Methods of Proof for Boolean Logic 1 HW 4 Due Next Monday (02.17) William Starr

Total Page:16

File Type:pdf, Size:1020Kb

Methods of Proof for Boolean Logic 1 HW 4 Due Next Monday (02.17) William Starr Introduction Valid Inference Steps Proof by Cases Introduction Valid Inference Steps Proof by Cases Announcements For 02.12 Methods of Proof for Boolean Logic 1 HW 4 due next Monday (02.17) William Starr 02.12.09 William Starr | Methods of Proof for Boolean Logic (Phil 201.02) | Rutgers University 1/36 William Starr | Methods of Proof for Boolean Logic (Phil 201.02) | Rutgers University 2/36 Introduction Valid Inference Steps Proof by Cases Introduction Valid Inference Steps Proof by Cases Outline The Big Picture Where is Today? You are taking a logic class Logic is mainly about logical consequence 1 Introduction It's about conclusions following (or not following) from premises 2 Valid Inference Steps So far, we've explored two methods for understanding logical consequence: 3 Proof by Cases 1 Proof (Ch.2: informal, formal) 2 Tautological Consequence (Ch.4: truth tables) However, we have not discussed how the methods of proof can be used for the Booleans That will be our project for today William Starr | Methods of Proof for Boolean Logic (Phil 201.02) | Rutgers University 3/36 William Starr | Methods of Proof for Boolean Logic (Phil 201.02) | Rutgers University 6/36 Introduction Valid Inference Steps Proof by Cases Introduction Valid Inference Steps Proof by Cases The Big Picture Proofs But Wait... The Way Forward We had to learn truth tables, why proofs too? Truth tables provide powerful logical tools for the Booleans, but have two significant limitations: We've studied the basics of proofs but we haven't done 1 Impractical: Truth tables get extremely large as any proofs involving the Boolean connectives they get more interesting. An interesting scientific Today we'll be discussing the informal methods of argument could have well over 14 atomic sentences. proof for the Booleans That would take a table with over 16,000 rows! <+-> Next week we'll extend our formal proof system (F) 2 Limited Applications: As we learned yesterday, with formal rules for the Boolean connectives there are logical consequences that aren't tautological These formal rules will closely mirror the informal consequences. That's because truth tables are blind proof methods discussed today to the logic of expressions other than the Booleans, such as =. The methods of proof fill this gap admirably William Starr | Methods of Proof for Boolean Logic (Phil 201.02) | Rutgers University 7/36 William Starr | Methods of Proof for Boolean Logic (Phil 201.02) | Rutgers University 8/36 Introduction Valid Inference Steps Proof by Cases Introduction Valid Inference Steps Proof by Cases Proof Proof What is it? Steps, What? Proof A proof is a step-by-step demonstration which shows that a The Nature of Steps conclusion C must be true in any circumstance where some Each step of a proof involves an appeal to certain facts premises, say P1 and P2 are true about the meaning of the vocabulary involved. These facts are what we implicitly appeal to when we say a step is 1 The step-by-step demonstration of C can proceed obvious through intermediate conclusions What kind of facts? 2 It may not be obvious how to show C from P1 and P2, but it may be obvious how to show C from some other Facts which guarantee that the step will never lead us from something true to something false claim Q that is an obvious consequence of P1 and P2 3 Each step must provide incontrovertible evidence for Let's consider an old example the next William Starr | Methods of Proof for Boolean Logic (Phil 201.02) | Rutgers University 10/36 William Starr | Methods of Proof for Boolean Logic (Phil 201.02) | Rutgers University 11/36 Introduction Valid Inference Steps Proof by Cases Introduction Valid Inference Steps Proof by Cases Proof Proof An Old Inference Step New Steps Indiscernibility of Identicals If n is m, then whatever is true of n is also true of m So we need to think about which inference steps (where `n' and `m' are names) negation, conjunction and disjunction support That is, we need to think about what they mean We've already started doing this: This is a fact about the meaning of is 1 ^ takes the `worst' truth value This fact guarantees that if it is true that n is m, then 2 _ takes the `best' truth value it is true that whatever holds of n also holds of m 3 : flips the truth value In other words it could never lead us from true claims Now we just need to think about what these facts to false ones imply in terms of inference steps and proof methods This is the essence of