 68 80 855 1710 3420 14300 Ojos del Salado, Nevados 355130 -27.12 -68.55 Large cone Chile-Argentina 1120 1230 16000 55900 232800 248300 Palei-Aike Volcanic Field 358080 -52 -70 Small cone Chile-Argentina 7560 8050 151300 945400 - - San Jose 357020 -33.782 -69.897 Large cone Chile-Argentina 39 43 565 1970 8220 8760 Socompa 355109 -24.4 -68.25 Large cone Chile-Argentina 7260 7980 103800 363200 1513100 1614000 Tupungatito 357010 -33.4 -69.8 Large cone Chile-Argentina 15 17 220 765 3190 3400 Irruputuncu 355040 -20.73 -68.55 Large cone Chile-Bolivia 280 305 3990 14000 58200 62100 Parinacota 355012 -18.17 -69.15 Large cone Chile-Bolivia 1960 2160 28000 98200 409000 436300 Arshan 305011 47.5 120.7 Small cone China 2010 2140 40300 251600 - - Hainan Dao 275001 19.7 110.1 Small cone China 68 72 1360 8480 - - Jingbo 305040 44.08 128.83 Small cone China 1850 1970 37100 231800 - - Kunlun Volcanic Group 304030 35.52 80.2 Small cone China 275 295 5520 34500 - - Longgang Group 305050 42.33 126.5 Small cone China 1660 1770 33300 207900 - - Tianshan Volcanic Group 304020 42.5 82.5 Small cone China 980 1040 19600 122700 - - Turfan 304010 42.9 89.25 Small cone China 895 950 17900 111600 - - Wudalianchi 305030 48.72 126.12 Small cone China 275 295 5520 34500 - - Changbaishan 305060 41.98 128.08 Large cone China-North Korea 200 220 2870 10000 41800 44600 Azufral 351090 1.08 -77.68 Large cone Colombia 1030 1130 14700 51400 214000 228200 Name Volcano ID Latitude Longitude Volcano type Country Any VEI VEI <=3 VEI 4 VEI 5 VEI 6 VEI 7 Bravo, Cerro 351012 5.092 -75.3 Large cone Colombia 575 630 8220 28800 119900 127800 Cumbal 351100 0.95 -77.87 Large cone Colombia 96 105 1370 4790 20000 21300 Dona Juana 351070 1.47 -76.92 Large cone Colombia 4030 4430 57500 201400 839000 894900 Galeras 351080 1.22 -77.37 Large cone Colombia 9 10 125 435 1810 1930 Huila, Nevado del 351050 2.93 -76.03 Large cone Colombia 56 61 800 2800 11700 12400 Machin 351040 4.48 -75.392 Large cone Colombia 830 915 11900 41500 173000 184500 Purace 351060 2.32 -76.4 Large cone Colombia 8 9 120 415 1720 1840 Romeral 351011 5.206 -75.364 Large cone Colombia 7960 8750 113800 398200 1659000 1769600 Ruiz, Nevado del 351020 4.895 -75.322 Large cone Colombia 26 29 375 1320 5490 5860 Tolima, Nevado del 351030 4.67 -75.33 Large cone Colombia 46 51 660 2320 9660 10300 Negro de Mayasquer, Cerro 351110 0.828 -77.964 Large cone Colombia-Ecuador 280 305 3990 14000 58200 62100 Karthala 233010 -11.75 43.38 Shield Comoros 11 12 375 1810 5600 11200 Arenal 345033 10.463 -84.703 Large cone Costa Rica 65 71 925 3230 13500 14400 Barva 345050 10.135 -84.1 Large cone Costa Rica 8060 8860 115200 403200 1679800 1791800 Irazu 345060 9.979 -83.852 Large cone Costa Rica 11 12 160 565 2350 2510 Miravalles 345030 10.748 -85.153 Large cone Costa Rica 185 205 2660 9290 38700 41300 Poas 345040 10.2 -84.233 Large cone Costa Rica 4 4 58 205 850 905 Rincon de la Vieja 345020 10.83 -85.324 Large cone Costa Rica 11 12 150 530 2210 2360 Turrialba 345070 10.025 -83.767 Large cone Costa Rica 37 41 530 1850 7700 8210 Ardoukoba 221126 11.58 42.47 Small cone Djibouti 195 205 3870 24200 - - Plat Pays, Morne 360110 15.255 -61.341 Large cone Dominica 1690 1860 24100 84400 351700 375200 Trois Pitons, Morne 360100 15.37 -61.33 Large cone Dominica 610 670 8740 30600 127400 135900 Watt, Morne 360101 15.307 -61.305 Large cone Dominica 140 155 2020 7060 29400 31400 Nyamuragira 223020 -1.408 29.2 Shield DR Congo 5 5 165 800 2480 4970 Nyiragongo 223030 -1.52 29.25 Large cone DR Congo 19 21 275 965 4020 4290 Visoke 223050 -1.47 29.492 Large cone DR Congo-Rwanda
