LLVM COMPILER R. Bansal1, Jasmine Norman2,Mangayarkarasi

Total Page:16

File Type:pdf, Size:1020Kb

LLVM COMPILER R. Bansal1, Jasmine Norman2,Mangayarkarasi International Journal of Pure and Applied Mathematics Volume 117 No. 17 2017, 15-21 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu Special Issue ijpam.eu LLVM COMPILER R. Bansal 1, Jasmine Norman 2,Mangayarkarasi R 3,Vanitha M 4,Chandramouliswaran S 5 1,2,3,4,5 School of Information Technology and Engineering, VIT University, Vellore, [email protected] Abstract: The compiler is pointed and equipped towards 2. Literature Survey giving local assemblage to smaller scale pc’s, for example, raspberry pie, arduino and different other IOT The LLVM framework engineering [1] is intended to related miniaturized scale pc’s that are yet to influence a address these issues in conventional frameworks. stamp in the market to like the new Android Things Quickly, the static compilers in the LLVM framework venture. The devices we'll be utilizing are C/C++ based. arrange the source code down to a low-level portrayal LLVM is particularly C++ and our dialect will stick to that incorporates abnormal state sort data: The LLVM this same pattern since there are a few comforts of OOP Virtual Instruction Set [2]. This enables the static and the STL (C++'s stdlib) that make for less lines of compiler to perform generous improvements at aggregate code. Notwithstanding C, both Lex and Bison have their time, while as yet conveying abnormal state data to the own linguistic structure. The linguistic use of the dialect linker. At interface time, the program is consolidated into will be kept fundamentally the same as C/C++, hence a solitary unit of LLVM virtual direction set code, and is making it feasible for new devices. inter procedurally improved [3]. Once the program has been totally advanced, machine code is created and a 1. Introduction local executable is delivered. This executable is local machine code, yet it likewise incorporates a duplicate of The low level virtual machine which is also known as the program's LLVM bytecode for later phases of LLVM compiler is mainly used to establish compiler improvement. The LLVM run-time streamlining agent Front end and back end. Basically LLVM compiler is essentially screens the execution of the running project, used to optimize the programs which can be written in gathering profile data.At the point when the run-time different languages. The language used to write LLVM is analyzer confirms that it can enhance the execution of the C++. The idea behind the invention of LLVM is program through a change, it might do as such through programs optimization at compile time to idle time. two courses: either coordinate alteration of the as of now LLVM provides fully independent platform for improved machine code or new code age from the joined languages. Many different type of languages can be used LLVM bytecode[4]. In either case, the LLVM bytecode for different tasks, there is no worry about which gives essential abnormal state control stream, information language is used that’s why the whole working becomes stream, and sort data that is helpful for forceful run-time smooth and flexible when LLVM is used. The gathered advancements. A few changes are excessively costly, instructions or different kind of systems can be provided making it impossible to perform at run-time, even given in any language LLVM supports all of them, this an effective portrayal to work with. For these changes, flexibility provides more benefits because the whole the run-time streamlining agent assembles profile data, environment becomes free from any type of obstacles serializing it to plate. At the point when sit without related to languages and can be established in all type of moving time is identified on the client's PC, a situations related to work. LLVM provides to run the disconnected reoptimizer is utilized to play out the most programs in an desired way so that the code can be run forceful profile-driven advancements to the application. smoothly with an correctly optimized manner, that’s why The disconnected analyzer is identical in energy to the it provides good results and benefits for programs connection time streamlining agent. The distinction is execution by working on the optimization of programs at that the disconnected streamlining agent utilizes profile run time to compile time. and interprocedural investigation data to enhance the program, where the connection time enhancer must manage without profile data. Note that this framework gathers profile data in the field, which gives the most 15 International Journal of Pure and Applied Mathematics Special Issue exact data conceivable, and does not meddle with the incremental recompilations. Additionally, in light of the improvement