a valid inference step William Starr | Methods of Proof for Boolean Logic (Phil 201.02) | Rutgers University 12/36 William Starr | Methods of Proof for Boolean Logic (Phil 201.02) | Rutgers University 13/36 Introduction Valid Inference Steps Proof by Cases Introduction Valid Inference Steps Proof by Cases Conjunction Conjunction Elimination Elimination Suppose you have proved a conjunction P ^ Q From looking at the truth table for ^ or thinking Conjunction elimination is pretty obvious: about the meaning of and, both P and Q are clearly 1 Jay walks and Kay talks consequences of P ^ Q So Jay walks 2 Large(a) ^ Cube(a) This inference pattern is called conjunction elimination So Cube(a) Truth Table for ^ Conjunction Elimination This inference is so obvious that we rarely take the time to mention that we are making it P Q P ^ Q 1 From P ^ Q you can true true true infer P In your informal proofs you don't have to mention it true false false either, but you should be aware that you are making it false true false 2 From P ^ Q you can and why it's a valid inference step false false false infer Q William Starr | Methods of Proof for Boolean Logic (Phil 201.02) | Rutgers University 16/36 William Starr | Methods of Proof for Boolean Logic (Phil 201.02) | Rutgers University 17/36 Introduction Valid Inference Steps Proof by Cases Introduction Valid Inference Steps Proof by Cases Conjunction Disjunction Introduction Introduction There's a similar inference step for inferring a Suppose you have proven P conjunction from its conjuncts: Then you can infer P _ Q, no matter what Q is Why? Conjunction Introduction Truth Table for _ If P is true, then P _ Q If you have proven both P and Q, you can P Q P _ Q is true, regardless of infer P ^ Q what Q's truth value true true true is! true false true Again, this is so obvious that we never mention such a false true true This is a valid step false false false inference step, since it You don't have mention it in your proofs, but you is guaranteed to lead should understand it us from true claims to true claims William Starr | Methods of Proof for Boolean Logic (Phil 201.02) | Rutgers University 18/36 William Starr | Methods of Proof for Boolean Logic (Phil 201.02) | Rutgers University 19/36 Introduction Valid Inference Steps Proof by Cases Introduction Valid Inference Steps Proof by Cases Disjunction Informal Proof Introduction A Rule of Thumb So _ supports this inference step: Rule of Thumb for Informal Proofs In an informal proof, it is always legitimate to move from P to Q if both you & your audience already know that Q is a Disjunction Introduction logical consequence of P 1 From A you can infer A _ B 2 From A you can infer B _ A We've all learned the following equivalences: DeMorgan's Laws Double Negation It may seem useless, to infer from: ::P , P 1 :(P ^ Q) ,:P _:Q (1) Likes(jay; circles) 2 :(P _ Q) ,:P ^ :Q that (2) Likes(jay; circles) _ Likes(kay; squares) So in an informal proofs for this class you could say: But, we will find uses for these kinds of inferences \From :(Cube(a) ^ Tet(b)) it follows by DeMorgan's Laws that :Cube(a) _:Tet(b)..." William Starr | Methods of Proof for Boolean Logic (Phil 201.02) | Rutgers University 20/36 William Starr | Methods of Proof for Boolean Logic (Phil 201.02) | Rutgers University 22/36 Introduction Valid Inference Steps Proof by Cases Introduction Valid Inference Steps Proof by Cases Informal Proof An Example Proof A Rule of Thumb Argument 1 Argument 1 Let's give an informal proof Of course, if you are asked to prove one of DeMorgan's of this inference Laws, or you are talking logic with stranger you :(A _ B) shouldn't appeal to DeMorgan's Laws :A So we have three new inference steps, some equivalences and a rule of thumb Proof of Argument 1 So what? We are given :(A _ B), which is equivalent to :A ^ :B by Well, now we can prove some stuff DeMorgan's Law (2). So :A follows immediately. We used Conjunction Elimination in this last step, but there was no need to explicitly say so William Starr | Methods of Proof for Boolean Logic (Phil 201.02) | Rutgers University 23/36 William Starr | Methods of Proof for Boolean Logic (Phil 201.02) | Rutgers University 25/36 Introduction Valid Inference Steps Proof by Cases Introduction Valid Inference Steps Proof by Cases Another Example Proof Moving On Inference 2 Proof Methods Argument 2 Let's give an informal proof of this inference too We have discussed: a = b ^ :Cube(a) 1 Conjunction Intro and Elim :(Cube(a) _ Cube(b)) 2 Disjunction Intro But what about: Proof of Argument 2 1 Disjunction Elim 2 Negation! We are given that a = b and :Cube(a), so by the indiscernibility of identicals :Cube(b).