Recommended publications
  • Freshwater Diatoms in the Sajama, Quelccaya, and Coropuna Glaciers of the South American Andes
    Diatom Research ISSN: 0269-249X (Print) 2159-8347 (Online) Journal homepage: http://www.tandfonline.com/loi/tdia20 Freshwater diatoms in the Sajama, Quelccaya, and Coropuna glaciers of the South American Andes D. Marie Weide , Sherilyn C. Fritz, Bruce E. Brinson, Lonnie G. Thompson & W. Edward Billups To cite this article: D. Marie Weide , Sherilyn C. Fritz, Bruce E. Brinson, Lonnie G. Thompson & W. Edward Billups (2017): Freshwater diatoms in the Sajama, Quelccaya, and Coropuna glaciers of the South American Andes, Diatom Research, DOI: 10.1080/0269249X.2017.1335240 To link to this article: http://dx.doi.org/10.1080/0269249X.2017.1335240 Published online: 17 Jul 2017. Submit your article to this journal Article views: 6 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tdia20 Download by: [Lund University Libraries] Date: 19 July 2017, At: 08:18 Diatom Research,2017 https://doi.org/10.1080/0269249X.2017.1335240 Freshwater diatoms in the Sajama, Quelccaya, and Coropuna glaciers of the South American Andes 1 1 2 3 D. MARIE WEIDE ∗,SHERILYNC.FRITZ,BRUCEE.BRINSON, LONNIE G. THOMPSON & W. EDWARD BILLUPS2 1Department of Earth and Atmospheric Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA 2Department of Chemistry, Rice University, Houston, TX, USA 3School of Earth Sciences and Byrd Polar and Climate Research Center, The Ohio State University, Columbus, OH, USA Diatoms in ice cores have been used to infer regional and global climatic events. These archives offer high-resolution records of past climate events, often providing annual resolution of environmental variability during the Late Holocene.
    [Show full text]
  • Chilean Notes, 1962-1963
    CHILEAN NOTES ' CHILEAN NOTES, 1962-1963 BY EVELIO ECHEVARRfA C. (Three illustrations: nos. 2I-23) HE mountaineering seasons of I 962 and I 963 have seen an increase in expeditionary activity beyond the well-trodden Central Andes of Chile. This activity is expected to increase in the next years, particularly in Bolivia and Patagonia. In the Central Andes, \vhere most of the mountaineering is concen­ trated, the following first ascents were reported for the summer months of I962: San Augusto, I2,o6o ft., by M. Acufia, R. Biehl; Champafiat, I3,I90 ft., by A. Diaz, A. Figueroa, G. and P. de Pablo; Camanchaca (no height given), by G. Fuchloger, R. Lamilla, C. Sepulveda; Los Equivo­ cados, I3,616 ft., by A. Ducci, E. Eglington; Puente Alto, I4,764 ft., by F. Roulies, H. Vasquez; unnamed, I4,935 ft., by R. Biehl, E. Hill, IVI. V ergara; and another unnamed peak, I 5,402 ft., by M. Acufia, R. Biehl. Besides the first ascent of the unofficially named peak U niversidad de Humboldt by the East German Expedition, previously reported by Mr. T. Crombie, there should be added to the credit of the same party the second ascent of Cerro Bello, I7,o6o ft. (K. Nickel, F. Rudolph, M. Zielinsky, and the Chilean J. Arevalo ), and also an attempt on the un­ climbed North-west face of Marmolejo, 20,0I3 ft., frustrated by adverse weather and technical conditions of the ice. In the same area two new routes were opened: Yeguas Heladas, I5,7I5 ft., direct by the southern glacier, by G.