procedure at all[5]. The utilization of the fact that the majority of the segments work on a similar LLVM virtual direction set enables work to be offloaded portrayal, they can share usage of changes. from connect time to accumulate time, accelerating 3. Proposed Model A compiler on a high level that is to say on an abstract languages such and C/C++ . The figure above shows the level is a combination of mainly 3 to 4 components Compiler Pipeline and also lists he tools that we will be which transfer data from 1 component to another in a using to create the compiler for our language. pipeline fashion. The paper talks about a compiler being In Summary, the compiler design involves 3 steps.We designed for a new language that will have a similar will dive deeper into these later on in the paper: grammatical structure to the popular languages such and a. Lexical Analysis with Lex/Flex: This mainly C/C++ . The figure above shows the Compiler Pipeline translates to splitting the input data into a set and also lists he tools that we will be using to create the oftokens(numbers, brackets, braces, keywords, identifiers compiler for our language.In Summary, the compiler etc) that a compiler can understand as is done design involves 3 steps.We will dive deeper into these with every other language. later on in the paper:.A compiler on a high level that is to b. Semantic Parsing with Yacc/Bison: In this step we say on an abstract level is a combination of mainly 3 to 4 will generate an AST[9] while parsing thetokens and feed components which transfer data from 1 component to it to Yacc/Bison. another in a pipeline fashion. The paper talks about a c. Assembly using LLVM: This is where LLVM comes compiler being designed for a new language that will in and we will be using it to generate themachine/byte have a similar grammatical structure to the popular code for every node that we have. The Grammar/Syntax for our language will be kept the number of tokens has been kept to a minimal amount similar to C language because of its familiarity in the such as numbers (floats and integers), parentheses , developer world. mathematical operators and braces. The definition of the tokens file is given below. 3.1 Lexical Analysis In the first step of the language essentially all we are doing is defining the tokens that will be accepted by In this step all we will be doing is to break down our the compilers(tokens make up the syntactical structure of input statements into a set of knownlist items that we the language), and in addition to that we will also be have established as the tokens for our language/compiler. ignoring the blank spaces and other white line/spaces For the first few iterations and versions of the language using the tokens file. 16 International Journal of Pure and Applied Mathematics Special Issue will need to contain all sorts of expressions that the language is expected to support namely Variable 3.2 Semantic Parsing Declarations, Method calls, references, method declarations and then represent all of them as a separate This step mainly consists of defining an Abstract Syntax node in our Abstract Syntax Tree. Following is a snippet Tree(AST)[10] for the language and then afterwards of how the AST node. h giving a brief idea of how is an feeding our AST to Yacc/Bison should do the job. The AST represented in terms of C code. AST that is to be defined for the language will contain all 17 International Journal of Pure and Applied Mathematics Special Issue 18 International Journal of Pure and Applied Mathematics Special Issue Other Than the expressions/nodes showcased in the 4. Assemble the AST using LLVM above snippet there is also support for the following: a) Variable declaration In the final step we will be taking our AST and turning it b) Extern Declaration into byte-code/machine-code, which directly translates to c) Function Declaration taking every single available semantic node and turning it d) Return Statement into the corresponding set of machine level instructions Once the nodes are created we can then feed the nodes and that is where LLVM comes to the rescue and helps and tokens to bison with the -d flag(since the token us with most of our Work since LLVM abstracts most of declaration and definition are in different places) in order the actual instructions into something that is similar to to give a definition to our tokens. that of an AST. This is also where the codegen method comes into play and the following is a snippet of how codegen method is defined for LLVMs usage for N Method Call (node Method call). 5. Conclusion and Future Work translation in QEMU." Master's thesis, University of Adelaide, Australia (2009). In the above we described in detail the tools that were used to create the new language and the things that the [3] Lattner, Chris.