Recommended publications
  • Ling 130 Notes: a Guide to Natural Deduction Proofs
    Ling 130 Notes: A guide to Natural Deduction proofs Sophia A. Malamud February 7, 2018 1 Strategy summary Given a set of premises, ∆, and the goal you are trying to prove, Γ, there are some simple rules of thumb that will be helpful in finding ND proofs for problems. These are not complete, but will get you through our problem sets. Here goes: Given Delta, prove Γ: 1. Apply the premises, pi in ∆, to prove Γ. Do any other obvious steps. 2. If you need to use a premise (or an assumption, or another resource formula) which is a disjunction (_-premise), then apply Proof By Cases (Disjunction Elimination, _E) rule and prove Γ for each disjunct. 3. Otherwise, work backwards from the type of goal you are proving: (a) If the goal Γ is a conditional (A ! B), then assume A and prove B; use arrow-introduction (Conditional Introduction, ! I) rule. (b) If the goal Γ is a a negative (:A), then assume ::A (or just assume A) and prove con- tradiction; use Reductio Ad Absurdum (RAA, proof by contradiction, Negation Intro- duction, :I) rule. (c) If the goal Γ is a conjunction (A ^ B), then prove A and prove B; use Conjunction Introduction (^I) rule. (d) If the goal Γ is a disjunction (A _ B), then prove one of A or B; use Disjunction Intro- duction (_I) rule. 4. If all else fails, use RAA (proof by contradiction). 2 Using rules for conditionals • Conditional Elimination (modus ponens) (! E) φ ! , φ ` This rule requires a conditional and its antecedent.
    [Show full text]
  • Chapter 5: Methods of Proof for Boolean Logic
    Chapter 5: Methods of Proof for Boolean Logic § 5.1 Valid inference steps Conjunction elimination Sometimes called simplification. From a conjunction, infer any of the conjuncts. • From P ∧ Q, infer P (or infer Q). Conjunction introduction Sometimes called conjunction. From a pair of sentences, infer their conjunction. • From P and Q, infer P ∧ Q. § 5.2 Proof by cases This is another valid inference step (it will form the rule of disjunction elimination in our formal deductive system and in Fitch), but it is also a powerful proof strategy. In a proof by cases, one begins with a disjunction (as a premise, or as an intermediate conclusion already proved). One then shows that a certain consequence may be deduced from each of the disjuncts taken separately. One concludes that that same sentence is a consequence of the entire disjunction. • From P ∨ Q, and from the fact that S follows from P and S also follows from Q, infer S. The general proof strategy looks like this: if you have a disjunction, then you know that at least one of the disjuncts is true—you just don’t know which one. So you consider the individual “cases” (i.e., disjuncts), one at a time. You assume the first disjunct, and then derive your conclusion from it. You repeat this process for each disjunct. So it doesn’t matter which disjunct is true—you get the same conclusion in any case. Hence you may infer that it follows from the entire disjunction. In practice, this method of proof requires the use of “subproofs”—we will take these up in the next chapter when we look at formal proofs.
