Econophysics: a Brief Review of Historical Development, Present Status and Future Trends

Total Page:16

File Type:pdf, Size:1020Kb

Econophysics: a Brief Review of Historical Development, Present Status and Future Trends 1 Econophysics: A Brief Review of Historical Development, Present Status and Future Trends. B.G.Sharma Sadhana Agrawal Department of Physics and Computer Science, Department of Physics Govt. Science College Raipur. (India) NIT Raipur. (India) [email protected] [email protected] Malti Sharma WQ-1, Govt. Science College Raipur. (India) [email protected] D.P.Bisen SOS in Physics, Pt. Ravishankar Shukla University Raipur. (India) [email protected] Ravi Sharma Devendra Nagar Girls College Raipur. (India) [email protected] Abstract: The conventional economic 1. Introduction: approaches explore very little about the dynamics of the economic systems. Since such How is the stock market like the cosmos systems consist of a large number of agents or like the nucleus of an atom? To a interacting nonlinearly they exhibit the conservative physicist, or to an economist, properties of a complex system. Therefore the the question sounds like a joke. It is no tools of statistical physics and nonlinear laughing matter, however, for dynamics has been proved to be very useful Econophysicists seeking to plant their flag in the underlying dynamics of the system. In the field of economics. In the past few years, this paper we introduce the concept of the these trespassers have borrowed ideas from multidisciplinary field of econophysics, a quantum mechanics, string theory, and other neologism that denotes the activities of accomplishments of physics in an attempt to Physicists who are working on economic explore the divine undiscovered laws of problems to test a variety of new conceptual finance. They are already tallying what they approaches deriving from the physical science say are important gains. The tools of physics and review the recent developments in the provide an ideal background for discipline and possible future trends. approaching problems in economics [1]. Physics training, gives a person powerful Key Words: Econophysics, Stistical Finance, mathematical tools, computer savvy, a Physics of Finance facility in manipulating large sets of data, and an intuition for modeling and Broad Area: Physics simplification. Such skills have brought a new order into economics. Sub Area: Econophysics 2 2. What lies in Econophysics? Reliance on models based on incorrect axioms has clear and large effects [2]. The Econophysics is an interdisciplinary research Black-Scholes model assumes that price changes field, applying theories and methods originally have a Gaussian distribution, i.e. the probability developed by physicists in order to solve of extreme events is deemed negligible. problems in economics, usually those including Unwarranted use of this model to hedge the uncertainty or stochastic processes and nonlinear downfall risk on stock markets spiraled into the dynamics. Its application to the study of financial October 1987 crash. Ironically, it is the very use markets has also been termed statistical finance of the crash-free Black-Scholes model that referring to its roots in statistical physics. destabilized the market! In the recent subprime Physics has played an important role in the crisis of 2008 also, the problem lay in part in the development of economic theory through the development of structured financial products that 19th century, and some of the founders of packaged sub-prime risk into seemingly neoclassical economic theory, were originally respectable high-yield investments. The models trained as physicists. used to price them were fundamentally flawed: they underestimated the probability of the multiple borrowers would default on their loans 2.1 Why Econophysics? simultaneously. In other words, these models again neglected the very possibility of a global The quantitative success of the crisis, even as they contributed to triggering one. economic sciences is disappointing when it is Surprisingly, there is no framework in classical compared with that of physics. Its recurrent economics to understand wild markets, even inability to predict and avert crises, including the though their existence is so obvious to the current worldwide credit crunch is obvious? layman. Physicists, on the other hand, has Why is this so? Of course, modeling the madness developed in physics, several models allowing of people is more difficult than the motion of one to understand how small perturbations can planets, as Newton once said. But the goal here lead to wild effects. The theory of complexity, is to describe the behavior of large populations, developed in the physics literature over the last for which statistical regularities should emerge. thirty years, shows that although a system may The crucial difference between physical sciences have an optimum state (such as a state of lowest and economics or financial mathematics is rather energy, for example), it is sometimes so hard to the relative role of concepts, equations and identify that the system in fact never settles empirical data. Classical economics is built on there. This optimal solution is not only elusive, it very strong assumptions that quickly become is also hyper-fragile to small changes in the axioms: the rationality of economic agents, the environment, and therefore often irrelevant to invisible hand and market efficiency, etc. understanding what is going on. There are good Physicists, on the other hand, have learned to be reasons to believe that this complexity paradigm suspicious of axioms and models. If empirical should apply to economic systems in general and observation is incompatible with the model, the financial markets in particular. Simple ideas of model must be