    [Show full text]
  • Appendix A. Supplementary Material to the Manuscript
    Appendix A. Supplementary material to the manuscript: The role of crustal and eruptive processes versus source variations in controlling the oxidation state of iron in Central Andean magmas 1. Continental crust beneath the CVZ Country Rock The basement beneath the sampled portion of the CVZ belongs to the Paleozoic Arequipa- Antofalla terrain – a high temperature metamorphic terrain with abundant granitoid intrusions that formed in response to Paleozoic subduction (Lucassen et al., 2000; Ramos et al., 1986). In Northern Chile and Northwestern Argentina this Paleozoic metamorphic-magmatic basement is largely homogeneous and felsic in composition, consistent with the thick, weak, and felsic properties of the crust beneath the CVZ (Beck et al., 1996; Fig. A.1). Neodymium model ages of exposed Paleozoic metamorphic-magmatic basement and sediments suggest a uniform Proterozoic protolith, itself derived from intrusions and sedimentary rock (Lucassen et al., 2001). AFC Model Parameters Pervasive assimilation of continental crust in the Central Andean ignimbrite magmas is well established (Hildreth and Moorbath, 1988; Klerkx et al., 1977; Fig. A.1) and has been verified by detailed analysis of radiogenic isotopes (e.g. 87Sr/86Sr and 143Nd/144Nd) on specific systems within the CVZ (Kay et al., 2011; Lindsay et al., 2001; Schmitt et al., 2001; Soler et al., 2007). Isotopic results indicate that the CVZ magmas are the result of mixing between a crustal endmember, mainly gneisses and plutonics that have a characteristic crustal signature of high 87Sr/86Sr and low 145Nd/144Nd, and the asthenospheric mantle (low 87Sr/86Sr and high 145Nd/144Nd; Fig. 2). In Figure 2, we model the amount of crustal assimilation required to produce the CVZ magmas that are targeted in this study.
    [Show full text]
  • Geothermal Map of Perú
    Proceedings World Geothermal Congress 2010 Bali, Indonesia, 25-29 April 2010 Geothermal Map of Perú Víctor Vargas & Vicentina Cruz Instituto Geológico Minero y Metalúrgico – INGEMMET. Av. Canadá Nº 1470. Lima 41. San Borja, Lima - Perú [email protected] [email protected] Keywords: Geothermal map, Eje Volcánico Sur, contribute in the development of this environmentally geothermal manifestations, volcanic rocks, deep faults, friendly resource, for electric power generation and direct Perú. uses ABSTRACT 1. INTRODUCTION The Andes Cordillera resulted from the interaction of the All over the world the major geothermal potential is Nazca Plate and the South American Plate. The subduction associated to discontinuous chains of Pio-Pleistocenic process occurring between both plates has controlled all volcanic centers that take part of the Pacific Fire Belt, and geological evolution of such territory since Mesozoic to Perú as a part of this, has a vast geothermal manifestation present time. In this context, magmatic and tectonic like hot springs, geysers, fumaroles etc. processes have allowed the development of geothermal environments with great resources to be evaluated and The Peruvian Geological Survey - INGEMMET- has subsequently developed making a sustainable exploitation traditionally been the first institution devoted to perform of them. geothermal studies that include the first mineral resources and thermal spring’s inventory. The first geothermal studies In consequence, Perú has a vast geothermal potential with were accomplished in the 70's starting with the first many manifestations at the surface as hot springs, geysers, inventory of mineral and thermal springs (Zapata, 1973). fumaroles, steam, etc., all over the country. The first The main purpose of those studies was the geochemical geothermal studies began in the 70's with the first inventory characterization of geothermal flows.