    [Show full text]
  • Notes on Proof Theory
    Notes on Proof Theory Master 1 “Informatique”, Univ. Paris 13 Master 2 “Logique Mathématique et Fondements de l’Informatique”, Univ. Paris 7 Damiano Mazza November 2016 1Last edit: March 29, 2021 Contents 1 Propositional Classical Logic 5 1.1 Formulas and truth semantics . 5 1.2 Atomic negation . 8 2 Sequent Calculus 10 2.1 Two-sided formulation . 10 2.2 One-sided formulation . 13 3 First-order Quantification 16 3.1 Formulas and truth semantics . 16 3.2 Sequent calculus . 19 3.3 Ultrafilters . 21 4 Completeness 24 4.1 Exhaustive search . 25 4.2 The completeness proof . 30 5 Undecidability and Incompleteness 33 5.1 Informal computability . 33 5.2 Incompleteness: a road map . 35 5.3 Logical theories . 38 5.4 Arithmetical theories . 40 5.5 The incompleteness theorems . 44 6 Cut Elimination 47 7 Intuitionistic Logic 53 7.1 Sequent calculus . 55 7.2 The relationship between intuitionistic and classical logic . 60 7.3 Minimal logic . 65 8 Natural Deduction 67 8.1 Sequent presentation . 68 8.2 Natural deduction and sequent calculus . 70 8.3 Proof tree presentation . 73 8.3.1 Minimal natural deduction . 73 8.3.2 Intuitionistic natural deduction . 75 1 8.3.3 Classical natural deduction . 75 8.4 Normalization (cut-elimination in natural deduction) . 76 9 The Curry-Howard Correspondence 80 9.1 The simply typed l-calculus . 80 9.2 Product and sum types . 81 10 System F 83 10.1 Intuitionistic second-order propositional logic . 83 10.2 Polymorphic types . 84 10.3 Programming in system F ...................... 85 10.3.1 Free structures .
    [Show full text]
  • Starting the Dismantling of Classical Mathematics
    Australasian Journal of Logic Starting the Dismantling of Classical Mathematics Ross T. Brady La Trobe University Melbourne, Australia [email protected] Dedicated to Richard Routley/Sylvan, on the occasion of the 20th anniversary of his untimely death. 1 Introduction Richard Sylvan (n´eRoutley) has been the greatest influence on my career in logic. We met at the University of New England in 1966, when I was a Master's student and he was one of my lecturers in the M.A. course in Formal Logic. He was an inspirational leader, who thought his own thoughts and was not afraid to speak his mind. I hold him in the highest regard. He was very critical of the standard Anglo-American way of doing logic, the so-called classical logic, which can be seen in everything he wrote. One of his many critical comments was: “G¨odel's(First) Theorem would not be provable using a decent logic". This contribution, written to honour him and his works, will examine this point among some others. Hilbert referred to non-constructive set theory based on classical logic as \Cantor's paradise". In this historical setting, the constructive logic and mathematics concerned was that of intuitionism. (The Preface of Mendelson [2010] refers to this.) We wish to start the process of dismantling this classi- cal paradise, and more generally classical mathematics. Our starting point will be the various diagonal-style arguments, where we examine whether the Law of Excluded Middle (LEM) is implicitly used in carrying them out. This will include the proof of G¨odel'sFirst Theorem, and also the proof of the undecidability of Turing's Halting Problem.
    [Show full text]
  • Relevant and Substructural Logics
    Relevant and Substructural Logics GREG RESTALL∗ PHILOSOPHY DEPARTMENT, MACQUARIE UNIVERSITY [email protected] June 23, 2001 http://www.phil.mq.edu.au/staff/grestall/ Abstract: This is a history of relevant and substructural logics, written for the Hand- book of the History and Philosophy of Logic, edited by Dov Gabbay and John Woods.1 1 Introduction Logics tend to be viewed of in one of two ways — with an eye to proofs, or with an eye to models.2 Relevant and substructural logics are no different: you can focus on notions of proof, inference rules and structural features of deduction in these logics, or you can focus on interpretations of the language in other structures. This essay is structured around the bifurcation between proofs and mod- els: The first section discusses Proof Theory of relevant and substructural log- ics, and the second covers the Model Theory of these logics. This order is a natural one for a history of relevant and substructural logics, because much of the initial work — especially in the Anderson–Belnap tradition of relevant logics — started by developing proof theory. The model theory of relevant logic came some time later. As we will see, Dunn's algebraic models [76, 77] Urquhart's operational semantics [267, 268] and Routley and Meyer's rela- tional semantics [239, 240, 241] arrived decades after the initial burst of ac- tivity from Alan Anderson and Nuel Belnap. The same goes for work on the Lambek calculus: although inspired by a very particular application in lin- guistic typing, it was developed first proof-theoretically, and only later did model theory come to the fore.