trashed or amended, even if it is equilibrium and linearity do not work. We need conceptually beautiful or mathematically to break away from classical economics and convenient. So many accepted ideas have been develop altogether new tools, as attempted in a proven wrong in the history of physics that still patchy and disorganized way by behavioral physicists have grown to be critical and queasy economists and econophysicists. But their fringe about their own models. Unfortunately, such endeavour is not taken seriously by mainstream healthy scientific revolutions have not yet taken economics. hold in economics, where ideas have solidified Thus there is a crucial need to into dogmas. In reality, markets are not efficient, change the mindset of those working in humans tend to be over-focused in the short-term economics and financial engineering. They need and blind in the long-term, and errors get to realize that an overly formal and dogmatic amplified through social pressure and herding, education in the economic sciences and financial ultimately leading to collective irrationality, mathematics is serious part of the problem. In panic and crashes. Free markets are wild sum the Economic curriculums need to include markets. It is foolish to believe that the market more natural science so that it can tackle the real can impose its own self-discipline. world problems more accurately and efficiently. 3 2.2 Historical Development: speculative markets, an activity that is extremely important in fancial markets (1900). In 1938, Econophysics studies were started in the Ettore Majorana pre-sciently outlined both the mid 1990s by several physicists working in the opportunities and pitfalls in applying statistical subfield of statistical mechanics [3-5]. They physics method to socio economic systems. Jan decided to tackle the complex problems posed by Tinbergen, who studied physics with Paul economics, especially by financial markets. Ehrenfest at Leiden University, won the Unsatisfied with the traditional explanations of first Nobel Prize in economics in 1969 for economists, they applied tools and methods from having developed and applied dynamic models physics - first to try to match financial data sets, for the analysis of economic processes. Ingrao and then to explain more general economic and Israel showed that the works of Léon Walras phenomena. With the availability of huge and Vilfredo Pareto on equilibrium economics is, amounts of financial data, starting in the 1980s, in fact, based on the physical concept it became apparent that traditional methods of of mechanical equilibrium. One of the most analysis were insufficient. Standard economic revolutionary development in the theory of methods dealt with homogeneous agents and speculative prices since Bachelier's initial work, equilibrium, while many of the interesting is the Mandelbrot's hypothesis that price changes phenomena in financial markets fundamentally follow a Levy stable distribution rather than a depended on heterogeneous agents and far-from- Gaussian one. A widely accepted belief in equilibrium situations. financial theory is that time series of asset prices The term “econophysics” was coined by H. are unpredictable. Poincare (1854-1912) has Eugene Stanley in the mid 1990s, to describe the pointed the possibility of unpredictability in a. large number of papers written by physicists in nonlinear dynamical system, establishing the the problems of stock and other markets, and foundations of the chaotic behavior. The study of first appeared in a conference on statistical chaos turned out to be a major branch of physics in Calcutta in 1995 and its following theoretical physics. It was only a question of publications. The inaugural meeting on time, how fast these ideas will start to appear in Econophysics was organised 1998 economy. Ironically, Poincare, who did not in Budapest by János Kertész and Imre Kondor. appreciate
Recommended publications
  • Mathematical Finance
    Mathematical Finance 6.1I nterest and Effective Rates In this section, you will learn about various ways to solve simple and compound interest problems related to bank accounts and calculate the effective rate of interest. Upon completion you will be able to: • Apply the simple interest formula to various financial scenarios. • Apply the continuously compounded interest formula to various financial scenarios. • State the difference between simple interest and compound interest. • Use technology to solve compound interest problems, not involving continuously compound interest. • Compute the effective rate of interest, using technology when possible. • Compare multiple accounts using the effective rates of interest/effective annual yields. Working with Simple Interest It costs money to borrow money. The rent one pays for the use of money is called interest. The amount of money that is being borrowed or loaned is called the principal or present value. Interest, in its simplest form, is called simple interest and is paid only on the original amount borrowed. When the money is loaned out, the person who borrows the money generally pays a fixed rate of interest on the principal for the time period the money is kept. Although the interest rate is often specified for a year, annual percentage rate, it may be specified for a week, a month, or a quarter, etc. When a person pays back the money owed, they pay back the original amount borrowed plus the interest earned on the loan, which is called the accumulated amount or future value. Definition Simple interest is the interest that is paid only on the principal, and is given by I = Prt where, I = Interest earned or paid P = Present value or Principal r = Annual percentage rate (APR) changed to a decimal* t = Number of years* *The units of time for r and t must be the same.