    [Show full text]
  • Relationship Between Static Stress Change and Volcanism. How and If Tectonic Earthquake Could Influence Volcanic Activity
    Michigan Technological University Digital Commons @ Michigan Tech Dissertations, Master's Theses and Master's Dissertations, Master's Theses and Master's Reports - Open Reports 2014 RELATIONSHIP BETWEEN STATIC STRESS CHANGE AND VOLCANISM. HOW AND IF TECTONIC EARTHQUAKE COULD INFLUENCE VOLCANIC ACTIVITY. EXAMPLE OF EL REVENTADOR VOLCANO, ECUADOR Daniele Alami Michigan Technological University Follow this and additional works at: https://digitalcommons.mtu.edu/etds Part of the Geology Commons, and the Volcanology Commons Copyright 2014 Daniele Alami Recommended Citation Alami, Daniele, "RELATIONSHIP BETWEEN STATIC STRESS CHANGE AND VOLCANISM. HOW AND IF TECTONIC EARTHQUAKE COULD INFLUENCE VOLCANIC ACTIVITY. EXAMPLE OF EL REVENTADOR VOLCANO, ECUADOR", Master's report, Michigan Technological University, 2014. https://doi.org/10.37099/mtu.dc.etds/770 Follow this and additional works at: https://digitalcommons.mtu.edu/etds Part of the Geology Commons, and the Volcanology Commons RELATIONSHIP BETWEEN STATIC STRESS CHANGE AND VOLCANISM. HOW AND IF TECTONIC EARTHQUAKE COULD INFLUENCE VOLCANIC ACTIVITY. EXAMPLE OF EL REVENTADOR VOLCANO, ECUADOR. By Daniele Alami A REPORT Submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE In Geology MICHIGAN TECHNOLOGICAL UNIVERSITY 2013 © 2013 Daniele Alami This report has been approved in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE in Geology Department of Geological & Mining Engineering & Sciences Report Co-Advisor: Gregory P.Waite Report Co-Advisor: Alessandro Tibaldi Committee Member: Simon Carn Department Chair: John Gierke 1 2 L'infinito non esiste, è solo un numero grande, e l'unico vero cuore è al centro della Terra. Vai davanti a un vulcano e poi dimmi, come ti senti? (Filippo Timi) 3 Università degli studi di Milano-Bicocca Facoltà di Scienze Matematiche, Fisiche e Naturali Dipartimento di Scienze e Tecnologie Geologiche Relationship between static stress changes and volcanism.
    [Show full text]
  • Volcán Lascar
    Volcán Lascar Región: Antofagasta Provincia: El Loa Comuna: San Pedro de Atacama Coordenadas: 21°22’S – 67°44’O Poblados más cercanos: Talabre – Camar – Socaire Tipo: Estratovolcán Altura: 5.592 m s.n.m. Diámetro basal: 8.9 km Área basal: 62.2 km2 Volumen estimado: 28.5 km3 Última actividad: 2015 Última erupción mayor: 1993 Volcán Lascar. Vista desde el norte Ranking de riesgo (Fotografía: Gabriela Jara, SERNAGEOMIN) 14 específico: Generalidades El volcán Láscar corresponde a un estratovolcán compuesto, elongado en dirección este-oeste, activo desde hace unos 240 ka y emplazado en el margen oeste de la planicie altiplánica. Está conformado por lavas andesíticas, que alcanzan más de 10 km de longitud, y por potentes lavas dacíticas que se extienden hasta 5 km, las que fueron emitidas desde los flancos NO a SO. La lava más reciente se estima en 7 mil años de antigüedad. En los alrededores del volcán se reconocen depósitos de flujo y caída piroclástica, además de numerosos cráteres de impacto asociados a la eyección de bombas durante erupciones plinianas y subplinianas. El principal evento eruptivo durante su evolución se denomina Ignimbrita Soncor, generado hace unos 27 ka al oeste del volcán y con un volumen estimado cercano a los 10 km3. En la cima de este volcán se observan seis cráteres, algunos anidados, y el central de estos se encuentra activo. Registro eruptivo Este volcán ha presentado alrededor de 30 erupciones explosivas desde el siglo XIX, lo que lo convierte en el volcán más activo del norte de Chile. Estos eventos han consistido típicamente en erupciones vulcanianas de corta duración, con emisión de ceniza fina y proyecciones balísticas en un radio de 5 km, donde el último evento de este tipo ocurrió el 30 de octubre del 2015.