    [Show full text]
  • Qvp) P :: ~~Pp :: (Pvp) ~(P → Q
    TEN BASIC RULES OF INFERENCE Negation Introduction (~I – indirect proof IP) Disjunction Introduction (vI – addition ADD) Assume p p Get q & ~q ˫ p v q ˫ ~p Disjunction Elimination (vE – version of CD) Negation Elimination (~E – version of DN) p v q ~~p → p p → r Conditional Introduction (→I – conditional proof CP) q → r Assume p ˫ r Get q Biconditional Introduction (↔I – version of ME) ˫ p → q p → q Conditional Elimination (→E – modus ponens MP) q → p p → q ˫ p ↔ q p Biconditional Elimination (↔E – version of ME) ˫ q p ↔ q Conjunction Introduction (&I – conjunction CONJ) ˫ p → q p or q ˫ q → p ˫ p & q Conjunction Elimination (&E – simplification SIMP) p & q ˫ p IMPORTANT DERIVED RULES OF INFERENCE Modus Tollens (MT) Constructive Dilemma (CD) p → q p v q ~q p → r ˫ ~P q → s Hypothetical Syllogism (HS) ˫ r v s p → q Repeat (RE) q → r p ˫ p → r ˫ p Disjunctive Syllogism (DS) Contradiction (CON) p v q p ~p ~p ˫ q ˫ Any wff Absorption (ABS) Theorem Introduction (TI) p → q Introduce any tautology, e.g., ~(P & ~P) ˫ p → (p & q) EQUIVALENCES De Morgan’s Law (DM) (p → q) :: (~q→~p) ~(p & q) :: (~p v ~q) Material implication (MI) ~(p v q) :: (~p & ~q) (p → q) :: (~p v q) Commutation (COM) Material Equivalence (ME) (p v q) :: (q v p) (p ↔ q) :: [(p & q ) v (~p & ~q)] (p & q) :: (q & p) (p ↔ q) :: [(p → q ) & (q → p)] Association (ASSOC) Exportation (EXP) [p v (q v r)] :: [(p v q) v r] [(p & q) → r] :: [p → (q → r)] [p & (q & r)] :: [(p & q) & r] Tautology (TAUT) Distribution (DIST) p :: (p & p) [p & (q v r)] :: [(p & q) v (p & r)] p :: (p v p) [p v (q & r)] :: [(p v q) & (p v r)] Conditional-Biconditional Refutation Tree Rules Double Negation (DN) ~(p → q) :: (p & ~q) p :: ~~p ~(p ↔ q) :: [(p & ~q) v (~p & q)] Transposition (TRANS) CATEGORICAL SYLLOGISM RULES (e.g., Ǝx(Fx) / ˫ Fy).
    [Show full text]
  • Propositional Logic
    Chapter 3 Propositional Logic 3.1 ARGUMENT FORMS This chapter begins our treatment of formal logic. Formal logic is the study of argument forms, abstract patterns of reasoning shared by many different arguments. The study of argument forms facilitates broad and illuminating generalizations about validity and related topics. We shall initially focus on the notion of deductive validity, leaving inductive arguments to a later treatment (Chapters 8 to 10). Specifically, our concern in this chapter will be with the idea that a valid deductive argument is one whose conclusion cannot be false while the premises are all true (see Section 2.3). By studying argument forms, we shall be able to give this idea a very precise and rigorous characterization. We begin with three arguments which all have the same form: (1) Today is either Monday or Tuesday. Today is not Monday. Today is Tuesday. (2) Either Rembrandt painted the Mona Lisa or Michelangelo did. Rembrandt didn't do it. :. Michelangelo did. (3) Either he's at least 18 or he's a juvenile. He's not at least 18. :. He's a juvenile. It is easy to see that these three arguments are all deductively valid. Their common form is known by logicians as disjunctive syllogism, and can be represented as follows: Either P or Q. It is not the case that P :. Q. The letters 'P' and 'Q' function here as placeholders for declarative' sentences. We shall call such letters sentence letters. Each argument which has this form is obtainable from the form by replacing the sentence letters with sentences, each occurrence of the same letter being replaced by the same sentence.