    [Show full text]
  • Math 581/Econ 673: Mathematical Finance
    Math 581/Econ 673: Mathematical Finance This course is ideal for students who want a rigorous introduction to finance. The course covers the following fundamental topics in finance: the time value of money, portfolio theory, capital market theory, security price modeling, and financial derivatives. We shall dissect financial models by isolating their central assumptions and conceptual building blocks, showing rigorously how their gov- erning equations and relations are derived, and weighing critically their strengths and weaknesses. Prerequisites: The mathematical prerequisites are Math 212 (or 222), Math 221, and Math 230 (or 340) or consent of instructor. The course assumes no prior back- ground in finance. Assignments: assignments are team based. Grading: homework is 70% and the individual in-class project is 30%. The date, time, and location of the individual project will be given during the first week of classes. The project is mandatory; missing it is analogous to missing a final exam. Text: A. O. Petters and X. Dong, An Introduction to Mathematical Finance with Appli- cations (Springer, New York, 2016) The text will be allowed as a reference during the individual project. The following books are not required and may serve as supplements: - M. Capi´nski and T. Zastawniak, Mathematics for Finance (Springer, London, 2003) - J. Hull, Options, Futures, and Other Derivatives (Pearson Prentice Hall, Upper Saddle River, 2015) - R. McDonald, Derivative Markets, Second Edition (Addison-Wesley, Boston, 2006) - S. Roman, Introduction to the Mathematics of Finance (Springer, New York, 2004) - S. Ross, An Elementary Introduction to Mathematical Finance, Third Edition (Cambrige U. Press, Cambridge, 2011) - P. Wilmott, S.
    [Show full text]
  • Mathematics and Financial Economics Editor-In-Chief: Elyès Jouini, CEREMADE, Université Paris-Dauphine, Paris, France; [email protected]
    ABCD springer.com 2nd Announcement and Call for Papers Mathematics and Financial Economics Editor-in-Chief: Elyès Jouini, CEREMADE, Université Paris-Dauphine, Paris, France; [email protected] New from Springer 1st issue in July 2007 NEW JOURNAL Submit your manuscript online springer.com Mathematics and Financial Economics In the last twenty years mathematical finance approach. When quantitative methods useful to has developed independently from economic economists are developed by mathematicians theory, and largely as a branch of probability and published in mathematical journals, they theory and stochastic analysis. This has led to often remain unknown and confined to a very important developments e.g. in asset pricing specific readership. More generally, there is a theory, and interest-rate modeling. need for bridges between these disciplines. This direction of research however can be The aim of this new journal is to reconcile these viewed as somewhat removed from real- two approaches and to provide the bridging world considerations and increasingly many links between mathematics, economics and academics in the field agree over the necessity finance. Typical areas of interest include of returning to foundational economic issues. foundational issues in asset pricing, financial Mainstream finance on the other hand has markets equilibrium, insurance models, port- often considered interesting economic folio management, quantitative risk manage- problems, but finance journals typically pay ment, intertemporal economics, uncertainty less
    [Show full text]
  • Arxiv:1509.06955V1 [Physics.Optics]
    Statistical mechanics models for multimode lasers and random lasers F. Antenucci 1,2, A. Crisanti2,3, M. Ib´a˜nez Berganza2,4, A. Marruzzo1,2, L. Leuzzi1,2∗ 1 NANOTEC-CNR, Institute of Nanotechnology, Soft and Living Matter Lab, Rome, Piazzale A. Moro 2, I-00185, Roma, Italy 2 Dipartimento di Fisica, Universit`adi Roma “Sapienza,” Piazzale A. Moro 2, I-00185, Roma, Italy 3 ISC-CNR, UOS Sapienza, Piazzale A. Moro 2, I-00185, Roma, Italy 4 INFN, Gruppo Collegato di Parma, via G.P. Usberti, 7/A - 43124, Parma, Italy We review recent statistical mechanical approaches to multimode laser theory. The theory has proved very effective to describe standard lasers. We refer of the mean field theory for passive mode locking and developments based on Monte Carlo simulations and cavity method to study the role of the frequency matching condition. The status for a complete theory of multimode lasing in open and disordered cavities is discussed and the derivation of the general statistical models in this framework is presented. When light is propagating in a disordered medium, the system can be analyzed via the replica method. For high degrees of disorder and nonlinearity, a glassy behavior is expected at the lasing threshold, providing a suggestive link between glasses and photonics. We describe in details the results for the general Hamiltonian model in mean field approximation and mention an available test for replica symmetry breaking from intensity spectra measurements. Finally, we summary some perspectives still opened for such approaches. The idea that the lasing threshold can be understood as a proper thermodynamic transition goes back since the early development of laser theory and non-linear optics in the 1970s, in particular in connection with modulation instability (see, e.g.,1 and the review2).