    [Show full text]
  • Alaska Interagency Operating Plan for Volcanic Ash Episodes
    Alaska Interagency Operating Plan for Volcanic Ash Episodes MAY 1, 2008 Cover: A plume of volcanic gas and water vapor rises above the summit crater and growing lava dome at Augustine Volcano in southern Cook Inlet. A mantle of light brown ash discolors the snow on the upper flanks. View is towards the southwest. Photograph taken by C. Read, U.S. Geological Survey, January 24, 2006. Alaska Volcano Observatory database image from http://www.avo.alaska.edu/image.php?id=7051. Alaska Interagency Operating Plan for Volcanic Ash Episodes May 1, 2008 Table of Contents 1.0 Introduction ............................................................................................................... 3 1.1 Integrated Response to Volcanic Ash ....................................................................... 3 1.2 Data Collection and Processing ................................................................................ 4 1.3 Information Management and Coordination .............................................................. 4 1.4 Distribution and Dissemination.................................................................................. 5 2.0 Responsibilities of the Participating Agencies ........................................................... 5 2.1 ALASKA DIVISION OF HOMELAND SECURITY AND EMERGENCY MANAGEMENT (DHS&EM) .............................................................................. 5 2.2 ALASKA VOLCANO OBSERVATORY (AVO)........................................................... 6 2.2.1 Organization.....................................................................................................
    [Show full text]
  • To Late-Holocene Explosive Rhyolitic Eruptions from Chaitén Volcano, Chile
    Andean Geology 40 (2): 216-226. May, 2013 Andean Geology doi: 10.5027/andgeoV40n2-a02 formerly Revista Geológica de Chile www.andeangeology.cl Evidence of mid- to late-Holocene explosive rhyolitic eruptions from Chaitén Volcano, Chile Sebastian F.L. Watt1, 2, David M. Pyle1, Tamsin A. Mather1 1 Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, U.K. [email protected]; [email protected]; [email protected] 2 National Oceanography Centre, Southampton, University of Southampton Waterfront Campus, European Way, Southampton SO14 3ZH, U.K. ABSTRACT. The 2008 eruption of Chaitén Volcano was widely cited as the first activity at the volcano for over 9000 years. However, we have identified evidence from proximal pyroclastic deposits for three additional explosive eruptions of Chaitén within the past 5000 years. Chaitén has therefore produced at least five explosive eruptions in the Holocene, making it among the most active volcanoes, in terms of explosive output, in the southern part of the Andean Southern Volcanic Zone. All of the five identified Holocene explosive eruptions produced homogeneous high-silica rhyolite, with near identical compositions. Based on our pyroclastic sequence, we suggest that the largest-volume Holocene eruption of Chaitén occurred at ~4.95 ka, and we correlate this with the Mic2 deposit, which was previously thought to originate from the nearby Michinmahuida Volcano. Keywords: Chaitén Volcano, Andean southern volcanic zone, Holocene tephra stratigraphy, Rhyolite, Explosive volcanism. RESUMEN. Evidencia de erupciones riolíticas del Holoceno medio a tardío del volcán Chaitén, Chile. La erupción del volcán Chaitén en el año 2008 ha sido mencionada ampliamente como la primera actividad de este en los últimos 9 mil años.