Recommended publications
  • GNU M4, Version 1.4.7 a Powerful Macro Processor Edition 1.4.7, 23 September 2006
    GNU M4, version 1.4.7 A powerful macro processor Edition 1.4.7, 23 September 2006 by Ren´eSeindal This manual is for GNU M4 (version 1.4.7, 23 September 2006), a package containing an implementation of the m4 macro language. Copyright c 1989, 1990, 1991, 1992, 1993, 1994, 2004, 2005, 2006 Free Software Foundation, Inc. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled “GNU Free Documentation License.” i Table of Contents 1 Introduction and preliminaries ................ 3 1.1 Introduction to m4 ............................................. 3 1.2 Historical references ............................................ 3 1.3 Invoking m4 .................................................... 4 1.4 Problems and bugs ............................................. 8 1.5 Using this manual .............................................. 8 2 Lexical and syntactic conventions ............ 11 2.1 Macro names ................................................. 11 2.2 Quoting input to m4........................................... 11 2.3 Comments in m4 input ........................................ 11 2.4 Other kinds of input tokens ................................... 12 2.5 How m4 copies input to output ................................ 12 3 How to invoke macros........................
    [Show full text]
  • GNU M4, Version 1.4.19 a Powerful Macro Processor Edition 1.4.19, 28 May 2021
    GNU M4, version 1.4.19 A powerful macro processor Edition 1.4.19, 28 May 2021 by Ren´eSeindal, Fran¸coisPinard, Gary V. Vaughan, and Eric Blake ([email protected]) This manual (28 May 2021) is for GNU M4 (version 1.4.19), a package containing an implementation of the m4 macro language. Copyright c 1989{1994, 2004{2014, 2016{2017, 2020{2021 Free Software Foundation, Inc. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled \GNU Free Documentation License." i Table of Contents 1 Introduction and preliminaries ::::::::::::::::: 3 1.1 Introduction to m4 :::::::::::::::::::::::::::::::::::::::::::::: 3 1.2 Historical references :::::::::::::::::::::::::::::::::::::::::::: 3 1.3 Problems and bugs ::::::::::::::::::::::::::::::::::::::::::::: 4 1.4 Using this manual :::::::::::::::::::::::::::::::::::::::::::::: 5 2 Invoking m4::::::::::::::::::::::::::::::::::::::: 7 2.1 Command line options for operation modes ::::::::::::::::::::: 7 2.2 Command line options for preprocessor features ::::::::::::::::: 8 2.3 Command line options for limits control ::::::::::::::::::::::: 10 2.4 Command line options for frozen state ::::::::::::::::::::::::: 11 2.5 Command line options for debugging :::::::::::::::::::::::::: 11 2.6 Specifying input files on the command line :::::::::::::::::::::
    [Show full text]
  • Cisco UCS C240 M4 SFF Rack Server Spec Sheet