    [Show full text]
  • Lecture 13: Financial Disasters and Econophysics
    Lecture 13: Financial Disasters and Econophysics Big problem: Power laws in economy and finance vs Great Moderation: (Source: http://www.mckinsey.com/business-functions/strategy-and-corporate-finance/our-insights/power-curves-what- natural-and-economic-disasters-have-in-common Analysis of big data, discontinuous change especially of financial sector, where efficient market theory missed the boat has drawn attention of specialists from physics and mathematics. Wall Street“quant”models may have helped the market implode; and collapse spawned econophysics work on finance instability. NATURE PHYSICS March 2013 Volume 9, No 3 pp119-197 : “The 2008 financial crisis has highlighted major limitations in the modelling of financial and economic systems. However, an emerging field of research at the frontiers of both physics and economics aims to provide a more fundamental understanding of economic networks, as well as practical insights for policymakers. In this Nature Physics Focus, physicists and economists consider the state-of-the-art in the application of network science to finance.” The financial crisis has made us aware that financial markets are very complex networks that, in many cases, we do not really understand and that can easily go out of control. This idea, which would have been shocking only 5 years ago, results from a number of precise reasons. What does physics bring to social science problems? 1- Heterogeneous agents – strange since physics draws strength from electron is electron is electron but STATISTICAL MECHANICS --- minority game, finance artificial agents, 2- Facility with huge data sets – data-mining for regularities in time series with open eyes. 3- Network analysis 4- Percolation/other models of “phase transition”, which directs attention at boundary conditions AN INTRODUCTION TO ECONOPHYSICS Correlations and Complexity in Finance ROSARIO N.
    [Show full text]
  • Conclusion: the Impact of Statistical Physics
    Conclusion: The Impact of Statistical Physics Applications of Statistical Physics The different examples which we have treated in the present book have shown the role played by statistical mechanics in other branches of physics: as a theory of matter in its various forms it serves as a bridge between macroscopic physics, which is more descriptive and experimental, and microscopic physics, which aims at finding the principles on which our understanding of Nature is based. This bridge can be crossed fruitfully in both directions, to explain or predict macroscopic properties from our knowledge of microphysics, and inversely to consolidate the microscopic principles by exploring their more or less distant macroscopic consequences which may be checked experimentally. The use of statistical methods for deductive purposes becomes unavoidable as soon as the systems or the effects studied are no longer elementary. Statistical physics is a tool of common use in the other natural sciences. Astrophysics resorts to it for describing the various forms of matter existing in the Universe where densities are either too high or too low, and tempera­ tures too high, to enable us to carry out the appropriate laboratory studies. Chemical kinetics as well as chemical equilibria depend in an essential way on it. We have also seen that this makes it possible to calculate the mechan­ ical properties of fluids or of solids; these properties are postulated in the mechanics of continuous media. Even biophysics has recourse to it when it treats general properties or poorly organized systems. If we turn to the domain of practical applications it is clear that the technology of materials, a science aiming to develop substances which have definite mechanical (metallurgy, plastics, lubricants), chemical (corrosion), thermal (conduction or insulation), electrical (resistance, superconductivity), or optical (display by liquid crystals) properties, has a great interest in statis­ tical physics.
    [Show full text]
  • Research Statement Statistical Physics Methods and Large Scale
    Research Statement Maxim Shkarayev Statistical physics methods and large scale computations In recent years, the methods of statistical physics have found applications in many seemingly un- related areas, such as in information technology and bio-physics. The core of my recent research is largely based on developing and utilizing these methods in the novel areas of applied mathemat- ics: evaluation of error statistics in communication systems and dynamics of neuronal networks. During the coarse of my work I have shown that the distribution of the error rates in the fiber op- tical communication systems has broad tails; I have also shown that the architectural connectivity of the neuronal networks implies the functional connectivity of the afore mentioned networks. In my work I have successfully developed and applied methods based on optimal fluctuation theory, mean-field theory, asymptotic analysis. These methods can be used in investigations of related areas. Optical Communication Systems Error Rate Statistics in Fiber Optical Communication Links. During my studies in the Ap- plied Mathematics Program at the University of Arizona, my research was focused on the analyti- cal, numerical and experimental study of the statistics of rare events. In many cases the event that has the greatest impact is of extremely small likelihood. For example, large magnitude earthquakes are not at all frequent, yet their impact is so dramatic that understanding the likelihood of their oc- currence is of great practical value. Studying the statistical properties of rare events is nontrivial because these events are infrequent and there is rarely sufficient time to observe the event enough times to assess any information about its statistics.