    [Show full text]
  • Sr–Pb Isotopes Signature of Lascar Volcano (Chile): Insight Into Contamination of Arc Magmas Ascending Through a Thick Continental Crust N
    Sr–Pb isotopes signature of Lascar volcano (Chile): Insight into contamination of arc magmas ascending through a thick continental crust N. Sainlot, I. Vlastélic, F. Nauret, S. Moune, F. Aguilera To cite this version: N. Sainlot, I. Vlastélic, F. Nauret, S. Moune, F. Aguilera. Sr–Pb isotopes signature of Lascar volcano (Chile): Insight into contamination of arc magmas ascending through a thick continental crust. Journal of South American Earth Sciences, Elsevier, 2020, 101, pp.102599. 10.1016/j.jsames.2020.102599. hal-03004128 HAL Id: hal-03004128 https://hal.uca.fr/hal-03004128 Submitted on 13 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Copyright Manuscript File Sr-Pb isotopes signature of Lascar volcano (Chile): Insight into contamination of arc magmas ascending through a thick continental crust 1N. Sainlot, 1I. Vlastélic, 1F. Nauret, 1,2 S. Moune, 3,4,5 F. Aguilera 1 Université Clermont Auvergne, CNRS, IRD, OPGC, Laboratoire Magmas et Volcans, F-63000 Clermont-Ferrand, France 2 Observatoire volcanologique et sismologique de la Guadeloupe, Institut de Physique du Globe, Sorbonne Paris-Cité, CNRS UMR 7154, Université Paris Diderot, Paris, France 3 Núcleo de Investigación en Riesgo Volcánico - Ckelar Volcanes, Universidad Católica del Norte, Avenida Angamos 0610, Antofagasta, Chile 4 Departamento de Ciencias Geológicas, Universidad Católica del Norte, Avenida Angamos 0610, Antofagasta, Chile 5 Centro de Investigación para la Gestión Integrada del Riesgo de Desastres (CIGIDEN), Av.
    [Show full text]
  • Lawrence Berkeley National Laboratory Recent Work
    Lawrence Berkeley National Laboratory Recent Work Title Assessment of high enthalpy geothermal resources and promising areas of Chile Permalink https://escholarship.org/uc/item/9s55q609 Authors Aravena, D Muñoz, M Morata, D et al. Publication Date 2016 DOI 10.1016/j.geothermics.2015.09.001 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Assessment of high enthalpy geothermal resources and promising areas of Chile Author links open overlay panel DiegoAravena ab MauricioMuñoz ab DiegoMorata ab AlfredoLahsen ab Miguel ÁngelParada ab PatrickDobson c Show more https://doi.org/10.1016/j.geothermics.2015.09.001 Get rights and content Highlights • We ranked geothermal prospects into measured, Indicated and Inferred resources. • We assess a comparative power potential in high-enthalpy geothermal areas. • Total Indicated and Inferred resource reaches 659 ± 439 MWe divided among 9 areas. • Data from eight additional prospects suggest they are highly favorable targets. • 57 geothermal areas are proposed as likely future development targets. Abstract This work aims to assess geothermal power potential in identified high enthalpy geothermal areas in the Chilean Andes, based on reservoir temperature and volume. In addition, we present a set of highly favorable geothermal areas, but without enough data in order to quantify the resource. Information regarding geothermal systems was gathered and ranked to assess Indicated or Inferred resources, depending on the degree of confidence that a resource may exist as indicated by the geoscientific information available to review. Resources were estimated through the USGS Heat in Place method. A Monte Carlo approach is used to quantify variability in boundary conditions.