    [Show full text]
  • Natural Deduction with Propositional Logic
    Natural Deduction with Propositional Logic Introducing Natural Natural Deduction with Propositional Logic Deduction Ling 130: Formal Semantics Some basic rules without assumptions Rules with assumptions Spring 2018 Outline Natural Deduction with Propositional Logic Introducing 1 Introducing Natural Deduction Natural Deduction Some basic rules without assumptions 2 Some basic rules without assumptions Rules with assumptions 3 Rules with assumptions What is ND and what's so natural about it? Natural Deduction with Natural Deduction Propositional Logic A system of logical proofs in which assumptions are freely introduced but discharged under some conditions. Introducing Natural Deduction Introduced independently and simultaneously (1934) by Some basic Gerhard Gentzen and Stanis law Ja´skowski rules without assumptions Rules with assumptions The book & slides/handouts/HW represent two styles of one ND system: there are several. Introduced originally to capture the style of reasoning used by mathematicians in their proofs. Ancient antecedents Natural Deduction with Propositional Logic Aristotle's syllogistics can be interpreted in terms of inference rules and proofs from assumptions. Introducing Natural Deduction Some basic rules without assumptions Rules with Stoic logic includes a practical application of a ND assumptions theorem. ND rules and proofs Natural Deduction with Propositional There are at least two rules for each connective: Logic an introduction rule an elimination rule Introducing Natural The rules reflect the meanings (e.g. as represented by Deduction Some basic truth-tables) of the connectives. rules without assumptions Rules with Parts of each ND proof assumptions You should have four parts to each line of your ND proof: line number, the formula, justification for writing down that formula, the goal for that part of the proof.
    [Show full text]
  • Logical Verification Course Notes
    Logical Verification Course Notes Femke van Raamsdonk [email protected] Vrije Universiteit Amsterdam autumn 2008 Contents 1 1st-order propositional logic 3 1.1 Formulas . 3 1.2 Natural deduction for intuitionistic logic . 4 1.3 Detours in minimal logic . 10 1.4 From intuitionistic to classical logic . 12 1.5 1st-order propositional logic in Coq . 14 2 Simply typed λ-calculus 25 2.1 Types . 25 2.2 Terms . 26 2.3 Substitution . 28 2.4 Beta-reduction . 30 2.5 Curry-Howard-De Bruijn isomorphism . 32 2.6 Coq . 38 3 Inductive types 41 3.1 Expressivity . 41 3.2 Universes of Coq . 44 3.3 Inductive types . 45 3.4 Coq . 48 3.5 Inversion . 50 4 1st-order predicate logic 53 4.1 Terms and formulas . 53 4.2 Natural deduction . 56 4.2.1 Intuitionistic logic . 56 4.2.2 Minimal logic . 60 4.3 Coq . 62 5 Program extraction 67 5.1 Program specification . 67 5.2 Proof of existence . 68 5.3 Program extraction . 68 5.4 Insertion sort . 68 i 1 5.5 Coq . 69 6 λ-calculus with dependent types 71 6.1 Dependent types: introduction . 71 6.2 λP ................................... 75 6.3 Predicate logic in λP ......................... 79 7 Second-order propositional logic 83 7.1 Formulas . 83 7.2 Intuitionistic logic . 85 7.3 Minimal logic . 88 7.4 Classical logic . 90 8 Polymorphic λ-calculus 93 8.1 Polymorphic types: introduction . 93 8.2 λ2 ................................... 94 8.3 Properties of λ2............................ 98 8.4 Expressiveness of λ2........................
    [Show full text]
  • Propositional Team Logics
    Propositional Team Logics✩ Fan Yanga,1,∗, Jouko V¨a¨an¨anenb,2 aDepartment of Values, Technology and Innovation, Delft University of Technology, Jaffalaan 5, 2628 BX Delft, The Netherlands bDepartment of Mathematics and Statistics, Gustaf H¨allstr¨omin katu 2b, PL 68, FIN-00014 University of Helsinki, Finland and University of Amsterdam, The Netherlands Abstract We consider team semantics for propositional logic, continuing[34]. In team semantics the truth of a propositional formula is considered in a set of valuations, called a team, rather than in an individual valuation. This offers the possibility to give meaning to concepts such as dependence, independence and inclusion. We associate with every formula φ based on finitely many propositional variables the set JφK of teams that satisfy φ. We define a full propositional team logic in which every set of teams is definable as JφK for suitable φ. This requires going beyond the logical operations of classical propositional logic. We exhibit a hierarchy of logics between the smallest, viz. classical propositional logic, and the full propositional team logic. We characterize these different logics in several ways: first syntactically by their logical operations, and then semantically by the kind of sets of teams they are capable of defining. In several important cases we are able to find complete axiomatizations for these logics. Keywords: propositional team logics, team semantics, dependence logic, non-classical logic 2010 MSC: 03B60 1. Introduction In classical propositional logic the propositional atoms, say p1,...,pn, are given a truth value 1 or 0 by what is called a valuation and then any propositional formula φ can be associated with the set |φ| of valuations giving φ the value 1.