    [Show full text]
  • From Big Data to Econophysics and Its Use to Explain Complex Phenomena
    Journal of Risk and Financial Management Review From Big Data to Econophysics and Its Use to Explain Complex Phenomena Paulo Ferreira 1,2,3,* , Éder J.A.L. Pereira 4,5 and Hernane B.B. Pereira 4,6 1 VALORIZA—Research Center for Endogenous Resource Valorization, 7300-555 Portalegre, Portugal 2 Department of Economic Sciences and Organizations, Instituto Politécnico de Portalegre, 7300-555 Portalegre, Portugal 3 Centro de Estudos e Formação Avançada em Gestão e Economia, Instituto de Investigação e Formação Avançada, Universidade de Évora, Largo dos Colegiais 2, 7000 Évora, Portugal 4 Programa de Modelagem Computacional, SENAI Cimatec, Av. Orlando Gomes 1845, 41 650-010 Salvador, BA, Brazil; [email protected] (É.J.A.L.P.); [email protected] (H.B.B.P.) 5 Instituto Federal do Maranhão, 65075-441 São Luís-MA, Brazil 6 Universidade do Estado da Bahia, 41 150-000 Salvador, BA, Brazil * Correspondence: [email protected] Received: 5 June 2020; Accepted: 10 July 2020; Published: 13 July 2020 Abstract: Big data has become a very frequent research topic, due to the increase in data availability. In this introductory paper, we make the linkage between the use of big data and Econophysics, a research field which uses a large amount of data and deals with complex systems. Different approaches such as power laws and complex networks are discussed, as possible frameworks to analyze complex phenomena that could be studied using Econophysics and resorting to big data. Keywords: big data; complexity; networks; stock markets; power laws 1. Introduction Big data has become a very popular expression in recent years, related to the advance of technology which allows, on the one hand, the recovery of a great amount of data, and on the other hand, the analysis of that data, benefiting from the increasing computational capacity of devices.
    [Show full text]
  • Statistical Physics II
    Statistical Physics II. Janos Polonyi Strasbourg University (Dated: May 9, 2019) Contents I. Equilibrium ensembles 3 A. Closed systems 3 B. Randomness and macroscopic physics 5 C. Heat exchange 6 D. Information 8 E. Correlations and informations 11 F. Maximal entropy principle 12 G. Ensembles 13 H. Second law of thermodynamics 16 I. What is entropy after all? 18 J. Grand canonical ensemble, quantum case 19 K. Noninteracting particles 20 II. Perturbation expansion 22 A. Exchange correlations for free particles 23 B. Interacting classical systems 27 C. Interacting quantum systems 29 III. Phase transitions 30 A. Thermodynamics 32 B. Spontaneous symmetry breaking and order parameter 33 C. Singularities of the partition function 35 IV. Spin models on lattice 37 A. Effective theories 37 B. Spin models 38 C. Ising model in one dimension 39 D. High temperature expansion for the Ising model 41 E. Ordered phase in the Ising model in two dimension dimensions 41 V. Critical phenomena 43 A. Correlation length 44 B. Scaling laws 45 C. Scaling laws from the correlation function 47 D. Landau-Ginzburg double expansion 49 E. Mean field solution 50 F. Fluctuations and the critical point 55 VI. Bose systems 56 A. Noninteracting bosons 56 B. Phases of Helium 58 C. He II 59 D. Energy damping in super-fluid 60 E. Vortices 61 VII. Nonequillibrium processes 62 A. Stochastic processes 62 B. Markov process 63 2 C. Markov chain 64 D. Master equation 65 E. Equilibrium 66 VIII. Brownian motion 66 A. Diffusion equation 66 B. Fokker-Planck equation 68 IX. Linear response 72 A.