    This Product has been discontinued Spec Sheet Cisco UCS C240 M4 High-Density Rack Server (Small Form Factor Disk Drive Model) CISCO SYSTEMS PUBLICATION HISTORY 170 WEST TASMAN DR. SAN JOSE, CA, 95134 REV E.20 MARCH 23, 2021 WWW.CISCO.COM CONTENTS OVERVIEW . 5 DETAILED VIEWS . 6 Chassis Front View . .6 Chassis Rear View . .9 BASE SERVER STANDARD CAPABILITIES and FEATURES . 11 CONFIGURING the SERVER . 15 STEP 1 VERIFY SERVER SKU . 16 STEP 2 SELECT RISER CARDS (OPTIONAL) . 17 STEP 3 SELECT LOCKING SECURITY BEZEL (OPTIONAL) . 18 STEP 4 SELECT CPU(s) . 19 STEP 5 SELECT MEMORY . 21 STEP 6 SELECT RAID CONTROLLERS . 27 RAID Controller Options (internal HDD/SSD support) . 27 Embedded Software RAID . 27 Cisco 12G SAS Modular RAID Controller . 27 SAS HBA (internal HDD/SSD/JBOD support) . 27 SAS HBA (external JBOD support) . 27 RAID Volumes and Groups . 28 STEP 7 SELECT HARD DISK DRIVES (HDDs) or SOLID STATE DRIVES (SSDs) . 39 STEP 8 SELECT SED HARD DISK DRIVES (HDDs) or SOLID STATE DRIVES (SSDs) . 45 STEP 9 SELECT PCIe OPTION CARD(s) . 48 STEP 10 ORDER OPTIONAL NETWORK CARD ACCESSORIES . 53 STEP 11 ORDER GPU CARDS AND GPU POWER CABLES (OPTIONAL) . 58 STEP 12 ORDER POWER SUPPLY . 61 STEP 13 SELECT AC POWER CORD(s) . 62 STEP 14 ORDER TOOL-LESS RAIL KIT AND OPTIONAL REVERSIBLE CABLE MANAGEMENT ARM . 65 STEP 15 SELECT NIC MODE (OPTIONAL) . 66 STEP 16 ORDER A TRUSTED PLATFORM MODULE (OPTIONAL) . 67 STEP 17 ORDER CISCO FLEXIBLE FLASH SD CARD MODULE (OPTIONAL) . 69 STEP 18 ORDER OPTIONAL USB 3.0 DRIVE .
    [Show full text]
  • AWK-4121 Hardware Installation Guide Moxa Airworks
    AWK-4121 Hardware Installation Guide Moxa AirWorks Fourth Edition, October 2010 2010 Moxa Inc. All rights reserved. Reproduction without permission is prohibited. P/N: 1802041210013 Notes for the Reader WARNING Indicates that death or personal injury may occur if proper precautions are not taken. ATTENTION Indicates that possible damage to this product or your property may result if proper precautions are not taken. NOTE Highlights important information related to this product. Package Checklist Moxa’s AWK-4121 is shipped with the following items. If any of these items is missing or damaged, please contact your customer service representative for assistance. • AWK-4121 • 2 omni-directional antennas (2/5 dBi, N-type male, 2.4/5 GHz) • Wall mounting kit • Field-installable power plug • Field-installable RJ45 plug • Metal cap to cover M12 female DI/O connector • Metal cap to cover RJ45 connector • Documentation and software CD • Quick installation guide (printed) • Warranty card NOTE The above items come with the AWK-4121 standard version. The package contents for customized versions may be different. Installation Before installing the AWK-4121, make sure that all items in the Package Checklist are in the box. In addition, you will need access to a notebook computer or PC equipped with an Ethernet port. The AWK-4121 has a default IP address, user name and password that you must use when resetting or connecting to your AWK-4121 device. Default IP address: 192.168.127.253 User name: admin Password: root Please read “Chapter2 Getting Started” in AWK-4121 User’s Manual for more details about installation and configuration.