    [Show full text]
  • Evolution of Ice-Dammed Proglacial Lakes in Última Esperanza, Chile: Implications from the Late-Glacial R1 Eruption of Reclús Volcano, Andean Austral Volcanic Zone
    Andean Geology 38 (1): 82-97. January, 2011 Andean Geology formerly Revista Geológica de Chile www.scielo.cl/andgeol.htm Evolution of ice-dammed proglacial lakes in Última Esperanza, Chile: implications from the late-glacial R1 eruption of Reclús volcano, Andean Austral Volcanic Zone Charles R. Stern1, Patricio I. Moreno2, Rodrigo Villa-Martínez3, Esteban A. Sagredo2, 4, Alfredo Prieto5, Rafael Labarca6* 1 Department of Geological Sciences, University of Colorado, Boulder, CO 80309-0399, USA. [email protected] 2 Depto. de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile. [email protected] 3 Centro de Estudios del Cuaternario (CEQUA), Av. Bulnes 01890, Punta Arenas, Chile. [email protected] 4 Department of Geology, University of Cincinnati, Cincinnati, OH 45221, USA. [email protected] 5 Centro de Estudios del Hombre Austral, Instituto de la Patagonia, Universidad de Magallanes, Casilla 113-D, Punta Arenas, Chile. [email protected] 6 Programa de Doctorado Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Argentina. [email protected] * Permanent address: Juan Moya 910, Ñuñoa, Santiago, Chile. ABsTracT. Newly described outcrops, excavations and sediment cores from the region of Última Esperanza, Magalla- nes, contain tephra derived from the large late-glacial explosive R1 eruption of the Reclús volcano in the Andean Austral Volcanic Zone. New radiocarbon dates associated to these deposits refine previous estimates of the age, to 14.9 cal kyrs BP (12,670±240 14C yrs BP), and volume, to >5 km3, of this tephra. The geographic and stratigraphic distribution of R1 also place constraints on the evolution of the ice-dammed proglacial lake that existed east of the cordillera in this area between the termination of the Last Glacial Maximum (LGM) and the Holocene.
    [Show full text]
  • Report on Cartography in the Republic of Chile 2011 - 2015
    REPORT ON CARTOGRAPHY IN CHILE: 2011 - 2015 ARMY OF CHILE MILITARY GEOGRAPHIC INSTITUTE OF CHILE REPORT ON CARTOGRAPHY IN THE REPUBLIC OF CHILE 2011 - 2015 PRESENTED BY THE CHILEAN NATIONAL COMMITTEE OF THE INTERNATIONAL CARTOGRAPHIC ASSOCIATION AT THE SIXTEENTH GENERAL ASSEMBLY OF THE INTERNATIONAL CARTOGRAPHIC ASSOCIATION AUGUST 2015 1 REPORT ON CARTOGRAPHY IN CHILE: 2011 - 2015 CONTENTS Page Contents 2 1: CHILEAN NATIONAL COMMITTEE OF THE ICA 3 1.1. Introduction 3 1.2. Chilean ICA National Committee during 2011 - 2015 5 1.3. Chile and the International Cartographic Conferences of the ICA 6 2: MULTI-INSTITUTIONAL ACTIVITIES 6 2.1 National Spatial Data Infrastructure of Chile 6 2.2. Pan-American Institute for Geography and History – PAIGH 8 2.3. SSOT: Chilean Satellite 9 3: STATE AND PUBLIC INSTITUTIONS 10 3.1. Military Geographic Institute - IGM 10 3.2. Hydrographic and Oceanographic Service of the Chilean Navy – SHOA 12 3.3. Aero-Photogrammetric Service of the Air Force – SAF 14 3.4. Agriculture Ministry and Dependent Agencies 15 3.5. National Geological and Mining Service – SERNAGEOMIN 18 3.6. Other Government Ministries and Specialized Agencies 19 3.7. Regional and Local Government Bodies 21 4: ACADEMIC, EDUCATIONAL AND TRAINING SECTOR 21 4.1 Metropolitan Technological University – UTEM 21 4.2 Universities with Geosciences Courses 23 4.3 Military Polytechnic Academy 25 5: THE PRIVATE SECTOR 26 6: ACKNOWLEDGEMENTS AND ACRONYMS 28 ANNEX 1. List of SERNAGEOMIN Maps 29 ANNEX 2. Report from CENGEO (University of Talca) 37 2 REPORT ON CARTOGRAPHY IN CHILE: 2011 - 2015 PART ONE: CHILEAN NATIONAL COMMITTEE OF THE ICA 1.1: Introduction 1.1.1.
    [Show full text]