    [Show full text]
  • Chapter 7 Equilibrium Statistical Physics
    Chapter 7 Equilibrium statistical physics 7.1 Introduction The movement and the internal excitation states of atoms and molecules constitute the microscopic basis of thermodynamics. It is the task of statistical physics to connect the microscopic theory, viz the classical and quantum mechanical equations of motion, with the macroscopic laws of thermodynamics. Thermodynamic limit The number of particles in a macroscopic system is of the order of the Avogadro constantN 6 10 23 and hence huge. An exact solution of 1023 coupled a ∼ · equations of motion will hence not be possible, neither analytically,∗ nor numerically.† In statistical physics we will be dealing therefore with probability distribution functions describing averaged quantities and theirfluctuations. Intensive quantities like the free energy per volume,F/V will then have a well defined thermodynamic limit F lim . (7.1) N →∞ V The existence of a well defined thermodynamic limit (7.1) rests on the law of large num- bers, which implies thatfluctuations scale as 1/ √N. The statistics of intensive quantities reduce hence to an evaluation of their mean forN . →∞ Branches of statistical physics. We can distinguish the following branches of statistical physics. Classical statistical physics. The microscopic equations of motion of the particles are • given by classical mechanics. Classical statistical physics is incomplete in the sense that additional assumptions are needed for a rigorous derivation of thermodynamics. Quantum statistical physics. The microscopic equations of quantum mechanics pro- • vide the complete and self-contained basis of statistical physics once the statistical ensemble is defined. ∗ In classical mechanics one can solve only the two-body problem analytically, the Kepler problem, but not the problem of three or more interacting celestial bodies.
    [Show full text]
  • Careers in Quantitative Finance by Steven E
    Careers in Quantitative Finance by Steven E. Shreve1 August 2018 1 What is Quantitative Finance? Quantitative finance as a discipline emerged in the 1980s. It is also called financial engineering, financial mathematics, mathematical finance, or, as we call it at Carnegie Mellon, computational finance. It uses the tools of mathematics, statistics, and computer science to solve problems in finance. Computational methods have become an indispensable part of the finance in- dustry. Originally, mathematical modeling played the dominant role in com- putational finance. Although this continues to be important, in recent years data science and machine learning have become more prominent. Persons working in the finance industry using mathematics, statistics and computer science have come to be known as quants. Initially relegated to peripheral roles in finance firms, quants have now taken center stage. No longer do traders make decisions based solely on instinct. Top traders rely on sophisticated mathematical models, together with analysis of the current economic and financial landscape, to guide their actions. Instead of sitting in front of monitors \following the market" and making split-second decisions, traders write algorithms that make these split- second decisions for them. Banks are eager to hire \quantitative traders" who know or are prepared to learn this craft. While trading may be the highest profile activity within financial firms, it is not the only critical function of these firms, nor is it the only place where quants can find intellectually stimulating and rewarding careers. I present below an overview of the finance industry, emphasizing areas in which quantitative skills play a role.
    [Show full text]
  • Financial Mathematics
    Financial Mathematics Alec Kercheval (Chair, Florida State University) Ronnie Sircar (Princeton University) Jim Sochacki (James Madison University) Tim Sullivan (Economics, Towson University) Introduction Financial Mathematics developed in the mid-1980s as research mathematicians became interested in problems, largely involving stochastic control, that had until then been studied primarily by economists. The subject grew slowly at first and then more rapidly from the mid- 1990s through to today as mathematicians with backgrounds first in probability and control, then partial differential equations and numerical analysis, got into it and discovered new issues and challenges. A society of mostly mathematicians and some economists, the Bachelier Finance Society, began in 1997 and holds biannual world congresses. The Society for Industrial and Applied Mathematics (SIAM) started an Activity Group in Financial Mathematics & Engineering in 2002; it now has about 800 members. The 4th SIAM conference in this area was held jointly with its annual meeting in Minneapolis in 2013, and attracted over 300 participants to the Financial Mathematics meeting. In 2009 the SIAM Journal on Financial Mathematics was launched and it has been very successful gauged by numbers of submissions. Student interest grew enormously over the same period, fueled partly by the growing financial services sector of modern economies. This growth created a demand first for quantitatively trained PhDs (typically physicists); it then fostered the creation of a large number of Master’s programs around the world, especially in Europe and in the U.S. At a number of institutions undergraduate programs have developed and become quite popular, either as majors or tracks within a mathematics major, or as joint degrees with Business or Economics.
    [Show full text]