    [Show full text]
  • Kafl: Hardware-Assisted Feedback Fuzzing for OS Kernels
    kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels Sergej Schumilo1, Cornelius Aschermann1, Robert Gawlik1, Sebastian Schinzel2, Thorsten Holz1 1Ruhr-Universität Bochum, 2Münster University of Applied Sciences Motivation IJG jpeg libjpeg-turbo libpng libtiff mozjpeg PHP Mozilla Firefox Internet Explorer PCRE sqlite OpenSSL LibreOffice poppler freetype GnuTLS GnuPG PuTTY ntpd nginx bash tcpdump JavaScriptCore pdfium ffmpeg libmatroska libarchive ImageMagick BIND QEMU lcms Adobe Flash Oracle BerkeleyDB Android libstagefright iOS ImageIO FLAC audio library libsndfile less lesspipe strings file dpkg rcs systemd-resolved libyaml Info-Zip unzip libtasn1OpenBSD pfctl NetBSD bpf man mandocIDA Pro clamav libxml2glibc clang llvmnasm ctags mutt procmail fontconfig pdksh Qt wavpack OpenSSH redis lua-cmsgpack taglib privoxy perl libxmp radare2 SleuthKit fwknop X.Org exifprobe jhead capnproto Xerces-C metacam djvulibre exiv Linux btrfs Knot DNS curl wpa_supplicant Apple Safari libde265 dnsmasq libbpg lame libwmf uudecode MuPDF imlib2 libraw libbson libsass yara W3C tidy- html5 VLC FreeBSD syscons John the Ripper screen tmux mosh UPX indent openjpeg MMIX OpenMPT rxvt dhcpcd Mozilla NSS Nettle mbed TLS Linux netlink Linux ext4 Linux xfs botan expat Adobe Reader libav libical OpenBSD kernel collectd libidn MatrixSSL jasperMaraDNS w3m Xen OpenH232 irssi cmark OpenCV Malheur gstreamer Tor gdk-pixbuf audiofilezstd lz4 stb cJSON libpcre MySQL gnulib openexr libmad ettercap lrzip freetds Asterisk ytnefraptor mpg123 exempi libgmime pev v8 sed awk make
    [Show full text]
  • Programming Guide DP800 Series Programmable Linear DC Power
    RIGOL Programming Guide DP800 Series Programmable Linear DC Power Supply Dec. 2015 RIGOL TECHNOLOGIES, INC. RIGOL Guaranty and Declaration Copyright © 2013 RIGOL TECHNOLOGIES, INC. All Rights Reserved. Trademark Information RIGOL is a registered trademark of RIGOL TECHNOLOGIES, INC. Publication Number PGH03108-1110 Software Version 00.01.14 Software upgrade might change or add product features. Please acquire the latest version of the manual from RIGOL website or contact RIGOL to upgrade the software. Notices RIGOL products are covered by P.R.C. and foreign patents, issued and pending. RIGOL reserves the right to modify or change parts of or all the specifications and pricing policies at the company’s sole decision. Information in this publication replaces all previously released materials. Information in this publication is subject to change without notice. RIGOL shall not be liable for either incidental or consequential losses in connection with the furnishing, use, or performance of this manual, as well as any information contained. Any part of this document is forbidden to be copied, photocopied, or rearranged without prior written approval of RIGOL. Product Certification RIGOL guarantees that this product conforms to the national and industrial standards in China as well as the ISO9001:2008 standard and the ISO14001:2004 standard. Other international standard conformance certifications are in progress. Contact Us If you have any problem or requirement when using our products or this manual, please contact RIGOL. E-mail: [email protected] Website: www.rigol.com DP800 Programming Guide I RIGOL Document Overview This manual introduces how to program the power supply over remote interfaces in details.
    [Show full text]
  • Configuration Guide--SAS® 9.4 Foundation for UNIX® Environments
    Where you w Configuration Guide for SAS® 9.4 Foundation for UNIX Environments Copyright Notice The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2020. Configuration Guide for SAS® 9.4 Foundation for UNIX Environments, Cary, NC: SAS Institute Inc. Configuration Guide for SAS® 9.4 Foundation for UNIX Environments Copyright © 2020, SAS Institute Inc., Cary, NC, USA All rights reserved. Produced in the United States of America. For a hard-copy book: No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without the prior written permission of the publisher, SAS Institute Inc. For a web download or e-book: Your use of this publication shall be governed by the terms established by the vendor at the time you acquire this publication. The scanning, uploading, and distribution of this book via the Internet or any other means without the permission of the publisher is illegal and punishable by law. Please purchase only authorized electronic editions and do not participate in or encourage electronic piracy of copyrighted materials. Your support of others’ rights is appreciated. U.S. Government Restricted Rights Notice: Use, duplication, or disclosure of this software and related documentation by the U.S. government is subject to the Agreement with SAS Institute and the restrictions set forth in FAR 52.227-19, Commercial Computer Software-Restricted Rights (June 1987). SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513. August 2020 SAS® Publishing provides a complete selection of books and electronic products to help customers use SAS software to its fullest potential.