    [Show full text]
  • Inversion by Definitional Reflection and the Admissibility of Logical Rules
    THE REVIEW OF SYMBOLIC LOGIC Volume 2, Number 3, September 2009 INVERSION BY DEFINITIONAL REFLECTION AND THE ADMISSIBILITY OF LOGICAL RULES WAGNER DE CAMPOS SANZ Faculdade de Filosofia, Universidade Federal de Goias´ THOMAS PIECHA Wilhelm-Schickard-Institut, Universitat¨ Tubingen¨ Abstract. The inversion principle for logical rules expresses a relationship between introduction and elimination rules for logical constants. Hallnas¨ & Schroeder-Heister (1990, 1991) proposed the principle of definitional reflection, which embodies basic ideas of inversion in the more general context of clausal definitions. For the context of admissibility statements, this has been further elaborated by Schroeder-Heister (2007). Using the framework of definitional reflection and its admis- sibility interpretation, we show that, in the sequent calculus of minimal propositional logic, the left introduction rules are admissible when the right introduction rules are taken as the definitions of the logical constants and vice versa. This generalizes the well-known relationship between introduction and elimination rules in natural deduction to the framework of the sequent calculus. §1. Inversion principle. The idea of inverting logical rules can be found in a well- known remark by Gentzen: “The introductions are so to say the ‘definitions’ of the sym- bols concerned, and the eliminations are ultimately only consequences hereof, what can approximately be expressed as follows: In eliminating a symbol, the formula concerned – of which the outermost symbol is in question – may only ‘be used as that what it means on the ground of the introduction of that symbol’.”1 The inversion principle itself was formulated by Lorenzen (1955) in the general context of rule-based systems and is thus not restricted to logical rules.
    [Show full text]
  • Logical Inference and Its Dynamics
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PhilPapers Logical Inference and Its Dynamics Carlotta Pavese 1 Duke University Philosophy Department Abstract This essay advances and develops a dynamic conception of inference rules and uses it to reexamine a long-standing problem about logical inference raised by Lewis Carroll's regress. Keywords: Inference, inference rules, dynamic semantics. 1 Introduction Inferences are linguistic acts with a certain dynamics. In the process of making an inference, we add premises incrementally, and revise contextual assump- tions, often even just provisionally, to make them compatible with the premises. Making an inference is, in this sense, moving from one set of assumptions to another. The goal of an inference is to reach a set of assumptions that supports the conclusion of the inference. This essay argues from such a dynamic conception of inference to a dynamic conception of inference rules (section x2). According to such a dynamic con- ception, inference rules are special sorts of dynamic semantic values. Section x3 develops this general idea into a detailed proposal and section x4 defends it against an outstanding objection. Some of the virtues of the dynamic con- ception of inference rules developed here are then illustrated by showing how it helps us re-think a long-standing puzzle about logical inference, raised by Lewis Carroll [3]'s regress (section x5). 2 From The Dynamics of Inference to A Dynamic Conception of Inference Rules Following a long tradition in philosophy, I will take inferences to be linguistic acts. 2 Inferences are acts in that they are conscious, at person-level, and 1 I'd like to thank Guillermo Del Pinal, Simon Goldstein, Diego Marconi, Ram Neta, Jim Pryor, Alex Rosenberg, Daniel Rothschild, David Sanford, Philippe Schlenker, Walter Sinnott-Armstrong, Seth Yalcin, Jack Woods, and three anonymous referees for helpful suggestions on earlier drafts.
    [Show full text]