    [Show full text]
  • Marco: Safe, Expressive Macros for Any Language*
    Marco: Safe, Expressive Macros for Any Language? Byeongcheol Lee1, Robert Grimm2, Martin Hirzel3, Kathryn S. McKinley4,5 1 Gwangju Institute of Science and Technology 2 New York University 3 IBM Watson Research Center 4 Microsoft Research 5 The University of Texas at Austin Abstract. Macros improve expressiveness, concision, abstraction, and language interoperability without changing the programming language itself. They are indispensable for building increasingly prevalent mul- tilingual applications. Unfortunately, existing macro systems are well- encapsulated but unsafe (e.g., the C preprocessor) or are safe but tightly- integrated with the language implementation (e.g., Scheme macros). This paper introduces Marco, the first macro system that seeks both encap- sulation and safety. Marco is based on the observation that the macro system need not know all the syntactic and semantic rules of the tar- get language but must only directly enforce some rules, such as variable name binding. Using this observation, Marco off-loads most rule checking to unmodified target-language compilers and interpreters and thus be- comes language-scalable. We describe the Marco language, its language- independent safety analysis, and how it uses two example target-language analysis plug-ins, one for C++ and one for SQL. This approach opens the door to safe and expressive macros for any language. 1 Introduction Macros enhance programming languages without changing them. Programmers use macros to add missing language features, to improve concision and abstrac- tion, and to interoperate between different languages and with systems. With macros, programmers use concrete syntax instead of tediously futzing with ab- stract syntax trees or, worse, creating untyped and unchecked strings.
    [Show full text]
  • ANL Parallel Processing Macro Package Tutorial
    ANL Parallel Processing Macro Package Tutorial Introduction The Argonne National Laboratory's (ANL) parallel processing macro package provides a virtual machine that consists of a shared global memory and a number of processors with their own local memory. The macros themselves are a set of process control, synchronization, and communication primitives implemented as C-language m4 macros. The use of macros has the advantage of portability. In fact, there are two layers of macros: a small set of primitive, machine-dependent macros written in terms of target machine functions and a larger set of machine-independent macros written in terms of the machine-dependent macros, so only few machine-dependent macros need to be ported to a new machine. Unfortunately, the use of macros also makes debugging more difficult, since error messages are given in reference to the C program generated from the original program. This document describes a subset of the ANL macros as an introduction to their use. Environment Specification Macros Some of the macros assume the existence of certain data structures. The MAIN_ENV and the EXTERN_ENV macros contain the necessary definitions and declarations; MAIN_INITENV performs required initialization. MAIN_ENV contains types and structures used internally in the macro package. It should appear in exactly one file (typically the main file) in the static definitions section before any other macro usage. EXTERN_ENV contains definitions and external declarations and should appear in the static definitions section of each separately compiled module in which MAIN_ENV does not appear. MAIN_INTENV is an executable macro that initializes data structures defined by MAIN_ENV. The code generated by this macro must be executed before that of any other macro, thus it typically appears very early in the program's main function.
    [Show full text]
  • AWK-4121 Quick Installation Guide Moxa Airworks
    AWK-4121 Quick Installation Guide Moxa AirWorks Edition 7.0, February 2017 Technical Support Contact Information www.moxa.com/support Moxa Americas: Moxa China (Shanghai office): Toll-free: 1-888-669-2872 Toll-free: 800-820-5036 Tel: 1-714-528-6777 Tel: +86-21-5258-9955 Fax: 1-714-528-6778 Fax: +86-21-5258-5505 Moxa Europe: Moxa Asia-Pacific: Tel: +49-89-3 70 03 99-0 Tel: +886-2-8919-1230 Fax: +49-89-3 70 03 99-99 Fax: +886-2-8919-1231 Moxa India: Tel: +91-80-4172-9088 Fax: +91-80-4132-1045 2017 Moxa Inc. All rights reserved. P/N: 1802041210016 *1802041210016* Overview The AWK-4121 outdoor wireless Access Point is an ideal solution for industrial applications that are hard to wire, too expensive to wire, or use mobile equipment that connect to a TCP/IP network. The AWK-4121 is rated to operate at temperatures ranging from -40 to 75°C, and its dust-tight and weatherproof design is IP68-rated. An IP68 rating means the device is completely protected from dust and is protected against the effects of immersion in water between 15cm and 1m in depth. This means you can set up a WLAN or extend existing wired networks to outdoor locations and still maintain a reliable connection. The AWK-4121 has two redundant DC power inputs for increased reliability, can be powered via PoE (discontinued starting with HW Rev 2.0.0), and is easy to deploy. Package Checklist Moxa’s AWK-4121 is shipped with the following items.
    [Show full text]
  • Object Oriented Programming Using Java 2.3.3.1.9B Formatted Display
    Object Oriented Programming Using Java 2.3.3.1.9B Formatted Display Formatted Display Using Printf and Format To print multiple argument with various formatting we use format() or printf() method • format /printf are printstream methods which means printing with formatting Syntax of printf(): System.out.printf(format, arguments); System.out.printf(locale, format, arguments); Syntax of format(): System.out.format(format, arguments); System.out.format(locale, format, arguments); • Locale specifies country name which effects date/time & number formats. A Locale object represents a specific geographical, political, or cultural region. It effects formats like numbers, currency, and percentages in a locale-sensitive manner Ex: Locale.US, Locale.UK, Locale.JAPAN • Format parameter specifies the formatting options like Data type, Width of display, Indentation, Sign , Precision Arguments are the data to be displayed as per the given formatting Format Specifier : To produces formatted output it requires a format string and an argument list. The format string contains fixed text and one or more embedded format specifiers. %[flags][width][.precision]conversion-character • Format string consists of literals and format specifier • format specifier consists of – % symbol starts the format rule – flags, width, precision as optional • Flags – modifies the output format • Width – Specifies width of display of the respective parameter • Precision – Specifies no. of digits of precision Conversion character specifies how to format the argument Conversion
    [Show full text]
  • AWK-4131 Hardware Installation Guide Moxa Airworks
    AWK-4131 Hardware Installation Guide Moxa AirWorks First Edition, March 2011 2010 Moxa Inc. All rights reserved. Reproduction without permission is prohibited. P/N: 1802041310010 Notes for the Reader WARNING Indicates that death or personal injury may occur if proper precautions are not taken. ATTENTION Indicates that possible damage to this product or your property may result if proper precautions are not taken. NOTE Highlights important information related to this product. Package Checklist Moxa’s AWK-4131 is shipped with the following items. If any of these items is missing or damaged, please contact your customer service representative for assistance. • AWK-4131 • 2 omni-directional antennas (5/2 dBi, N-type male, 2.4/5 GHz) • Wall mounting kit • Field-installable power plug • Field-installable M12 8-pin male plug for Ethernet • Metal cap to cover M12 male DI/O connector • Metal cap to cover RJ45 connector • Meta cap to cover M30 SFP connector • Documentation and software CD • Quick installation guide (printed) • Warranty card Recommended SFP Accessories SFP-1G series • SFP-1GSXLC: Small form factor pluggable transceiver with 1000BaseSX, LC, 0.5 km, 0 to 60°C • SFP-1GSXLC-T: Small form factor pluggable transceiver with 1000BaseSX, LC, 0.5 km, -20 to 75°C • SFP-1GLSXLC: Small form factor pluggable transceiver with 1000BaseLSX, LC, 2 km, 0 to 60°C • SFP-1GLSXLC-T: Small form factor pluggable transceiver with 1000BaseLSX, LC, 2 km, -40 to 85°C • SFP-1GLXLC: Small form factor pluggable transceiver with 1000BaseLX, LC, 10 km, 0 to 60°C
    [Show full text]